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Abstract. In this paper we focus the numerical discretization of a state

constrained control problem governed by a semilinear elliptic equation. Dis-

tributed and boundary controls are considered. We study the convergence of
the discrete optimal controls to the continuous optimal controls in the weak

and strong topologies. Previous to this analysis we obtain some results of con-

vergence in the L∞ norm of the approximations of the state equation by finite
elements, which is essential to deal with the pointwise state constraints.
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1. Introduction

In this paper, our goal is to prove some convergence theorems of the discretiza-
tions of state constrained optimal control problems governed by semilinear elliptic
equations. The analysis is carried out for pointwise state constraints. Because of
these constraints, to achieve our goal we need the uniform convergence of the nu-
merical discretization of the state equation. Therefore the first part of the paper is
devoted to prove some convergence results and L∞ error estimates of the approx-
imations of the state equation by finite elements. We consider the Dirichlet and
Neumann cases, which correspond to distributed and boundary controls.

The presence of the state constraints introduces some difficulties in the analy-
sis. Maybe the most important difficulty appears when we try to approximate an
admissible control by a sequence of discrete controls admissible for the correspond-
ing discrete problems. In particular the possibility of obtaining this approximation
for the optimal control is essential to prove the convergence of the discretizations.
This cannot be done for every control problem, some stability of the optimal cost
functional with respect to small perturbations of the set of admissible states is nec-
essary to have an approximating sequence of the optimal control formed by discrete
admissible controls.

An advance of these ideas was presented by E. Casas in [2] for the case of a
Dirichlet boundary value problem and distributed controls under the assumption
of H2(Ω)-regularity of the states. In this paper we consider the case where only
W 1,p(Ω)-regularity of the states can be assured, which allows us to extend the
results to the case of a Neumann boundary value problem and boundary controls.
We prove some new error estimates and convergence results for the approximation
of the state equations by finite elements. Then we use these results to establish the
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Cient́ıfica (Spain).

1



2 EDUARDO CASAS AND MARIANO MATEOS

convergence of the so called stable control problems. We will also see that almost
all problems are stable.

Error estimates for the control is not considered in this paper. It is an open
problem how to obtain error estimates for the discretizations of the controls under
the presence of pointwise state constraints. Second order optimality conditions have
to be used in order to derive these estimates, but these conditions are not well known
for the case of pointwise state constraints. In the absence of state constraints, some
papers dealing with error estimates can be found in the literature; see N. Arada,
E. Casas and F. Tröltzsch [1] and the references there cited.

The plan of the paper is as follows. In Section 2, the error estimates for the
discretization of a semilinear elliptic equation is studied. The section is divided
into two parts, the first one devoted to the Dirichlet case, and the second one
dealing with the Neumann case. Section 3 is also divide into two parts, in the first
part the numerical approximation of a distributed control problem is studied. In
the second part, the case of a boundary control is considered.

2. Error estimates in the discretization of semilinear equations

There are some papers in the literature devoted to the study of uniform esti-
mates for the error in the finite element method for linear and quasilinear elliptic
equations; see R . Scott [14] or J. Frehse and R. Rannacher [9]. In these papers,
the regularity required for the solution of the equation is stronger than that one
we can assume for the optimal states of the pointwise state constrained optimal
control problems. In the linear case, P.G. Ciarlet and P.A. Raviart [6] relaxed the
regularity of the state by using a discrete maximum principle valid for some grids
of finite elements, the so called triangulations of nonnegative type. They prove
uniform convergence of ‖y − yh‖∞ → 0 for this type of triangulations under the
assumption that y ∈ W 1,p(Ω). Also they derived some error estimates for states
y ∈ W 2,p(Ω). Finally, by assuming H2(Ω) regularity for y, there are some well
known uniform error estimates for linear equations; see for instance P.G. Ciarlet [4,
pags. 143–144].

In this section we will prove uniform convergence and error estimates for states
in H2(Ω) and W 1,p(Ω) and semilinear elliptic equations. As far as we know, these
results are new. We start with the Dirichlet problem and we will finish with the
Neumann problem. First we introduce some notation and hypotheses assumed in
the whole paper.

Let Ω be a convex subset of RN , N = 2 or N = 3, Γ its boundary and A an
operator of the form

Ay = −
N∑

i,j=1

∂xj [aij∂xiy] ,

where ai,j ∈ C0,1(Ω̄) and such that there exist m,M > 0 satisfying

m‖ξ‖2 ≤
N∑

i,j=1

aij(x)ξiξj ≤M‖ξ‖2 ∀ξ ∈ RN and ∀x ∈ Ω.

Let f : Ω×R→ R be a Carathéodory function, monotone decreasing in the second
variable, with f(·, 0) ∈ Lp/2(Ω), for some p > N , and satisfying the following local
Lipschitz condition: for all M > 0 there exists φM ∈ L2(Ω) such that

(1) |f(x, y1)− f(x, y2)| ≤ |φM (x)||y1 − y2| for a.e. x ∈ Ω and |y1|, |y2| ≤M.
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In Ω̄ we consider a family of triangulations on {Th}h>0. To each element T ∈ Th
let us associate two parameters: ρ(T ) and σ(T ), where ρ(T ) denotes the diameter
of the set T and σ(T ) is the diameter of the greatest ball included in T . We will set
h = maxT∈Th ρ(T ). We will make the following assumptions on the triangulation:

• Regularity assumption: there exists σ > 0 such that ρ(T )
σ(T ) ≤ σ ∀T ∈ Th

and h > 0.
• Inverse assumption: there exists ρ > 0 such that h

ρ(T ) ≤ ρ ∀T ∈ Th and

h > 0.
• Set Ω̄h = ∪T∈ThT , Ωh its interior and Γh its boundary. Then we will

suppose that the vertexes of Th placed on the boundary of Γh are points of
Γ.

Consider the spaces

Vh =
{
yh ∈ C(Ω̄) : yh|T ∈ P1(T ) ∀T ∈ Th yh = 0 in Ω \ Ωh

}
and

Wh =
{
yh ∈ C(Ω̄h) : yh|T ∈ P1(T ) ∀T ∈ Th

}
,

where P1(T ) is the space of polynomials of degree 1 on T . Vh is a vector subspace

of W 1,p
0 (Ω) and Wh is a subspace of W 1,p(Ω).

We will use the Lagrange interpolation operator

Πh : C(Ω̄) −→ Wh

being Πhz the unique element in Wh such that Πhz(xi) = z(xi) for every node of
the triangulation xi. In the case of a function z vanishing on Γ, we will extend Πhz
to Ω̄ by zero and we will denote this extension by Πhz too. In the last case we have
that Πhz ∈ Vh.

2.1. Dirichlet case. Here our goal is to study the uniform approximation by the
finite element method of the solution of the equation

(2)

{
Ay = f(·, y) + f0 in Ω
y = 0 on Γ,

where f0 ∈W−1,p(Ω) for some p > N .
By classical arguments we can deduce from the monotonicity of f and (1) the

existence of a unique solution of (2) in H1
0 (Ω) ∩C(Ω̄); see G. Stampacchia [15] for

the boundedness of the solution. Now if f0 = 0 and f(·, 0) ∈ L2(Ω), we deduce
from the convexity of Ω and the Lipschitz continuity of the coefficients aij that the
solution is in H2(Ω); see P. Grisvard [10]. If f0 6= 0 or f(·, 0) 6∈ L2(Ω) , then the
solution belongs only to the Sobolev space W 1,p(Ω) for some p > N , close to N ;
see D. Jerison and C. Kenig [11] and M. Mateos [12].

The discrete version of (2) is defined as follows. For every h, let us define yh ∈ Vh
as the unique element that satisfies

(3) a(yh, zh) =

∫
Ω

f(x, yh(x))zhdx+ 〈f0, zh〉W−1,p(Ω)×W 1,p
0 (Ω) ∀zh ∈ Vh,

where

a(yh, zh) =

N∑
i,j=1

∫
Ω

ai,j(x)∂xiyh(x)∂xjzh(x)dx.

