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Abstract: Land-use change due to rapid urbanization poses a threat to urban environments, which are
in need of multifunctional green solutions to face complex future socio-ecological and climate scenarios.
Urban regeneration strategies, bringing green infrastructure, are currently using sustainable urban
drainage systems to exploit the provision of ecosystem services and their wider benefits. The link
between food, energy and water depicts a technological knowledge gap, represented by previous
attempts to investigate the combination between ground source heat pump and permeable pavement
systems. This research aims to transfer these concepts into greener sustainable urban drainage
systems like wet swales. A 1:2 scaled laboratory models were built and analysed under a range of
ground source heat pump temperatures (20–50 ◦C). Behavioral models of vertical and inlet/outlet
temperature difference within the system were developed, achieving high R2, representing the first
attempt to describe the thermal performance of wet swales in literature when designed alongside
ground source heat pump elements. Statistical analyses showed the impact of ambient temperature
and the heating source at different scales in all layers, as well as, the resilience to heating processes,
recovering their initial thermal state within 16 h after the heating stage.

Keywords: ecosystem services; food-energy-water nexus; geothermal energy; LID; heating and
cooling; stormwater BMP; SUDS; WSUD

1. Introduction

The built environment impacts the wider environments whilst threatening natural ecosystems in
urban areas by reducing green spaces [1]. Rapid urbanization is at the core of the problem with its
subsequent land-use change and being described as one of the most influential factors affecting flooding
problems in urban environments [2]. In addition, Palazzo et al. [3] put a spotlight on stormwater
management when referring to rainwater as a primary risk to urban resilience. Furthermore, Cai et al. [4]
identified thermal changes in cities produced by urbanization processes. As a consequence, the concept
of urban resilience has taken off in recent years, providing an insight into multidisciplinary contexts,
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such as socio-ecological systems and their sustainable management under highly complex and variable
adaptive systems and climate change scenarios [5]. In this new urban context, Li et al. [1] suggested the
implementation of multifunctional approaches through urban regeneration strategies, also highlighted
by Peña et al. [6] under the concept of multifunctional landscapes. Widening this view, La Rosa et al. [7]
pinpointed urban regeneration as the main way to achieve sustainable urban environments, especially
when looking at health and wellbeing for citizens [8]. Therefore, transitioning towards a new paradigm
of resilient cities through multifunctional green spaces, has been targeted under the concept of urban
green infrastructure (UGI) [9].

Moving on towards the urban water paradigm shift, defined by Morison and Brown [10], authors,
such as Perales-Momparler et al. [11] and Gonzales and Ajami [12], specified sustainable stormwater
techniques as the main engineering and architectural route to water reuse and rainwater control with the
aim to achieve secure water resources. Palazzo et al. [3] also brought into the picture the main philosophy
behind this new approach to water management. It consists of outlining how the new concept of
adaptive urban design works alongside rainwater rather than against it which has been historically the
main way to deal with urban water. Following on from these new approaches, eco-hydrology has
arisen as a new term for urban design and diagnosis which allows understanding of long-term patterns
in urban climate and hydrology from an environmental appreciation [13]. ‘Sponge cities’ are perhaps
the most easily identifiable eco-hydrological approach under the new urban water paradigm, bringing
a wider comprehensive philosophy of urban development and water management [2]. The ‘Sponge
Cities’ concept works with what it was defined as green corridors which allow landscape connectivity,
supporting the overall ecosystem health and biodiversity conservation [14]. Continuing along these
lines, Bortolini et al. [15] stressed the need to widen the ability of green spaces to ensure ecosystem
services (ES) on the basis of multi-disciplinary approaches.

The United Nations (UN) released the 2030 Agenda for Sustainable Development as ‘a plan of
action for people, planet and prosperity. It also seeks to strengthen universal peace in larger freedom’ [16].
This document includes the millennium development goals [17] which relate directly to the previously
defined urban resilient paradigm and the need to design and implement Nature-Based Solutions (NBS)
at the very centre of the previously defined multifunctional approaches. The European Union (EU)
has also stressed the importance of NBS and their urban implementation through green infrastructure
(GI) strategies at all levels of society and the different stakeholders and sectors involved in the urban
environment and its territorial planning [18]. Prior to this document, the EU defined holistically the
role of GI in order to protect the ecosystem state and biodiversity, in promoting ES, societal health and
wellbeing; the development of a green economy, and sustainable land and water management [19].

