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Saavedra · Mario Francisco-Fernández ·
Manuel G. Penedo · Salvador Naya ·
Ricardo Cao

Received: date / Accepted: date

Abstract A crankshaft is a mechanical component of an engine that performs
a conversion of an alternative movement of a piston in a rotational motion of a
shaft. It is a critical part and one of the most expensive of an engine. Defects in
crankshafts may imply serious failures and, consequently, possible injuries and
high costs. Therefore, the manufacture quality is of primordial importance for
security and economic reasons. Nowadays, the quality control of crankshafts
manufactured by forging in the automotive industry consists, among others,
in inspecting them at the final process, using a magnetic particle procedure.
This slow and highly stressful technique depends on operators and consumes
many human resources, time, and space. This paper presents a methodology to
automatically detect defective crankshafts. The proposed procedure is based
on digital image analysis techniques, to extract a set of representative features
from crankshaft images. Statistical techniques for supervised classification are
used to classify the images into defective or not. The experimental results
demonstrated the good performance of the proposed method with a classi-
fication accuracy over 99%, a 10% higher than the one obtained by manual
inspection. Therefore, working time and personnel required for this task can
be reduced when using this automated procedure.
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1 Introduction

Quality assurance of crankshafts used in the automotive industry is the princi-
pal aim of this work. A crankshaft (see Figure 1) is a shaft composed of throws
with webs and crankpins to transform the rectilinear reciprocating motion of
pistons within the cylinders into rotary movement of crankpins through the
connecting rods, which is also transmitted to the wheels and other elements.

Fig. 1 Parts of a crankshaft.

It is important to emphasize that during operation, the crankshaft is sub-
jected to violent efforts, caused by explosions and reactions due to the accel-
eration of bodies moved by the reciprocating motion (pistons and connecting
rods). Thus, this type of engine part requires special mechanical properties
to provide a correct performance and prevent breakdowns and accidents. The
crankshaft is the most expensive component of the engine and requires a com-
prehensive and reliable quality control procedure.

Figure 2 illustrates the procedure to obtain a forging crankshaft. As can be
seen, this procedure is divided in five steps: reception of raw material (micro-
alloyed steel), ingots preprocessing, forge procedure, post-processing of forging
cranks, and quality assurance, including magnetic particles inspection of de-
fects and dimensional control [22,11,19,3]. The receiving material are ingots of
microalloyed steel of high impact, fatigue and mechanical resistance, codified
by the Aircraft Material Specification [22,3]. In the preprocessing step, the
ingots are cut according to standardized dimensions, taking into account that
the posterior forging process reduces their initial size.

Crankshafts can be also produced by casting and machining (depending of
the engine requirements), but this work is only focused on the identification of
crank defects produced in forging factories by closed-die forging [10]. Broadly
speaking, forging consists in heating a steel ingot to about 1200oC, where
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Fig. 2 Steps to obtain a forging crankshaft.

the steel becomes to be malleable without melting, while it is compressed
by pressing or hammering into a matrix that reproduces the shape of the
final crankshaft. This pressing procedure increases the mechanical resistance
of crankshafts, and the alignment and strengthening of the steel grain. Once
the crankshaft is forged, the burr formed between the two matrix pieces is
cut in the post-processing step by machining procedures. Moreover, the stress
produced by the machining is relieved by annealing between 200oC and 400oC.

Once the crankshaft is forged and the burr is cut, the application of
an exhaustive quality control analysis is absolutely necessary to detect sur-
face defects that could result in the crank failing during operation [22,11,3].
Crankshaft failure is not very common but, when it occurs, catastrophic acci-
dents and significant economic losses are caused [19], apart from a worsening
of the brand image. The crankshaft is not only a critical piece of automo-
tive engines, but also the piece of the engine with the largest cost [1] and, if
damaged, it is very difficult to access and repair.

Nowadays, quality control of crankshafts is manually performed by trained
and experienced operators, using a magnetic particle inspection procedure [19,
26]. This inspection is a non-destructive test applied to steel pieces and struc-
tures that consists in magnetizing the inspected items, thus the magnetic field
lines point out the flaws or defects. These lines are denser in the crack sur-
roundings and so, if the piece is sprayed with small magnetic particles, they
will be concentrated in the neighborhood of the flaw allowing to observe it by
the naked eye. Summarizing, crankshafts go through a manual inspection pro-
cedure (see Figure 3) in which the ferromagnetic pieces are sequentially mag-
netized, sprayed with magnetic particles, inspected and demagnetized. Notice
that this manual inspection procedure is very time consuming (workers spend
about 45 seconds with each single piece), and dependent on the operator. This
is the manual procedure (using the commercial version MAGNAFLUXTM )
employed by CIE Galfor S.A.1, the company that has motivated this research
to automate the inspection at the end of the production line.

