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1 Introduction

Baryon configurations were first suggested in the context of the AdS/CFT [1] correspon-

dence in [2, 3]. The gravitational dual of a bound state of N static external quarks in

N = 4 SYM, the so-called baryon vertex, was found in terms of a D5-brane wrapping the

S5 part of the spacetime geometry [2]. If the D5-brane is point-like in the AdS5 space,

its Chern-Simons (CS) action is a tadpole term which can be canceled if we introduce

Chan-Paton factors for N-strings, whose endpoints at the boundary of AdS represent the

N external quarks. The classical solution corresponding to this configuration was found

in [4, 5] using a generalization of the techniques in [6, 7] for the heavy quark-antiquark

system. In this approach the influence of the F-strings has to be considered in order to

analyze the stability of the baryon vertex in the holographic AdS direction. The energy of

the system is then inversely proportional to the distance between the quarks and since the

proportionality constant is negative the configuration is stable in the AdS direction.

The description in [4, 5] suffices to deduce the basic properties of the system. However

strictly speaking it is only valid when the endpoints of the N F-strings are uniformly

distributed on the S5, so that the latter is not deformed and the probe brane approximation

holds. In this approximation all supersymmetries are broken, and this results in a non-

vanishing binding energy. In order to have some supersymmetries preserved all strings

should end on a point, and then the deformation caused by their tensions and charges

should be taken into account. Incorporating the gauge field on the brane the binding

energy becomes zero, reflecting the fact that the configuration is supersymmetric [8].

The usual baryon refers to a bound state of N-quarks which form the completely anti-

symmetric representation of SU(N). In the holographic description however it is possible

to construct a bound state of k-quarks with k < N (figure 1). The bound state consists

of a D5 or D3-brane wrapping the internal space1 located in the bulk, k strings stretched

between the brane and the boundary of AdS representing the quarks, and N − k straight

strings that go from the D5 or D3 brane deeper in the bulk to a minimum distance. The

bound on how low can the k number go depends on a no-force condition along the AdS

direction, and a priori seems to be affected by the geometry of both the internal and the

AdS spaces. In the AdS5 × S5 background k should satisfy 5N/8 < k 6 N [4, 5]. A

stability analysis against fluctuations shows that the configurations are stable for a more

restricted number of quarks 0.813N 6 k 6 N [9]. An interesting question is what happens

to the bound when the supersymmetry is reduced or the conformal invariance is broken

and more particularly if confinement is present. A physical expectation would be that at

least the lower bound should increase. One of the motivations of this paper is to investi-

gate the bound dependence on the supersymmetry and confinement properties of the gauge

theory.

Baryon vertex configurations in AdS5 × T 1,1 [10] and AdS5 × Y p,q [11–14] geome-

tries have been considered in [16] and [17], respectively. Using the full DBI description it

has been shown that they are non-supersymmetric. General properties of baryons in the

Klebanov-Strassler [18] and Maldacena-Nuñez [19] models have also been discussed in [20]

1A submanifold of it in the case of the D3-brane.
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Figure 1. A baryon configuration with k-external quarks placed on a spherical shell of radius L at

the boundary of AdS space, each connected to the wrapped Dp-brane located at ρ = ρ0 and N − k

straight strings ending at ρmin.

(see also [21, 22]). In these confining backgrounds the baryon is also non-supersymmetric

and is significantly different than in the previous cases, with an energy linearly proportional

to its size.

In this paper we analyze the dynamics of non-singlet baryons in some of these back-

grounds in the probe brane approach. We show that stable configurations exist with

non-zero binding energy as long as the number of quarks k satisfies kmin < k 6 N . The

value of kmin = 5N/8 for all AdS5 × Y5 backgrounds with Y5 an Einstein manifold bearing

five-form flux, and also for multi-β deformed spaces [23, 24]. The analysis on the deformed

spaces basically gives the same undeformed results of N = 4 SYM. This is not unexpected

since classical properties like energy and temperature, string configurations, like the 1/4

BPS like Wilson loop, and brane configurations like particular giant gravitons remain also

non trivially undeformed [25–27]. A stability analysis confirms that the configurations are

stable for a number of quarks 0.813N 6 k 6 N , again the same interval found for the

AdS5 × S5 background [9]. These findings seem to contradict our expectations that non-

singlet states should be more constrained in theories with reduced supersymmetry. Rather,

their existence seems to be quite universal and independent on the amount of supersym-

metries preserved. We should however keep in mind that the approach taken here breaks

all the supersymmetries (see the conclusions for a further discussion on this point). The

same analysis for the N = 1 Maldacena-Nuñez background [19] confirms that non-singlet

holographic baryons also exist in confining theories. However broken conformal invariance

and more particularly confinement increases the minimum number of quarks.

More general baryon vertex configurations with a non-vanishing magnetic flux have

been suggested as a first step towards accessing the finite ’t Hooft coupling region in the

dual CFT [28, 29]. Indeed, showing that these configurations exist for finite λ is of special
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interest when they are not BPS. Allowing for a non-trivial magnetic flux has the effect

of adding lower dimensional brane charges to the configuration. This in turn hints at

the existence of a microscopical description in terms of non-Abelian lower dimensional

branes expanding into the baryon vertex by means of Myers dielectric effect [30]. This

description allows to explore the configuration in the region R ≪ n1/(r−p) ls, where p is

the dimensionality and n the number of expanding branes and r the dimensionality of the

resulting expanded brane, and is therefore complementary to the supergravity description

in terms of probe branes. Thus it is a first step towards exploring the finite ’t Hooft

coupling region of the dual CFT from the gravity side.

The paper is organized as follows. We start in section 2 with a brief review of the

holographic description of baryon vertices and their stability under small fluctuations for

a general class of backgrounds. In section 3 we use these results to study the dynamics of

the baryon vertex in AdS5 × Y5, with Y5 an Einstein manifold bearing five-form flux. We

particularize to the AdS5 × Y p,q and AdS5 × T 1,1 geometries, where we switch on a non-

vanishing magnetic flux suitable for the microscopical description of the T 1,1 in section 6. In

section 4 the multi-β-deformed Frolov’s background is considered. In section 5 we analyze

the Maldacena-Nuñez background, where we confirm the existence of non-singlet baryons

for a more constrained interval for k due to confinement. We show that in this case the

stability requirement does not reduce the allowed interval. In section 6 we perform the

microscopical analysis, in terms of D1 or D3-branes, depending on the background. We

identify the CS couplings responsible for the F-string tadpoles of the configurations. In

section 7 we summarize our results and discuss further directions. Finally, in the appendix

we collect some properties of the Y p,q and T 1,1 geometries relevant for our analysis and

address the microscopical description of the baryon vertex in the Y p,q geometries.

2 The holographic baryon vertex construction

In this section we review the holographic description of baryons in the general class of

backgrounds presented in [9], as well as the study of their stability against small fluctua-

tions. The first part generalizes the construction in [4, 5] to non-conformal cases like the

Maldacena-Nuñez background that we will discuss in section 5.

We consider diagonal metrics of Lorentzian signature of the form

ds2 = Gttdt
2 +Gxx(dx

2 + dy2 + dz2) +Gρρdρ
2 +R2dM2

p , (2.1)

where x, y and z denote cyclic coordinates and ρ denotes the radial direction playing the

role of an energy scale in the dual gauge theory. It extends from the UV at ρ → ∞ down

to the IR at some minimum value ρmin determined by the geometry.

It is convenient to introduce the functions

f(ρ) = −GttGxx , g(ρ) = −GttGρρ , h(ρ) = GxxGρρ , (2.2)

which for AdS5 ×M5 with radii R read

f(ρ) = ρ4, g(ρ) = 1 , h(ρ) = 1 . (2.3)

– 4 –



J
H
E
P
0
6
(
2
0
1
2
)
1
2
3

As we have mentioned, a non-singlet baryon is described holographically in terms of

a Dp-brane wrapping the internal manifold Mp with k fundamental strings connecting

it to the boundary at ρ → ∞. The remaining N − k straight strings go from the Dp-

brane straight up at ρmin. The binding potential energy of the baryon is then given by

e−iET = eiScl , where Scl is the classical action of the holographic baryon. This action

consists of three terms, the Nambu-Goto action for the strings stretching from the baryon

vertex to the boundary at ρ→ ∞, the Nambu-Goto action for the straight strings stretching

between the brane and ρmin and the Dirac-Born-Infeld action for the Dp-brane

SF1 = − 1

2π

∫

dτdσ
√

− detP (Gαβ) ,

SDBI
Dp = −Tp

∫

R×Mp

dp+1ξ
√

− detP (Gab + 2πFab −Bab) ,

where F is the Born-Infeld field strength.