The proof of the existence of a solution of (3) is well known. It is enough to apply,
in a convenient way, Browder’s fixed point theorem along with the monotonicity
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of f . Our purpose is to prove that yh → y in C(Ω̄). We will distinguish the most
regular case corresponding to f0 = 0 from the general one f0 6= 0. In the regular
case, we will derive the same error estimates than for the linear case. Before stating
the results let us formulate a lemma whose proof can be found in P.G. Ciarlet and
P.A. Raviart [5]; see also P.G. Ciarlet [3].

Lemma 1. Set m ≥ 0, k ≥ 0, and p, q ∈ [1,∞]. If the embeddings

W k+1,p(T ) ↪→ C0(T )

W k+1,p(T ) ↪→Wm,q(T )

hold, then there exists a constant C > 0 independent of h such that

(4) ‖y −ΠT y‖Wm,q(T ) ≤ ChN( 1
q−

1
p )+k+1−m‖y‖Wk+1,p(T ),

where ΠT y is the restriction of Πhy to the element T .

The following inequality, whose proof can be found in P.G. Ciarlet [3, Theorem
17.2], gives us the equivalence constant between two Sobolev norms in a finite
dimensional space:

(5) ‖yh‖Wm,q(Ωh) ≤ C
1

hN max{0, 1p− 1
q}hm−l

‖yh‖W l,p(Ωh) ∀vh ∈ Vh, if l ≤ m,

C > 0 being independent of h.

2.1.1. Regular case. Suppose now that f0 = 0 and f(·, 0) ∈ L2(Ω). In a first step,
we will also make a stronger assumption on f than that one fixed in (1): there
exists a function φ ∈ L2(Ω) such that

(6) |f(x, t1)− f(x, t2)| ≤ |φ(x)| |t1 − t2| ∀t1, t2 ∈ R, a.e. x ∈ Ω.

This restrictive condition of global type will be relaxed later and we will see that
assumption (1) is enough. As mentioned before, equation (2) has a unique solution
in H2(Ω) ∩H1

0 (Ω) and it can be formulated variationally as follows

(7)
{
a(y, z) = (f(x, y), z)L2(Ω) ∀z ∈ H1

0 (Ω).

The numerical approximation of y is now given by the variational equation

(8)

{
Find yh ∈ Vh such that
a(yh, zh) = (f(x, yh), zh)L2(Ω) ∀zh ∈ Vh.

The following result is a generalization for semilinear equations of the well known
Céa’s Lemma

Lemma 2. Let y and yh be solutions of the variational problems (7) and (8)
respectively. Then there exists a constant C > 0 independent of h such that

‖y − yh‖H1(Ω) ≤ C‖y −Πhy‖H1(Ω).

Proof. The result is a consequence of the H1
0 (Ω)-ellipticity of a, the monotonicity of

f in the second variable, the Lipschitz condition imposed on f and the continuous
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embedding from H1(Ω) in L4(Ω):

‖y − yh‖2H1(Ω) ≤ Ca(y − yh, y − yh) ≤
≤ C {a(y − yh, y − yh)− (f(·, y)− f(·, yh), y − yh)} =
= C {a(y − yh, y − zh)− (f(·, y)− f(·, yh), y − zh)} ≤
≤ C

{
‖y − yh‖H1(Ω)‖y − zh‖H1(Ω) + ‖φ‖L2(Ω)‖y − yh‖L4(Ω)‖y − zh‖L4(Ω)

}
≤

≤ C
{
‖y − yh‖H1(Ω)‖y − zh‖H1(Ω) + ‖φ‖L2(Ω)‖y − yh‖H1(Ω)‖y − zh‖H1(Ω)

}
≤

≤ C‖y − yh‖H1(Ω)‖y − zh‖H1(Ω) for all zh ∈ Vh.

Dividing by ‖y−yh‖H1(Ω) and taking zh = Πhy we achieve to the desired result. �

Now we have the following lemma.

Lemma 3. Let y and yh be solutions of the variational problems (7) and (8)
respectively. Then there exists a constant C > 0 independent of h such that

‖y − yh‖H1(Ω) ≤ Ch‖y‖H2(Ω).

Proof. Using Lemma 2, the inequality

‖y‖H1(Ω\Ωh) ≤ Ch‖y‖H2(Ω)

(cf. P.A. Raviart and J.M. Thomas [13, Lemma 5.2-3]) and Lemma 1 with m = 1,
q = 2, k = 1 and p = 2, we have that

‖y − yh‖H1(Ω) ≤ C‖y −Πhy‖H1(Ω) ≤

C
(
‖y‖H1(Ω\Ωh) + ‖y −Πhy‖H1(Ωh)

)
≤ Ch‖y‖H2(Ω),

and the proof is complete. �

To obtain the error estimate in L2(Ω) let us introduce the function

(9) α(x) =


f(x, yh(x))− f(x, y(x))

y(x)− yh(x)
if y(x) 6= yh(x)

0 in other case.

Notice that α(x) ≥ 0.
We have that for all ψ ∈ L2(Ω) there exists a unique zψ ∈ H2(Ω) ∩ H1

0 (Ω)
satisfying {

A∗zψ + α(x)zψ = ψ in Ω
zψ = 0 on Γ.

From (6) we deduce that ‖α‖L2(Ω) ≤ ‖φ‖L2(Ω), then there exists a constant C > 0
independent of α such that ‖zψ‖H2(Ω) ≤ C‖ψ‖L2(Ω). This Dirichlet problem can
be formulated variationally as

(10) a(z, zψ) + (αzψ, z) = (ψ, z) ∀z ∈ H1
0 (Ω),

and it can be approximated by

(11) a(zh, zψ,h) + (αzψ,h, zh) = (ψ, zh) ∀zh ∈ Vh.
We are going to apply a very similar technique to that of the linear case to find an
error estimate for y − yh in L2(Ω).

Lemma 4. Let y and yh be solutions of the variational problems (7) and (8)
respectively. Then there exists a constant C > 0 independent of h such that

‖y − yh‖L2(Ω) ≤ Ch2‖y‖H2(Ω).
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Proof. Take any ψ ∈ L2(Ω). Using (10), the definition of α(x), (7) and (8), the
continuity of a, Lipschitz’s condition (6), and Sobolev’s and Hölder’s inequalities
as in the previous proof, we have

(ψ, y − yh) = a(y − yh, zψ) + (αzψ, y − yh) =
= a(y − yh, zψ − zψ,h) + a(y − yh, zψh) + (αzψ, y − yh) =

= a(y − yh, zψ − zψ,h) +

∫
Ω

(f(x, y)− f(x, yh))zψ,h dx+

+

∫
Ω

f(x, yh)− f(x, y)

y − yh
zψ(y − yh) dx =

= a(y − yh, zψ − zψ,h) +

∫
Ω

(f(x, yh)− f(x, y))(zψ − zψ,h) dx ≤

≤ C‖y − yh‖H1(Ω)‖zψ − zψ,h‖H1(Ω) +

∫
Ω

|φ(x)| |y − yh| |zψ − zψ,h| dx ≤

≤ C‖y − yh‖H1(Ω)‖zψ − zψ,h‖H1(Ω) + ‖φ‖L2(Ω)‖y − yh‖L4(Ω)‖zψ − zψ,h‖L4(Ω) ≤
≤ C‖y − yh‖H1(Ω)‖zψ − zψ,h‖H1(Ω) ≤ Ch‖y‖H2(Ω)h‖zψ‖H2(Ω) ≤
≤ Ch2‖y‖H2(Ω)‖ψ‖L2(Ω),

where the last estimates follow from Lemma 3 and the usual estimates for finite
elements. Thus

‖y − yh‖L2(Ω) = sup
‖ψ‖L2(Ω)≤1

(ψ, y − yh) ≤ Ch2‖y‖H2(Ω),

and the proof is complete. �

Theorem 1. Let y and yh be solutions of the variational problems (7) and (8)
respectively. Then there exists a constant C > 0, independent of h such that

‖y − yh‖L∞(Ωh) ≤ Ch2−N2 ‖y‖H2(Ω).

