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Abstract – This paper propounds a new evolution strategy, the Discrete Directions Mutation Evolution Strategy (DDM-
ES), with the aim of obtaining the set of most promising minima in multimodal functions and making this process as effi-
cient as possible. First, DDM-ES is compared with a Genetic Algorithm (GA) on two scaleable test functions with 5, 10, 15 
and 20 dimensions, showing better behaviour than GA when the objective function is unimodal but not being as global as 
the GA in highly multimodal ones. Later, the multimodal search nature of DDM-ES is shown applying this ES on two func-
tions with multiple minima. Finally, an application of DDM-ES to the problem of the initial position of a mechanism is 
shown. 
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1 Introduction 
The unconstrained optimization problem of a single func-

tion (called objective function) can be formulated as a mi-
nimization problem as follows: 

( )min f x    (1) 

with n∈ℜx  and ∈Ωx  
Ω  being the search space in a hyperbox shape. In Ω , 
every variable can take any value between il  and iu  with 
i=1,…,n where n is the number of variables. 

In the search space there can be a single minimum (un-
imodal function) or several minima (multimodal function). 
In this latter case, there can be one or several global minima 
and one or several local minima. 

There exist several classifications of the optimization me-
thods [5,17]. Chronologically, the first optimization me-
thods looked to obtain a minimum of the objective function 
in the most efficient possible way. For do so, certain suppo-
sitions about the continuity and derivability of the objective 
function in the neighbourhood of a minimum are made, 
producing the mathematical programming methods. These 
methods [5] need an initial point and they usually obtain the 
closest minimum to that initial point in a, more or less, effi-
cient way. For this reason, these methods have local beha-
viour. 

Later, and in view of the possibility of more than one 
minimum existing, the necessity of a minimum search with 
more global nature arises. This, linked with the fact that in 
many types of problems the conditions of continuity and 
derivability cited before cannot be assured and that the de-
rivatives are very expensive to calculate, motivates that the 
stochastic optimization methods were developed. 

These methods consider the objective function as a black 
box and they try to find its global minimum. Some exam-

ples of this type of method are the simulated annealing (SA) 
[12], the random search (RS) [9,11] and the evolutive algo-
rithms (EA) [3,13] where the genetic algorithms (GA) [7,10] 
and the evolutions strategies (ES) [2,18] are the best-known. 
Some of them have global behaviour (RS and GA) and oth-
ers, instead, have a more local behaviour (SA and ES). 

 
Fig. 1. Example of SMPM 

However, many of these methods continue centering the 
global minimum search, considering it as unique, when, in 
many problems, the user is interested in knowing if one or 
several minima of similar values exist. These minima can 
be called Set of Most Promising Minima (SMPM) and it is 
composed of all the global minima (in case more than one 
exists) and the local minima whose values are closer to the 
global one as well, as is shown in the example of Fig. 1. 
The size of SMPM depends on the user, who can select the 
final solution among the solutions contained in this set tak-
ing into account additional criteria in a similar way to the 
Pareto Optimal Front (POF) in multiobjective optimization 
[1]. 

The goal of this paper is to propound an optimization me-
thod to obtain the SMPM or an approximation of it. This 
method must: 
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a) Differentiate between the different minima allowing 
the knowledge of the user about the topology of the objec-
tive function to be increased and offering more possibilities 
to select the final solution. 

b) Make the process as efficient as possible. 
The paper is organized as follows: In Section 2, the new 

optimization method, called Discrete Directions Mutation 
Evolution Strategy (DDM-ES), is described. In Section 3, 
the results of two benchmark tests between the DDM-ES 
and a GA are shown. They show that DDM-ES has the de-
sired features a) and b). In Section 4, a real application with 
multiple global solutions is shown and DDM-ES is used to 
solve it in a satisfactory way. In Section 5, a set of conclu-
sions are extracted about the new method proposed. 