In this context, several artificial vision procedures have been proposed to
identify and/or characterize defects in forged crankshafts: Iborra et al. [11]
proposed an automatic visual identification procedure based on image seg-
mentation and syntactic-neural network machine learning; a classifier based
on neural networks to evaluate the fatigue failure risk was applied in [1] to a

1 http://www.cieautomotive.com/-/cie-galfor
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Fig. 3 Steps of the most common, manually crankshaft quality assessment procedure based
on the magnetic particles inspection.

large crankshaft for a diesel engine for power plants; and a scattering technique
to measure and check the surface quality of cranks was provided in [8]. How-
ever, there is still a lack of automated procedures applied to the special case
of identification of defects in crankshafts, with all the steps comprehensively
described to provide a useful tool to practitioners and companies requiring an
automatic solution.

In this paper, a way to automate the quality control in the crankshaft
manufacturing process, right at the end of the production line, is described.
Applying the proposed methodology, surface defects in crankshafts can be
identified and, thus, those units that are not in perfect conditions can be
automatically discarded. The main defects occurring in forged crankshafts
(and that can be detected by the new approach) are under-filling, overlap,
foreign bodies and scale pits [22,3]. Note that about 85% of all crank defects
come from these types of problems, as suggested in [3].

In the next sections, the proposed classification procedure based on color
and texture analysis is described, applied and discussed to solve the industrial
problem of defective crankshaft identification. Notice that color and texture
properties have been successfully used in other industrial applications [4,16].

2 Material and methods

This section describes the procedure for data collection, and the images used
for validation. Additionally, it includes all the methods used in the proposed
methodology to automatically detect defective crankshafts.

2.1 Data collection

A total of 88 representative crankshaft images were used to validate the
proposed methodology. In particular, 37 of them correspond to crankshafts
that were manually rejected, and the other 51 images correspond to cor-
rect crankshafts. All the images have been stored at a spatial resolution of
2048× 2048 pixels in the RGB color space.



Automatic detection of defective crankshafts 5

Regarding the acquisition procedure, all the images were obtained using
an industrial camera provided by Infaimon S.L. company2. The camera was
placed in a fixed position to take images in an ad-hoc pilot unit located in the
crankshaft manufacturing company, CIE Galfor S.A. This pilot unit repro-
duces the common manual process of magnetic particle inspection (see Figure
4): the crankshafts arrive to a special dark place where they are impregnated
(one by one) in a liquid solution with magnetic particles (MAGNAFLUX),
then they are magnetized (applying a magnetic field intensity), illuminated,
and finally the images are taken.

Fig. 4 Representative images of magnetized and illuminated crankshafts when they are
manually inspected.

Once the crankshaft images were obtained, the next step was to mark
those areas with defects in order to find out whether our approach is able
to detect them. It was a manual process based on the observation of the
images, in which the defective areas were marked by means of GIMP3, an image
manipulation program. It is important to stress that the defects were identified
with the supervision of trained personnel of the crankshaft factory, and it took
30 seconds each on average. Figure 5 shows a representative crankshaft image
and, as can be observed, defective areas are characterized as thin lines of a
more intense green color than the rest of the crankshaft. A mask for each
annotated image was created to delimit the defective areas and make easier
the further analysis.

In a defective crankshaft image, there are both correct and defective areas.
For this reason, a local level analysis of the images is needed in order to
discriminate defective areas from those which are not. In this way, not only it
is possible to determine if a crankshaft is defective or not, but also to estimate
the location of the defects on the image.

Local image patches are defined as small groups of nearby pixels, and they
are used in local analysis. Thus, once the 88 crankshaft images were anno-
tated and the defective areas were delimited, the next step was to extract
patches from them. Taking into account the resolution of the images and the

2 http://www.infaimon.com/es/
3 http://www.gimp.org
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Fig. 5 Representative crankshaft image with the defective areas manually delimited, and
the mask created from it to facilitate the further analysis.

average size of the defective areas, we have considered to use square patches
of 128 pixels. And, instead of extracting all the possible patches from the
images, we have used a margin of separation of four pixels between patches.
This process was automatically performed by using the masks previously gen-
erated (see Figure 5). In this manner, over 100,000 patches per image were
obtained. As expected, most of them correspond to non-defective areas. In
order to avoid the common problems which occur with imbalanced datasets
[14], we have created a well-balanced dataset to be used in the experimenta-
tion that is composed of 16,778 patches, half of which correspond to defective
patches. Notice that the non-defective patches included in the final dataset
were randomly selected among all the non-defective patches extracted from
the images. Figure 6 shows a representative image of the database with two
patches included in the dataset.

Fig. 6 Representative image of the database with two patches, from top to bottom: non-
defective patch, and defective patch.
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2.2 Analysis and interpretation

In order to characterize defective areas in crankshaft images, and so to au-
tomatize the quality control process, a four-step methodology was applied as
illustrated in Figure 7. Apart from employing specific image analysis software,
it is important to stress that the free statistical software R [23] has been used
to perform the corresponding statistical analysis. Specifically, the following
R packages were employed in this research: pls (for dimensional reduction),
MASS, e1071 (for classification purposes), and cvtools (for validation tasks).
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Fig. 7 Steps of the proposed research methodology to identify defective crankshafts.