Proof. We have that

(12) ‖y − yh‖L∞(Ωh) ≤ ‖y −Πhy‖L∞(Ωh) + ‖Πhy − yh‖L∞(Ωh).

Due to Lemma 1, taking m = 0, q =∞, k = 1 and p = 2, we have that

(13) ‖y −Πhy‖L∞(Ωh) ≤ Ch2−N2 ‖y‖H2(Ω).

Applying (5) we have that

(14) ‖Πhy − yh‖L∞(Ωh) ≤ Ch−
N
2 ‖Πhy − yh‖L2(Ωh).

Again due to Lemma 1, taking m = 0, q = 2, k = 1 and p = 2, we get

(15) ‖Πhy − y‖L2(Ωh) ≤ Ch2‖y‖H2(Ω),

and due to Lemma 4

(16) ‖y − yh‖L2(Ωh) ≤ Ch2‖y‖H2(Ω).

From (15) and (16) it follows that

‖Πhy − yh‖L2(Ωh) ≤ ‖Πhy − y‖L2(Ωh) + ‖y − yh‖L2(Ωh),≤ Ch2‖y‖H2(Ω).

This along with (14) implies that

‖Πhy − yh‖L∞(Ωh) ≤ Ch2−N2 ‖y‖H2(Ω),

which together with (12) and (13) complete the proof of the theorem. �
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Let us see now how we can obtain the same results with less restrictive conditions
on the growing of f in the second variable.

Theorem 2. Suppose that (1) holds and that f(x, 0) ∈ L2(Ω). Then the conclu-
sions of Lemmas 3 and 4 and of Theorem 1 remain valid.

Proof. Set M = ‖y‖L∞(Ω) + 1 and

fM (x, t) =

 f(x,−M) if t < −M
f(x, t) if |t| ≤M
f(x,M) if t > M.

We have that for all x ∈ Ω, fM (x, y(x)) ≡ f(x, y(x)). And therefore we have that{
Ay = fM (x, y) in Ω
y = 0 on Γ.

Take yMh the solution of the discrete variational problem{
Find yMh ∈ Vh such that
a(yMh , zh) = (fM (x, yMh ), zh) ∀zh ∈ Vh.

From Theorem 1 we have that

‖y − yMh ‖L∞(Ωh) ≤ Ch2−N2 ‖y‖H2(Ω),

therefore for all h less than a certain h0 we have that ‖y − yMh ‖L∞(Ωh) ≤ 1, and

then ‖yMh ‖L∞(Ωh) ≤ ‖y‖L∞(Ω) + 1 = M , which implies that fM (x, yMh ) = f(x, yMh )

and consequently yMh is the solution of the problem (8) and the desired estimates
hold. �

2.1.2. Non regular case. Now we suppose that f0 6= 0, f0 ∈ W−1,p(Ω). Under this

situation y ∈ W 1,p
0 (Ω) for some p > N . As before, we will start assuming that the

global condition (6) holds. First we prove convergence in H1(Ω).

Lemma 5. Let y and yh be the solutions of equations (2) and (3) respectively.
Then

lim
h→0
‖y − yh‖H1(Ω) = 0.

Proof. Obviously Cea’s Lemma 2 remains valid, then

lim
h→0
‖y − yh‖H1(Ω) ≤ lim

h→0
C‖y −Πhy‖H1(Ω) ≤ lim

h→0
C‖y −Πhy‖W 1,p(Ω) = 0,

the last equality being a well known result of the interpolation theory in Sobolev
spaces; see P.G. Ciarlet[3]. �

A convergence result in L2(Ω) can also be proved.

Lemma 6. Let y and yh be the solutions of equations (2) and (3) respectively.
Then

lim
h→0

‖y − yh‖L2(Ω)

h
= 0.

Proof. Take ψ ∈ L2(Ω). Following exactly the proof of Lemma 4 we obtain

(ψ, y − yh) ≤ C‖y − yh‖H1(Ω)‖zψ − zψ,h‖H1(Ω) ≤ Ch‖y − yh‖H1(Ω)‖ψ‖L2(Ω).

So
1

h
‖y − yh‖L2(Ω) ≤ C‖y − yh‖H1(Ω)

and applying Lemma 5 we obtain the desired limit. �
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Lemma 7. Let y ∈W 1,p(Ω) with p > N . Then

lim
h→0

‖y −Πhy‖Lp(Ωh)

h
= 0.

Proof. We use Lemma 1 and the fact that Πhy ∈W 1,p(Ωh) to deduce that

‖y −Πhy‖Lp(Ωh) = ‖y −Πhy −Πh(y −Πhy)‖Lp(Ωh) ≤ Ch‖y −Πhy‖W 1,p(Ωh)

and the result follows dividing by h and using again the convergence of the inter-
polation in W 1,p(Ω). �

Now we can prove the uniform convergence in dimension 2.

Theorem 3. Suppose N = 2. Let y and yh be the solutions of equations (2) and
(3) respectively. Then

lim
h→0
‖y − yh‖L∞(Ω) = 0.

Proof. If we apply the triangular inequality, Lemma 1, the inequality (5) and that
N = 2 we obtain

‖y − yh‖L∞(Ωh) ≤ ‖y −Πhy‖L∞(Ωh) + ‖Πhy − yh‖L∞(Ωh)

≤ C
[
h1− 2

p ‖y‖W 1,p(Ω) + h−1‖Πhy − yh‖L2(Ωh)

]
≤ C

[
h
p−2
p ‖y‖W 1,p(Ω) +

‖Πhy − y‖L2(Ωh)

h
+
‖y − yh‖L2(Ωh)

h

]
Taking into account p > N = 2, Lemmas 6 and 7 and the continuous embedding
Lp(Ω) ⊂ L2(Ω), we deduce that the last three terms converge to zero.

Finally, notice that since y ∈ C(Ω̄) and y(x) = 0 on Γ, then ‖y‖L∞(Ω\Ωh) tends
to zero when h→ 0, so the proof is complete. �

To give a result in dimension 3 we must make two extra assumptions:

(H1) Function φ given in (6) belongs to Lr(Ω) for some r > 2
(H2) The triangulation is of non negative type; see P.G. Ciarlet and P.A. Raviart

[6] or P.G. Ciarlet [3] for this definition.

In the case of a non negative type triangulation Th, if p > N , ai,j ∈ L∞(Ω) and yh
is the solution of the discrete problem

a(yh, zh) = 〈g, zh〉 for all zh ∈ Vh,

with g ∈W−1,p(Ωh), then the discrete maximum principle holds [6]:

(17) ‖yh‖L∞(Ωh) ≤ C‖g‖W−1,p(Ωh).

Using this principle we prove the following theorem.

Theorem 4. Suppose that the coefficients ai,j ∈ L∞(Ω), and let y and yh be the
solutions of the equations (2) and (3) respectively. Then, if the triangulation is of
non negative type

(18) ‖y − yh‖L∞(Ωh) ≤ Ch‖y‖W 2,p(Ω) if y ∈W 2,p(Ω), p > 2N

and

(19) lim
h→0
‖y − yh‖L∞(Ω) = 0 if y ∈W 1,p(Ω), p > N.
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Proof. Notice first that in order to have the solution in W 1,p(Ω) it is sufficient for
the coefficients ai,j to belong to C(Ω̄). On the other hand, the W 2,p(Ω) regularity
can be assured if the coefficients are in C0,1(Ω̄), Γ is of class C1,1 and f(·, y) and
f0 are in Lp(Ω).