2 Description of the DDM-ES 
The Discrete Directions Mutation Evolution Strategy 

[15,16] is an evolution strategy of type ( ) ESμ λ+ −  
which is characterized by its mutation operator. 

This mechanism of mutation consists of adding to the 
vector that represents the parent parentx , a vector v ⋅d  that 

represents the mutation. The unitary vector d  represents 
the direction of mutation in the n-dimensional space and v  
is the mutation step: 

offspring parent v= + ⋅x x d  (2) 
Moreover, the DDM-ES has the following additional 

specific features. 

2.1 Specific features 

Workspace 
The population P  is made by a set of individuals 

represented by vectors ′x , which are defined in a work-
space where every variable i′x  belongs to the interval [0,1]. 

When an individual ′x  must be evaluated, it must be scaled 
first to the search space where the objective function is de-
fined using the following expression applied to each com-
ponent: 

( )i i i i i′= + − ⋅x l u l x   (3) 

where x  is the vector that represents the individual ′x  in 
the search space, l  is the vector that contains the lower 
bound of the variables and u  is the vector with the upper 
bound of the variables. 

The vector d  which represents the direction of mutation 
is defined in the workspace. 

 
Discrete directions of mutation 
This is the most important feature of this method and the 

one that gives it its name (DDM-ES). 
The classical method to generate unitary n-dimensional 

vectors with uniform distribution in the space consists of 
randomly generating points inside a hypercube according to 
a uniform distribution of probability. The vector that joins 
the centre of the hypercube with the generated point defines 
the direction of the unitary vector. Only the points generat-
ed inside the hypersphere inscribed in the hypercube are 
valid and, then, every direction has the same probability of 

being selected. The drawback is that the hypercube’s vo-
lume (and, therefore, the probability of generating individu-
als in its volume) is concentrated in the vertexes when the 
number of dimensions increases as can be seen in Table 1 
where the quotient between the volumes of the hypercube 
and the hypersphere inscribed on it is shown when the 
number of dimensions increases. Thus, the probability of 
generating individuals in the hypersphere tends to 0 when 
the number of dimensions increases. Although there exist 
some methods to generate random samples in and on a 
hyperpshere [8,14], there is not an efficient method to gen-
erate n-dimensional unitary vectors with randomly and un-
iformly distributed directions. 

Table 1. Variation of volume quotient 

Number of 
dimensions hypersphere

hypercube

V
V

1 1 
2 0,7854 
3 0,5236 
4 0,3084 
5 0,1645 
6 0,0807 

 
For this reason, it is proposed to discretize the infinite 

possible directions to a finite set that allows easy and effi-
cient generation and that, furthermore, these directions are 
distributed in quite a homogeneous way over the hyper-
sphere’s volume. 

To carry out this discretization the following method is 
proposed. First of all, a unit hypercube is generated with the 
individual to mutate situated in its centre. Secondly, a face 
of the hypercube is randomly selected and on this face is 
generated a grid of equally-spaced nodes. Then, one node of 
this grid is randomly selected. Finally, the vector that joins 
the hypercube’s centre with the selected point indicates the 
mutation direction. A graphic representation of this method 
can be seen in Fig. 2. 

 
Fig. 2. Discrete direction generation 

The number of nodes in the grid generated in the hyper-
cube’s face is controlled by means of a parameter of the 
method called dvn  which allows the discretization (number 
of possible directions for mutation) to be controlled. The 
bigger this parameter is, the smaller the homogeneity of the 
distribution of the directions is. 

 
Mutation step 
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As is indicated at the beginning of this section, the muta-
tion step v  is unique and it is randomly generated accord-
ing to a normal distribution with mean 0 and standard dev-
iation σ  (called mutation strength) for every offspring. 
Both of them, v  and σ , are always referred to the work-
space. 