In the following sections, the proposed procedure is described in depth.
Color and texture information were initially extracted from an input image in
order to create a feature vector, whose dimension was subsequently reduced
and, finally, the image is classified into one of the two categories considered
(defective and non-defective areas).

2.3 Color analysis

Color seems to be one of the discriminant features of defective areas, since
they can be observed in green color. For this reason, crankshaft images were
analyzed by means of the Lab color space, a chromatic model based on the
color perception of the human brain. Grayscale images were also considered in
order to verify the adequacy of using color information. Therefore, this stage
consists in transforming the input images in RGB to grayscale images and to
the Lab color space, according to the procedures subsequently defined.

2.3.1 Grayscale images

A grayscale image is one in which the only color is gray, represented by different
levels from black to white. Therefore, only a single intensity value is specified
for pixel (see Figure 8). In order to generate a grayscale image, the three
channels of the RGB image (R, G and B) have to be converted into only one
gray channel (Gr), according to the following expression [2]:

Gr = 0.299 ·R+ 0.587 ·G+ 0.114 ·B
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Fig. 8 One representative defective patch in different color spaces, from left to right: original
image in RGB, grayscale image, and the three components of Lab (L, a and b).

2.3.2 The Lab Color Space

The CIE 1976 L*a*b [20] is a chromatic color space that describes all the colors
that the human eye can perceive. It is a 3D model whose coordinates are: the
luminance of the color L, its position between magenta and green a, and its
position between yellow and blue b (see Figure 8). This color space is percep-
tually uniform, that is, a change of a certain amount in a color value produces
a change of the same visual relevance. The significance of this property lies in
the fact that operators’ visual perception is trying to be imitated.

Using the Lab color space entails converting the three components of the
image in RGB to the three channels of Lab. This transformation was done by
using the CIE XYZ color space and its three components X, Y and Z [2]:

XY
Z

 =

0.4124563 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

 ·
RG
B


and then,

X = X/0.950456
Z = Z/1.088754

Next, the Lab channels are calculated according to:

L =

{
116 · Y 1/3 − 16 if Y > 0.008856

903.3 · Y if Y ≤ 0.008856

a = 500(f(X)− f(Y )) + 128
b = 200(f(Y )− f(Z)) + 128

where:

f(t) =

{
t1/3 if t > 0.008856

7.787t+ 16/116 if t ≤ 0.008856
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2.4 Texture analysis

Texture is used to characterize the defective areas, in addition to the color
information, since the distribution of the intensity values in the images is
different depending on if there is a defect or not. Several techniques can be
found in the literature to extract texture information from images and, in
this research, two of the most common ones were selected: the analysis of
histograms, and the discrete wavelet transform. Thus, this step consists in
extracting the texture information from each color component: one channel
(Gr) when using grayscale images, and three channels (L, a and b) when using
the Lab color space. We next explain the texture extraction procedure.

2.4.1 Uniform histograms

An image histogram represents the distribution of the intensity values of its
pixels. Instead of analyzing the traditional fixed bin histograms, uniform his-
tograms were considered. They allow a better representation of the intensity
distribution in the problem at hand. Uniform histograms are histograms with
equiprobable bins, and the process to obtain them is described as follows: given
all the input images, the limits of the histogram are defined so that each bin
contains N

Nbins
intensity values, where N is the number of pixels in the image,

and Nbins the number of histogram bins.
For this problem, and after some preliminary experiments, 16-bin his-

tograms were considered and, consequently, the quantitative vector of an input
image is composed of 16 features (frequency distribution) for each color com-
ponent. That is, the vector computed for a single patch is composed of 16
features when using grayscale images (see Table 1), whilst it is composed of
16× 3 = 48 features when using the Lab color space.

f1: 0.0561 f2: 0.0612 f3: 0.0466 f4: 0.0793 f5: 0.0518 f6: 0.0729
f7: 0.0676 f8: 0.0605 f9: 0.0504 f10: 0.0657 f11: 0.0687 f12: 0.0670
f13: 0.0582 f14: 0.0657 f15: 0.0640 f16: 0.0634

Table 1 Sample vector obtained when using uniform histograms: numerical values of the
16 features (f) computed from the grayscale image illustrated in Figure 8.

2.4.2 Discrete wavelet transform

The discrete wavelet transform (DWT) [18] generates a set of wavelets by
scaling and translating a mother wavelet, which is a function defined in the
spatial and frequency domain, represented in 2D as:

φa,b(x, y) =
1

√
axay

φ

(
x− bx
ax

,
y − by
ay

)
,
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where x and y are the horizontal and vertical pixel coordinates, respectively,
a = (ax, ay) governs the scale, and b = (bx, by) the translation of the function.
The values of a and b control the band-pass of the filter in order to generate
high-pass or low-pass filters.