Let y ∈ W 1,p
0 (Ω) and yh ∈ Vh be solutions of the problems (2) and (3) respec-

tively. We have that yh −Πhy is the unique element of Vh that satisfies

(20) a(yh −Πhy, zh) = a(y −Πhy, zh) + (f(x, yh)− f(x, y), zh) ∀zh ∈ Vh.
Let us study the norm of the operator

T : W 1,p′

0 (Ωh) −→ R

Tz = a(y −Πhy, z) + (f(x, yh)− f(x, y), z),

where p′ is the conjugate exponent of p. Due to Hölder’s inequality, we know that

a(y −Πhy, z) ≤ C‖y −Πhy‖W 1,p(Ωh)‖z‖W 1,p′
0 (Ωh)

∀z ∈W 1,p′

0 (Ωh).

We have that W 1,p(Ωh) ↪→ H1(Ωh) ↪→ L6(Ωh). If we suppose that p ≤ 3 + ε, with

ε small enough, then W 1,p′(Ωh) ↪→ Ls(Ωh), with s < 3, as close to 3 as we precise.
So s can be chosen in such a way that

1

r
+

1

6
+

1

s
= 1.

Thus, using Hölder’s inequality and Cèa’s generalized lemma (Lemma 2)∣∣∣∣∫
Ωh

(f(x, yh)− f(x, y))z dx

∣∣∣∣ ≤ ∫
Ωh

|φ(x)| |y − yh| |z| dx

≤ ‖φ‖Lr(Ω)‖y − yh‖L6(Ωh)‖z‖Ls(Ωh)

≤ C‖y − yh‖H1(Ωh)‖z‖W 1,p′ (Ωh)

≤ C‖y −Πhy‖H1(Ωh)‖z‖W 1,p′ (Ωh)

≤ C‖y −Πhy‖W 1,p(Ωh)‖z‖W 1,p′ (Ωh).

Therefore

‖T‖W−1,p(Ωh) ≤ C‖y −Πhy‖W 1,p(Ωh)

But, applying maximum principle (17) if 3 < p ≤ 3 + ε to equation (20) we have
that there exists a constant C > 0 independent of h such that

‖yh −Πhy‖L∞(Ωh) ≤ C‖T‖W−1,p(Ωh) ≤ C‖y −Πhy‖W 1,p(Ωh),

and using that W 1,p(Ωh) ↪→ L∞(Ωh), we get to:

(21)
‖y − yh‖L∞(Ωh) ≤ ‖y −Πhy‖L∞(Ωh) + ‖yh −Πhy‖L∞(Ωh) ≤

≤ C‖y −Πhy‖W 1,p(Ωh) → 0 when h→ 0,

which proves (19).
If y ∈W 2,p(Ω), applying Lemma 1 we have that

(22) ‖y −Πhy‖W 1,p(Ωh) ≤ Ch‖y‖W 2,p(Ω),

which along with (21) implies (18). �

Theorem 5. Under the assumptions of Lemmas 5 and 6 and Theorems 3 and 4
and replacing the hypothesis (6) by (1), then the conclusions of these Lemmas and
Theorems remain valid.

The proof of this theorem is analogous to that of Theorem 3.
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2.2. Neumann case. We will suppose for Neumann’s problem that Γ is polygonal

or polyhedrical. In this case Ωh = Ω. Let us consider now a0 ∈ L
Np
N+p (Ω), a0 ≥ 0,

a0 6≡ 0 in Ω, f0 ∈ (W 1,p′(Ω))′ and v ∈ L∞(Γ). We want to study the uniform
approximation by the finite element method of the solution of the equation

(23)

{
Ay + a0y = f(·, y) + f0 in Ω

∂nAy = v on Γ.

For each h, let us define yh ∈Wh as the unique element that satisfies
(24)

N∑
i,j=1

∫
Ω

ai,j(x)∂xiyh(x)∂xjzh(x)dx+

∫
Ω

a0(x)yh(x)zh(x)dx =∫
Ω
f(x, yh(x))zhdx+ 〈f0, zh〉W 1,p′ (Ω))′×W 1,p′ (Ω) +

∫
Γ
v(s)zh(s)ds ∀zh ∈Wh.

As for the Dirichlet case, this variational equation has a unique solution yh.
Our objective is to show that yh → y in L∞(Ω). We will get advantage of these
results in next section to study a control problem, where v will stand for the control.
Generally v 6∈ H 1

2 (Γ) and therefore we cannot obtain H2(Ω) regularity for the state
y. The maximum regularity we can deduce is y ∈ W 1,p(Ω) for some p > N ; see
M. Dauge [7]. First we state the following lemma.

Lemma 8. Let y and yh be respectively the solutions of the equations (23) and
(24). Then

lim
h→0
‖y − yh‖H1(Ω) = 0

and

lim
h→0

‖y − yh‖L2(Ω)

h
= 0.

Proof. The first equality is deduced in the same way than in the proof of Lemma 5.
For the second identity we can follow the same procedure as in the proof of Lemma
6 by taking for every ψ ∈ L2(Ω), zψ ∈ H2(Ω) as the unique solution of

(25)

{
A∗zψ + a0zψ + α(x)zψ = ψ in Ω

∂nA∗ zψ = 0 on Γ,

with α(x) defined as in (9). �

Finally, adapting, in the obvious way, the proofs of Theorems 3, 4 and 5 and
using Lemma 8 we obtain the next two theorems.

Theorem 6. Suppose that N = 2. Let y and yh be the solutions of the equations
(23) and (24) respectively. Then

lim
h→0
‖y − yh‖L∞(Ω) = 0.

Theorem 7. Suppose that the coefficients ai,j ∈ L∞(Ω), and let y and yh be the
solutions of the equations (23) and (24) respectively. Then, if the triangulation is
of non negative type,

(26) ‖y − yh‖L∞(Ω) ≤ Ch‖y‖W 2,p(Ω) if y ∈W 2,p(Ω), p > 2N

and

(27) lim
h→0
‖y − yh‖L∞(Ω) = 0 if y ∈W 1,p(Ω), p > N.
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3. Numerical approximation of optimal control problems

This section is devoted to the study of the discretization of a control problem.
In the first part we study a distributed control problem governed by a semilinear
equation with Dirichlet boundary conditions and in the second part a boundary
control problem governed by an equation with Neumann boundary conditions will
be considered.

3.1. Distributed control. We will follow the notation introduced in Section 2.
The control problem is defined as follows.

(Pδ)

{
min J(u) =

∫
Ω
L (x, yu(x), u(x)) dx

u ∈ K, g (x, yu(x)) ≤ δ ∀x ∈ Ω̄,

where

(1) K is a convex, weakly* closed, bounded and non empty subset of L∞(Ω).
(2) L : Ω× R2 −→ R is a Carathéodory function, convex in the third variable

and satisfying

(28) ∀M > 0 ∃ψM ∈ L1(Ω) such that |L(x, y, u)| ≤ ψM (x)

for a.e. x ∈ Ω and |y|, |u| ≤M .
(3) g : Ω̄× R −→ R is a continuous function.
(4) (y, u) satisfies the state equation

(29)

{
Ayu = f(x, yu) + u in Ω
yu = 0 on Γ.

Since f(·, 0) + u ∈ Lp/2(Ω) for some p > N , then (29) has a unique solution

yu ∈ W 1,p
0 (Ω) for some p > N small enough; see M. Mateos [12]. Moreover,

the boundedness and the estimates for yu provided in [12] imply that there exists
CK > 0, independent of u, such that

(30) ‖yu‖W 1,p(Ω) ≤ CK ∀u ∈ K.
Moreover if {uj}∞j=1 ⊂ L∞(Ω) and uj → u weakly* in L∞(Ω), then yuj → yu
strongly in W 1,p(Ω). Finally, if f(·, 0) ∈ L2(Ω), then yu ∈ H2(Ω) ∩H1

0 (Ω).
Concerning the existence of a solution for problem (Pδ), we have the following

result.