 
Dynamic control of mutation strength 
The mutation strength decreases with the generations ac-

cording to an expression fixed by the user of the algorithm. 
This idea is similar to the one used in simulated annealing 
to modify the temperature. The expression selected for the 
DDM-ES is the following: 

11
100j j
Rσ σ −

⎛ ⎞= − ⋅⎜ ⎟
⎝ ⎠

 (4) 

where j  is the number of the current generation and R  is 
the percentage decrease of the mutation strength from a 
generation jσ  with regard to the previous generation 1jσ − . 
This expression allows the automatic advancing of several 
generations or advancing from one generation to the next 
one manually. 

 
Valid and non valid individuals 
Inside a population of offsprings generated by mutation 

from their parents, the ones that belong to the workspace are 
called valid individuals, and the ones that are outside the 
workspace, non-valid individuals. The appearance of non-
valid individuals is possible due to the fact that the mutation 
step v  is generated according to a normal distribution 
which is defined between −∞  and +∞ , and as a result, the 
offspring can be outside  the workspace. 

 
Independent individuals 
There also exists another type of individual, called inde-

pendent individuals, which are generated in the workspace 
according to a uniform distribution of probability. 

The independent individuals have a mission to provide 
global convergence to the DDM-ES since they make a pure 
random search. Their effect is similar to the mutation in a 
GA. 

In DDM-ES, the population of offsprings (individuals 
generated by mutation and independent individuals) has a 
constant size μ , but the amount of individuals of every 
type is variable depending on the search progress. The 
number of independent individuals of every generation in-
creases (parameter iiΔ ) if the search is stagnated and is 

reduced to a minimum (parameter iin )  when the search 
obtains an improvement with regard to the previous genera-
tion. 

The initial population is generated with μ  independent 
individuals. 

2.2 Pseudocode 

The detailed pseudocode of the DDM-ES is shown below: 
 
Input:  μ  (Population size) 
  g  (Number of generations) 

  1σ  (Initial mutation strength) 

  R  (% decrease of σ  in every generation) 

  iin  (Initial independent individuals) 

  iiΔ  (Increase of independent individuals) 

  dvn  (Divisions per variable) 

  l,u  (Vectors with lower and upper bounds) 
 
Output:  m  (Optimal individual) 
  fm  (Optimal individual evaluation) 
 
Step 1: Initialization: Set the number of variables n . Generate initial 

population 0P . Initialize the number of independent individuals 

indep iin n= . 

Step 2: Evaluation and saving: Evaluate 0P  to obtain 

( )0 0f=F P . Initialize m  and fm  with the best individual found 

in 0F . 

Step 3: Main loop: For 1j =  to j g=  

 a) Calculate jσ  

 b) Generate offspring population offspringP  

         Repeat indepnμ −  times: 

  Random selection of a parent 
  Random generation of a mutation direction 
  Generate an offspring by mutation of the parent 
  If offspring is non valid: 
      Replace offspring with an independent individual

 c) Evaluate offspringP  to obtain offspringF  

 d) Sorting 1{ , }j offspring−F F  and 1{ , }j offspring−P P  

e) Selection of the indepnμ −  best offsprings of reordered 

1{ , }j offspring−P P  to obtain bestP  and bestF  

g) Generate and evaluate indep. individuals to obtain indepP  

and indepF  

h) Build the new population: { , }j best indep=P P P and 

{ , }j best indep=F F F  

 i ) Obtain the best individual newm  and  its evaluation 

newfm  

 j ) Update indepn  

  if  newfm fm=  and 1indepn μ< −  

   indep indep iin n= + Δ  

   if 1 indepnμ − <  

    1indepn μ= −  

  else if newfm fm<  

   indep iin n=  

2.3 Parameter setting 
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The population size μ  is chosen taking into account the 
possible multimodality of the objective function. The bigger 
the number of minima expected in the objective function is, 
the bigger the population size must be. It is also possible to 
relate the population size to the number of dimensions of 
the search space n . Based on the test made by the authors, 
the empirical expression 50 nμ = ⋅  is proposed. 

The number of generations g  and the value of the per-
centage decrease R  between generations affect to the var-
iation of the mutation strength σ . Based on several tests 
made, the recommended values are 5R =  and 50g =  
which make the DDM-ES converge to the minima very 
quickly unless the function is very complex. 

