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We present analytic expressions for the exact density ifumaitand Kohn-Sham Hamiltonian of simple tight-
binding models of correlated electrons. These are theesiagid double-site versions of the Anderson, Hubbard
and spinless fermion models. The exact exchange and diorefsotentials keep the full non-local dependence
on electron occupations. The analytic expressions allaotopare the Kohn-Sham eigenstates of exact density
functional theory with the many-body quasi-patrticle statkthese correlated-electron systems. The exact Kohn-
Sham spectrum describes correctly many of the non-trie@lires of the many-body quasi-particle spectrum,
as for example the precursors of the Kondo peak. However, neetfiat some pieces of the quasi-particle
spectrum are missing because the many-body phase-spagedon and hole excitations is richer.

PACS numbers: 71.15.Mb, 71.10.Fd

I. INTRODUCTION only at half-filling, while away from it semi-analytical own
merical fittings to the solution of the Bethe Ansatz equation
) ) must be performed. Finally, inhomogeneous systems where
Density Functional Th?‘?&}Z allows to tackle complex strong correlations take place in localized region of theen a
quantum systems comprising interacting electrons. ItS  heyter described by Anderson models. However, the Ander-
essence consists on the replacement of the extremely conv@sy model is Bethe Ansatz-solvable only if the band of un-
luted many-particle electronic interactions with an el ., rejated electrons is lineariZédieaving the system energy
one-body potential, also known as the exchange and correlgmpounded from below. Therefore, the ground state energy
tion potential ", whereby theN-particle Hamiltonian is ¢4 not be obtained by a minimization procedure, which ren-

substituted by a fictitious one-particle Kohn-Sham Hamilto jes the Bethe ansatz LDA approach useless for the Anderson
nian H%5. The exact/X“ is however not known and it is ,qel.

a Wldtespread _bellfef t?a:[rg 's not FO.StS'beeDtO f'r.'td :in acr;%lync The quasi-particle (QP) excitation spectrum of a system de-
exact expression for I.. The popularity of Density FUncabn o ineg jtg response to external perturbations accorging

;I_'heornyD}l:él’)t h?hS anser? from thzfact tr:a:_seml-temf_nrllcilltgt Landau’s Fermi liquid theory. Furthermore, this spectrum
Jmﬁ.s 0 q I(') tf? eli(c aln[?e a'?t Korre a_lontpo eES‘; 0 deis directly accessible via spectroscopic techniques dédif
ellium model in the Local Density Approximation ( )an ent sorts. It would therefore be quite useful if the Kohn-

i 5
improvements over-it? perform remarkably well for a large Sham (KS) eigenstates provided at least a qualitative ihescr

majority of materials, molecules and hanostructures. Th?ion of it, as one would expect to happen at least for systems
qualitative features of the structural and functional s where electronic correlations are weak. This is indeed con-

8]]: rs:sngssyslﬁ?ti:tris;zu?g}éxzIr|1 tr igfi?scgi’eap:a'g‘higuﬂ%‘?f’rmed by a vast amount of calculations and comparisons be-
= 9 i een KS eigenvalues and experimental or numerical data of

_er\éer, ;hﬁste pra((j:_tlial |mplimenftat|lo ns O: DFT atr_e not per_fecweakly correlated materials. However, quantitative agreret
ey fail to predict a number of relevant properties, spicia is sometimes not so good. Furthermore the KS spectrum is

for strongly correlated electroniq systems. Yang and ciawor frequently qualitatively wrong in strongly-correlated ted-
ers have discussed some explicit conditions that exactgner als. Notice now that even if the exalctC of a specific sys-