Theorem 8. There exists a number δ0 ∈ R such that problem (Pδ) has at least one
solution for every δ ≥ δ0, and (Pδ) has no admissible controls for δ < δ0.

Proof. From (30) we deduce that there exists a constant C such that ‖yu‖L∞(Ω) ≤ C
for every u ∈ K. Let M and m be the respectively the supremum and the infimum
of g in Ω̄× [−C,C]. Then it is obvious that (Pδ) does not have admissible controls
for δ < m and all the elements of K are admissible controls for δ ≥M . Let δ0 be the
infimum of the values δ for which (Pδ) has admissible controls. Then m ≤ δ0 ≤M
and (Pδ) has not admissible controls for δ < δ0. Let us prove that there exists at
least an admissible control for (Pδ0). Let {δj} be a decreasing sequence converging
to δ0 and {uj} ⊂ K a sequence of controls such that every {uj} is admissible for
(Pδj ). Since K is bounded, we can take a subsequence, denoted in the same way
and weakly* convergent in L∞(Ω) to an element u0 ∈ K. Then yuj → yu0

in

W 1,p
0 (Ω), therefore {yuj} converges uniformly to yu0 and hence

g(x, yu0
(x)) = lim

j→∞
g(x, yuj (x)) ≤ lim

j→∞
δj = δ0 for all x ∈ Ω̄.
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Therefore u0 is an admissible control for (Pδ0).
To conclude the proof, we must establish the existence of an optimal control

for every δ ≥ δ0. Let {uk} ⊂ K be a minimizing sequence for (Pδ), this is
J(uk) → inf (Pδ). We can take a subsequence, denoted again in the same way,
which converges weakly* in L∞(Ω) to an element ū ∈ K. Arguing in a similar way
to the previous paragraph, we can check that g(x, yū(x)) ≤ δ for every x ∈ Ω̄. So
ū is an admissible control for problem (Pδ). Let us check that J(ū) = inf (Pδ). To
do that we use Mazur’s Theorem (see, for instance, Ekeland and Temam [8]): there
exists a sequence of convex combinations {vk}k∈N,

vk =

n(k)∑
j=k

λk,juj , with

n(k)∑
j=k

λk,j = 1 and λk,j ≥ 0,

such that vk → ū strongly in Lp(Ω). Then, using the convexity of L with respect
to the third variable, the dominated convergence theorem and (28), we get

J(ū) = lim
k→∞

∫
Ω

L(x, yū(x), vk(x))dx ≤

lim sup
k→∞

n(k)∑
j=k

λk,j

∫
Ω

L(x, yū(x), uj(x))dx ≤ lim sup
k→∞

n(k)∑
j=k

λk,jJ(uj)+

lim sup
k→∞

∫
Ω

n(k)∑
j=k

λk,j |L(x, yuj (x), uj(x))− L(x, yū(x), uj(x))|dx =

inf (Pδ) + lim sup
k→∞

∫
Ω

n(k)∑
j=k

λk,j |L(x, yuj (x), uj(x))− L(x, yū(x), uj(x))|dx,

where we have used the convergence J(uk) → inf (Pδ). To check that the second
summand of the previous expression tends to zero, we just have to notice that
for every fixed x, the function L(x, ·, ·) is uniformly continuous on bounded sets
of R2, that the sequences {yuj (x)} and {uj(x)} are uniformly bounded an that
yuj (x)→ yū(x) when j →∞. Therefore

lim
k→∞

n(k)∑
j=k

λk,j |L(x, yuj (x), uj(x))− L(x, yū(x), uj(x))| = 0 for a.e. x ∈ Ω.

Using again the dominated convergence theorem we deduce that

lim sup
k→∞

∫
Ω

n(k)∑
j=k

λk,j |L(x, yuj (x), uj(x))− L(x, yū(x), uj(x))|dx = 0,

and the proof is complete. �

Now let us proceed to discretize the control problem. Consider the space

Uh =
{
uh ∈ L∞(Ω) : uh|T ∈ P0(T ) ∀T ∈ Th

}
.

For all uh ∈ Uh we will denote by yh(uh) the unique element in Vh that satisfies

(31)

N∑
i,j=1

∫
Ω

ai,j∂xiyh(uh)∂xjzhdx =

∫
Ω

(f(x, yh(uh)) + uh)zhdx ∀zh ∈ Vh.
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For every h > 0 we take a convex, closed, bounded and non empty subset Kh

of Uh in such a way that {Kh} constitutes an internal approximation of K in the
following sense

(1) For all u ∈ K there exists uh ∈ Kh with uh → u in L1(Ω).
(2) If uh ∈ Kh and uh → u weakly* in L∞(Ω), then u ∈ K.
(3) The sets {Kh}h>0 are uniformly bounded in L∞(Ω).

Let us formulate the following finite dimensional problem.

(Pδh)

{
min Jh(uh) =

∫
Ωh
L (x, yh(uh)(x), uh(x)) dx

uh ∈ Kh, g (xj , yh(uh)(xj)) ≤ δ ∀j ∈ Ih,

where {xj}n(h)
j=1 is the set of vertexes of Th and Ih is the set of indexes corresponding

to the interior vertexes: xj ∈ Ω if j ∈ Ih and xj ∈ Γ if j 6∈ Ih.
It is the purpose of this section to show that the solutions of the discrete problems

converge to the solution of the continuous problem. To do that, it is necessary to
prove the fact that if uh → u weakly* in L∞(Ω), then yh(uh)→ yu uniformly in Ω.
Observe that we are not exactly in the case of the previous section, because there
we proved that yh = yh(u) converges to yu uniformly.

Theorem 9. For every h > 0 let us take uh ∈ Uh so that uh → u weakly* in
L∞(Ω). Then

lim
h→0
‖yh(uh)− yu‖L∞(Ω) = 0

if one of the following three assumptions is satisfied:

A1): f(·, 0) ∈ L2(Ω).
A2): N = 2.
A3): Function φM introduced in (1) belongs to Lr(Ω), r > 2 and the trian-

gulation is of non negative type.

Proof. First let us assume that A1) holds. The weak* convergence of {uh}h>0

implies the boundedness of the family in L∞(Ω), then there exists a constant C
such that

(32) ‖yuh‖H2(Ω) ≤ C ∀h > 0.

Now using Theorem 1

‖yh(uh)− yu‖L∞(Ω) ≤ ‖yh(uh)− yuh‖L∞(Ω) + ‖yuh − yu‖L∞(Ω) ≤

Ch2−N2 + ‖yuh − yu‖L∞(Ω) → 0.

To prove the same result under assumption A2) or A3) we will use the following
two lemmas.

Lemma 9. For all h > 0, all u ∈ L∞(Ω) and all uh ∈ Uh there exists C > 0
independent of h such that

‖yh(uh)− yh(u)‖H1
0 (Ω) ≤ C‖u− uh‖H−1(Ω).

Proof. From the monotonicity of f and the H1
0 (Ω) ellipticity of a(·, ·), we have that

m‖yh(uh)− yh(u)‖2H1
0 (Ω) ≤ a(yh(uh)− yh(u), yh(uh)− yh(u)) =

(f(x, yh(uh))− f(x, yh(u)), yh(uh)− yh(u)) + (uh − u, yh(uh)− yh(u)) ≤
≤ (uh − u, yh(uh)− yh(u)) ≤ ‖u− uh‖H−1(Ω)‖yh(uh)− yh(u)‖H1

0 (Ω).
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Therefore

‖yh(uh)− yh(u)‖H1
0 (Ω) ≤

1

m
‖u− uh‖H−1(Ω).

�

Lemma 10. Let us assume that uh → u in L∞(Ω) weakly*. Then the following
equalities hold

(1) limh→0 ‖yuh −Πhyuh‖W 1,p(Ωh) = 0.
(2) limh→0 ‖yh(uh)− yuh‖H1(Ω) = 0.

(3) limh→0
1
h‖yh(uh)− yuh‖L2(Ω) = 0.