We first fix reparametrization invariance for each string by choosing

t = τ , ρ = σ . (2.4)

For static solutions we consider the embedding of the S2-sphere on the D3-brane in spherical

coordinates (r, θ, φ)

r = r(ρ) , (θ, φ) = const. , (2.5)

plus Mp-angles = const., supplemented by the boundary condition

ρ(L) = ∞ . (2.6)

Then, the Nambu-Goto action for the strings stretching from the baryon vertex to the

boundary of AdS reads

S = − T

2π

∫ ∞

ρ0

dρ
√

g(ρ) + f(ρ)r′2 , (2.7)

where T denotes time and the prime denotes a derivative with respect to ρ. From the

Euler-Lagrange equations of motion we obtain

fr′cl
√

g + fr′2cl

= f
1/2
1 =⇒ r′cl =

√
f1F

f
, (2.8)

where ρ1 is the value of ρ at the turning point of each string, f1 ≡ f(ρ1), f0 ≡ f(ρ0) and

F =
gf

f − f1
. (2.9)

The N − k strings which extend from the baryon vertex to ρ = ρmin are straight, since

r′ = 0 is a solution of the equations of motion (with f1 = 0) and satisfies the boundary

condition at the vertex. Integrating (2.8) we can express the radius of the spherical shell as

L =
√

f1

∫ ∞

ρ0

dρ

√
F

f
. (2.10)

– 5 –



J
H
E
P
0
6
(
2
0
1
2
)
1
2
3

Next we fix the reparametrization invariance for the wrapped Dp-brane by choosing

t = τ , θa = σα , α = 1, 2, . . . , p . (2.11)

Finally, inserting the solution for r′cl into (2.7) and subtracting the divergent energy of

its constituents we can write the binding energy of the baryon as

E =
k

2π

{
∫ ∞

ρ0

dρ
√
F −

∫ ∞

ρmin

dρ
√
g +

1− a

a

∫ ρ0

ρmin

dρ
√
g +

2π

aN
EDp

∣

∣

∣

∣

ρ=ρ0

}

, (2.12)

where

a ≡ k

N
, 0 < a 6 1 . (2.13)

The expressions for the length and the energy, (2.10) and (2.12), depend on the arbitrary

parameter ρ1 which should be expressed in terms of the baryon vertex position ρ0. The

most convenient way to find this is to impose that the net force at the baryon vertex is

zero [9, 31]

cosΘ =
1− a

a
+

2π

aN

1√
g
∂ρEDp

∣

∣

∣

∣

ρ=ρ0

, (2.14)

cosΘ =
√

1− f1/f0 ,

where Θ is the angle between each of the k-strings and the ρ-axis at the baryon vertex,

which determines ρ1 in terms of ρ0. An alternative derivation of this expression can be

found by demanding that the physical length (2.10) does not depend on the arbitrary

parameter ρ1, in other words

∂L

∂ρ1
= 0 =⇒ ∂ρ0

∂ρ1
=

f ′1
2 tanΘ

√

f0
g0f1

∫ ∞

ρ0

dρ

√
gf

(f − f1)3/2
. (2.15)

Minimizing the energy (2.12) with respect to ρ1 and using (2.15) we find the no-force

condition (2.14). Using (2.10), (2.12) and (2.14) it is also possible to see that

dE

dρ0
=
k
√
f1

2π

dL

dρ0
(2.16)

which will be useful when we study the Maldacena-Nuñez background.

As we will see in the examples to follow, (2.14) has a solution for a parametric region

of (a, ρ0). However, in order to isolate parametric regions of physical interest a stability

analysis of the classical solution should be performed, which further restricts the allowed

region. We know from [9] that instabilities can only emerge from longitudinal fluctuations

of the k strings, since only these possess a non-divergent zero mode, which is a sign of

instability. To study the fluctuations about the classical solution the embedding should be

perturbed according to

r = rcl + δr(ρ) , (2.17)
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and the Nambu-Goto action should be expanded to quadratic order in the fluctuations. δr

is then solved from the equation

d

dρ

(

gf

F 3/2

d

dρ

)

δr = 0 (2.18)

This has to be supplemented with the boundary condition for the δr fluctuations, given by

equation (3.12) in [9]

2(f − f1)δr
′ + δr

(

2f ′ − f ′

f
f1 −

g′

g
(f − f1)

)

= 0 at ρ = ρ0 (2.19)

As we will see in the examples to follow these conditions further restrict the parametric

region (a, ρ0) for which a classical non-singlet baryon solution exists.

3 The baryon vertex in AdS5 × Y5 manifolds

The holographic description of the baryon vertex in AdS5 × Y5 backgrounds with Y5 an

Einstein manifold bearing five-form flux is identical, in the probe brane approximation,

to that in AdS5 × S5 [4, 5]. Therefore non-singlet states exist for the same number of

fundamental strings 5N/8 < k 6 N . Spike solutions associated to the baryon vertices in

the AdS5 × Y p,q and AdS5 × T 1,1 geometries have been discussed in [17] and [16], where it

has been shown that they break all the supersymmetries. Therefore we are certain that the

bound states found in the probe brane approximation will not become marginal due to su-

persymmetry once the backreaction is taken into account. In these two geometries we will

switch on a magnetic flux that will dissolve D1 and D3-brane charges in the configuration.

The vertex will then be described at finite ’t Hooft coupling in terms of D1-branes expand-

ing into a fuzzy S2 × S2 submanifold of the T 1,1 for the Klebanov-Witten background and

D3-branes expanding into a fuzzy S2 submanifold of the Y p,q for the Sasaki-Einstein. The

detailed microscopical analysis of these configurations will be performed in section 6 and

the appendix respectively.

3.1 The D5-brane baryon vertex

In our conventions the AdS5 × Y5 metric reads

ds2 =
ρ2

R2
dx21,3 +

R2

ρ2
dρ2 +R2ds2Y5 , (3.1)

with R the radius of curvature in string units,

R4 =
4π4Ngs
Vol(Y5)

. (3.2)

The AdS5 × Y5 flux is given by F5 = (1 + ⋆10)F5, where

F5 = 4R4 dVol(Y5) . (3.3)

– 7 –



J
H
E
P
0
6
(
2
0
1
2
)
1
2
3

A D5-brane wrapping the whole Y5 captures the F5 flux, and it requires the addition

of N fundamental strings to cancel the tadpole

SCS
D5 = 2π T5

∫

R×Y5

P [C4] ∧ F = −2π T5

∫

R×Y5

P [F5] ∧A = −N
∫

dtAt , (3.4)

where A is the Born-Infeld vector field. The DBI action is in turn given by

SDBI
D5 = −T5

∫

R×Y5

d6ξ e−φ
√

−detP (G) = −TN
8π

ρ0 . (3.5)

3.1.1 Classical solution

Given that the energy of the D5-brane is independent of the volume of the Einstein manifold

the classical solution in the probe brane approximation is the one found in [4, 5] for AdS5×
S5. Making contact with the analysis in the previous section we now have

−Gtt = Gxx = G−1
ρρ =

ρ2

R2
. (3.6)

The radius and the energy are then given in terms of the position of the D5-brane ρ0 and

the turning point ρ1 of each string, as

L =
R2ρ21
3ρ30

I , E =
kρ0
2π

(

− J +
5− 4a

4a

)

, (3.7)

with I, J the hypergeometric functions

I = 2F1

(

1

2
,
3

4
,
7

4
;
r41
r40

)

, J = 2F1

(

− 1

4
,
1

2
,
3

4
;
r41
r40

)

, (3.8)

exactly as in AdS5 × S5. From (2.14) we find that the no-force condition on the ρ-axis

yields

ρ1 = ρ0(1− λ2)1/4, λ =
5− 4a

4a
, a ≡ k

N
. (3.9)

Given that λ < 1 a baryon configuration exists for a > a< with a< = 5
8 . Finally, the

binding energy in terms of the physical length of the baryon reads

E = − R2

2πL

k
√
1− λ2

3

(

J − 5− 4a

4a

)

I . (3.10)

Thus it has both the expected behavior with 1/L dictated by conformal invariance and

the non-analyticity of square-root branch cut type in the ’t Hooft parameter [4, 6, 7, 29].