functionals must ob&y. tem is known, a possible correspondence between the exact
DFT has also been proposed for tight-binding models oKS and the exact many-body QP spectra is not supported at
strongly correlated electrohisThe availability of exact semi-  all by the basic theorems of DFT. An exception is the Highest
analytical or numerical results for the ground state energyDccupied Molecular Orbital (HOMO) which by Janak’s the-
as a function of the electron concentration in the Hubbardrem is given by the chemical potential of the system, which
and the spinless fermion mod2#8 has allowed to establish is a ground-state propeff:° In other words, DFT predicts
a Bethe ansatz LDA theory for théh12 An extension of the correct position of the HOMO level of a system, provided
the theory to describe time-dependent external poteritads that the exacl/X¢, or a very good approximation to it, is
enabled the description of non-equilibrium electron tpnms ~ known. Failures to predict the correct position of the HOMO
phenomens=1% However, Bethe ansatz LDA theory also has must therefore be attributed to a poor approximation to xae e
limitations. First, since the Bethe Ansatz solution expess actV X" Failures to reproduce the rest of the spectrum could
the ground-state energy in terms of the electron concentrdzowever be due either to limitations of DFT proper, or to a
tion, only a local density approximation could be formuthte poorly approximated functional. Indeed, while an exactfun
Second, the analytic formula for ground state energy istexadional may not provide a good description of the full QP spec-
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trum, it is clear that if in addition, the quality of the apgir0  remains since molecular dissociation is still not well Hadd
mate functional is poor, the proposed spectrum of KS eigenk addition, Millis and coworke?®:2° have studied the per-
values will bear a small resemblance to the true QP spectrunfiormance of the GW approximation for the Anderson model,
Since no exact functional for a strongly correlated systasn h and shown how this approximation can describe Coulomb
ever been developed, the above two sources of disagreemésbckade effects, but fails to describe the emergence ofikon
have never been fully disentangled. The main goal of this art Physic€*22 Dynamical Mean Field Theory, implemented to-
cle is to separate them. We will find the exact KS eigenvaluegether with an accurate impurity-solver, includes manyhef t
of several simple models of strongly correlated electrarts a most relevant short-range correlation effé&té
compare them with the exact many-body QP spectrum. This We have devised a procedure that has allowed us to find an-
will allow us to understand the size of the self-energy aoire alytic expressions for the exact energy density functiarfial
tions to the exchange-correlation potential. the single- and double-site Anderson, Hubbard and spinless
One of the main sources of disagreement between approxermion models, from which we have been able to write down
imate DFT KS eigenvalues and exact QP originates in theéhe corresponding exact Hamiltoniafg<*. Since the QP
mean-field-like treatment of electronic correlations whiie  spectrum of these models is available analytically from-con
at the heart of LDA. Indeed, electrons behave as quantumentional many-body techniques, we have been able to per-
point particles. However, mean-field theories replace quanform explicit and detailed comparisons of the full spectfa o
tum probabilities by classical clouds of charge. As a resultexact KS eigenvalues and of exact many-body QP. We have
every electron may interact with its own charge cloud, giv-found that the KS eigenvalue corresponding to the HOMO
ing rise to spurious direct and exchange self-interaction e level agrees with the corresponding QP state. This imhiass t
fects. Additionally, each electron interacts with the dswf  the exactd®* correctly predicts that the lowest energy for
other electrons having opposite spin, leading to what isssom electron addition of afV-electron system is equal to the high-
times called the static correlation efoFor systems contain- est energy for electron removal of the correspondig- 1
ing more than one atom, these mean field clouds are spreagstend®. We have also found that the exdéf<* of the An-
throughout the whole entity in contrast to electrons whichderson model describes correctly the emergence of the Kondo
are always point particles and therefore fully localizedhisT resonance and of other quasi-particles. However, we firtd tha
spread gives rise to further spurious effects termed detaea there exact density functional theory misses pieces of the e
tion errors, which lead to incorrect dissociation energied  act many-body QP spectrum. A way to improve the descrip-
QP excitation energies for molecufes\ prototypical exam-  tion of the spectrum would be to use again the Dyson-Sham-
ple of the delocalization error is afi,” molecule in the dis-  Schliiter equation
socation limit where the two ions are held widely apart. The
single electron in the molecule has equal probability oitres G=GES , +GES (X0 -VviiHa @)
ing in any of the two atoms, but a measuring proccess will
find it fully localized in only one of them. Mean field theories where GES . is the Green’s function associated to the ex-
in contrast place half an electron in each ion. The excitatio act KS Hamiltonian. We expect that this self-energy and its
energy of an added quasi-electron will therefore be differe perturbative expansion should be much simpler than the self
in the two case®:2%, energy defined in Eq.(1) above, because now the unperturbed
Improving the description of the QP spectrum therefore im-Green’s function retains the full quantum nature of elatito
plies improving the description of electronic correlasoithe  Our piece of work is complementary to efforts by other groups
Hartree-Fock approximation as well as the self-interastio to provide exact functionals for simplified systems. We men-
correction schem?&?=2*get rid of the self-interaction effect, tion here recent work by Burke and collaborators, who have
but not of other mean-field drawbacks. To go beyond theséound numerically exact density functionals for some one-
schemes, the Dyson-Sham-Schliter equation must be used dimensional models by combinilgg DFT with Density Matrix
KS KS xC xC Renormalization Group techniques
G = Gapproz T Gapproz (577 = Vipproz) G 1) The layout of this article is as follows. Section Il descebe

whereGES is the Green’s function obtained from the ap- the methodology employed to find out exact functionals for

L approt - . xS . systems with a small number of electrons. This methodol-
proximate KS Hamiltonian. Notice that carries al- ) . . . o
) L approz , ogy is applied in sections Il and 1V to describe the singte-s
ready a mean-field description of the electron interactién. .
. . C Hubbard model, and the double-site Anderson model, respec-
perturbative expansion for the self-energy*® must then . . . X .
ively. The conclusions are laid down in section V. The solu-

!oe set up to improve the descrlptlpn of correlations an({ion of the double-site Hubbard model is placed in appendix
in particular to amend the destruction of quantum effects

brought about by the mean-field approximation. The GV\/A" The sollutlon of the double-site spinless fermion model ca
C . . .~ be found in appendix C.

approximatio®® has been quite successful in the description

of electronic and optical properties directly linked to Q€

spectrumd®2’, but does not correct the problems mentioned

above. Some recent work by Romaniello and coworkers show Il. METHODOLOGY
how the careful inclusion of vertex corrections allows td ge
rid not only of the self-interaction effects but also of pafrthe We begin with a description of our method, which is based

delocalization effec®:27.28 However, delocalization debris on the formulation of DFT on a lattife We have found



that the conventional ensemble-based method to descnibe nopartial derivatives
integer occupatiod&22 fails in the formulation of the exact

density functional of the single-site model described welo XChy s nagr] = OEXC 1M

We have therefore devised an alternative method which is eibo Lhedhe’s Ttd,e OMeio ’
specifically adapted for the description of quantum systems 9EXC

with a small but not necessarily integer number of electrons Vdffjc [Meirory Ndor] = o (5)
N. 7