The wavelet decomposition of an image consists in applying those wavelets
in the two dimensions, i.e. horizontally and vertically. Taking into account
the high-pass (H) and low-pass (L) filter for every dimension, four sub-images
are generated (LL, HL, LH and HH). Every one of these four images is then
sub-sampled by a factor of two, i.e. only every second pixel is retained.

Some statistical measures were used in order to generate the quantitative
vector from an input image: mean, absolute average deviation and energy;
which are respectively defined as:

µ =
1

N

N∑
i=1

p(i),

AAD =
1

N

N∑
i=1

|p(i)− µ|

and

e =
1

N2

N∑
i=1

p(i)2,

where p(i) is the i-th entry in the image, sorted row-wise, and N represents
its number of pixels.

Finally, the feature vector is constructed from the µ and the AAD of the
input and LL images, and the e of the LH, HL and HH images. Thus, the
quantitative vector of an input image is composed of 7 features per color
component. Consequently, the vector computed for a single patch is composed
of 7 features when using grayscale images (see Table 2), whilst it is composed
of 7×3 = 21 features when using Lab. Note that a representative type of basis
for wavelets, known as Daubechies [6], was considered as the mother wavelet.

f1: 64.1641 f2: 23.9111 f3: 128,328 f4: 47.7307 f5: 0.0013 f6: 0.0043
f7: 0.0003

Table 2 Sample vector obtained when using the discrete wavelet transform: numerical
values of the 7 features (f) computed from the grayscale image illustrated in Figure 8.

2.5 Dimensionality reduction

The complexity of any classification process depends on the number of in-
put attributes, apart from the difficulty of the corresponding classifier. This
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determines both memory and computing time, and also the necessary num-
ber of samples to train the classifier. In this context, different dimensionality
reduction techniques can be applied to reduce the computational (memory
and time) requirements without compromising the classification performance.
Two of the most important techniques for dimensionality reduction, principal
component analysis (PCA) and partial least squares (PLS), have been here
considered. The application of these techniques is useful in a wide range of
domains such as classification, regression or multivariate quality control [28].

Given the number of observations, or what is the same, crankshaft patches
(cases) to be classified per image, there would be no problem in applying
classification techniques directly to the set of features extracted from them.
However, the application of PCA or PLS results in a new data matrix, project-
ing the primal one, with a number of desirable properties for the subsequent
application of classification methods:

– The new features are independent, orthogonal to each other, very impor-
tant for some classification methods to ensure their optimality.

– The features are sorted from the highest to the lowest explanation of the
total variability of the data, i.e. from the most to the least important. This
fact allows us to carry out the classification from a few relevant character-
istics, thus not losing efficiency and saving computational requirements.

2.5.1 Principal component analysis

Principal component analysis (PCA) [13] is a feature transformation technique
widely used for dimensionality reduction. It is an unsupervised method that
aims at maximizing the variance of the data projection.

In order to calculate the new PCA components, the singular value decom-
position algorithm [29] has been used. It allows us to decompose the n × p
data matrix X, once centered and scaled, in three new matrices: X = UDV′,
where U is an orthonormal matrix (n × a), D is a diagonal matrix (a × a)
which contains the singular values, and V is an orthonormal matrix (p × a).
The product UD results in the projection matrix with a new coordinate axis,
where the first axis indicates the maximum variability of the data (i.e. the
most informative component), the second axis is perpendicular to the first one
and indicates the second largest direction in terms of variance, and so forth.

2.5.2 Partial least squares

Partial least squares (PLS) [30] is a statistical method used for dimensionality
reduction which has some relation to principal component regression. However,
instead of finding hyperplanes of minimum variance between the response and
the independent variables, it finds a linear regression model by projecting
the predicted variables and the observable ones into a new space. This linear
regression is fitted using an initial complete sample, called the training sample.
The PLS method has the advantage of taking into account the relationship
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between the response variable (class) and the feature vector of each test sample
to form the new matrix of scores.

To apply the PLS procedure, the so-called kernel algorithm [17] has been
used, which is faster and more stable than other alternatives. Each new test
sample is first centered and scaled with respect to the mean and standard
deviation vector of the training sample, and then the new scores of the test
sample are calculated by multiplying the original vectors by the PLS projection
matrix obtained from the training sample. Next, the classification model is
created by using the PLS scores of the training sample, and then the class of
the test samples can be predicted.

2.6 Supervised classification

Supervised machine learning is one of the tasks most frequently carried out
by the so-called intelligent systems [21]. Its application is absolutely necessary
to develop an automated crankshaft anomaly detection method. In this case,
the goal of the supervised learning application is to construct a classifier than
can correctly predict if a new crankshaft contains defective areas or not, given
training samples obtained from old crankshafts.

A large number of techniques have been developed for supervised learning,
based on statistics and artificial intelligence [15]. Among them, traditional
algorithms have been selected due to their fast computing time, simplicity
and optimality under certain conditions. More innovative and flexible tech-
niques have been also considered, although they require more computational
resources. Next sections describe the methods considered in this research.