(4) limh→0
1
h‖yuh −Πhyuh‖Lp(Ωh) = 0.

Proof. 1.- First we write

‖yuh −Πhyuh‖W 1,p(Ωh) ≤ ‖yuh − yu‖W 1,p(Ωh)+

‖yu −Πhyu‖W 1,p(Ωh) + ‖Πhyu −Πhyuh‖W 1,p(Ωh).

Now the first summand converges to zero because of the continuity of the solution
of the state equation with respect to the control and the second one due to the
convergence of the interpolation in the Sobolev space W 1,p(Ω); see P.G. Ciarlet [3].
The third one also goes to zero because of the uniform boundedness of ‖Πh‖ in
W 1,p(Ω).

2.- Let us write

‖yuh − yh(uh)‖H1(Ω) ≤ ‖yuh − yu‖H1(Ω)+

‖yu − yh(u)‖H1(Ω) + ‖yh(u)− yh(uh)‖H1(Ω).

Once again the first summand converges to zero due to the continuity of the state
with respect to the control and the second one due to Lemma 5. For the third
summand we use Lema 9 and the fact that the weak* convergence of uh in L∞(Ω)
implies the strong convergence in H−1(Ω).

3.- Since yh(uh) and yuh are the discrete and continuous states associated to the
same control, we can use the inequality obtained in the proof of Lemma 6

1

h
‖yuh − yh(uh)‖L2(Ω) ≤ C‖yuh − yh(uh)‖H1(Ω).

Now it is enough to use the already proved statement (2) of this lemma.
4.- By using Lemma 1 we get

‖yuh −Πhyuh‖Lp(Ωh) = ‖yuh −Πhyuh −Πh(yuh −Πhyuh)‖Lp(Ωh) ≤
Ch‖yuh −Πhyuh‖W 1,p(Ωh).

Now the result follows from statement (1). �

Now we conclude the proof of Theorem 9. Let us assume that N = 2.

‖yh(uh)− yu‖L∞(Ωh) ≤ ‖yh(uh)−Πhyuh‖L∞(Ωh)

+‖Πhyuh − yuh‖L∞(Ωh) + ‖yuh − yu‖L∞(Ωh).

The third summand converges to zero due to the the continuity of the state with
respect to the control. The convergence to zero of the second summand is a conse-
quence of Lemma 10-(1). To estimate the first summand, let us take into account
(5) and the fact that N = 2

‖yh(uh)−Πhyuh‖L∞(Ωh) ≤
C

h
‖yh(uh)−Πhyuh‖L2(Ωh) ≤
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C

(‖yh(uh)− yuh‖L2(Ω)

h
+
‖yuh −Πhyuh‖L2(Ωh)

h

)
.

Now we can apply Lemma 10 to deduce that this quantity converges to zero. So
we have proved that

lim
h→0
‖yh(u)− yu‖L∞(Ωh) = 0.

Notice that yu ∈ C(Ω̄) ∩ H1
0 (Ω), then ‖yu‖L∞(Ω\Ωh) tends to zero when h de-

creases. The proof is complete under assumption A2).
Let us conclude the proof of theorem by considering the last case: assumption

A3). We know that yu and yuh are elements of W 1,p(Ω) for every u ∈ K and
uh ∈ Kh. Let us write

‖yh(uh)− yu‖L∞(Ω) ≤ ‖yh(uh)− yh(u)‖L∞(Ω) + ‖yh(u)− yu‖L∞(Ω).

The second summand converges to zero as a consequence of Theorem 4. Let us
study the first summand. We know that yh(uh)−yh(u) solves the discrete problem

a(yh(uh)− yh(u), zh) = (f(x, yh(uh)) + uh − f(x, yh(u))− u, zh) ∀zh ∈ Vh.

In this case we can apply the discrete maximum principle (17), and we get

‖yh(uh)− yh(u)‖L∞(Ω) ≤ C‖f(x, yh(u)) + u− f(x, yh(uh))− uh‖W−1,p(Ω) ≤

≤ C
(
‖f(x, yh(u))− f(x, yh(uh))‖W−1,p(Ω) + ‖u− uh‖W−1,p(Ω)

)
.

The weak* convergence in L∞(Ω) of uh implies the strong convergence in W−1,p(Ω),
so the second summand converges to zero. On the other side, arguing as in the proof
of Theorem 4 we get

‖f(x, yh(u))− f(x, yh(uh)‖W−1,p(Ω) ≤ ‖φ‖Lr(Ω)‖yh(u)− yh(uh)‖H1
0 (Ω).

Due to Lemma 9

‖yh(uh)− yh(u)‖H1
0 (Ω) ≤ C‖u− uh‖H−1(Ω).

Once again the weak* convergence of the uh implies the strong convergence in
H−1(Ω). Therefore the states converge uniformly. �

By using Theorem 9, we can prove the following lemma which is essential in the
proof of the converge of the discretization of (Pδ).

Lemma 11. Let us suppose that one of the assumptions A1), A2) or A3) of
Theorem 9 holds and let {uhk}∞k=1 be a sequence, with hk → 0, such that uhk → u
weakly* in L∞(Ω). Then

J(u) ≤ lim inf
k→∞

Jhk(uhk).

Proof. We know that there exists a sequence vhk of finite convex combinations of
uhk converging strongly to u in Lp(Ω) for some p ∈ (1,∞):

vhk =

n(k)∑
j=k

λk,juhj , with λk,j ≥ 0 and

n(k)∑
j=k

λk,j = 1, lim
k→∞

vhk = u in Lp(Ω).

So we can write

J(u) =

∫
Ω

L(x, yu, u)dx = lim
k→∞

∫
Ωhk

L(x, yu, vhk)dx ≤
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≤ lim inf
k→∞

n(k)∑
j=k

λk,j

∫
Ωhk

L(x, yu, uhj )dx ≤

lim sup
k→∞

n(k)∑
j=k

λk,j

∫
Ωhk

(L(x, yu, uhj )− L(x, yhj (uhj ), uhj ))dx+

lim inf
k→∞

n(k)∑
j=k

λk,j

∫
Ωhj

L(x, yhj (uhj ), uhj )dx.

The second summand coincides with lim inf
k→∞

Jhk(uhk). Thus the lemma will be

proved if we establish that the first summand is zero. But this is obtained by using
the uniform convergence yhk(uhk) → yu (see Theorem 9) and arguing like at the
end of the proof of Theorem 8. �

In order to analyze the convergence of the discretizations of the control problem,
we have to introduce some stability concept to deal with the state constraints.

Definition 1. We will say that control problem (Pδ) is weakly stable on the left if

lim
δ′↗δ

inf (Pδ′) = inf (Pδ).

Notice that weak stability on the right

(33) lim
δ′↘δ

inf (Pδ′) = inf (Pδ)

is always true. Indeed take uδ a solution of (Pδ). Since K is bounded, we can deduce
the existence of a sequence {δj} such that δj ↘ δ when j →∞ and limj→∞ uδj = ū
weakly* in L∞(Ω) for some ū ∈ K, being uδj a solution of (Pδj ). If yj and ȳ are
the associated states to uδj and ū respectively, we have that yj → ȳ uniformly in

Ω̄. Therefore ū is an admissible control for (Pδ). Now, using the admissibility of
uδ for each (Pδ′), with δ′ > δ and arguing as in the proof of Theorem 8, we obtain

inf (Pδ) ≤ J(ū) ≤ lim inf
j→∞

J(uδj ) = lim
δ′↘δ

inf (Pδ′) ≤ J(uδ) = inf (Pδ),

which proves (33).
From (33) it follows that the weak stability of (Pδ̄) is equivalent to the continuity

of mapping δ → inf (Pδ) at the point δ̄.
There are some problems not weakly stable on the left. Let us see two exam-

ples. The first one is a finite dimensional problem which will help us to illustrate
geometrically that the lack of weak stability on the left implies that the problem is
numerically ill posed.