We consider a physical system whose time-evolution is dicy\e do not use a Hartree term in the definitionfo¥¢ be-
tated by a tight-binding Hamiltonian. As an example, weevrit cause we have found no traces of such a term in the analytic
explicitly the Hamiltonian of the Anderson model, equations for the exact functionals. Therefore we havedoun
it useless for the purposes of the present discussion. Weedefi
the exact KS Hamiltonian as follows:

H = Z €c ﬁcyi_rg + Z €4 ﬁd_’g — Z to (é;a éi+17(, + hC)
“a 7 v H"S = Z(Ec + Vc),gff) Ne o + Z(Ed + Vd),(ac) Nd, o
—t > (el ,do + hc) + Uty i, (3) ' o
o

—t Y (e, dy + di¢io) — B (6)

where a set ofV electrons hop back and forth along a chain . ) )
of i = 1,.., M atoms, labeled by the index and to another WhereE;, is a double-counting term. Notice that the above
atom, denoted by the indexwhere electron correlations take procedure allows to define functionals and KS Hamiltonians

place via a Coulomb teriti. Thes—index denotes the up and for systems with a fractional electron number. However, the
down components of the electron spin. many-body Hamiltonian in Eq. (3) commutes with the elec-

tron number operata¥,,. Therefore the many-body Hamilto-
nian eigenstates must describe an integer number of etsgtro
unless some degeneracy occurs. We will see later on that the
functional @ has a polygonal shape, so that the Exchange-
correlation potentials jump by constants at inteygrvalues,

We use the Fock space of states of the systepn>} to set
up our variational scheme. Site occupations, electron rusnb
and the expectation value of the Hamiltonian are given by

<Ol Nae | P> which lead to ambiguous definitions of the KS eigenvalues
Nao(9) = <olop> at integerN,. However, the total energies of the ground-
and excited-states of the KS Hamiltoni&it (o« = 0,1,...)
No = Z Ne,ivo + N, are continuous because the the jumps in the summations over
‘ R KS eigenvalues are counterbalanced by similar jumps in the
Bo) <¢|H|¢> @) double-counting terms. The ground state endfgyf the ex-
<¢lo> act KS Hamiltonian and many-body Hamiltonians agree with

each other by construction, but this is not so for the total en
Iergies of the excited states of both Hamiltonians, which are
needed to construct the Green'’s functions.

The QP spectrum of the many-body Hamiltonian can be

We wish to define an energy density functiona
Q[ne,ior a0, U] whose minimization gives the exact

0 i 0
grour}d Istate energ% a”g' ](i[%cup?_tlozs?_’g for a target compared with the KS and mean-field spectra by looking
set of electron number&Vy', N).  To define@, we note 5 4y holes and residues of the Green's functiGhs),

that every given set of occupatiods.c,; -, n4,.} can be GKS(w) andGMF (w). We define on this matter the many-
reproduced by several stateg >. In other words, if we 54y HOMO level as the QP peak which is partially filled.
classify these states in boxes labeled by each occupation s§ne exactd and GXS need not agree, except for the pole
then each box contains sevefal >, and each of these has gescribing the HOMO level. We will use the Lehmann
a different energy(¢). However, if we choose in each box rgpresentatid to compute( for integer N-values. In ad-
m m m e . . .

the statej ¢™ > with minimum energyE™ = E(¢™), We  ition, the equations-of-motion mettfdyields a closed set
achieve a one-to-one correspondence between occupatigp equations forG for the single-site model. This method
sets and energies for every box, which allowsl?:[;) define thejicely enables to extrapolate tizpoles to non-integer elec-
energy density functional(ni,;, na,0, U] = E™. Since  yon numbers, and agrees with the results obtained using the
there exist in general several sets of occupation numbelisshmann representation for integ¥t The mean field spec-
{ncio,nao} giving the same target electron numbersym can be obtained from the eigenvalues of the one-body

_ 0 0 i ' . . . . .
N, = N, the ground state energl” is obtained by mean-field Hamiltonian, or using the equations-of-motion
minimizing @ over all those sets. This procedure then defines,ethod for¢™¥. The KS spectrum could also be obtained
. O 0 . : . -
the ground state occupatiofs,.; . 74,,/ }- from the eigenvalues of the one-body KS Hamiltonian. How-

We define now the non-interacting kinetic energy functionalever, these KS eigenvalues are discontinuous atteger so
TneiosNd,o] = QNeio, a0, U = 0], and the Exchange- ambiguities in the ascription of eigenvalues to QPs arise fo
correlation functionalEX¢ = @ — T, from which the ex- integerN. It is therefore essential to use the Lehmann repre-
act Exchange-correlation potentia* © is obtained by taking sentation as a guide.



We close this section by describing an alternative proce-
dure which also allows us to find exact results. If the ex-
act ground state energy® and occupationa?yg are found
then the Schrddinger equation for the Kohn-Sham hamilto-
nian can be inverted to find the exact exchange and correla- ¢y
tion potential corresponding to the ground state occupatio
v S = ViACInY ,.]. We note however that* © is not a func-
tional, but rather corresponds to the Exchange-correigiin
tential functional evaluated at the ground state occupatio
This procedure is simpler than the methodology described in
this section, but does not allow us to find functionals. Samil
methods have been employed by Baerend and cowd?kass
well as by Helbig and coworketsto find exact analytical or

numerical expressions for the Exchange-correlation pigen g 1. (Color online) Three-dimensional plot of the exanery

of diatomic molecules in the dissociation limit. functional @ of the single-site Anderson-Hubbard model as a func-
tion of (ng,+, naq,, ), foravalue oky = 1 and ofU = 10 (in arbitrary
units).