2.6.1 Multivariate statistical methods

Two of the most popular supervised classification techniques are linear dis-
criminant analysis (LDA) [7] and Naive Bayes (NBC) [12]. They are here
used due to their fast computing time and good performance when classes are
linearly separable. In addition, LDA is applied taking into account its opti-
mality when multivariate Gaussian assumption of feature vector is met. NBC
is based on Bayes’ theorem, particularly suitable when the dimension of the
feature vectors is high compared with the number of observations. It requires
small training datasets to estimate the classification parameters, assuming that
each feature distribution can be independently estimated apart from the oth-
ers. Even if predictors are not independent, it has performed well in many cases
[9,25], thus its application is advisable in the present case. Another method
widely used when the LDA assumptions are not fulfilled is the logistic regres-
sion model (LR). It is a generalized linear regression model (GLM) [24], in
which the response variable is dichotomous. Therefore, LR application is also
recommended in the present case.
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2.6.2 Machine learning algorithms

The performance of the previous multivariate classification methods are com-
pared with machine learning approaches. The methods of this type are very
flexible and powerful, and they have provided very good solutions to complex
classification problems where the classes are not linearly separable, as it could
be the case of our problem. One of the most popular and useful machine learn-
ing techniques is the so-called support vector machine (SVM) [27], an advanced
classifier that performs supervised classification by constructing hyperplanes
in a multidimensional space, and so they separate samples which belong to dif-
ferent classes. Vapnik [27] found that, if there is a wide margin between regions
with distributions from different classes, the mathematical model obtained by
an optimal hyperplane will possess excellent predictive characteristics, even if
the dimension of the feature vector is very high.

The most important task in the SVM classification process is the dimen-
sional elevation, using a kernel function which assigns points of the input space
into a higher dimensional space by means of a non-linear transformation. In
these high-dimensional spaces, the points which belong to the initial sample,
not linearly separable, become linearly separable points with a wide margin in
the new feature space. For the construction of an optimal hyperplane, SVM
uses an iterative training algorithm with the main goal of minimizing an error
function. Some of the most common types of kernels are linear, Gaussian, and
sigmoid. The SVM algorithm here considered uses a C parameter (in this case,
set to 1) that controls the trade-off between training errors and rigid margins,
creating a soft margin which permits some misclassification.

3 Results and discussion

The experimentation was carried out with a dataset composed of 16,778 patches
obtained from 88 crankshaft images, as described in Section 2.1. Therefore, all
the performance results reported in this section refer to this dataset.

The validation procedure of the defect identification in forging crankshafts
is summarized as follows:

1. Apply the two color models and the two texture analysis methods to the
dataset composed of 16,778 image patches. As a result, four feature matri-
ces are available. Their sizes are 16, 778× 16, 16, 778× 7, 16, 778× 48, and
16, 778× 21, when the following methods are respectively applied (see Fig-
ure 9): grayscale and histograms, grayscale and DWT, Lab and histograms,
and Lab and DWT.

2. Apply the two dimensionality reduction methods (PCA and PLS) to the
four feature matrices.

3. Train the supervised classifiers (see Figure 10) using different configura-
tions. Note that a 10-fold cross-validation [29] was used, so the average
error across all 10 trials was computed.
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4. Evaluate the effectiveness of the different methods in terms of the percent-
age of samples correctly classified.

Color
analysis

Texture
analysisGrayscale

Lab

Uniform
histograms

Discrete 
wavelet 

transform

Texture
analysis

Uniform
histograms

Discrete 
wavelet 

transform

16 features

7 features

48 features

21 features

Fig. 9 Feature sets obtained with the proposed color and texture analysis techniques.
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Fig. 10 Multivariate classification methods applied to the feature sets (Figure 9).

One of the goals of the proposed methodology is to find the image analysis
approach and the classification method that produce an optimal trade-off be-
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tween performance-classification and low demand of computational resources.
Since on-line classification is aimed, the time consumption of the computa-
tional method is an important aspect. Four different feature sets are obtained
from the different possible combinations of color an texture analysis techniques
(see Figure 9), each one defined by a different number of features. Then, PLS
and PCA components are obtained from these feature sets. A variable num-
ber of PLS and PCA components were used to implement the classification
methods, depending on the original feature set (Figure 9): between 3 and 16
(from grayscale and histogram set), 3 and 7 (from grayscale and DWT set),
3 and 48 (from Lab and histogram set), and 3 and 21 (from Lab and DWT
set). Overall, if we take into account the different dimensions of PLS and PCA
projection matrices, more than 160 sets have been tested in order to obtain
an optimal combination between good classification performance and short
computing time. In the following sections, the results of the application of the
different classifiers are summarized, presenting the misclassification propor-
tions obtained by the application of LDA, LR, NBC, and SVM (see Figure
10) to the feature sets obtained from the PLS and PCA projections. It is im-
portant to note that traditional classification methods, although less flexible
and powerful than SVM, are rather more efficient in terms of runtime and
computing resources demand, and they present less risk of overfitting, thus
justifying their application to obtain reliable results.