We would also like to point out that our string and brane configurations satisfy the Sasaki-

Einstein constrains in the way studied in [32–34] and therefore our solutions are in this

sense valid.
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3.1.2 Stability analysis

Again as in AdS5 × S5 [9] the study of the stability against longitudinal fluctuations gives

δr(ρ) = A

∫ ∞

ρ
dρ

ρ2

(ρ4 − ρ41)
3/2

=
A

3ρ3
2F1

(

3

4
,
3

2
,
7

4
;
ρ41
ρ4

)

(3.11)

as the solution of equation (2.18). Substituting (3.9) and (3.11) in the boundary equa-

tion (2.19) the following transcendental equation must be satisfied

2F1

(

3

4
,
3

2
,
7

4
; 1− λ2

)

=
3

2λ(1 + λ2)
. (3.12)

Using (3.9) and (3.12) a critical value for a is found numerically, a ≃ 0.813, below which

the system becomes unstable.

The conclusion of this analysis is that in the probe brane approximation non-singlet

baryons with 0.813 < k 6 N may exist for all Einstein internal manifolds bearing five-form

flux. In the next subsection we take the internal manifold to be Sasaki-Einstein and we

switch on an instantonic magnetic flux proportional to the Kähler form. The T 1,1 and S5

cases will be treated as particular examples, taking due care of the different periodicities.

The energy of the D5-brane will depend then on both the magnetic flux and the radius

of AdS, and the same calculation above shows that non-singlet states exist as long as the

number of quarks is larger than a minimum value that depends now on the volume of the

Y p,q. In fact the largest minimum value is reached for the S5, contrary to our expectations

that non-singlet baryons would be more restricted in less supersymmetric backgrounds.

We review some basic facts about the geometry of Y p,q manifolds suitable for this study

in the appendix.

3.2 The baryon vertex in AdS5 × Y p,q with magnetic flux

Let us take the AdS5 × Y p,q geometry and add a magnetic flux

F = NJ , (3.13)

with J the Kähler form of the 4 dimensional Kähler-Einstein submanifold of the Y p,q, which

solves the equations of motion. As compared to the analysis in the previous subsection the

presence of the magnetic flux will turn the parametric region for which a classical solution

exists to depend on (a, ρ0,N ).

For a non-vanishing F as above the energy of the D5-brane wrapped on the Y p,q is modified

according to

ED5 =
N

8π
ρ0

(

1 +
4π2N 2

R4

)

(3.14)

where we have used (A.11), and the fact that J is self-dual and the determinant inside the

square root is a perfect square.

This magnetic flux dissolves irrational D1-brane charge in the Y p,q, as inferred from the

coupling

SCS
D5 =

1

2
(2π)2T5

∫

R×Y p,q
C2 ∧ F ∧ F =

N 2

8

q2[2p+ (4p2 − 3q2)1/2]

p2[3q2 − 2p2 + p(4p2 − 3q2)1/2]
T1

∫

R×S1

ψ

C2

(3.15)
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This implies that the configuration will not allow a complementary description in terms

of D1-branes expanding into a fuzzy 4 dimensional submanifold of the Y p,q. We will

see however that it will be possible to provide such a description in terms of D3-branes

expanding into a fuzzy 2-sphere submanifold of the Y p,q. In this case the magnetic flux that

needs to be switched on will be proportional to the Kähler form on the S2. We postpone

this discussion to the appendix.

In the T 1,1 case (see appendix A.2 for a brief discussion of the T 1,1 geometry) our

ansatz (3.13) dissolves N 2/9 D1-brane charge in the T 1,1, as implied by

SCS
D5 =

1

2
(2π)2T5

∫

R×T 1,1

C2 ∧ F ∧ F =
N 2

9
T1

∫

R×S1

ψ

C2 (3.16)

where we have used the second condition in (A.18). But in this case N 2/9 is an integer

due to Dirac quantization condition plus the first equation in (A.18). In this case a mi-

croscopical description in terms of expanding D1-branes will make sense, as we will show

explicitly in section 6.

Note that in fact for the T 1,1 we can take a more general ansatz for the magnetic flux,

namely F = N1 J1 +N2 J2, with J1, J2 the Kähler forms on each of the S2’s contained in

the T 1,1. In this case the magnetic flux is dissolving N1/3 and N2/3 D3-brane charge in

each S2, and N1N2/9 D1-brane charge in S2 × S2, as inferred from the couplings

SCS
D5 = 2π T5

∫

R×T 1,1

C4 ∧ F =
N1

3
T2

∫

R×S1

ψ
×S2

2

C4 +
N2

3
T2

∫

R×S1

ψ
×S1

2

C4 (3.17)

and

SCS
D5 =

1

2
(2π)2T5

∫

R×T 1,1

C2 ∧ F ∧ F =
N1N2

9
T1

∫

R×S1

ψ

C2 . (3.18)

Therefore N1,N2 ∈ 3Z, in agreement with Dirac quantization condition, as implied

from (A.18). In this case the energy of the D5 is modified according to

ED5 =
N

8π
ρ0

√

1 +
4π2N 2

1

R4

√

1 +
4π2N 2

2

R4
. (3.19)

Coming back to the general case for Y p,q manifolds, F = NJ , with J the Kähler form

of the 4 dimensional Kähler-Einstein submanifold of the Y p,q, from (2.14) we find that the

no-force condition on the ρ-axis yields

ρ1 = ρ0(1− λ2eff)
1/4, λeff =

5− 4aeff
4aeff

, (3.20)

where aeff includes now the magnetic flux

aeff ≡ a

1 + 4π2N 2

5R4

. (3.21)

Given that λeff < 1 a baryon configuration exists for

aeff > a< with a< =
5

8
+
π2N 2

2R4
. (3.22)
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In terms of the volume of the Y p,q this reads

a< =
5

8
+

N 2

8π2N
Vol(Y p,q) , (3.23)

so the bound depends now on the volume of the internal manifold. The largest volume

given by the Y p,q metrics occurs for the Y 2,1, for which Vol(Y 2,1) ≈ 0.29π3. Therefore we

have that π3 = Vol(S5) > 16/27π3 = Vol(T 1,1) > Vol(Y 2,1) and a< is maximum for the

S5, the maximally supersymmetric case. Note that since aeff 6 1 there is also a bound on

the instanton number, namely

a< 6 1 ⇒ N 2

R4
6

3

4π2
≃ 0.0761 . (3.24)

Finally, the binding energy in terms of the physical length of the baryon reads

E = − R2

2πL

k
√

1− λ2eff

3

(

J − 5− 4aeff
4aeff

)

I . (3.25)

3.2.1 Stability analysis

The study of the stability against longitudinal fluctuations gives again δr(ρ) as in (3.11)

where now 2F1(a, b, c;x) must satisfy [9]

2F1

(

3

4
,
3

2
,
7

4
; 1− λ2eff

)

=
3

2λeff(1 + λ2eff)
. (3.26)

The critical value for aeff that is found numerically is again aeff ≃ 0.813, below which the

system becomes unstable. This improves the above bound for the instanton number, in

comparison to the ’t Hooft coupling, to

N 2

R4
. 0.00291 , (3.27)

that should be respected for the classical configuration not only to exist, but also to be

perturbatively stable. Thus, the stability analysis sets a low bound for a which is still less

than unity.