1. SINGLE-SITE ANDERSON-HUBBARD MODEL

The above methodology can be easily applied to the single- The above expressions for the exact functioatan be
site Anderson-Hubbard modeM = 0), where only two oc- Summarized as
cupations{ng +,nq,} are defined. The states in the Fock
space of the single-site model can be expressed usingthe num ~ Q[na,+,na, 1] =e€a N + U (N —1) (N — 1) (12)
ber basigng 1, nq,, > as
whered is the Heaviside step function. This expression gives
|¢ >=ap|0,0> 4+a4|1,0> +a;]0,1> +ax|l,1> the correct ground state energy for a system with a target num
(7)  berN?, N} of electrons
The expectation value of the occupation numbers and the en-

ergy can then be expressed as EY=¢esN°+U(N°—1)0(N° —1). (13)
Nd,o(¢) = lao|* + |az]? Note that this ground state energy is spin-degenerate. Sub-
' D , tracting from(@ the non-interacting kinetic energy functional
-~ |as| Tnas,na)] = e N, and taking a functional derivative,
E(¢) = Z €andq+ U D (8) we find the exact Exchange-correlation potent@'f =

o

UO(N — 1). The resulting KS Hamiltonian
whereD = |ag|* + |at|? + |ay|* + |az2|?. The simplest way
to find Q[na,,na,] is as follows. Solve first for some of  H*S = (e + UO(N = 1)) fra o — UGN —1) (14)
the coefficientss; using the occupations for the occupation o
numbersn, .. Those coefficients are then eliminated by in-
serting them back into the equation fBY¢). The resulting provides the correct® thanks to the double counting term
expression is then minimized in terms of the remaining coefU (N° — 1). Notice that the KS eigenvalue jumps by
ficients. One must be careful though to choose coefficientexactly atN = 1, and is therefore ill-defined at that inte-
which are strictly non-zero in a given domain df. In the  ger N-value:l’:1844 The density functionad) has the cor-
present case, it is best to solve forsince these are finite for rect trapezoidal shapé*as a function ofV,, from which the
all N = ng 1 + ng,, different fromo, 2: right expression for the chemical potential of the system ca
be obtained. Furthermoré), shows flat-plane behavior when
(1= N)(Jat)? +]ay|?) = Nlao)* + (2 - N)|az|> (9) plotted as a function of the occupation numbers, as displaye
in Fig. 1. We note that Yang and coworkers established some
The resulting equation for exact conditions on the shape of the exact energy functional
from which they deduced such a flat-plane behdvidihese

_ |as] conditions enabled them to draw an educated plot of the en-
E(g) = Z €anaq + UN=1) laz|? — |ag|? (10) ergy functional of the hydrogen atom, which is very simifar t
7 our Fig. 1.
is minimized as We write down now the mean-field Hamiltonian of this
model

0<N<1l = |a?=0— Q= egN

I1<N<2 — |aO|2 =0—=> Q= ¢ N+ U(N - 1()11) gMF _ Z(Ed + Undﬁg) g — Unasna, (15)

o
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spectrum to non-integer valuesf , which, coupled to the

Ed+U % spin degen_eracy of the total energy enable the explorafion o
| ] different spin states.

g We analyze first the paramagnetic state whefre= 0 and

- | nq,, = N/2. The exact KS Green’s function is found by
’ combining the equations-of-motion method with the Lehmann
representation folNV = 0, 1,2. The following formula sum-
marizes the results

€4 'i'> GES(y = 20=N)  ON-1) (18)

| . ' w—€+i0 w—(eq+U)+1d

Energy

N ) and extrapolates them to non-integérvalues. The many-
body, exact DFT and mean field Green’s function are shown
in Fig. 2 as a function ofV. The many-body Green’s func-
tion has two poles, which can be viewed as the ancestors of the
the position of the many-body poles, where the area is pf lower aqd upper H.u.bbard bands of the Hubbard and Anderson
to the weight of the peak. The black solid line representsaitetion models*. The position of theS_e two poles depends neither on
of the exact Kohn-Sham eigenstate. The poles of the paratiagn the occupation nor on the spin of the system. They are sepa-

mean-field solution are shown with a dashed red line. Enengigu  rated exactly by an enerdy and their weight shifts smoothly

are arbitrary. from one peak to the other &@§ increases. Because exact
DFT is a single-particle theory, its Green’s function y®ll
single peak per KS eigenvalues, whose weight equals one. A

where we have subtracted the conventional mean-field doubleemarkable exception happens\at= 1, where the KS eigen-

counting term. The mean-field Hamiltonian gives the follow-value show an abrupt change framto e¢; + U. Notice that

FIG. 2. (Color online) Quasiparticle spectrum of the sirgjle
Anderson-Hubbard model fav/ = 0. The shaded gray area shows

ing estimate for the energy of the system both eigenvalues contribute At = 1 with equal weight. The
N2 2 N — 17 (N — 17) KS eigenvalue exactly agrees with the
EME — ¢y N+Ungrng, =eaN+U — many-body lower (upper) Hubbard band precursor. This non-