For the mutation strength of the first generation 1σ , the 
following expression is proposed: 

1

1
1

2

nnσ
μ

⎛ ⎞
= ⋅⎜ ⎟

⎝ ⎠
  (5) 

This expression arises from considering the hypervolume 
of the workspace (whose value is 1) equitably shared among 
the μ  individuals of the population and supposing that the 
hypervolume corresponding to each individual adopts the 
shape of a hypercube. Then, the initial mutation strength is 
the distance between the centre of the hypercube and one 
vertex of it. A graphical example of this idea can be seen in 
Fig. 3. 

 

Fig. 3 Graphical example of the meaning of 1σ  

The number of initial independent individuals iin  must 
be set as a small value and thus not decrease the exploita-
tion ability of the algorithm. A recommended value is 0. 
The increase in the number of independent individuals 
when the evolution is stagnated iiΔ  will be a small value 
compared with μ , for instance, 5%. When you do not want 
to hinder the convergence to the minima found, the value of  

iiΔ  is set to 0. 

The number of divisions of the grid per variable dvn  used 
in the test made is 3 and no obvious improvement is ob-
served when this value increases. 

3 Benchmarking 
In this section, the outcomes of two benchmark tests be-

tween the DDM-ES and a GA are shown. The platform used 
was Matlab® where the code of DDM-ES is programmed. 

Moreover, the Genetic Algorithm and Direct Search Tool-
box that implements a highly adjustable GA was used. 

3.1 Test 1 

In this test, it is intended to compare the performance, as 
optimization algorithms, of the DDM-ES and the GA when 
they have the same computational cost. 

 
Objective functions and conditions 
For this test, two standard and scaleable test functions are 

selected. Their features are shown in Table 4. 
The main difference between both functions is the total 

number of minima. While the hyper-sphere function is un-
imodal, the Rastrigin’s function is highly multimodal and its 
number of minima increases with the number of variable 
(11n minima), increasing its complexity a great deal. 

5, 10, 15 and 20 variables are used with every test func-
tion. The population size and the number of generations are 
the same with every combination of test function and num-
ber of variables. The test will be repeated 30 times. In each 
repetition, the initial population is randomly generated out-
side the algorithm and it will be common to both of them. 

Both algorithms evolve from the same initial population 
for the same number of generations and the mean evolution 
of the minima found in every generation is extracted. This 
evolution will be shown by means of a semilogarithmic 
graph to compare the accuracy and the value of the minima 
reached with each algorithm. As the two test functions se-
lected have a global minimum of value 0, the value of this 
function coincides with the absolute error and it can also be 
used to verify if an algorithm converges to the global mini-
mum or to a local minimum. 

The runtime is also extracted with every test function 
with both algorithms and in every repetition to calculate the 
mean of the runtime for the 30 repetitions. 

The number of generations g  for both algorithms will be 
100 and the population size μ  and the initial mutation 

strength 1σ  will be the ones indicated in 2.3. 
The specific parameters used with the DDM-ES are 

shown in Table 2 and the specific parameters for the GA are 
shown in Table 3. 

Table 2. Parameters for DDM-ES 

Parameter Value 
μ 50 n⋅  
g 100 

1σ  (see Section 2.3) 

R  5 

iin  0 

ii
Δ  n  

dvn  3 

 
The ga_out function allows the best value obtained on 

each generation to be externally saved. The computer used 
for this test has a processor Intel® Pentium® IV, 3.0 GHz 
and 1 GB of RAM. 
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Outcomes and discussion 
The outcomes of the benchmarking on the function hy-

per-sphere are shown in Fig. 4. On it, it can be seen that the 
DDM-ES reaches the minimum with higher precision than 
the GA in all cases. Observing the evolution of accuracy 
with the generations, the DDM-ES improves the accuracy 

according to a law that can be set to a logarithmic equation 
while the GA obtains a faster initial improvement of the 
accuracy. However, later, this improvement slows down 
and the DDM-ES always finishes by overcoming the GA in 
accuracy. 