4 The baryon vertex in β-deformed backgrounds

The description of the baryon vertex in these backgrounds is essentially identical to the one

performed in the previous section. Even though the C2 and B2 potentials are non-vanishing

the tadpole introduced with the brane has still charge N , so it has to be compensated with

the same number of fundamental strings attached. Moreover, the energy of the D5-brane

wrapped on the deformed S5 is the same as the one wrapped on the S5. Therefore we find

the same bound for the number of quarks that can form non-singlet baryons.

We discuss the general case of multi γ̂i-deformations [24], from which the one- param-

eter Lunin-Maldacena background [23] is obtained for all γ̂i equal. As we have mentioned,

in this background the baryon vertex is described in terms of a D5-brane wrapped on the
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deformed S5, with N fundamental strings attached. In the last subsection we will switch on

a magnetic flux that on the one hand will increase the parametric space on which classical

solutions exist and on the other hand will allow a complementary description in terms of

expanding D3-branes suitable for the discussion of the finite ’t Hooft coupling regime of

the dual gauge theory.

The multi-γ̂i deformed background reads in string frame [24]

ds2 = R2

[

ds2AdS5 +
∑

i

(dµ2i + Gµ2i dφ2i ) + Gµ21µ22µ23
(

∑

i

γ̂idφi

)2]

, (4.1)

e2φ = G , G−1 = 1 + γ̂23 µ
2
1µ

2
2 + γ̂21 µ

2
2µ

2
3 + γ̂22 µ

2
3µ

2
1 .

B2 = R2G (γ̂3 µ
2
1µ

2
2 dφ1 ∧ dφ2 + γ̂1 µ

2
2µ

2
3 dφ2 ∧ dφ3 + γ̂2 µ

2
3µ

2
1 dφ3 ∧ dφ1) ,

C2 = −4R2ω1 ∧ (γ̂1dφ1 + γ̂2dφ2 + γ̂3dφ3) ,

C4 = ω4 + 4R4G ω1 ∧ dφ1 ∧ dφ2 ∧ dφ3 ,

where µi and φi parameterize a deformed five-sphere, so that we can write:

µ1 = cosα , µ2 = sinα cos θ , µ3 = sinα sin θ ,
3

∑

i=1

µ2i = 1 ,

(α, θ) ∈ [0, π/2] , dω1 = cosα sin3 α sin θ cos θdα ∧ dθ , dω4 = ωAdS5 .

(4.2)

For equal γ̂i parameters γ̂1 = γ̂2 = γ̂3 = γ̂, γ̂ is related to the deformation parameter β of

the gauge theory through [35]:

γ̂ = R2 β . (4.3)

4.1 The D5-brane baryon vertex

Let us now consider a D5-brane wrapping the deformed S5 in (4.1). This brane captures

the F5 −F3 ∧B2 flux of the background but still requires N fundamental strings to cancel

the tadpole

SCS
D5 = 2π T5

∫

R×S̃5

P [C4 − C2 ∧B2] ∧ F = −2π T5

∫

R×S̃5

P [F5 − F3 ∧B2] ∧A =

= −N
∫

dtAt (4.4)

since

F5 − F3 ∧B2 = ωAdS5 + 4R4 dω1 ∧ dφ1 ∧ dφ2 ∧ dφ3 , (4.5)

as in the AdS5 × S5 case. Therefore the CS part of the action is undeformed. The DBI

action is in turn given by

SDBI
D5 = −T5

∫

R×S̃5

d6ξ e−φ
√

− detP (G+ 2πF −B2) . (4.6)

For F = 0 the determinant of the pull-back of G−B2 can be written as

∆1 = GttGααGθθ det Γ , (4.7)

– 12 –



J
H
E
P
0
6
(
2
0
1
2
)
1
2
3

where Γ is a 3× 3 matrix of the form Gab−Bab for the three U(1) directions. We then get

∆1 = GttR
10 sin6 α cos2 α sin2 θ cos2 θ G , (4.8)

such that the DBI action remains also undeformed.

Given that the AdS part of the background remains untouched by the deformation

the contribution of the fundamental strings stretching from the D5 to the boundary of

AdS is the same as in the undeformed case. The only issue here would be that the binding

energy was modified due to the dependence of the D5-brane on the deformation parameter.

We have shown however that this dependence drops out both in the CS and DBI actions.

Therefore the size and binding energy of the baryon remain undeformed, and coincide with

those in N = 4. The classical solution and its stability analysis are therefore identical to

those performed in section 3. Last but not least, we should mention that for marginally-

deformed backgrounds there are cases on which the classical solution coincides with N = 4,

does not depend on the deformation parameter, but the stability analysis even for the

conformal case requires an upper value on the imaginary part of the deformation parameter

σ as in the case of mesons [36].

4.1.1 Adding a magnetic flux

Finally we can switch on a magnetic flux F = NJ , with N ∈ Z/2 and J the Kähler form

of the S2 parameterized by (α, θ), dissolving 2N units of D3-brane charge in the baryon.

This will allow a microscopical description in terms of expanding D3-branes from which

the finite ’t Hooft coupling region can be studied. The DBI action changes as

SDBI
D5 = −TN

8π
ρ0

√

1 +
4π2N 2

R4
. (4.9)

In the presence of a magnetic flux the minimum number of quarks forming a non-singlet

baryon is modified and there is a maximum on the magnetic flux that can be dissolved in

the baryon, in parallel with what we have found in the previous section.

5 The baryon vertex in the Maldacena-Nuñez background

The Maldacena-Nuñez background [19] is a solution to Type IIB supergravity dual to a

N = 1 supersymmetric confining gauge theory. It can be obtained as a solution of seven

dimensional gauged supergravity [37, 38], uplifted to ten dimensions. Given that this

background is confining we expect that the universality of the baryon vertex configurations

found in the previous conformal examples (in the absence of a magnetic flux) is lost. This

is indeed confirmed by the analysis in this section.

5.1 The Maldacena-Nuñez background

The ten-dimensional metric reads in the string frame

ds210 = eφ
[

dx21,3 + gsN

(

e2h(dθ21 + sin2 θ1dφ
2
1) + dρ2 +

1

4
(wi −Ai)2

)]

, (5.1)
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where φ is the dilaton, h is a function of the radial coordinate ρ, the one-forms Ai (i =

1, 2, 3) are the components of the non-abelian gauge vector field of the seven-dimensional

gauged supergravity,

A1 = −a(ρ)dθ1 , A2 = a(ρ) sin θ1dφ1 , A3 = − cos θ1dφ1 , (5.2)

and the wi’s are the right-invariant Maurer-Cartan dreibeins of SU(2), satisfying dwi =

−1
2 εijk w

j ∧ wk. They define a three-sphere that can be parameterized as

w1 = cosψ dθ2 + sinψ sin θ2 dφ2 , (5.3)

w2 = − sinψ dθ2 + cosψ sin θ2 dφ2 ,

w3 = dψ + cos θ2 dφ2 .

The angles θα, φα , α = 1, 2 and ψ take values in the intervals θi ∈ [0, π], φi ∈ [0, 2π] and

ψ ∈ [0, 4π]. The functions a(ρ), h(ρ) and the dilaton φ(ρ) are given by

a(ρ) =
2ρ

sinh 2ρ
, e2h = ρ coth 2ρ− ρ2

sinh2 2ρ
− 1

4
, (5.4)

e2φ = e−2φ0
sinh 2ρ

2eh
≡ e−2φ0Λ(ρ) , e2φ0 = gsN . (5.5)

In particular, Λ(ρ) satisfies

Λ(ρ) ≃ e2ρ

4
√
ρ
, when ρ≫ 1 (5.6)

and

Λ(ρ) ≃ 1 +
8ρ2

9
+O(ρ4) , when ρ≪ 1 . (5.7)

The solution also includes a Ramond-Ramond three-form given by

F3 =
gsN

4

{

− (w1 −A1) ∧ (w2 −A2) ∧ (w3 −A3) +
∑

i

F i ∧ (wi −Ai)

}

, (5.8)

where F i is the field strength of the SU(2) gauge field Ai, defined as F i ≡ dAi+ 1
2εijk A

j∧Ak.