M = 16 trivial result allows to draw an important conclusion: even
= Nd —Nd,| (16) KS eigenvalues show a jump at integer electron number val-

where the spin-degeneracy of the exact solution is loste Notues, the eigenvalues at both sides of the gi¥econtribute to

that in the Hubbard and Anderson models every electron-intetn€ QP spectrum. To summarize, the positions and weights of
acts only with electrons of opposite spin. As a consequencéh€ exact KS and many-body peaks coincide for integer num-
the mean-field theory does not suffer from direct or exchang@@rsV, showing how exact DFT keeps the quantum nature of

self-interaction effects. However, because of the medd-fie the €lectrons in spite of being a one-body theory. The abrupt

replacement of electron probabilities by charge clouds, aghiftat/V =1 can be viewed as the way that exact DFT uses
electron of spinv interacts with a fractiony,_, of electrons to retain that quantum nature: if there is less than onerelect

spin with probabilityn, _,. As a consequence, in the para- €leéctrons does notinteractwith itself. If there is morentbee

magnetic solutiod/ = 0, every electron interacts artificially ©lectron, then the Coulomb interaction between point plasi

with a fractionV/2 of electrons of opposite spin. However, Of Opposite spin is activated, rising the energylby Notice

the mean-field ground state energy is minimized by the fullythat many-body and exact DFT agree on the value of HOMO

spin polarized solutiond/ = N, in which case the spurious |€vel, which is also equal to the chemical poteniatiefined

interaction between opposite-spin charge clouds is addige ~ aS the derivative of the total energy with respect to thagart

a wrong mechanism and, as a consequeféé!” = E°. In numbe#®:?

contrast, the interacting piece of the exact KS Hamiltonian We must remember however that in this quantum system

U O(N — 1) is only activated if a full electron exists already in Only states with integer electron numbéfs = 0, 1 are mean-

the system, and therefore retains the full quantum behavior ingful. Therefore forV = 1, the system must contain a full
The exact many-body and mean-field QP spectrum are otglectron with either spin up or down. We therefore turn now

tained from the poles and weights of the retarded Green0 analyze a maximally spin-up polarized. The up- and down-

function spin Green’s functions are different now, as is apparemfro
1_ the Lehmann representationsit= 1, where we takél, 0 >
Gio(w) = nd"‘? Nd,~o . as the ground state,
’ w—€g+i0 w—(eg+U)+1id
1 | <0,0]éq1]1,0 > |?
GMf w) = - 17 G _ ) d,T |1
do () w—(eg+Ung_,)+1id a7 al w+E —Ey+i6

The above equations can easily be obtained using the a |<1,10e), [1,0> 9
equations-of-motion method and allow to extrapolate the QP b = T X E —FEy+id (19)
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FIG. 3: (Color online) Quasi-particle spectrum of the sagite ) ) . )
Anderson-Hubbard model for a maximally spin-up polarizedec  Of electrons in a single atom and therefore avoids the static

(a) and (b) show the poles of the spin-up and spin-down Gseen'correlation error brought about by mean field theory. We wish
functions, respectively. The shaded gray area represeatsiany-  to address in this section how the exact functional avoisis al
body quasi-particle, where the width is proportional to ek  the delocalization error in a strongly-correlated modei-co
weight. The black thick dot represents thg Iocatiqn ofthﬂ:eKo.hn- taining two sites. We show that the exact KS Hamiltonian
t?:ﬁ;:gﬁgjﬁafh gzgsphcgzsré’é ﬂ?]ee SE‘:éfgiaJﬁfgaTeegﬁfh' provides a correct description of the atomic limit of the-cor
' related model. The discussion is centered in the Anderson

model, but our conclusions can be also applied to the double-
site Hubbard model, which is solved in Appendix A. Notice
|5hat the many-body QP spectrum of the full Anderson model
is much more complex than that of the single-site model dis-
cussed above and, in addition to the lower and upper Hubbard
bands it develops a Kondo resonance in the Kondo regime.
We therefore wish to explore now whether exact DFT could
describe this more convoluted QP spectra. Finally, nokieé t

where E denote the total ground state energy for =
0,1,2. We determine now the many-body and mean field Q
spectra for fractional occupation numbers using Egs. (I®).
determineG¥S correctly for integetN we use the Lehmann
representation. The following formula extrapolat&e&® to
non-integerV-values

Ks 0(1 — N +96) the obtained energy functioné is spin-degenerate, in con-
Gai(w) = o e tid trast to the full Anderson and Hubbard models, where this de-

H(Nd— 1+4) generacy is absent. It is therefore interesting to checkhene

Gflff (w) = (20)  exact DFT lifts the spin-degeneracy for more realistic ni@de

w—(eq +U)+io0

The different spectra are shown in Fig. 3. As before, thetexac \We describe here the exact DFT solution of the double-
KS eigenvalues agree with the many-body QP for intéger  site Anderson, which corresponds to taking = 1 in Eq.
The mean-field states have a closer resemblance to the many), and can also be solved analytically. The number basis
body QP, although clear differences still exist, whoseiorig {|n., >, |ns, >} of the Fock space is spanned by six-
is traced back to the static correlation error. As a clos@g r teen states, which renders the minimization task of finding
mark, we note that the GW approximation cures these meamy(n..,, nq4,,] asymptotically harder. We have found that the
field artifacts for the present case as shown by Romanietio anelectron number plan@V;, N, ) is split into eight pieces as
coworkerg®. shown in Fig. 4, such that in each piece only a subset of the
wave-function coefficients is different from zero. As a eens
guence, the minimization task has to be performed sepgratel
IV. DOUBLE-SITE ANDERSON MODEL for each of those pieces. Tiigfunctional has again a polyg-
onal shape. After lengthy algebra, the following exprassio
The model in the previous section has allowed to showfor the@-functional in the symmetric cagg + U/2 = ¢. can
how the exact density functional retains the quantum naturbe written:



F = — [\/ncﬁ Nd, 1 —+ \/nc7¢ nd7¢}
B = - [\/(1 —ne)(1—ng)+22 (\/nc7¢—12+\/nd,T—x2)} +Ux? z= %\/NT (1 - 7%)
P o= -1 {\/(1+mc—nd)(1+md—nc)+\/(l —m. —ng) (1 —md—nc)} + 22 (U - VU2 +6412)
= — [\/(1—nc)(1—nd)+2x (\/ncyi—IQ—i-\/nd_ri—xQ)} +U 22, x_%\/]\fi (1—%)
sy = — [\/(nc— Dng—1)+2x (\/l—ncﬂi—xQ—i— \/l—ndﬂi—xQ)} +U (ng —1+2?),
_ 1 U
= 5\/(2‘NU (1~ vt
Fs = —% {\/(nd—mc—l)(nc—md—l)—i-\/(nd—i—mc—l)(nc—i—md—l)} —i—% (U—\/U2+64t2) +U (ng—1)
B = - {\/(nc—l)(nd—l)+2x (\/1—nc,T—x2+\/l—nd,T—x2)} +U (ng—1+2?)
_ 1 U
= 5\/(2—NT> (1~ )
B = = [V =ne) (= nag) + V= e ) (0= nag) | +U (na = 1)
| (21)
where we have defined a different along the paramagnetic line for the symmetric case and for
several values off which cover the weak-, intermediate- and
E, = Q —ncec —naca strong-coupling regimes of the model. The chemical paaénti
2[t| and the energy value of the HOMO are given by the slope of

) ) o these curves. They exhibit the expected discontinuousikeha
for each of the eight-zones depicted in Fig. 4. We also USe jor gt integer values 72844 Finally, it can be checked that
the site-occupations and momentsiasm; = ni+ + ni,  this Q functional renders the correct atomic limit by taking
with 7 = ¢,d. The full expressions for, are shown eyplicitly + — 0in Eq. (17). As a consequence the exact
in Appendix B. Simplified expression, valid along the line fnctional is free from the delocalization error of meariefie
Ny + N = 2 are also provided in the appendix. Finally, theory. The analytic expressions fgrenable to find the exact

i 0 . . .
the ground-state enerdy" for given electron numbe®? is Exchange-correlation potentials for the two-site mQﬁi’gflf,C,

inimizi i i 0 _
found by minimizing() with the constraintsV, = ncq + X, Notice that these potentials keep the full non-local

nq.o- 10 simplify the notation, energies will be measured ian’” : - -
7 LS dependence on occupations, because the potential at a given
units of |¢|, and the energy origin will be chosen atfrom

site (7 depends on all the densiti /. In contrast, it is
now on. (i,0) dep 83,

. . . . _ very difficult to determine accurately the non-local ternys b
_We find thatQ.'S spin-degenerate (_)nly inregions 1and 8 Ofa numerical solution of this model, or by extending the Bethe
Fig. 4, whereN is smaller tharl, or bigger thar3. However,

we find that the spin-degeneracy is liftedlif< N < 3, be- ansatz LDA approach. We define the exact KS Hamiltonian

. S for this double-site Anderson model as
cause here the interplay between kinetic energy and Coulomb

interactions is more convoluted. The minima@fand E°  Hyg = Z (e +VX9) iy ot Z (¢f dy +df ¢y )—Hy,
occur now along the paramagnetic ling¢ = Ny — N = 0 i=(c,d),o o

regardless of the value of the on-site energyand ofU. This (22)

is shown in Fig. 5(a), where the ground-state energy is plot- This Hamiltonian only has two KS eigenvalues per spin for
ted in the(N;, N, )-plane for the symmetric case abid= 4. all values of the physical parameters, which are discontisu
Here the characteristic polygonal shape as well as the prest integerNV,-values. In other words, the numerical values of
ence/absence of spin degeneracies in the different regirens the KS eigenvalues are constant within each of the eight re-
apparent. The position of the absolute minimunf8falong  gions in Fig. 4, but differ from region to region. We compare
the paramagnetic line in contrast does depend 0and on  now the KS eigenvalues with the exact many-body QP spec-
U. For the symmetric casey + U/2 = 0, the minimum is  trum extracted from the poles of the many-body Green'’s func-
placed atN = 2. Fig. 5(b) showsE® as a function ofN tion at the impurity’s position. Notice again that only ige
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FIG. 5: (Color online) (a) three-dimensional plot of the gnd state
energy as a function ¢fV;, N, ) for the symmetric case withi = 4. pression
(b) Ground state energy along the paramagnetic line in timerstric

case for severd/-values. Energies are given in units|df w—¢€— Vi, (24)

GKS _
b (W= e = VEO) (w—ea = V) — |t

electron number&’ = 0,1,2, 3,4 have a physical meaning.  This formula must be guided by the results obtained from

For N = 1, the system contains a single electron which musthe Lehmann representation at integér We compare now

have either spin up or down. If a ground state wave-functioihe poles of th?{ many-body and exact KS Green's functions

with spin up|¥; 4 > is chosen, then the spin-up and -down by evaluatingl’*< at the points in th¢ Ny, N, ) path shown