 

Table 4. Test functions 

Name Expression Global minimum Features 
Location Value 

 
Hyper-sphere ( ) 2

1

n

i
i

f
=

= ∑x x   

5.12 5.12i− ≤ ≤x  

 

0i =x  

 
0 

 
Unimodal 

 
Rastrigin ( ) ( )( )2

1

10 10 cos 2
n

i i
i

f n π
=

= ⋅ + − ⋅ ⋅ ⋅∑x x x

5.12 5.12i− ≤ ≤x  

 

0i =x  

 
0 

 
Multimodal 

 
MGM ( ) ( )

2
2

1
2

n

i
i

f
=

= −∑x x  

2.5 2.5i− ≤ ≤x  

 

2i = ±x  

 
0 

 
Multimodal 

 

Table 3. Parameters for GA 

Population Reproduction
Population 
type 

Double Elite count 2 

Population size 50 n⋅  Crossover fraction 0,8 

Initial popula-
tion 

- Migration:      None 

Bounds - Algorithm settings:  By default 
Fitness Scaling Hybrid function: None

Scaling func-
tion 

Proportional Stopping criteria 

Selection Generations 100 
Selection func-
tion 

Roulette Time limit Inf 

Mutation Fitness limit -Inf 
Mutation func-
tion 

Gaussian Stall generations 100 

Scale 1 Stall time limit 3600 
Shrink 1 Function tolerance 1e-6 

Crossover Output function: ga_out
Crossover 
function 

Single point Vectorized: Off 

 
The outcomes of the benchmarking on the Rastrigin’s 

function are shown in Fig. 5. In the case of 5 variables, the 
GA is able to find the global minimum while the DDM-ES 
obtains a nearby local minimum. In the other cases, both 
algorithms obtain a local minimum, with the minimum ob-
tained by the GA always being better. 

In Table 5 the mean runtimes are shown and you can no-
tice that the DDM-ES is faster than the GA in all cases. As 
the number of function evaluations is the same for both al-
gorithms, you can conclude that the DDM-ES has an inter-
nal computational cost smaller than the GA. The improve-
ment in runtime of the DDM-ES over the GA increases 
when the number of variables increases and it approximate-
ly varies between 25% with 5 variables and 57% with 20 
variables. 

 
Fig. 4 Outcomes of Hyper-sphere function 

 
Fig. 5 Outcomes of Rastrigin’s function 
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Table 5. Mean runtime (s) 

Function Algorithm Number of variables 
5 10 15 20 

Hyper-
sphere 

DDM-ES 3.4895 8.5762 16.6997 26.6708 
GA 4.6739 13.4234 31.6905 61.9313 

Rastrigin DDM-ES 3.5729 8.6705 16.5921 26.9703 
GA 5.0889 15.8101 32.1995 54.7577 

3.2 Test 2 

In this test, it is intended to compare the computational 
cost needed to obtain the SMPM with enough definition and 
accuracy. 

 
Objective function and conditions 
In this case, two test functions have been selected: the 

Rastrigin’s function with 2 variables and the function MGM 
(Multiple Global Minima) with four variables. This last 
function (proposed by the authors of this paper) is scaleable, 
multimodal and it has the special feature that its 2n  minima 
are all global. Its features are shown in Table 4. 

One run will be made with every optimization method 
(DDM-ES and GA) from the same initial population of size 
200 and evolving for 50 generations. The other parameters 
used will be the ones indicated in Test 1 except for the pa-
rameter iiΔ  which is set to 0 so as not to hinder the conver-
gence to the minima already found and to improve the defi-
nition which you can observe the graphical representation 
of this process. 

To compare both algorithms, the populations of some 
generations will be shown. In the case of Rastrigin’s func-
tion, the individuals will be directly shown in the search 
space. In the case of function MGM, the individuals will be 
shown in the workspace using a representation by means of 
parallel coordinates similar to the one used in the decision 
space of multiobjective optimization [4]. 