However, there are more questions that still are not fully answered, representing a knowledge gap
to achieve the so-called food-energy-water (FEW) nexus [20]. Other authors, such as Zhang et al. [21]
and Fan et al. [22], focused on the need to develop the FEW nexus in order to adopt the 2030 Agenda for
Sustainable Development, incorporating other environmental, social and economic systems. Returning
to the provision of ES and water management, Pappalardo et al. [23] stated how sustainable urban
drainage systems (SUDS) have become the most utilized stormwater techniques to reach ES in GI-based
urban plans. In this context, SUDS contribute to four main pillars as per defined by the UK CIRIA [24]:
Water quantity, water quality, biodiversity and amenity. It is important to note that SUDS are often
referred to as low impact development (LID) and stormwater best management practices (BMP) by
other authors [25]. Just a few authors, such as Tota-Maharaj et al. [26] and del Castillo-García et al. [27],
have explored the link between Energy and Water within the FEW nexus, combining ground source
heat pump (GSHP) technology and permeable pavement systems (PPS). GSHP plays a key role in
the production of clean energy as per stated by Gupta and Irving [28], who centred their efforts in
helping dwellings to adapt to climate change by reducing carbon consumption. This point has been
supported by literature, being represented by authors, such as Nathanail et al. [29], in order to achieve
sustainability in the wider urban environment. This path has been also taken by Price et al. [30] through
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the creation of a new methodology for planning development using GSHP and SUDS as indicators,
empowering the need for multifunctional purpose engineered elements in the city.

Charlesworth et al. [31] identified future prospects for GSHP and PPS, emphasising the application
of horizontal heat pump technology in greener SUDS; an idea supported by Tota-Maharaj et al. [26]
who identified paths towards the exploration of GSHP technology, previously used in PPS, in ‘greener’
SUDS, such as wetlands. Andrés-Valeri et al. [32] pioneered the plan to housing GSHP elements
in the structure of a wet swale, transferring the previously developed concepts for PPS into swales,
highlighting the need to further develop research to fill this key gap in the current knowledge.

This research aims to further develop the use of GSHP combined with wet swales in order
to lead the path towards the progress of the Energy-Water nexus. In addition, previous work by
Abrahams et al. [33] depicted the potential of swales, designed under a new biological concept,
including flood resilience, biomass production, sewage purification and biodiversity enhancement,
to reach food production. This new scenario sets, in combination with the present work, the full FEW
nexus, pioneering a new SUDS design. Specific objectives were also established, being condensed as
follows:

• Overall description of how the structure of a 1:2 scaled laboratory model for a wet swale responds
under a range of temperatures (20 up to 50 ◦C) and consequent performance of the GSHP system;

• Development of behavioral models for the vertical and inlet/outlet temperature difference within
the wet swale structure.

With these specific objectives the hypotheses tested in this research relates to two main aspects:
(a) The usual range of temperature of performance of GSHP devices might affect the overall thermal
performance of a wet swale; (b) Green infrastructure, such as wet swales can be designed housing
GSHP elements.

The main conclusion from this research is that wet swales presented good resilience to heating
and cooling processes under standard performance temperature of GSHP. This research represents
the first attempt to depict the thermal performance of wet swales when designed alongside GSHP
elements based on the scientific literature consulted for this research.

2. Materials and Methods

2.1. Materials and Experimental Set-Up

The structure of the wet swale selected to be modelled at a laboratory scale in this research
was designed after identifying the materials and geometries most commonly used in the literature.
Fardel et al. [34] established four types of swales as follows: Standard, dry, wet and bioswales.
In addition, wet swales were defined by Winston et al. [35] as swales functioning under conditions of
ponded water or soil moisture at near saturation. Subsequently, Fardel et al. [34] carried an extensive
literature review of the geometries and design specifications for 59 swales designed across the world,
finding depths for the surface layer ranging between 15 mm up to 530 mm. Besides, media and other
intermediate layers, as well as, the bottom layer when included in the profile, have been reported to
reach deeper depths. As an example, Andrés-Valeri et al. [36] designed a field experiment using a total
depth of 500 mm measured from the bottom part of the surface including the surface layer and the
bottom layer. Supporting this work, the UK CIRIA SUDS Manual suggests depths between 500 mm
and 2000 mm, recommending the use of a geomembrane liner at a minimum depth of 500 mm when
infiltration to the ground needs to be prevented due to unfavorable groundwater conditions [24]. Thus,
the layers and materials showed in Figure 1 constituted the structure of the laboratory models tailored
made for this research.
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Figure 1. Cross-section of the laboratory wet swale model.