Table 3 shows the best results (i.e. the lowest misclassification proportions)
obtained by each classification method applied to the PLS/PCA sets. These
PCA or PLS components were obtained projecting the features extracted from
image patches by different combinations of color and texture analysis tech-
niques. Considering the high number of the alternatives, this summary intends
to highlight the most effective techniques in terms of misclassification errors.
Additional results are shown in Figures 11-14, and subsequently discussed.

Projection Classification Histograms DWT
method method Grayscale Lab Grayscale Lab
PCA LDA 0.252(14) — 0.194(6) 0.088(16)

LR 0.251(14) 0.35(48) 0.167(6) 0.006(16)
NBC 0.387(14) 0.38(13) 0.240(6) 0.240(16)
SVML 0.237(14) 0.334(48) 0.174(6) 0.015(16)
SVMG 0.010(14) 0.050(37) 0.081(6) 0.009(19)
SVMS 0.591(14) — 0.328(7) 0.190(19)

PLS LDA 0.246(6) 0.410(39) 0.183(5) 0.072(8)
LR 0.244(6) 0.350(48) 0.162(5) 0.00006(16)
NBC 0.273(7) 0.410(17) 0.233(5) 0.136(14)
SVML 0.230(6) 0.250(15) 0.173(5) 0.0017(17)
SVMG 0.008(14) 0.040(37) 0.081(6) 0.0005(14)
SVMS 0.503(3) — 0.332(7) 0.145(16)

Table 3 Lowest mean misclassification errors and number of PLS/PCA components (in
brackets), obtained by a 10-fold cross-validation. SVM methods were applied using different
kernels, labeled as: Llinear kernel, GGaussian kernel, and Ssigmoidal kernel.
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As a final remark, we would like to highlight that we have also evaluated
the proposed methodology using only the green (G) channel of the input im-
ages, since defective areas can be observed in green color. In this sense, the
same texture analysis methods (uniform histograms and DWT), PCA and
PLS reduction dimension procedures and classification algorithms were ap-
plied in this case. The obtained results are presented in Table 4 and, as can
be observed, they are relatively competitive. For example, in the case of DWT
and using only the G channel, better results are obtained compared to those
achieved with a grayscale color analysis. However, in this scenario, the G chan-
nel provides worse misclassification errors than those obtained when using the
Lab color space. In the case of uniform histograms, the proportions of misclas-
sification errors obtained analyzing only the G channel tend to be generally
higher than those obtained for the grayscale and Lab approaches. Note that,
when analyzing the G channel, the SVM with sigmoid kernel has not been
applied taking into account the poor results obtained with this method in the
previous experiments, in terms of classification performance and computing
runtime. Therefore, in view of this experimentation, we conclude that in this
case it is worthy to use the information provided by all the color components
and not only the G channel.

Projection Classification Green channel
method method Histograms DWT
PCA LDA — 0.158(6)

LR 0.365(16) 0.136(6)
NBC 0.429(9) 0.173(6)
SVML 0.398(16) 0.138(6)
SVMG 0.109(16) 0.069(16)

PLS LDA 0.368(16) 0.152(5)
LR 0.365(16) 0.136(6)
NBC — —
SVML 0.376(16) 0.138(6)
SVMG 0.114(15) 0.069(6)

Table 4 Lowest mean misclassification errors and number of PLS/PCA components (in
brackets), obtained by a 10-fold cross-validation procedure. SVM methods were applied
using different kernels, labeled as: Llinear kernel and GGaussian kernel.

3.1 Classification performance using grayscale and uniform histograms

Figure 11 shows the boxplots of misclassification proportions obtained by per-
forming a 10-fold cross-validation procedure using SVM classification model to
different datasets. These datasets are composed of a variable number of PCA
or PLS components (between 3 and 16, according to the maximum number of
extracted features). As can be seen, the larger the number of components, the
lower the misclassification errors. The same trend can be observed in Figures
12, 13 and 14, which show the misclassification proportions obtained from the
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application of SVMG and LR methods to the PCA and PLS components cor-
responding to Lab color space and uniform histograms, grayscale and DWT,
and Lab color space and DWT, respectively.
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Fig. 11 Boxplots of the misclassification proportions using SVM applied to the PCA and
PLS components (obtained from the features extracted using grayscale and uniform his-
tograms). Different scales were used in the plots for the sake of legibility and interpretation.

As observed in Figure 11, misclassification errors of less than 5% were
achieved when SVM with a Gaussian kernel were applied, at least, to the first
11 PCA components, and to the first 7 PLS components. As expected, when
the PLS components were used for classification purposes, lower misclassifica-
tion errors were obtained with a smaller number of components (i.e. leading
to a shorter computing time). In this line, when using 14 or more PLS compo-
nents, more than the 99% of the crankshaft images were correctly classified.
The good performance of this approach can be also observed considering the
small dispersion of the corresponding boxplots. The misclassification errors
obtained by the remaining classification methods were higher, thus only SVM
with a Gaussian kernel provided an adequate solution for the requirements.
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3.2 Classification performance using Lab and uniform histograms

When the Lab color space and uniform histograms are applied to the crankshaft
images, a set composed of 48 features is obtained. Table 3 shows that the best
results are obtained by the application of SVM with a Gaussian kernel. In this
line, Figure 12 presents the boxplots of the 10-fold cross-validation misclassi-
fication errors, obtained by the implementation of SVM classification method
to a different number of PLS and PCA components.
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Fig. 12 Boxplots of the misclassification proportions using SVM applied to the PCA and
PLS components (obtained from the features extracted using Lab and uniform histograms).
Different scales were used in the plots for the sake of legibility and interpretation.