5.2 The D3-brane baryon vertex

A D3-brane wrapping the 3-sphere parameterized by (θ2, φ2, ψ) introduces a tadpole that

needs to be canceled through the addition of N fundamental strings

SCS
D3 = 2π T3

∫

R×S3

C2 ∧ F = −2π T3

∫

R×S3

F3 ∧A = −N
∫

dtAt . (5.9)

The DBI action of this D3-brane is given by:

SDBI
D3 = −T3

∫

R×S3

d4ξ e−φ
√

− detP (G) = −TN
4π

√

Λ(ρ0) . (5.10)
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Particularizing to this background the size of the vertex given by (2.10) we find

L =
√

gsN

∫ ∞

ρ0

dρ
√

Λ(ρ)/Λ(ρ1)− 1
, (5.11)

which is a decreasing function of ρ0. The binding energy of the baryon is in turn given by

E =
k

2π

{
∫ ∞

ρ0

dρ
Λ(ρ)

√

Λ(ρ)−Λ(ρ1)
−
∫ ∞

ρmin

dρ
√

Λ(ρ) +
1−a
a

∫ ρ0

ρmin

dρ
√

Λ(ρ) +
1

2a

√

Λ(ρ0)

}

.

(5.12)

Both integrals receive most of their contributions from the region ρ ≈ ρ1 so it can be seen

that E is linearly proportional to L [20]. Also, from (2.16) we see that E and L share the

same dependence on the position of the vertex:

dE

dρ0
=

k
√
Λ1

2π
√
gsN

dL

dρ0
. (5.13)

The net-force condition is now

cosΘ =
1− a

a
+

1

4a
∂ρ ln Λ(ρ)

∣

∣

∣

∣

ρ=ρ0

, cosΘ =

√

1− Λ1

Λ0
. (5.14)

Taking into account that ∂ρ ln Λ(ρ) satisfies ∂ρ ln Λ(ρ) . 2−1/(2ρ)+O(1/ρ2) in the UV we

find that a > a< with a< = 3/4. Therefore the minimum value of the number of quarks is

restricted with respect to the one found in the previous conformal examples, in agreement

with our expectations.

5.2.1 Stability analysis

The study of the stability against longitudinal fluctuations gives

δr(ρ) = AgsN

∫ ∞

ρ
dρ

Λ

(Λ− Λ1)3/2
, (5.15)

as the solution to equation (2.18). Substituting in the boundary equation (2.19) we find

2(Λ− Λ1)δr
′ + Λ′(ρ) δr = 0 at ρ = ρ0 , (5.16)

and using (5.14) we can write

a

(

cosΘ +
a− 1

a

)

cosΘZ =
1

2
(5.17)

where

Z ≡
√

Λ0

∫ ∞

ρ0

dρ
Λ

(Λ− Λ1)3/2
, and Λ1 = Λ0 sin

2Θ . (5.18)

From (5.17) we can now solve for a. Note that using (2.15) we find that

∂ρ0
∂ρ1

=
1

2
Z cosΘ ∂ρ ln Λ(ρ)

∣

∣

ρ=ρ1
(5.19)

from where

Z cosΘ =
2

∂ρ0 ln Λ(ρ0)
∈ [1,∞) . (5.20)

From (5.17) and (5.19) we then find a > 1
2 + 1

4Z cos θ =⇒ a > 1
2 +

∂ρ0 ln Λ(ρ0)
8 . Thus,

the stability analysis does not improve the bound imposed by the existence of a classical

solution, in contrast to what happened in the conformal examples previously discussed.
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5.2.2 Adding a magnetic flux

Finally, in order to compare with the microscopical analysis in section 6.3 we add a magnetic

flux to the baryon proportional to the Kähler form on the 2-sphere parameterized by

(θ2, φ2), F = NJ , with N ∈ 2Z. This flux dissolves N/2 units of D1-brane charge in the

S3. The energy of the baryon is modified according to

ED3 =
N

4π

√

Λ(ρ0) +
4π2N 2

gsN
. (5.21)

As in the previous cases the magnetic flux changes the minimum bound for the number of

quarks in the baryon. Moreover the flux has an upper bound.

6 The microscopical description

In the previous sections we have discussed generalizations of the baryon vertex constructions

to allow a magnetic flux dissolving lower dimensional brane charge in the configuration. By

analogy with Myers dielectric effect [30, 39] we expect that a complementary description

in terms of lower dimensional branes expanding into fuzzy baryons should then be possi-

ble. This would be the “microscopical” realization of the “macroscopical” baryons with

magnetic flux that we have just described. The interesting thing about the microscopical

description is that it allows to explore the finite ’t Hooft coupling region, and this is es-

pecially relevant in those cases in which the baryons are non-supersymmetric, like those

considered in this paper, and are therefore not preserved by a BPS condition.

It is well known that the macroscopical and microscopical descriptions have comple-

mentary ranges of validity [30]. While the first is valid in the supergravity limit the second

is a good description when the mutual separation of the expanding branes is much smaller

than the string length, such that they can be taken to be coincident and therefore described

by the U(n) effective action constructed by Myers [30]. For n Dq-branes expanded into

an r-dimensional manifold of radius R, the volume per brane can be estimated as Rr−q/n,

which must then be much smaller than lr−qs . Thus the condition

R≪ n
1

r−q ls , (6.1)

sets the regime of validity of the microscopical description. The macroscopical description

is in turn valid when R ≫ 1. Therefore both descriptions are complementary for finite n,

but should agree in the large n limit, where they have a common range of validity. The

limit (6.1) is especially appealing in backgrounds with a CFT dual, like the AdS spacetimes

that we have considered in this paper. Indeed, in terms of the ’t Hooft parameter of the

dual CFT the condition (6.1) reads

λ≪ n
4

r−q . (6.2)

The fact that λ can be finite opens up the possibility of accessing the finite ’t Hooft coupling

region of the dual CFT through the microscopical study of the corresponding dual brane

system.

– 16 –



J
H
E
P
0
6
(
2
0
1
2
)
1
2
3

Dielectric branes expanding into fuzzy manifolds have been extensively studied in the

literature. From (6.2) the lower the dimensionality of the expanding branes the smaller the

’t Hooft parameter can get. However for the manifolds that we have discussed in this paper

it will not always be possible to provide a description in terms of expanding D1-branes.

This is the case for the Y p,q Sasaki-Einstein geometries, in which the natural microscopical

description would be in terms of D1-branes wrapped on the Reeb vector direction and

expanding into the remaining four dimensional Kähler-Einstein manifold. We are however

not aware of a fuzzy realization of these manifolds besides the CP 2 case. Moreover, as we

have seen, the number of D1-branes in the macroscopical description is irrational, while

this should be an integer in the microscopical description. Still, we will be able to provide

a (less) microscopical description in terms of D3-branes expanding into a fuzzy 2-sphere.

For the γ̂i deformed backgrounds the natural thing is to dissolve D3-branes wrapped on the

(T 1)3 through the addition of a magnetic flux proportional to the Kähler form on the S2,

as we did in section 4.1. The microscopical description will then be in terms of D3-branes

expanding into a fuzzy S2.

We start in section 6.1 with the analysis of the AdS5×T 1,1 background, for which a de-

scription in terms of D1-branes expanding into a fuzzy S2×S2 manifold can be done. As we

will see this description exactly matches the macroscopical description in section 3.2. The

extension to arbitrary Y p,q manifolds is more technical and it is postponed to the appendix.

In section 6.2 we discuss the γ̂i deformed backgrounds. We end with the Maldacena-Nuñez

analysis in section 6.3, in terms of D1-branes expanding into a fuzzy S2 baryon.

6.1 The AdS5 × T 1,1 background: D1-branes into fuzzy S2 × S2

The DBI action describing the dynamics of n coincident D1-branes is given by [30]

SDBI
nD1 = −T1

∫

d2ξ STr
{

e−φ
√

∣

∣det
(

P [Eµν + Eµi(Q−1 − δ)ijEjkEkν ]
)

detQ
∣

∣

}

(6.3)

where E = G−B2 and

Qij = δij +
i

2π
[Xi, Xk]Ekj . (6.4)

Let us take the D1-branes wrapped on the U(1) fibre direction ψ in (A.16) and expanding

into the fuzzy S2 × S2 submanifold parameterized by (θ, φ) and (ω, ν).