Then, three identical models at a 1:2 scale were built housed by 1110 mm × 710 mm × 610 mm
high density polyethylene containers (HDPE) based upon the previous wet swale design (Figure 2).
The temperature was monitored by using K thermocouple sensors placed at different heights measured
from the bottom of the sub-base layer (100, 200, 300 and 400 mm) in order to identify different patterns
of behaviour depending on the material and the depth of the profile, being respectively named as:
RTD1, RTD2, RTD3 and RTD4. These sensors allowed the definition of the vertical temperature
variation of the system. Furthermore, two K thermocouples were installed at the inlet and outlet points
of the pipe in order to measure the horizontal variation of the circulating fluid within the simulated
looping element during the whole experiment (Figure 2). In addition, the ambient temperature was
registered all over the duration of the experiments.
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A 15 L insulated tank was utilized in order to function as a reservoir for the recirculation of the
water through the GSHP simulated system. An electric resistor was introduced to the tank with the
aim to heat the water up to the required temperature of the system. The tank was also connected to a
43 W hydraulic pump (Figure 2) which recirculated the water through the looping element.

Finally, a constant water height was maintained over the surface layer during the whole duration
of the experiments, as it can be seen in Figure 2, in order to replicate the scenario of ponded water
required by the literature to be considered as a wet swale [35].

2.2. Experimental Methodology

Constant water flow was circulated at a 1 L/min rate through the 5 m polypropylene flexible
pipe which simulated the geothermal looping pipe for a GSHP device over the whole duration of
the experiment. Temperatures were registered at 1 min intervals, using a computer connected to all
sensors as shown in Figure 2, permitting data acquisition in real-time (Figure 2).

Water was then circulated through the system at 20, 30, 40 and 50 ◦C. These temperatures were
selected as the usual operating temperature for most of the heat pumps utilized in GSHP systems
which upper limit has been encountered to be around 50 ◦C based upon data from the Energy Saving
Trust [37].

Three replicates were used for each test at all temperatures, supporting statistical soundness. Thus,
statistical analyses were designed accordingly using MATLAB software. These analyses consisted
on the development of regression models. The method of least squares (MLS) was utilized, as well
as R2 and co-linearity to reach the best fit. These later analyses also provide information about
the quality of the models obtained as described by [38,39]. In addition, the accuracy of the models
was quantified through adjusting the goodness of fit between the theoretical values and those from
laboratory results. With this aim, relative and absolute errors, as well as the root mean square (RMS)
values, were calculated in order to support the goodness of fit for the developed models following from
the statistical methodology proposed by authors, such as Fernández-Martínez et al. [40]. This proposed
method consisted of measuring uncertainty in civil engineering applications especially dedicated to
structural materials.

Prior to that, pre-tests were conducted with the goal to identify the optimum duration for
the experiment. For this reason, heating experiments were run between 73 and 95 h, reaching the
temperature models obtained in Figure 3 a good level of fit after 8 h, based on the statistical models
constructed. Quadratic models were the best fit for this stage. Based upon the previous finding, the
heating stage of the experiment was fixed at 8 h duration, whilst the cooling stage was defined to last
for 16 h. Therefore, each experiment was run over 24 h in total divided into the previously cited stages.

Furthermore, the heating stage consisted in heating the water in the tank (Figure 2) until it reaches
the temperature of the experiment (20, 30, 40 or 50 ◦C depending on the experiment). Water is kept
at that temperature for 8 h duration and, then the resistor is disconnected, commencing the cooling
stage for the next 16 h. Thus, no heating is provided by the resistor during this later stage, allowing
the system to cool down. This stage allows identifying whether the wet swale layers are more or less
resilient to heating processes through the evaluation of the temperature variation within the system.
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the pre-tests.

3. Results and Discussions

The results from this research were divided into two main sections: Vertical and inlet/outlet
temperature difference variabilities; including a general discussion at the end, presenting future
research lines.