Green’s functions are different, in Fig. 4. This correspond to a paramagnetic solution for
N = 2 and a spin-up state fav = 1,3. Fig. 6 shows

| < Uopsl o U4 > 2| < Car UL > 2 the poles ofG and GX* as a function of the electron num-
T Ca ) ’ 1,1

Gar = — - : ber N for a symmetric case, and for valueslofin the weak-
w By — Eypp 16 w+Ej,—Eo+id  apg strong-coupling regimes. The figure also shows which
| < wp| ij Wy s> [2 of the KS eigenvalues corresponds to the HOMO level. No-

(23) tice that the exact many-body and KS spectra closely match
for values ofU not only in the weakly-correlated, but also in
the strongly-correlated regimes. However, extra manyybod

where the summation runs over all spin-0 states With- 2, peaks appear @& = 1,2, 3, which are not provided by the

and¥, ; 4 indicate the spin-1V = 2 state. Similar words can exact KS Hamiltonian. In contrast, the number of many-body
be said forN = 3. Romaniello and coworke¥shave com- and KS QPs is the same fof = 0,4 because an electron
pared the spectrum of many-body QPs of this model with theadded to an empty system or a hole added to a fully occupied
poles of Green functions evaluated either in the GW approxisystem can not Coulomb-interact with anything. Occupation
mation, or including vertex corrections. They have shovat th N = 2 corresponds to the strongly-correlated Kondo regime
the mean-field static correlation error is amended. Howeveif [/ is large, which is the case shown in Fig. 6(b). Here the
even inclusion of vertex corrections does not allow to recov many-body QP spectrum has four poles. These can be clas-
the QP spectrum in the atomic limit, showing how hard is tosified into two sets of peaks placed symmetrically about the
fully get rid of the delocalization error. zero-energy line. The first set is located aroufid/2. The

The exact KS Green'’s function can be computed using théwo peaks are separated by an energy of otdemd corre-
equations-of-motion method giving rise to the following ex spond to the upper and lower Hubbard bands. The second

G =
b zn: wt+ Bl —Ey+id
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set develops into the Kondo resonance for more realistic modexact functionals do not show any trace of self-interagtion

els whereM is made large. The KS spectrum has only twostatic correlation, or delocalization errors.

QP, which agree with the two Kondo-like many-body QPs. In  We have found that the KS eigenvalues spectrum agrees to

other words, the KS spectrum shows no trace now of the lowea large extent, but not fully, with the exact many-body spec-

and upper Hubbard band precursors. Roe= 1, the up-spin  trum. This is to say that all KS eigenvalues agree with some

KS spectrum matches the many-body spectrum because tlog the many-body QPs. However, the many-body QP spec-

many-body phase-space for adding a spin-up electron or hoteum is richer because the phase-space for addition of quasi

is very limited. However, the many-body phase-space for thelectrons or quasi-holes is larger. The exact functiong} on

addition of a spin-down electron is larger, which renders adwarrants the correct position of the HOMO level, while in

ditional many-body spin-down quasi-electron peaks. Zimil general other KS eigenvalues may or may not agree with the

words can be said faV = 3, where additional spin-up quasi- exact many-body QP. Remarkably, we have found that the

hole peaks are apparent. Notice in any case that the maniS spectrum most possibly describes the Kondo peak in the

body and KS HOMO levels always agree with each other.  Kondo regime. However, it is quite plausible that it won'teo
tain either the lower and upper Hubbard bands, or both. Exact
DFT has similarities with the Renormalized Perturbatioe-Th

V. CONCLUSIONS ory proposed some time ago by Hew&dnThe perturbative
expansion shown in Eq. (2) would possibly describe the full
We have presented analytic expressions for the exact defany-body spectrum with simple approximations for the-self

sity functionals of several simple models of strongly cor-€nergy.

related electrons, from which we have obtained the exact

ground-state energy. Those analytic expressions haweeadlo

us to write down the full non-local dependencelo¥ ¢ and Acknowledgments

KS Hamiltonians on the occupations. We have computed the

exact KS eigenvalues and compared them with the true many- J. F. would like to acknowledge conversations with V. M.

body QP, as obtained from the poles of the Green’s functionsGarcia-Suarez, J. H. Jefferson, C. J. Lambert and M. A. R.

We have shown with explicit examples that exact DFT pre-Osorio, as well as help with one equation from I. Zapata. K.

serves the quantum nature of electron-electronintemastss ~ Burke pointed out the relevance of the results in Reff. 20. The

opposed to mean-field theory and improvements over it as theesearch presented here was funded by the Spanish MICINN

GW approximation. It is also superior to more sophisticatedhrough the grants FIS2009-07081 and PR2009-0058, as well

perturbative approximations including vertex correcsionhe  as by the Marie Curie network nanoCTM.

Appendix A: Double-site Hubbard model

We use the following notation for the hamiltonian of the dieasite Hubbard model

H= > e(ing +20)— to Z(éi,a Cro + Ehpt10) + U > g
o

o i=1,2

The expressions for exact density functional are quitelaimo those of the double-site Anderson model,

Fy = — [ /A nzg + /1 nzy |
B = = [V =m+ 2 =) (L= nz =22 + %) + (@ + 1) (Virg = 2+ iz = ) | +U (22 + )
Fy = —|{/(mip—22=22)(1—n1 —noy +22+22)+ /(noy —y?> —22) (1 —n1q —ng + y2 + 22)

—|—ia:—|—y) (z+\/n1+n2—1—z2—y2—z2)} +U (22 +9?)