Using Cartesian coordinates for each S2 we can impose the condition

3
∑

i=1

(xi)2 = 1 (6.5)

at the level of matrices if the Xi are taken in the irreducible totally symmetric representa-

tion of order m, with dimension n = m+ 1,

Xi =
1

√

m(m+ 2)
J i (6.6)

with J i the generators of SU(2), satisfying [J i, J j ] = 2iεijkJ
k. Labeling with m1, m2 the

irreps for each S2 we have that the total number of expanding branes n = (m1+1)(m2+1),
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and substituting in the DBI action

SDBI
nD1 = −T1

∫

d2ξ
√

−GttGψψ Str
√

detQ (6.7)

we find

EnD1 =
Nρ0
8π

(m1 + 1)(m2 + 1)
√

m1(m1 + 2)m2(m2 + 2)

√

1 +
36π2m1(m1 + 2)

R4

√

1 +
36π2m2(m2 + 2)

R4

(6.8)

where

detQ =

(

1 +
R4

36π2m1(m1 + 2)

)(

1 +
R4

36π2m2(m2 + 2)

)

I (6.9)

and the (m1 + 1)(m2 + 1) factor comes from computing the symmetrized trace. This

expression is exact in the limit

R≫ 1 , m≫ 1 , with
R2

m
= finite (6.10)

(see section 5.1 of [40] for the detailed discussion). Taking the large m1, m2 limit we find

perfect match with the macroscopical result given by (3.19) if m1 ∼ N1/3, m2 ∼ N2/3, in

agreement with (A.18).

6.1.1 The F-strings in the microscopical description

An essential part of the baryon vertex are the fundamental strings that stretch from the Dp-

brane to the boundary of AdS5. As we show in this section they arise from the non-Abelian

CS action.

The CS action for n coincident D1-branes is given by

SCS =

∫

d2ξ STr

{

P

(

e
i
2π

(iX iX)
∑

q

Cq e
−B2

)

e2πF
}

. (6.11)

In this expression the dependence of the background potentials on the non-Abelian scalars

occurs through the Taylor expansion [41]

Cq(ξ,X) = Cq(ξ) +Xk∂kCq(ξ) +
1

2
X lXk∂l∂kCq(ξ) + . . . (6.12)

and it is implicit that the pull-backs into the worldline are taken with gauge covariant

derivatives DξX
µ = ∂ξX

µ + i[Aξ, X
µ].

The relevant CS couplings in the AdS5 × T 1,1 background are

SCS
nD1 =

T1
2π

∫

d2ξ Str

(

iP [(iXiX)C4]−
1

2
P [(iX iX)

2C4] ∧ F
)

. (6.13)

Taking into account (6.12) and working in the gauge Aψ = 0 these couplings reduce to

SCS
nD1 = − 1

π

∫

dt Str[(iXiX)
2ikF5]At , (6.14)
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where ik denotes the interior product with kµ = δµψ and we have integrated out ψ, the

spatial direction of the D1-branes. Taking into account that in Cartesian coordinates F5,

as given by (A.20), reduces to

ikF5 = −R
4

27
fijmfklnX

mXndXi ∧ dXj ∧ dXk ∧ dX l, (6.15)

where the indices run from 1 to 3 for the first 2-sphere and from 4 to 6 for the second,

such that fijm = εijm for i, j,m = 1, . . . 3 and i, j,m = 4, . . . , 6 and zero otherwise, we

finally find

SCS
nD1 = −N (m1 + 1)(m2 + 1)

√

m1(m1 + 2)m2(m2 + 2)

∫

dtAt , (6.16)

again in perfect agreement with (3.4) in the large m1,m2 limit.

To finish this section we would like to point out that more general fuzzy realizations of

the T 1,1 could in principle be considered. For instance one could think of substituting the

direct product of the two fuzzy 2-spheres by a Moyal-type of product, [Xi, Xj ] = ıθij where

i = 1, . . . 3 refers to the first 2-sphere and j = 4, . . . 6 refers to the second. It is not clear in

any case how this would affect the description of the vertex beyond the supergravity limit.

6.2 The β-deformed backgrounds: D3-branes into fuzzy S2

In this case we start with a system of n coincident D3-branes, whose dynamics is given

by the straightforward extension of (6.3) to a four dimensional worldvolume. We take the

branes wrapped on the 3-torus and expanding into the 2-sphere in (4.1) parameterized by

(α, θ). Given that the expansion is on a fuzzy 2-sphere we take the same ansatz (6.6) as in

the previous section. Substituting in the DBI action we have

SDBI
nD3 = −T3

∫

d4ξ Str
[

e−φ
√

− detP [Eµν ] detQ
]

(6.17)

with

detQ =

(

1 +
R4

π2m(m+ 2)

)

I (6.18)

as in the previous section for each 2-sphere.2 As explained there this expression is exact

in the limit (6.10). The only difference with the calculation in the previous section comes

from the fact that detP [Eµν ] depends now on the transverse scalars Xi, and therefore it

contributes to the symmetrized trace. In order to compute this contribution we use that

Str(µ1µ2µ3) ≃
m+ 1

4π

∫ π/2

0
dα sin3 α cosα

∫ π/2

0
dθ sin θ cos θ =

m+ 1

32π
(6.19)

as implied by equation (4.44) in [42], which is valid in the limit m≫ 1. We then find that

EnD3 =
Nρ0
8π

m+ 1
√

m(m+ 2)

√

1 +
π2m(m+ 2)

R4
. (6.20)

This result for the energy is more approximate than the ones found in the rest of examples,

where detP [Eµν ] does not depend on the transverse scalars. Still, it allows to compute 1/m

corrections to the macroscopical result. Taking the large m limit we find perfect agreement

with the macroscopical result (4.9) for m ∼ 2N .

2The different factor comes from the different radii in the two backgrounds.
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6.2.1 The F-strings

The relevant CS couplings in the non-Abelian action for D3-branes in the γ̂i deformed

backgrounds are

SCS
nD3 = T3

∫

d4ξ STr
(

P [C4] + iP [(iX iX)C4] ∧ F − P [C2 ∧B2]− iP [(iXiX)(C2 ∧B2)] ∧ F
)

.

(6.21)

Using (6.12) and the definition of the gauge covariant pull-backs they reduce to

SCS
nD3 = i T3

∫

d4ξ STr
(

P[(iXiX)F5]− P[(iXiX)F3 ∧B2]
)

At , (6.22)

where P denotes the gauge covariant pull-back over the spatial directions. Taking the

spatial components of the gauge field to vanish and using that

F5 =
1

8π
R4 G εijkXkdXi ∧ dXj ∧ dφ1 ∧ dφ2 ∧ dφ3 (6.23)

and

F2 = − 1

8π
R2εijkX

kdXi ∧ dXj ∧ (γ̂1dφ1 + γ̂2dφ2 + γ̂3dφ3) , (6.24)

the F5 and F3 ∧B2 contributions combine to give

SCS
nD3 = −N m+ 1

√

m(m+ 2)

∫

dtAt (6.25)

which is again in perfect agreement with (4.4) in the large m limit.

6.3 The Maldacena-Nuñez background: D1-branes into fuzzy S2

Let us now use the action (6.3) to describe n D1-branes wrapped on the ψ direction and

expanding into the 2-sphere in (5.1) parameterized by (θ2, φ2). The expansion is again on

a fuzzy 2-sphere, so we take the same non-commutative ansatz (6.6) as in the previous

sections. Substituting in the DBI action we have

SDBI
nD1 = −T1

∫

d2ξ
√

−GttGψψ Str
√

detQ (6.26)

as in (6.7), with

detQ =

(

1 +
gsNΛ(ρ0)

16π2m(m+ 2)

)

I . (6.27)

The regime of validity of the determinant is again fixed by (6.10). Computing the sym-

metrized trace we finally arrive at

EnD1 =
N

4π

m+ 1
√

m(m+ 2)

√

Λ(ρ0) +
16π2m(m+ 2)

gsN
, (6.28)

which in the large m limit is in perfect agreement with the macroscopical result (5.21) for

m ∼ N/2.
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6.3.1 The F-strings

The relevant CS couplings are in this case

SCS
nD1 = T1

∫

Str
(

P [C2] + iP [(iXiX)C2] ∧ F
)

(6.29)

which can be rewritten as

SCS
nD1 = 2i

∫

dt STr[(iXiX)ikF3]At (6.30)

where ik denotes the interior product with kµ = δµψ and we have integrated over the ψ

direction. Using that

F3 = −N
4
εijkX

mdXi ∧ dXj ∧ dψ (6.31)

we get

SCS
nD1 = −N m+ 1

√

m(m+ 2)

∫

dtAt (6.32)

in perfect agreement with (5.9) in the large m limit.