Example 1. Consider the problem

(Qδ)


Minimize x2 + (y − 1)2

−5 ≤ x ≤ 5
0 ≤ y ≤ 1
1
5x

3 + 3
5x

2 − y + 2 ≤ δ.

Problem (Qδ) is not weakly stable on the left for δ = 1. In fact, inf(Q1) = 0,
reaching the solution at the point (0, 1). If we take δ′ < 1, then 1 ≥ y > (1/5)x3 +
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(3/5)x2 + 1 = x2(x+ 3)/5 + 1, and therefore we have that x+ 3 < 0, or what is the
same x < −3. From here we deduce that

lim
δ′↗1

inf(Qδ′) ≥ 9 > inf(Q1).

Observe that the admissible region of problem (Q1) has an isolated point, and it is
the point where the minimum is attained.

Next we introduce a control problem not weakly stable on the left.

Example 2. Take Ω = B(0, 1) in RN , N = 2 or N = 3, and Γ its boundary. the
state equation is given by {

−∆yu = u in Ω
yu = 0 on Γ.

Let us take z(x) = 2(1 − ‖x‖2). It is easy to check that z satisfies the partial
differential equation {

−∆z = 4N in Ω
z = 0 on Γ,

and z(0) = 2. Set

g(t) =

{
t if t ≤ 1
1 if t > 1

We define the control problem

(Pδ)

 min J(u) =

∫
Ω

(u− 4N)
2
dx

|u(x)| ≤ 5N a.e. x ∈ Ω, g(yu(x)) ≤ δ in Ω̄.

Let us see that our example is not weakly stable on the left for δ = 1.
The solution to (P1) is attained by taking u1 = 4N . Indeed yu1

= z, and we
have that g(yu1(x)) = g(z(x)) ≤ 1 and J(u) = 0.

Take δ′ < 1. Let uδ′ be a solution of (Pδ′) and yδ′ = yuδ′ the associated state.
Necessarily yδ′(0) < 1 and therefore 1 < ‖yδ′ − z‖L∞(Ω) since both yδ′(x) and z(x)
are continuous functions. Moreover yδ′ − z solves the problem{

−∆ (yδ′ − z) = uδ′ − 4N in Ω
yδ′ − z = 0 on Γ,

and we obtain the inequality

1 < ‖yδ′ − z‖L∞(Ω) ≤ C‖yδ′ − z‖H2(Ω) ≤ C‖uδ′ − 4N‖L2(Ω) = C
√
J(uδ′).

where C is a constant that does not depend on δ′. Therefore, for all δ′ < 1

inf(Pδ′) >
1

C2
> 0

and the weak stability on the left is not satisfied.

Nevertheless, almost all problems are weakly stable on the left.

Theorem 10. Take δ0 as in Theorem 8. Then, for all δ > δ0 but at most a
numerable set, problem (Pδ) is weakly stable on the left.
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Proof. Let δ0 be the number obtained in Theorem 8. If we define ϕ : [δ0,+∞)→ R
with ϕ(δ) = inf (Pδ), then ϕ is a monotone decreasing function, and therefore it is
continuous at every point of [δ0,+∞) but at most a countable number of them. But,
as we have already seen, weak stability on the left is equivalent to the continuity of
ϕ in δ, and so the theorem is proved. �

Now we can prove the convergence theorem.

Definition 2. Given a family of elements {uh}h>0, with uh ∈ Kh for every h > 0,
we will say that u is an accumulation point of {uh}h>0 if there exists a subsequence
{uhk}∞k=1, with hk → 0, such that uhk → u weakly* in L∞(Ω).

Theorem 11. Let δ0 be as in Theorem 8 and δ > δ0. If (Pδ) is weakly stable on
the left and one of the assumptions A1), A2) or A3) of Theorem 9 holds, then
there exists h0 > 0 such that (Pδh) has at least a solution uh for h ≤ h0. Moreover,
each accumulation point u of {uh}h≤h0 is a solution of (Pδ). Finally

(34) lim
h→0

Jh(uh) = inf (Pδ).

Proof. Since every Kh is compact and Jh is continuous, the existence of a solution
of (Pδh) will be established if we prove that the set of admissible controls for (Pδh)
is not empty. To do that let us take u0 ∈ K an admissible control for problem (Pδ0)
and take u0h ∈ Kh in such a way that u0h(x)→ u0(x) a.e. x ∈ Ω. Since u0h → u in
every Lp(Ω), 1 ≤ p <∞, then yh(u0h)→ yu0

uniformly in Ω̄; see Theorem 9. Since
g(x, yu0

(x)) ≤ δ0 for every x ∈ Ω̄, we can deduce from the uniform convergence and
the relation δ > δ0 the existence of h0 > 0 such that g(x, yh(u0h)) ≤ δ for all x ∈ Ω̄
and each h ≤ h0. So we conclude that (Pδh) has a solution for every h ≤ h0.

Now let uδh be a solution of (Pδh), h ≤ h0, and denote by yδh the associated state.
Since {Kh}h≤h0

is uniformly bounded in L∞(Ω), we can extract a subsequence
{uδhk} of {uδh}h≤h0

such that hk → 0 and uδhk → ū weakly* in L∞(Ω) for some
ū ∈ K. Let us prove that ū is a solution of (Pδ). Let ȳ be the associate state to ū.
From Theorem 9 we obtain that yδhk → ȳ uniformly in Ω̄. Using this convergence
along with the uniform continuity of function x → g(x, ȳ(x)) in Ω̄, the density of
the vertices of the triangulations in Ω̄ and that g(xj , yδhk(xj)) ≤ δ for each vertex
of the triangulation Thk , it is easy to conclude that g(x, ȳ(x)) ≤ δ for every x ∈ Ω̄,
and therefore ū is an admissible control for (Pδ).

Let us take δ′ ∈ (δ0, δ) and let uδ′ be a solution of (Pδ′). For every h ≤ h0

let us take uδ′h ∈ Kh such that uδ′h(x) → uδ′(x) a.e. in x ∈ Ω. From the
uniform convergence yh(uδ′h) → yuδ′ and the relation g(x, yδ′(x)) ≤ δ′ < δ for

every x ∈ Ω̄, we deduce the existence of hδ′ > 0 such that g(x, yh(uδ′h)(x)) ≤ δ for
all x ∈ Ω̄ and all h ≤ hδ′ , therefore uδ′h is an admissible control for (Pδh) always
that h ≤ hδ′ . This along with the fact that uδhk is a solution of (Pδhk) implies that
Jhk(uδhk) ≤ Jhk(uδ′hk) for each k big enough. Using now Lemma 11 it follows that

J(ū) ≤ lim inf
k→∞

Jhk(uδhk) ≤ lim inf
k→∞

Jhk(uδ′hk) = J(uδ′) = inf (Pδ′).

Finally the stability condition on the left allows us to conclude

inf (Pδ) ≤ J(ū) ≤ lim
δ′↗δ

inf (Pδ′) = inf (Pδ),

which, together with the admissibility of ū for (Pδ) proves that ū is a solution of
(Pδ). Identity (34) is immediate. �



UNIFORM CONVERGENCE OF THE FEM. APPLICATIONS TO CONTROL PROBLEMS 19

Remark 1. If the solution of the problem is unique, we have that the whole
sequence {uh}h≤h0

converges weakly* to the solution of the problem.

Theorem 12. Let us suppose that the assumptions of the previous theorem hold
and that L is of class C2 in the third variable and

∃α > 0 such that
∂2L

∂u2
(x, y, u) ≥ α > 0 for a.e. x ∈ Ω and all y, u ∈ R,

∀M > 0 ∃ϕM ∈ L1(Ω) such that

∣∣∣∣∂L∂u (x, y, u)

∣∣∣∣+

∣∣∣∣∂2L

∂u2
(x, y, u)

∣∣∣∣ ≤ ϕM (x)

a.e. x ∈ Ω and |u|, |y| ≤M . For every h ≤ h0 let uh be a solution of (Pδh) and let
ū be an accumulation point of {uh} with uhk → ū weakly* in L∞(Ω). Then

lim
k→∞

‖ū− uhk‖L2(Ω) = 0.