3.1. Vertical Temperature Variation

The temperature variation registered at each layer of the wet swale for the different temperatures
of operation of the simulated GSHP system were represented through the development of behavioral
models as can be seen in Table 1. All models obtained high values of R2 and errors were also calculated
in order to check the goodness of fit in all models.

These models depended on the temperature of operation and the duration time of the heating
stage (Table 1).

Behavioral models obtained for 20 ◦C showed that the surface layer represented by the RTD4
sensor (the furthest from the heating source) had the lowest R2 value, but presenting the lower error
value (Table 1). Furthermore, higher temperatures of operation (30 ◦C, 40 ◦C and 50 ◦C) produced
higher R2 for the behavioral models in all depths within the wet swale profile as represented by the
sensors (Table 1).



Sustainability 2019, 11, 3118 7 of 13

Table 1. Behavioral models of vertical thermal variation under the four temperatures of operation
selected for the simulated ground source heat pump (GSHP) system in the experiment, depending on
the time in minutes.

T (◦C) Sensor Behavioral Model R2 Absolute
Error (%)

Relative
Error (%) RMS Error (%)

20

RTD1 T
(
◦

C
)
= −2.9079·10−06

·t2 + 0.0038·t + 15.2110 0.9845 15.0618 0.1967 0.6867
RTD2 T

(
◦

C
)
= −3.5333·10−06

·t2 + 0.0038·t + 15.5638 0.9842 13.9469 0.1775 0.6359
RTD3 T

(
◦

C
)
= −3.3094·10−06

·t2 + 0.0038·t + 15.2652 0.9919 9.6283 0.1252 0.4390
RTD4 T

(
◦

C
)
= 9.7249·10−07

·t2
− 0.0002·t + 15.0351 0.9025 7.1694 0.0989 0.3269

30

RTD1 T
(
◦

C
)
= −6.3338·10−06

·t2 + 0.0095·t + 15.9646 0.9996 6.5708 0.0762 0.2996
RTD2 T

(
◦

C
)
= −5.0091·10−06

·t2 + 0.0083·t + 16.8260 0.9981 11.5799 0.1306 0.5280
RTD3 T

(
◦

C
)
= −2.8594·10−06

·t2 + 0.0066·t + 16.3455 0.9986 8.5591 0.0987 0.3902
RTD4 T

(
◦

C
)
= −2.8594·10−06

·t2 + 0.0066·t + 16.3455 0.9986 9.5416 0.1241 0.4350

40

RTD1 T
(
◦

C
)
= −1.0367·10−05

·t2 + 0.0152·t + 15.9599 0.9954 29.8053 0.3278 1.3590
RTD2 T

(
◦

C
)
= −1.4382·10−05

·t2 + 0.0177·t + 16.5443 0.9969 29.6266 0.3093 1.3508
RTD3 T

(
◦

C
)
= −9.6683·10−06

·t2 + 0.0143·t + 15.8760 0.9991 14.2437 0.1580 0.6494
RTD4 T

(
◦

C
)
= 6.8632·10−06

·t2 + 0.0143·t + 15.8760 0.9991 25.3249 0.3296 1.1547

50

RTD1 T
(
◦

C
)
= −1.7541·10−05

·t2 + 0.0239·t + 15.4303 0.9989 26.1399 0.2658 1.1918
RTD2 T

(
◦

C
)
= −1.9195·10−05

·t2 + 0.0250·t + 16.5089 0.9981 34.9741 0.3380 1.5947
RTD3 T

(
◦

C
)
= −1.3551·10−05

·t2 + 0.0206·t + 16.5089 0.9981 16.8782 0.1753 0.7695
RTD4 T

(
◦

C
)
= 8.4280·10−06

·t2 + 0.0005·t + 15.1394 0.9914 26.8387 0.3474 1.2237

Table 1 also shows that higher variation was found in those models for the simulated GSHP
housed by the swale while operating under higher temperatures (40 ◦C and 50 ◦C) as per indicated by
the values obtained for the absolute error. This error also highlighted that RTD1 and RTD2 sensors
registered the highest values, indicating that lower areas within the wet swale cross-section (ranging
between 100 and 200 mm) were more influenced by the heating source under high temperatures of
operation in the system (Figure 4).
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Furthermore, the ambient temperature was steady during all experiments as can be seen in
Figure 4 with little variation registered (temperature range registered between 15.5 and 17.0 ◦C).
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Ambient temperature has an influence on the surface water temperature as shown in Figure 4 for all
temperatures of performance of the GSHP. The tendency for the temperature of the surface water
registered by the sensor RTD4 is to converge at the same ambient temperature despite the temperature
of performance of the GSHP, even in those cases with high temperatures (40 and 50 ◦C). The presence
of water is key to cool the temperature down through evapotranspiration and heat transfer processes.
Nevertheless, the remaining layers of the wet swale were affected by the temperature of performance
of the system registering increases in temperature during the experiment ranging between 1.5 ◦C up
to 8.0 ◦C for 20 and 50 ◦C respectively (Figure 4). This discussion provides a key point to consider