A mean correct classification proportion of 96% was achieved when this
method was applied to, at least, the first 37 PLS components. Very competitive
results (around the 94% of correct classification) were also obtained from the
first 18 PCA components, from the 30 first PLS components (over 95% of
correct classifications), and using the 45 first PLS components (about the
97.5%). The remaining methods did not offer a good classification solution, and
so they would not be applicable to the identification of defective crankshafts.
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3.3 Classification performance using grayscale and DWT

A smaller set composed of 7 features is obtained by the application of grayscale
and DWT for color and texture analysis, respectively. Figure 13 shows the
boxplots of the misclassification errors obtained for LR and SVM applied to a
different number of PLS and PCA components. Figure 13 and Table 3 show a
mean misclassification proportion of around 8% (i.e. a 92% proportion of cor-
rect classification) reached by the application of SVM with a Gaussian kernel
to, at least, the first 6 PLS components. Focusing on the traditional methods,
a mean misclassification proportion of 16% was obtained when applying LR
to the first 5 PLS components.
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Fig. 13 Boxplots of the misclassification proportions using LR and SVM applied to the
PCA and PLS components (obtained from the features extracted using grayscale and DWT).
Different scales were used in the plots for the sake of legibility and interpretation.

3.4 Classification performance using Lab and DWT

If the Lab color space and DWT for color-texture analysis are applied to the
crankshaft image patches, a set composed of 21 features is obtained. Table
3 shows that very low mean misclassification errors are reached by almost
all the classification methods and datasets. NBC and SVM with a sigmoid
kernel present a worse performance, but even their results could be competitive
compared to the manual inspection of defective crankshafts.

Figure 14 shows the boxplots of the misclassification errors obtained for LR
and SVM applied to a different number of PLS and PCA components. They
were under 5% when SVM with a Gaussian kernel was applied to, at least, the
first 4 PLS components. This is a great result regarding both computer runtime
and classification performance. The time to make a prediction is 0.87 seconds
if LR method is applied, and 8.73 seconds if SVMG is used, rather shorter than
manual inspection. If we consider that the simpler LR provided very accurate
results significantly faster (see Table 6), this method should be the first option
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in order to distinguish defective from non-defective areas in crankshaft images.
In fact, Figure 14 shows that misclassification errors under 5% are obtained
when applying LR to, at least, the first 5 PLS components. Once again, the
PLS projections provided better results with a less number of components
than the PCA projections. Furthermore, an almost perfect classification was
obtained by applying LR to the first 16 PLS components. In this case, a
misclassification error of 0.006% was reached (Table 3), which means that
the 99.994% of image patches were correctly classified into defective and non-
defective. Similar results were obtained when using SVM with a Gaussian
kernel, which is the classification method that, in general, provided better
results in this research.
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Fig. 14 Boxplots of the misclassification proportions using LR and SVM applied to the
PCA and PLS components (obtained from the features extracted using Lab and DWT).
Different scales were used in the plots for the sake of legibility and interpretation.

Table 5 shows the confusion matrices corresponding to the application of
LR and SVMG to the 10 cross-validation partitions. Almost all the image
patches are correctly classified as (0) non-defective or (1) defective areas. No-
tice that the dataset used in this study is balanced, and thus there is no risk to
obtain spuriously low misclassification proportions due to the ability to correct
classify a specific class. In fact, the values of kappa index [5] (alternative to
misclassification proportion or accuracy) are in accordance with correct clas-
sification proportions: κLR = 0.999 and κSVMG = 0.996, showing a perfect
concordance between real classes and predictions.

In order to illustrate how much time each classification alternative takes,
Table 6 shows the computing running times (measured in seconds) correspond-
ing to the complete 10-fold cross-validation process applied to PCA and PLS
sets composed of 3 to 19 components. It is important to note that these ex-
ecution times refer to the complete comparison procedure, including 10-fold
cross-validation and several sets. In a real application, the running time to
assign a class to each feature vector would be considerably lower. They could
be estimated dividing the numbers in Table 6 by 285,260 (17 sets × 10 subsets
related to 10-fold cross-validation × 1,678 feature vectors in each subset).
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Estimated
0 1 0 1 0 1 0 1 0 1

R
ea

l

0 819 1 839 1 820 1 805 2 769 42

LR
1 0 857 1 836 0 856 0 871 90 777
0 810 2 868 3 826 0 823 0 831 0
1 2 864 0 807 0 852 0 855 0 847

R
ea

l

0 818 2 833 7 815 6 801 6 806 5

SVMG 1 1 856 3 834 2 854 3 868 5 862
0 811 1 870 1 820 6 817 6 828 3
1 2 864 1 806 0 852 7 848 3 844

Table 5 Confusion matrices corresponding to the application of LR and SVMG to the 10
cross-validation partitions of data matrix corresponding to the first 16 PLS components of
the original Lab-DWT feature matrix. In each partition of about 1678 individuals, there are
a variable number of defective and non-defective sections of crankshafts.