The analysis performed in this section shows that the right description for the baryon

vertex (with magnetic flux) at finite ’t Hooft coupling is in terms of D1- or D3-branes

expanding into a S1 × (S2 × S2)fuzzy D5-brane, S2
fuzzy × T 3 D5-brane or S1 × S2

fuzzy D3-

brane. As we have shown these branes introduce tadpoles that need to be cancelled with

the addition of fundamental strings. A full description of the D5, or D3, plus F1 system

valid at finite ’t Hooft coupling would require however the construction of fuzzy spikes, so

that the α′ corrections coming from the F-strings would also be taken into account. See

the conclusions for a further discussion on this point.

7 Conclusions

In this paper we have discussed non-singlet baryon vertices in various Type IIB backgrounds

in order to investigate the dependence of the bound imposed on the number of quarks by

the existence and stability of the classical solution, on the supersymmetry and confinement

properties of the dual gauge theory.

Using the probe brane approximation [4, 5, 20] we have shown that this bound is the

same for all AdS5 × Y5 backgrounds with Y5 an Einstein manifold bearing five form flux,

independently on the number of supersymmetries preserved. The same result holds true

for β-deformed and even non-supersymmetric multi-β deformed backgrounds, pointing at

a universal behavior based on conformality. The same analysis in a confining background,

the Maldacena-Nuñez model, shows that universality is lost when confinement is present.

In this case although non-singlet baryons still exist, the bound imposed on them is more

restrictive, in agreement with our expectations that non-singlet baryons should be more

constrained in more realistic gauge theories. It would be interesting to confirm this result

in other confining backgrounds, such as the Klebanov-Strassler [18] or the Sakai-Sugimoto

models [43].
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Although the probe brane analysis has proved to be enough in order to deduce the basic

properties of this type of systems (see for instance [4–7, 20]), the fact that all supersymme-

tries are broken in this approach could imply that it may not be sensitive enough to account

for the supersymmetries preserved by the different backgrounds. However previous results

in the literature on baryon vertices in AdS5×T 1,1, AdS5×Y p,q and the Klebanov-Strassler

and Maldacena-Nuñez backgrounds reveal that even when all fundamental strings are taken

to end on the same point of the wrapped D-brane supersymmetry is broken. Therefore

significant changes to the probe brane results should not be expected. At any event, the

different behaviors based on conformality should represent valid predictions.

We also note that we would expect the baryon analysis in β-deformed Sasaki-Einstein

manifolds to provide similar results to the undeformed case. Our string and brane con-

figurations do not seem to depend strongly on the deformation in the way encountered

in [44, 45], where important modifications due to the deformation appeared only in the T 3

fibration description.

Using the fact that we can consistently add lower dimensional brane charges we have

provided an alternative description of the baryons in terms of lower dimensional branes

expanding into fuzzy baryon vertices. This description represents a first step towards

the analysis of holographic baryons at finite ’t Hooft coupling. In this description the

expansion is caused by a purely gravitational dielectric effect, while the Chern-Simons

terms only indicate the need to introduce the number of fundamental strings required to

cancel the tadpole.

In order to be able to conclude that non-singlet baryons exist at finite ’t Hooft coupling

we should take into account not only the α′ corrections coming from the microscopical

analysis of the brane but also the α′ corrections to the F-string Nambu-Goto action and

the background. This is therefore a difficult program, which we have only begun to explore.

An interesting next step in this direction would be to use the microscopical analysis to build

up spike solutions in these backgrounds. We expect to report progress in this direction in

the near future.
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A The AdS5 × Y p,q background

In this appendix we collect some properties of Y p,q manifolds useful for the description

of the baryon vertex in the AdS5 × Y p,q background. The Klebanov-Witten background

is described thereof as a particular case.3 We also provide the detailed microscopical

description of the baryon vertex in AdS5 × Y p,q in terms of D3-branes expanding into a

fuzzy 2-sphere.

A.1 Some properties of the AdS5 × Y p,q geometry

In our conventions the AdS5 × Y p,q metric reads

ds2 = R2
(

ds2AdS5 + ds2Y p,q
)

=
ρ2

R2
dx21,3 +

R2

ρ2
dρ2 +R2ds2Y p,q , (A.1)

with R the radius of curvature in string units,

R4 =
4π4Ngs
Vol(Y p,q)

. (A.2)

For the Y p,q we use the canonical form of the metric [11], given by:

ds2Y p,q =
1− cy

6
(dθ2 + sin2 θdφ2) +

dy2

w(y)q(y)
+

1

36
w(y)q(y)(dβ + c cos θdφ)2

+
1

9
[dψ + cos θdφ+ y(dβ + c cos θdφ)]2 =

= (eθ)2 + (eφ)2 + (ey)2 + (eβ)2 + (eψ)2, (A.3)

where the fünfbeins read

eθ =

√

1− cy

6
dθ , eφ =

√

1− cy

6
sin θdφ ,

ey =
1

√

w(y)q(y)
dy , eβ =

√

w(y)q(y)

6
(dβ + c cos θdφ) ,

eψ =
1

3

(

dψ + cos θdφ+ y(dβ + c cos θdφ)
)

, (A.4)

with

w(y) =
2(a− y2)

1− cy
, q(y) =

a− 3y2 + 2cy3

a− y2
, (A.5)

and the metric is normalized such that Rαβ = 4Gαβ . The ranges of the coordinates

(θ, φ, ψ) are 0 6 θ 6 π, 0 6 φ 6 2π and 0 6 ψ 6 2π. The parameter a is restricted to

0 < a < 1. By choosing this range the following conditions for y are satisfied: y2 < a,

w(y) > 0 and q(y) > 0. The coordinate y then ranges between the two smaller roots of the

cubic equation q(y) = 0, y1 6 y 6 y2. For c 6= 0, y can always be rescaled such that c = 1

and the parameter a can be written in terms of two coprime integers p and q as:

a =
1

2
− p2 − 3q2

4p3

√

4p2 − 3q2 . (A.6)

3With the well-known subtleties regarding the periodicities.
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In this case

y1 =
1

4p

(

2p− 3q −
√

4p2 − 3q2
)

< 0 , y2 =
1

4p

(

2p+ 3q −
√

4p2 − 3q2
)

> 0 . (A.7)

Finally, β ranges between −2π(6l + c) 6 β 6 0, where

l =
q

3q2 − 2p2 + p
√

4p2 − 3q2
. (A.8)

Note that β needs not be periodic in general. The volume of the Y p,q can be written in

terms of p, q as

Vol(Y p,q) =
q(2p+

√

4p2 − 3q2)lπ3

3p2
. (A.9)

The canonical metric (A.3) takes the standard form

ds2Y p,q = ds2M4
+

(

1

3
dψ + σ

)2

, (A.10)

where the Killing vector kµ = δµψ is the Reeb vector and ds2M4
is a local Kähler-Einstein

metric with Kähler form

J =
1

2
dσ =

1− cy

6
sin θ dθ ∧ dφ+

1

6
dy ∧ (dβ + c cos θdφ) , (A.11)

satisfying
∫

M4

J ∧ J =
3Vol(Y p,q)

π
. (A.12)

This local property of the metric will be useful in order to induce an instantonic magnetic

flux proportional to the Kähler form.