when designing the wet swale from an ecological and biological view, especially when considering
plant/vegetation growing as the temperature increase affects the supporting media for grass growing
(Figure 1) as indicated by the temperature sensor RTD 3 in Figure 4. This increase in temperature might
affect grass growth, and should be considered as future research looking at the best species to be used
if the wet swale is designed in combination with GSHP. In addition, special attention should be taken
when designing dry swales which performance is more variable from a hydrological perspective as
they have a variable head of water and no presence of ponding water after infiltration. This difference
of saturation would influence the heat transfer processes, modifying the temperatures within the
profile of the dry swale.

A cooling stage was measured after the heating was disconnected, identifying the resilience of
the system to recover the initial temperature of the wet swale layers before the experiment. Results
showed that the temperature of operation of the GSHP impacted on the temperature range between
the vertical sensors (RTD1, RTD2, RTD3 and RTD4) as can be seen in Figure 5.
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Temperatures registered by the upper sensor within the wet swale profile (RTD4) were usually
inferior in comparison to those registered by intermediate sensors, such as RTD2 and RTD3 for
temperatures of operation of the GSHP system, in the top temperature range (40 ◦C and 50 ◦C) as
per indicated in Figure 4. On the contrary, for lower temperatures of performance (20 ◦C and 30 ◦C),
sensors RTD1 and RTD4 showed higher variation. This outcome provides an interesting insight into
how ambient temperature influences the surface layer of the system for temperatures of performance
similar to those registered outside the wet swale. If the GSHP system is working under temperatures
above the ambient ones, this later temperature contributes to blurring the temperature variation
(Figure 5). As a consequence, the climate at the chosen location will influence the resilience of the wet
swale to recover from the heating stage, influencing the future design of the system as a key parameter.
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Trend lines for vertical temperature variation under the temperatures of performance of the GSHP
elements were also developed to further depict these scenarios as can be seen in Table 2 and Figure 4.
Height values are given in m from the bottom of the sub-base layer as indicated in Figure 1.

Table 2. Polynomic trend lines for vertical variation of the temperatures represented in Figure 4.

Temperature (◦C) Behavioral Model R2

20 T
(
◦

C
)
= −3.250·z2 + 12.933·z + 23.298 0.9657

30 T
(
◦

C
)
= −1.543·z2 + 6.747·z + 13.720 0.9968

40 T
(
◦

C
)
= 1.889·z2

− 8.169·z + 16.195 0.9997
50 T

(
◦

C
)
= −1.475·z2 + 2.225·z + 0.025 0.9308

3.2. Horizontal Thermal Variation

Inlet/outlet temperature difference variation between the inlet and outlet points of the system
averaged between 2.15 ◦C in the experiments carried out under 20 ◦C of the operation performance of
the GSHP up to 4.60 ◦C working under the top temperature of the range (50 ◦C) (Figure 6). Low variation
was registered in those cases related to 30 ◦C and 40 ◦C whilst higher variation was found for the
bottom and upper temperatures of operation (20 ◦C and 50 ◦C) (Figure 5).
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Results from Figure 6 are supplemented by those from the temperatures registered at the outlet
point of the horizontal looping system (Figures 1 and 2) plotted versus time in Figure 7. Average
values can be widely interpreted, presenting a steady behaviour during the heating stage. The water is
heated inside the tank (Figure 2) and then recirculated through the simulated looping system during
the 8 h of the duration of this stage. A steady temperature is reached between 10 and 20 min since the
beginning of the experiment, maintaining temperatures slightly lower than those simulated for the
GSHP elements (20, 30, 40 and 50 ◦C).
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3.3. General Discussions and Future Research Directions