LDA NBC LR SVML SVMG SVMS

PCA 19.32 129.62 22.64 2,063.13 4,197.10 6,142.31
PLS 55.28 154.97 143.57 883.45 2,266.41 2,703.66

Table 6 Execution times (seconds) of the complete 10-fold cross-validation process, apply-
ing each classification method to a number of PLS or PCA components ranging from 3 to
19. The PCA and PLS components are obtained from the feature set corresponding to the
Lab color space and DWT.

As a final remark, the automatic classification between defective and non-
defective areas of crankshafts is highly reliable when applying the LR method
to, at least, the first 5 PLS components obtained from the features extracted
by the Lab color space and the DWT technique. Note that the Lab-DWT
set provided better results for the identification of crankshaft defects than
the remaining feature sets. Thus, our recommendation is to use this set to be
analyzed in the production line of crankshafts inside forging factories.

4 Conclusions

Several approaches can be found in the literature to identify and/or character-
ize defects in forged crankshafts, which include image segmentation methods,
neural networks and scattering techniques. However, there is still a lack of
automatic procedures for the identification of defective crankshafts, with all
the steps comprehensively described to provide companies requiring automatic
solutions with a useful tool. Thus, we propose a way to automate the quality
control in the crankshaft manufacturing process, right at the end of the pro-
duction line. Applying the proposed method, surface defects on crankshafts
can be identified and, thus, defective units can be automatically discarded.
Therefore, our approach can be used as part of any reliable quality control
procedure in the automotive industry, playing an important role in the digi-
talization of the manufacturing process.

Regarding the proposed methodology, the identification of defective forged
crankshafts has been tackled using image analysis and supervised classification
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approaches. Once crankshaft images were obtained in a pilot plant, different
color and texture analysis techniques were applied in order to extract feature
vectors from them. Then, different well-known classification methods were
applied to 160 feature sets composed of the PLS and PCA projections derived
from the matrices of original features, and subsequently validated by a 10-fold
cross-validation procedure.

The main conclusion is that the problem of identifying defective crankshafts
can be solved by applying the proposed methodology, since a very reliable de-
fective crankshaft classification was achieved. Significantly low misclassifica-
tion errors were obtained using all the feature sets composed of different image
properties. Thus, these features extracted by the proposed color and texture
analysis methods provided representative information about the presence or
absence of surface defects in forging crankshafts. The proposed methodology
was compared with manual inspection in a pilot plant specifically built for this
purpose. The proportion of correct classification is about 10% higher than the
one obtained by manual inspection, according to the technical staff of the
company who participate in this project (personal communication).

Additionally, the proposed methodology prevents discarding false defective
crankshafts that is a current problem with the existing manual inspection
system. In terms of efficiency and economic impact, the demand of personnel
and execution time in supervision tasks can be noticeably reduced by using
this methodology, and the efficiency can be increased due to the elimination
of manual errors.

With respect to the best classification results, the highest proportion of
defects correctly identified were obtained when applying LR or SVM with a
Gaussian kernel to the PLS component set derived from the Lab and DWT
features. These results are summarized as follows:

– Over 99% of correct classification was obtained when applying LR to the
first 16 PLS components.

– Correct classification proportions over 95% were reached when applying the
LR method to, at least, the first 5 PLS components. Similar proportions
were also estimated when applying SVM with a Gaussian kernel to, at
least, the first 4 components.

– Despite its good performance, the SVM model is more time-consuming
than LR. Thus, for crankshaft classification purposes, the authors rec-
ommend the use of the LR method applied to, at least, the first 5 PLS
components obtained from the combination of Lab and DWT.

It is important to stress that, in general, SVM with Gaussian kernel pro-
vided a high classification performance regardless of the dataset:

– A mean correct classification proportion of 99% was obtained when using
the first 14 PLS components from the features extracted with grayscale as
color model and uniform histograms as texture analysis method.

– A mean correct classification proportion of 96% was achieved when using
the first 37 PLS components from the features extracted with the Lab color
space and uniform histograms.
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– A mean correct classification proportion of 92% was reached when using
the first 6 PLS components from the features extracted with grayscale as
color model and DWT as texture analysis method.

Finally, note that highest proportions of correct classification in defective
and non-defective areas in crankshaft images were obtained when using PLS
components instead of PCA.
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25. Tarŕıo-Saavedra, J., Francisco-Fernández, M., Naya, S., López-Beceiro, J., Gracia-
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