Finally, the AdS5 × Y p,q flux reads F5 = (1 + ⋆10)F5, where

F5 = 4R4 dVol(Y p,q) (A.13)

and

dVol(Y p,q) = eθ ∧ eφ ∧ ey ∧ eβ ∧ eψ =
1

108
(1− cy) sin θdθ ∧ dφ ∧ dy ∧ dβ ∧ dψ (A.14)

F5 is then such that
1

(2π)4gs

∫

Y p,q
F5 = N . (A.15)

A.2 The AdS5 × T 1,1 case

As shown in [11] when c = 0 the metric (A.3) reduces to the local form of the standard

homogeneous metric on T 1,1. Indeed, setting c = 0 in (A.3), rescaling to set a = 3 and

introducing the coordinates cosω = y, ν = −β one gets

ds2T 1,1 =
1

9
[dψ− cos θdφ− cosωdν]2 +

1

6
(dθ2 + sin2 θdφ2) +

1

6
(dω2 + sin2 ωdν2) , (A.16)
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which is the metric of the T 1,1 in adapted coordinates to its realization as a U(1) bundle

over S2 × S2 [46], normalized such that Rαβ = 4Gαβ . Note however that although it is

possible to take the period of ν equal to 2π the period of ψ is fixed to 2π, so the manifold

that is being described in the c = 0 case is the T 1,1/Z2 orbifold. Still, we can study the

baryon vertex in T 1,1 as a particular case of Y p,q geometry if we account for the right

periodicity of ψ when relevant.

The Kähler form in the T 1,1 reads

J =
1

6
(sin θdθ ∧ dφ+ sinω dω ∧ dν) (A.17)

and some properties used in the main text are

∫

S2

J =
2π

3
,

∫

T 1,1

J ∧ J =
3Vol(T 1,1)

2π
, (A.18)

where the volume of the T 1,1 is given by

Vol(T 1,1) =
16π3

27
. (A.19)

Finally, the 5-form field strength is F5 = (1 + ⋆10)F5, where

F5 ≡ 4R4 dVol(T 1,1) =
R4

27
sin θ sinω dθ ∧ dω ∧ dψ ∧ dφ ∧ dν (A.20)

and satisfies:
1

(2π)4gs

∫

T 1,1

F5 = N . (A.21)

A.3 The baryon vertex in AdS5 × Y p,q with a magnetic flux proportional to

the Kähler form of the S2

The microscopical description of the baryon vertex in AdS5 × Y p,q in terms of D3-branes

expanding into a fuzzy 2-sphere is complementary to a macroscopical D5-brane wrapped

on the Y p,q with a magnetic flux proportional to the Kähler form on the S2. This magnetic

flux dissolves D3-brane charge, with the D3’s spanned on the (y, β, ψ) directions.

The DBI action for the D5-brane in the Sasaki-Einstein background (A.3) reads

SDBI
D5 = −T5

∫

R×Y p,q
d6ξ e−φ

√

− detP (GMN + 2πFMN ) , (A.22)

where M = (µ; i) = (t, a; i), a = (y, β, ψ), i = (θ, φ). Turning on a magnetic flux pro-

portional to the Kähler form on the S2 parameterized by θ and φ in (A.3) it is easy to

prove that

detP (GMN + 2πFMN ) = GttIJ , (A.23)

with I = det[(G+ 2πF )ij ] , J = det[Gab −Gai(G+ 2πF )−1ijGjb] .

The determinant I can be easily computed, with the result

I = GθθGφφ
(

1 + (2πN )2ε2
)

≡ GθθGφφ I , ε2 ≡ 1

(1− y)2R4
. (A.24)
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For the computation of J we note that GabGbi = −δaψδiφ cos θ. The result reads

J =
(

det[Gab]
)2

det

[

Gab − δaψδbψ cos
2 θ

Gφφ
(

1 + (2πN )2ε2
)

]

≡ det[Gab]J . (A.25)

Plugging these expressions in the DBI action we finally find

ED5 = N
ρ0
16π

∫ y2
y1
dy(1− y)

∫ π
0 dθ sin θ

√
IJ

∫ y2
y1
dy(1− y)

, (A.26)

A.4 The microscopical construction

In this appendix we show that the baryon vertex with magnetic flux that we have just

discussed can be described at finite ’t Hooft coupling in terms of D3-branes expanding into

a fuzzy 2-sphere. The geometry of the fuzzy D5-brane is then given by the twisted product

of the 3 dimensional manifold spanned by the (y, β, ψ) directions and a fuzzy 2-sphere.

The DBI action describing the dynamics of n coincident D3-branes spanned on the

(y, β, ψ) directions and expanding onto the fuzzy S2 parameterized by θ and φ in (A.3) is

given by (I = 1, 2, 3)

SDBI
nD3 = −T3

∫

d4ξ Str
[

e−φ
√

−GttĨJ̃
]

, (A.27)

where

Ĩ = detQIJ , J̃ = detP
[

Gab +GaI(Q
−1 − δ)IJGJb

]

. (A.28)

The determinant of QIJ can be computed in a similar way as in the previous cases, and

the result reads

QIJ = δIJ −
Λ(m)

2π
εIKLX

LGKJ , Λ(m) =
2

√

m(m+ 2)
=⇒ (A.29)

detQIJ ≃
(

Λ(m)

2π

)2

ε−2

(

1 +

(

2π

Λ(m)

)2

ε2
)

.

Next, we consider the determinant J̃ and we note that

QIJ = δIJ−
Λ(m)

2π
εIKLX

LGKJ = GIK
(

GKJ−
Λ(m)

2π
εKJLX

L

)

=⇒ Q = G−1Q̃ . (A.30)

Thus, we have to compute the inverse of Q̃, which in the macroscopical limit (m ≫ 1)

reads

Q̃IJ = GIJ + εIJLv
L =⇒ Q̃−1IJ =

1

1 + v2
(

GIJ + vIvJ − εIJKv
K
)

, (A.31)

vI = −
Λ(m)

2π
XI , v2 = GIJ v

IvJ =

(

Λ(m)

2π

)2 (1− y)2R4

36
,

where the indices are raised using GIJ . Next, we compute (Q−1 − δ)−1IJ which reads

(Q−1 − δ)−1IJ ≡ (Q−1 − δ)−1I
K G

KJ =
1

1 + v2
(

− v2GIJ + vIvJ − εIJKv
K
)

. (A.32)
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So, using the last equation and GabGbi = −δaψδiφ cos θ we find

J̃ =
(

det[Gab]
)2

det

[

Gab − δaψδbψ cos
2 θ

Gφφ(1 + v−2)

]

≡ det[Gab]J̃ . (A.33)

Putting all these ingredients together in (A.27) and using eq. (4.44) of [42]; so to find the

leading behavior for m≫ 1, we find

SDBI
nD3 = −T3

∫

d4ξStr
[

e−φ
√

−GttĨJ̃
]

≃ −T3
Λ(m)

2π

m+ 1

4π

∫

S2

dS2

∫

d4ξ
[

e−φ
√

−GttĨJ̃
]

= −T5
m+ 1

√

m(m+ 2)

∫

d6ξ
[

e−φ
√

−GttĨJ̃
]

=⇒

EDBI
nD3 = N

m+ 1
√

m(m+ 2)

ρ0
16π

∫ y2
y1
dy(1− y)

∫ π
0 dθ sin θ

√

Ĩ J̃
∫ y2
y1
dy(1− y)

, (A.34)

which in the large m limit reproduces the macroscopical result and like as the T 1,1 case it

is given by (A.26) with m = N/3, for which (I,J ) ⇔ (Ĩ, J̃ ).

A.4.1 The F-strings

The CS action describing the dynamics of the n coincident D3-branes takes the form

SCS
nD3 = T3

∫

Str
(

P [C4] + iP [(iXiX)C4] ∧ F
)

= −i T3
∫

Str
(

P [(iX iX)F5]
)

∧At (A.35)

F5 reads, in Cartesian coordinates for the S2

F
(5)
yβψij =

R4

27
(1− y)εijkX

k (A.36)

Substituting in the action we find that

SCS
nD3 = −N m+ 1

√

m(m+ 2)

∫

A , (A.37)

which exactly matches the macroscopical result (3.4) in the large m limit.
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