 
Fig. 6 Populations with Rastrigin’s function with 2 

variables 

 
Outcomes and discussion 

The outcomes of the Rastrigin’s function are shown in 
Fig. 6. In the three generations shown, the population of the 
DDM-ES is more crowded than the population of the GA, 
defining with more clarity the location of the minima. In the 
case of the DDM-ES, it is noticed that the population is 
concentrated on the global minimum and on the minima 
located in its neighbourhood, that is to say, the SMPM. The 
set of minima that makes up the SMPM in every generation 
decreases monotonously with the generations since the 
global minimum is alone. In the case of the GA, there exists 
a decrease in the number of minima defined by the popula-
tion but they do not concentrate around the global minimum. 

Moreover, it is noticed that the DDM-ES converges to 
the minima in a more efficient way than the GA. For in-
stance, the DDM-ES in generation 20 shows a set of 5 mi-
nima with a high degree of definition while the GA in the 
generation 50 still has 12 minima with a similar definition 
but with more spreading. 

 
Fig. 7 Populations with function MGM with 4 variables 

The outcomes of the test on the function MGM are 
shown in Fig. 7. In this figure, you can see that the DDM-
ES converges to the 16 global minima (depending on the 
generation) with more definition and efficiency since in the 
generation 20, the DDM-ES has clearly obtained the loca-
tion of all the minima of the function while the GA does not 
obtain the same definition of the minima even in the genera-
tion 50 with a computational cost 2.5 times greater. Fur-
thermore, with the passing of generations, the DDM-ES 
refines the minima found since the strip around every min-
imum become tighter and it means that the individuals are 
more grouped around the minimum and, therefore, they 
represent more precise solutions. This refining process is 
slower with the GA. 

Looking at these outcomes, it is possible to state that the 
DDM-ES makes a more efficient use of the computational 
effort made than the GA, supplying a more refined SMPM 
as well. 

4 Application to the problem of initial po-
sition of a mechanism 

4.1 Problem description 

The problem is about determining all the initial positions 
that the mechanism of six bars of Watt (shown in Fig. 8) 
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can have when the value of its degree of freedom α  is set. 
Every possible initial position has caused a different kine-
matic simulation of the mechanism.  

The lengths of the bars are known and the locations of the 
joint with the frame too. All these parameters are shown in 
Table 6. 

 
Fig. 8 Mechanism of six bars of Watt 

Table 6. Dimensional parameters 

1 0x =  12 2L =  

1 0y =  23 5L =  

4 5x =  34 5L =  

4 0y =  35 5L =  

7 9x =  45 6L =  

7 5y = −  56 4L =  

120ºα =  67 8L =  
 
This mechanism can be modelized by means of natural 

coordinates [6] generating the following constraint equa-
tions: 

( ) ( )2 2 2
1 2 1 2 12 0x x y y L− + − − =  (6) 

( ) ( )2 2 2
2 3 2 3 23 0x x y y L− + − − =  (7) 

( ) ( )2 2 2
3 4 3 4 34 0x x y y L− + − − =  (8) 

( ) ( )2 2 2
3 5 3 5 35 0x x y y L− + − − =  (9) 

( ) ( )2 2 2
4 5 4 5 45 0x x y y L− + − − =  (10) 

( ) ( )2 2 2
5 6 5 6 56 0x x y y L− + − − =  (11) 

( ) ( )2 2 2
6 7 6 7 67 0x x y y L− + − − =  (12) 

( )2 1 12 cos 0x x L α− − ⋅ =   (13) 

( )2 1 12 sin 0y y L α− − ⋅ =   (14) 
The 9 constraint equations can be represented in a more 

compact way as: 
( ) =Φ q 0       (15) 

( )Φ q  being a column vector of  9 components where the 
left sides of the constraint equations are stored and q  is the 

vector where the cartesian coordinates of the mobile nodes 
of the mechanism are stored: 

 [ ]2 2 3 3 5 5 6 6x y x y x y x y=q    (16)    
The non-linear system of equations shown can usually be 

solved using Newton’s method, which needs an initial ap-
proximation and it obtains one solution. 