By = = [V =m+@ =) (0 —nz =@ + ) + (@ +1) (Viry =2 + Vo = ) | +U (2 + )

= — \/(1—n1+z2—y2)(1—n2—x2—|—y2)+(a:—|—y)(\/1—n1_¢—y2+¢1—n27¢—z2)}
i +U (ny +ng — 2+ 22 4+ 9?)
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F6 = —[\/(n17¢—1+y2+22)(2—n1—ng,T—y2—22)—|—\/(n27¢—1+x2+22)(2—n1,¢—n2—:102—22)
+ (x+y) (z+\/3—n1—n2—x2—y2—22)}+U(n1+n2—2+x2+y2)

Fr = —{\/(1—n1+x2—y2)(1—n2—x2+y2)+(:1:+y)(\/1—nLT—yQ—i—\/l—ngyT—xQ)
+U (n1 +ng — 2+ 22 +9?)

Fy = —[\/(1—n1,T)(1—n2,T)+\/(1—n17¢)(1—n27¢)]+U(n1+n2—2)

where the functionals, are defined as

Fo— <ﬁ>—(n1+n2)eo
‘ 2[to

and where&) is found by minimizingF, with respect tac andy. Along the lineN; + N, = 2, the formulae for thé-functional
can be simplified as follows:

F = —<\/n1,¢—x2+\/1—n27¢—12> (x—i— 1—n1+x2)+U(1—n1+2:62)

—<\/nm—x2+\/1—n27¢—x2> (:c—i— 1—n1+x2)+U(1—n1+2x2)

where the first equation is obeyedVi > 1, N| < 1, and vice versa() is now obtained by minimizing the above equation with
respect tar.

Appendix B: Double-site Anderson model

The full expressions foF, are as follows:

Fy = —[Metiar + /eyl
B = = [ VU= ncta? =) (L= na—a + ) + (@ +y) (Ver = 22 + v/nag —92) | + Uy?
Fy = — | {/(ner —22—22) (1 —ne—ng + 22+ 22) +/(nay —y> — 22) (1 — nep — ng + y? + 22)

+(z+y) (z+\/N—1—x2—y2—z2)]+Uy2

Fo= - [In v =) 0= @ 1) + (@4 9) (Vieg = + iy =) | + Uy
Fs = —|V0-nc+a?2 =) I—-na—22+y>) + (@ +y) (V1 —ney — 2+ /1 —nay —2?) +U (ng—1+2?)
Fs = —_\/(nc,J,—1+y2+22)(2—nc—nd,T—y2—22)+\/(nd,T—1+12+22)(2—nc7¢—nd—x2—22)

+ (z+vy) (z+\/3—N—:c2—y2—z2)} +U (ng—1+2?)

Fr=—|/0-n+22—y)I-ng—22+y>) + (@ +y) (VI —ner —y2+ /1 —nas —22) | + U (ng — 1 + 2?)

Fs = — [T =ney) A=nan) + /A —no) (1= ”d,i)} +U (ng—1)
) (B1)



11

Q is again found by minimizing’, with respect ta: andy. Along the lineN; + N| = 2, the formulae for thé’-functional can
be simplified, and read as follows:

F = —(\/ncﬂi—xQ—i—\/l—nd’T—xQ) (a:—i— l—nc—i-a:Q)—i-U(nd—l—i—xQ)

—(\/nc,T—xz—l—\/l—nd,J,—xz) (:v—i— 1—nc+x2)+U(nd—1+x2)

where the first equation is obeyedVi > 1, N| < 1, and vice versa() is now obtained by minimizing the above equation with
respect tar.

Appendix C: M-site spinlessfermion model yields the following expressions for H > —e. < 7. >
—€q < Ng >
We show in this appendix the exact DFT solution of the
double-site spinless fermion model, which correspondsie t
ing M = 1 and discarding the spin index in Eq. (1),

Vnalao2+(ne—1)acal? y/neclaol>+(na—1)|acal?
lao? —[acal?

—2tcosp

—2tcosyp V(—nc)lacal>—nalao|? \/(1—nd)\acd|2—nc|ao|fp4)
. o 4 Lo C
H =€ fe+eqng—tetd+d é)+ Ungn.  (C1) lacal*~faol

where the first and second line applyif< N < 1orl <
N < 2, respectively. The energy functior@ln., n4| is found
l¢>=a0|0,0> +ac|1,0> +aq|0,1> +aeg|1,1> by minimizing the above expression with respectutoa.q
(c2)  andy. The minimum of the functional happens when = 0
to find explicit formulae for the expectation valuesifand ~ for0 < N <1, whileforl < N <2, itis ap which vanishes.

We use a variational wave function of the form

fe, fig as a function of the parameters The resulting functional)[n., nqg] — e.n. — eanqg has the
following piece-wise shape:
<H> = en + €qng — 2tcosp M
ee — 2|t| /neng
i = M — 20t) /I —ne) (1~ na) + U (ne +nq— 1) (C5)
<y > = |aa* + |acal® (c3)  Where again the first and second line apply i N < 1 or
D 1 < N < 2, respectively() can be easily split into kinetic and
D = |ao]* + |ac|® + |ag|* + |aca|? interacting parts, where both must be defined piece-wise. Th

kinetic term explicitly shows electron-hole symmetry. Tihe
We solve for|a.|, |aq| in the above equations for. 4 and  teracting term is non-zero only i¥ > 1, from which a rather
substitute the result back in the equation ford >. This  simple expression for the exaét*“ can be extracted.
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