Proof. On one hand ∫
Ω

(L(x, yhk(uhk), uhk)− L(x, ȳ, ū))dx =

(Jhk(uhk)− J(ū)) +

∫
Ω\Ωhk

L(x, yhk(uhk), uhk)dx.

The first summand converges to zero due to the previous theorem and the second
one because {L(x, yhk , uhk)} is dominated by a function ψM ∈ L1(Ω) and the
measure of Ω \ Ωhk goes to zero. So

(35) lim
k→∞

∫
Ω

(L(x, yhk(uhk), uhk)− L(x, ȳ, ū))dx = 0.

On the other hand

(36)

∫
Ω

(L(x, yhk(uhk), uhk)− L(x, ȳ, ū))dx =∫
Ω

(L(x, yhk(uhk), uhk)− L(x, ȳ, uhk))dx+

∫
Ω

(L(x, ȳ, uhk)− L(x, ȳ, ū))dx.

As in the proof of Theorem 8

(37) lim
k→∞

∫
Ω

(L(x, yhk(uhk), uhk)− L(x, ȳ, uhk))dx = 0.

As a consequence of (35)–(37) we have that

(38) lim
k→∞

∫
Ω

(L(x, ȳ, uhk)− L(x, ȳ, ū))dx = 0.

Making now a Taylor expansion of order two we obtain that∫
Ω

(L(x, ȳ, uhk)− L(x, ȳ, ū))dx =∫
Ω

∂L

∂u
(x, ȳ, ū)(uhk − ū)dx+

1

2

∫
Ω

∂2L

∂u2
(x, ȳ, vk)(uhk − ū)2dx,

where vk(x) = ū(x)+θk(x)(uhk(x)−ū(x)) for some measurable function 0 ≤ θk ≤ 1.
Since uhk converges weakly* to ū, the first summand converges to zero:

(39) lim
k→∞

∫
Ω

∂L

∂u
(x, ȳ, ū)(uhk − ū)dx = 0.
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Finally we have that

1

2

∫
Ω

∂2L

∂u2
(x, ȳ, vk)(uhk − ū)2dx ≥ α

2
‖ū− uhk‖2L2(Ω).

Therefore we can write

α

2
‖ū− uhk‖2L2(Ω) ≤

∫
Ω

(L(x, ȳ, uhk)− L(x, ȳ, ū))dx−
∫

Ω

∂L

∂u
(x, ȳ, ū)(uhk − ū)dx

which converges to zero due to (38) and (39). So ‖ū− uhk‖L2(Ω) converges to zero
and the proof is complete. �

3.2. Neumann case. In this section we consider the following boundary control
problem

(Pδ)

{
min J(u) =

∫
Γ
`(s, yu(s), u(s))ds

u ∈ K, g (x, yu(x)) ≤ δ ∀x ∈ Ω̄,

where

(1) K is a convex, weakly* closed, bounded and non empty subset of L∞(Γ).
(2) ` : Γ × R2 −→ R is a Carathéodory function, convex in the third variable

and satisfying

(40) ∀M > 0 ∃ψM ∈ L1(Γ) such that |`(x, y, u)| ≤ ψM (x)

for a.e. x ∈ Γ and |y|, |u| ≤M .
(3) g : Ω̄× R −→ R is a continuous function.
(4) (y, u) satisfies the state equation

(41)

{
Ay + a0y = f(·, y) in Ω

∂nAy = u on Γ,

with a0 ∈ L
Np
N+p (Ω), a0 ≥ 0, a0 6≡ 0 in Ω, p > N .

(5) Ω is a polygonal or polyhedral convex domain.

By using the regularity results by M. Dauge [7] we can obtain the same result
as for the Dirichlet case: there exists p > N small enough such that (41) has
a unique solution yu ∈ W 1,p(Ω) assuming that f(·, 0) ∈ Lp/2(Ω). Moreover the
weak convergence of the controls uj → u in L∞(Γ) implies the strong convergence
yuj → yu in W 1,p(Ω). By using this fact, the proof of Theorem 8 can be repeated
for the boundary control problem (Pδ), with the obvious modifications.

Now the discrete version of (Pδ) is defined as follows. As in Section 2.2, for every
h > 0 we consider a regular triangulation of Ω. Because of the assumption on Ω
we have that Ωh = Ω. For this triangulation we define Uh as the set of elements
uh ∈ L∞(Γ) such that uh is constant on every boundary side T ∩ Γ (face if N = 3)
for any T ∈ Th. For each uh ∈ Uh, let us define yh(uh) ∈Wh as the unique element
that satisfies

(42)

N∑
i,j=1

∫
Ω

ai,j(x)∂xiyh(uh)(x)∂xjzh(x)dx+

∫
Ω

a0(x)yh(uh)(x)zh(x)dx =∫
Ω

f(x, yh(uh)(x))zh(x)dx+

∫
Γ

uh(s)zh(s)ds ∀zh ∈Wh.

Now the discrete control problem is formulated in the following way

(43) (Pδh)

{
min Jh(uh) =

∫
Γ
` (s, yh(uh)(s), uh(s)) ds

uh ∈ Kh, g (xj , yh(uh)(xj)) ≤ δ 1 ≤ j ≤ n(h),
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where {Kh}h>0 constitutes an internal approximation of K, as in the distributed

control case, and {xj}n(h)
j=1 is the set of vertexes of the triangulation Th.

If we change the weak* convergence of {uh} to u in L∞(Ω) by the weak* con-
vergence in L∞(Γ), then Theorem 9 is valid under one of the assumptions A2) and
A3). The proof is almost the same, taking into account that Lemma 10 is still true
and the inequality of Lemma 9 must be replaced by

‖yh(uh)− yh(u)‖H1(Ω) ≤ C‖u− uh‖H− 1
2 (Γ)

.

Assumption A1) is not applicable to the boundary control case because the states
yu are not elements of H2(Ω) due to the fact that u 6∈ H1/2(Γ).

Analogously to Lemma 11, it can be proved in the same way that

uhk → u weak* in L∞(Γ)⇒ J(u) ≤ lim inf
k→∞

Jhk(uhk).

Finally, using again the concept of weak stability on the left introduced in Def-
inition 1, we can prove that the solutions of the discrete problems converge to the
solutions of the continuous problem in the same way as in Theorems 11 and 12,
what is summarize in the following result.

Theorem 13. Let δ0 be as in Theorem 8 and δ > δ0. If (Pδ) is weakly stable on
the left, then there exists h0 > 0 such that (Pδ) has at least a solution uh for every
h ≤ h0. Moreover, each accumulation point u of {uh}h≤h0 is a solution of (Pδ) and

lim
h→0

Jh(uh) = inf (Pδ).

Finally, if ` is of class C2 in the third variable and

∃α > 0 such that
∂2`

∂u2
(x, y, u) ≥ α > 0 for a.e. x ∈ Γ and all y, u ∈ R,

∀M > 0 ∃ϕM ∈ L1(Γ) such that

∣∣∣∣ ∂`∂u (x, y, u)

∣∣∣∣+

∣∣∣∣ ∂2`

∂u2
(x, y, u)

∣∣∣∣ ≤ ϕM (x)

a.e. x ∈ Γ and |u|, |y| ≤M , and ū is an accumulation point of {uh} with uhk → ū
weakly* in L∞(Γ), then

lim
k→∞

‖ū− uhk‖L2(Γ) = 0.
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Departamento de Matemáticas, EUIT Industriales, Universidad de Oviedo, C/Manuel

Llaneza, 33204 Gijón, Spain

E-mail address: mmateos@orion.ciencias.uniovi.es