However, this system of equations can have more than 
one solution. To determine all the existing solutions, the 
problem of finding the roots can be converted in an error 
minimization problem where the error measures the simul-
taneous fulfilment of the constraint equations. 

The error made by a vector of coordinates q  is defined 
as: 

( ) ( )
9 2

1
i

i
error

=
= ∑q Φ q  

 (17) 
Those solutions q  that make the error 0 will be the solu-

tions of the non-linear system of equations posed. 

4.2 Parameters used with DDM-ES 

The lower and upper bounds of the variables are defined, 
depending on the type of coordinate, in the following way: 

[ ]
[ ]

5,15
10,10

x
y
∈ −
∈ −

  (18) 

The parameters used with the DDM-ES are shown in Ta-
ble 7. 

Table 7. Parameters of DDM-ES 

Parameter Value 
μ 1000 
g  50 

1σ  0.5964 

R  5 

iin  0 

ii
Δ  0 

dvn  3 

4.3 Filtering and refinement of solutions 

 
Fig. 9 Population in generation 50 and filtered and refined 

solutions 
 



International Journal for Simulation and Multidisciplinary Design Optimization                              431 

 

After running the DDM-ES with the parameters indicated 
before, the final population shown in Fig. 9.a is obtained. 

The individuals of this population must be filtered to 
eliminate redundant individuals. During the filtering process, 
the individuals closer to one, which acts as a reference, and 
which have greater error than the reference individual are 
eliminated. 

The individuals which have passed the filter are used as 
initial approximations for a deterministic optimization me-
thod of second order. The method used in this application is 
a quasi-Newton method that uses the BFGS technique to 
update the Hessian matrix [5]. The individuals of the popu-
lation that have passed the processes of filtering and refin-
ing can be seen in Fig. 9.b. 

The refining process of the filtered individuals has a very 
low cost because the initial approximations are close to the 
final solution (they are the solutions obtained by the DDM-
ES) and because this method is very efficient. 

4.4 Discussion 

The filtered and refined population offers, with high pre-
cision, 7 of the 8 possible solutions for the problem of ini-
tial solution of the mechanism. As an example, two of these 
solutions, which correspond to two possible configurations 
of the mechanism, which furthermore, are far away from 
each other, can be seen in Fig. 10. 

 
Fig. 10 Two possible configurations for the mechanism 

5 Conclusions 
The evolution strategy called DDM-ES and proposed in 

this paper constitutes an optimization method which shows 
greater precision than a GA with the same computational 
cost but it does not show a behaviour as global as the GA on 
highly multimodal functions. 

However, the DDM-ES allows an approximation of the 
set of most promising minima (SMPM) to be obtained. This 
set monotonously reduces its size, eliminating the less 
promising minima during the successive generations be-
cause its visual monitoring by the user is very intuitive. 
Moreover, these minima are defined with greater precision 
than with the GA. Finally, the obtaining of SMPM is more 
efficient than with the GA. 

This feature contributes to obtaining a better knowledge 
by the user about the interesting part of the objective func-

tion’s topology when it has several minima, allowing the 
user to make his choice among several optima according to 
criteria not specified in the problem definition as sensitivity 
of the minima or fulfilment of constraints not specified be-
fore. 

The DDM-ES has been applied to the problem of obtain-
ing the initial position of a mechanism, which can be solved 
before making its kinematic or dynamic simulation. This 
problem is multimodal and it has several global minima. 

For the practical solving of this problem, the DDM-ES 
has been modified by adding a stage of filtering to eliminate 
the redundant individuals of the population and later a stage 
of refining the filtered individuals. In this case, the DDM-
ES allows almost all the solutions of the problem to be ob-
tained with high precision. 
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