Based upon the findings of this research, wet swales represent a good opportunity when compared
with PPS combined with GSHP elements, considering the depth limitation of 500 mm for standard
PPS design described by Charlesworth et al. [31]. Swale structures usually go beyond 500 mm depth,
overcoming the limitation suggested by Charlesworth et al. [31] to the Coefficient of Performance
(CoP). Land-take would be of a similar kind than the one necessary for the installation of a GSHP
system within a PPS structure, and therefore, this solution could be used at a domestic scale, as well as
commercial schemes. Swales are often used as the main drainage asset for roads and parks, representing
a highly transferable technique in urban and rural environments.

Future research directions can be divided into two main steps. The first one being orientated
towards laboratory experiments and modelling in order to better understand the heat transfer
characteristics and processes within wet swale structures, prior to developing full-scale experiments
which could validate first step findings. This addresses a key technological gap before possible
commercialization of these systems. This study has provided relevant insights into how the different
layers of a wet swale perform under different temperatures of operation by the GSHP system described
by the Energy Saving Trust [37]. The outcomes obtained in this study have responded to the gaps
identified by Andrés-Valeri et al., 2018 [32] and have further developed the understanding of the nexus
between swales and GSHP, connecting to other studies carried out in other SUDS devices, such as
Tota-Maharaj et al. [26].

Moreover, future research should follow on the analyses of heat transfer processes which allow
further understanding of the thermal performance of the system whilst addressing key factors related
to the CoP for these heat exchange systems. In this line, the use of a perimeter layer which isolates the
system from horizontal losses is strongly recommended to improve the robustness of the experiment.

The next step of the laboratory experiments should also focus on numerical simulations in order
to complement the laboratory experiments on the thermodynamic behaviour of the GSHP. A final step
should look at characterising the CoP, allowing the determination of control strategy and balance of
the plant when wet swales are exploited as a heat sink.
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Further research into other types of swales, as described by Fardel et al. [34], could be conducted
in order to apply the findings from this research to varying designs of swales. The next type of swale
suggested for development would be the dry swale. Dry swales mainly differ from wet swales based on
the lack of standing water over their surface layer at all time. This further research would supplement
the findings from this research analysing the impact of standing water on temperature variation.

4. Conclusions

The hypotheses are confirmed as the application of temperatures within the usual range of
performance of GSHP elements affected the overall thermal performance of the wet swale layers,
presenting varying impacts. Furthermore, wet swales showed good resilience to heating processes
in standard performance of GSHP elements, recovering the initial temperature in all their structural
layers after 16 h. This represents an opportunity to use wet swales as multifunctional devices for
stormwater management and energy saving.

Intermediate layers around 200 mm from the bottom part of the simulated laboratory model
(represented by RTD2 sensor) were found to register higher variation as can be seen in the behavioral
models for the vertical temperature trend of the system working under all temperatures of operation.
The layer closest to the heating source was affected by the system under the heating stage, showing
high resilience during the cooling stage for low temperatures (20 ◦C and 30 ◦C).

Surface layers were also affected by ambient temperature, as this effect is more noticeable for
lower temperatures between 20 ◦C and 30 ◦C. However, higher temperatures of operation between
40 ◦C and 50 ◦C augmented the resilience of the surface layer, with this effect being blurred by the
ambient temperature.

Inlet/outlet temperature difference was found to be lower when operating under temperatures
between 30 ◦C and 40 ◦C, being higher for the extreme temperatures tested in these experiments (20 ◦C
and 50 ◦C).

Development of behavioral models for the vertical and inlet/outlet temperature difference of a wet
swale operating under a usual range of temperatures of the pump has been obtained, representing the
first attempt in the literature consulted, to describe the thermal performance of this green infrastructure
when designed alongside GSHP elements.

This research opens a new line to explore the Water and Energy nexus, contributing to new
areas of development associated with ‘greener’ SUDS, such as swales. In addition, this research
complements previous findings by Abrahams et al. [33] in meeting the FEW nexus, pioneering a new
way of designing SUDS.
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