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Abstract—This paper addresses the problem of designing
asymptotically optimal improper constellations with a given
circularity coefficient (correlation coefficient between the con-
stellation and its complex conjugate). The designed constellations
are optimal in the sense that, at high signal-to-noise-ratio (SNR)
and for a large number of symbols, yield the lowest probability
of error under an average power constraint for additive white
Gaussian noise channels. As the number of symbols grows, the
optimal constellation is the intersection of the hexagonal lattice
with an ellipse whose eccentricity determines the circularity
coefficient. Based on this asymptotic result, we propose an
algorithm to design finite improper constellations. The proposed
constellations provide significant SNR gains with respect to
previous improper designs, which were generated through a
widely linear transformation of a standard M-ary quadrature
amplitude modulation constellation. As an application example,
we study the use of these improper constellations by a secondary
user in an underlay cognitive radio network.

Index Terms—Improper signals, Gaussian noise channels, two-
dimensional lattices, widely linear processing.

I. INTRODUCTION

THe statistical analysis of improper complex-valued ran-
dom signals has a long story. Probably, Wooding [1]

was among the first to fully characterize the second-order
statistical properties of Gaussian random vectors. Later, Brown
and Crane introduced the complementary variance, i.e., the
correlation of a complex signal and its complex conjugate,
and the concept of widely linear transformation (WLT) in [2].
This topic received renewed interest in the nineties with the
fundamental studies by Picinbono and co-workers [3]–[5], as
well as with works by Neeser and Massey in [6].

Improper signals are common in communications since
many important digital modulation schemes yield improper
complex baseband signals. Examples are binary phase
shift keying (BPSK) or Gaussian minimum shift keying
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(GMSK) [7]. The design of widely linear receivers that exploit
the impropriety of the received signal has been addressed
in [8], [9].

More recent works consider the deliberate transmission of
improper signals as a novel way to handle interference in mul-
tiuser systems. For instance, the use of improper input signals
has been shown to provide benefits in several interference-
limited wireless networks, such as interference channels [10]–
[12], Z-interference channels [13], underlay cognitive radio
(UCR) systems [14], [15], and relay channels [16], [17].

Recent results for the two-user single-input single-output
(SISO) interference channel show that the superiority of im-
proper signaling only holds for pure transmission strategies
without time-sharing [18]. However, the time-sharing strate-
gies discussed in [18] require the power to be averaged over
several transmit strategies, which might be impractical or even
infeasible for wireless systems. Therefore, the development
of new improper signaling schemes for interference-limited
networks, as well as the analysis of their benefits, are topics
of great interest to researchers.

From an information-theoretic standpoint proper Gaussian
distributed signals are optimal, i.e., they are maximum-entropy
signals under a given power constraint (see Theorem 4.4
in [19]), and they maximize the mutual information under
circularly symmetric additive white Gaussian noise (AWGN)
channels [20]. In addition, Theorem 4.8 in [19] proves that, if
the correlation coefficient between a complex random signal
and its conjugate (the so-called circularity coefficient) is fixed,
then the distribution that maximizes the differential entropy is
an improper Gaussian. In this sense, (improper) Gaussian sig-
nals are also optimal when we restrict the analysis to improper
signals. Nevertheless, the unbounded peak-to-average power
ratio of Gaussian signals makes them unsuitable for practical
communication systems. It is therefore relevant to investigate
the design of improper discrete constellations with limited
peak-to-average power ratios that may be used in practice
instead of the ideal Gaussian ones.

Several works have considered the optimization of improper
signaling schemes with finite discrete modulations. In [21]
the authors consider the K-user interference channel where
all users transmit conventional proper modulation formats and
find optimal widely linear precoders and decoders to minimize
the symbol error rate. Widely linear transceivers have been
also used to exploit the impropriety of BPSK or GMSK
signals in [8], [9], [22], to mention a few representative works.
All these works, however, use standard modulation formats
and have no control over the circularity coefficient of the
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transmitted constellation.
The design of discrete constellations with a prescribed

circularity coefficient was addressed for the first time in [23].
The improper constellations in [23] are generated through a
WLT of a standard M-ary quadrature amplitude modulation
(M-QAM) constellation. The WLT is optimized to maximize
the minimum Euclidean distance between signal points of the
improper constellation, while preserving the signal energy.
However, the improper constellations described in [23] are
not optimal for two reasons. In the first place, they have
a shaping loss of 1.53 dB with respect to the improper
Gaussian signaling [23], which coincides with the shaping
loss of proper square M-QAM modulations [24]. In the
second place, they cannot guarantee an optimal (hexagonal)
packing of the signal points of the improper constellation.
To solve these two limitations, in this paper we address the
design of improper constellations with hexagonal packing and
an elliptical envelope that minimize the symbol error rate
(SER). Asymptotically, as the number of constellation points
M → ∞, the optimal constellation is the intersection of the
hexagonal lattice with an ellipse whose eccentricity determines
the circularity coefficient. From this result, we propose an
algorithm to design improper signal constellations for finite
M . Using maximum likelihood (ML) decoding, the proposed
constellations provide significant gains in signal-to-noise-ratio
(SNR) with respect to the WLT-based designs of [23], thus
closing the gap with the ideal improper Gaussian signals.

As an illustrative application, this paper considers a UCR
scenario where a secondary user (SU) is allowed to access the
primary user (PU) channel as long as a rate requirement for the
PU is satisfied. Exploiting the results in [14], the SU knows
when to transmit improper signals and with which circularity
coefficient. Then, the optimal improper constellation for a
given spectral efficiency can easily be designed and used
for transmission. Depending on the level of interference, the
optimal improper constellation could provide a SER reduction
of several orders of magnitude compared to the use of proper
constellations, which must be transmitted with less power in
order to meet the PU rate requirement.

The rest of the paper is organized as follows. Section II de-
scribes the system model, motivates the problem, and discusses
previous work regarding the design of improper constellations.
Section III briefly reviews the concepts of shaping, coding
and power gains, which will be used as figures of merit to
assess the quality of the designed constellations. The proposed
method to design improper signal constellations, carved from
the hexagonal lattice, is described in detail in Section IV. The
SER performance of the designed constellations is evaluated,
for both AWGN and UCR channels, by means of Monte Carlo
simulations in Section V. Finally, the main conclusions are
summarized in Section VI.

A. Notation

Scalar values are denoted in lowercase letters x. Scalar
random variables are denoted by uppercase letters X . Vectors
and matrices are denoted by lowercase boldface letters, x,
and uppercase boldface letters, X, respectively. For complex

variables (deterministic or random), we will use the following
representations: real and imaginary parts, x = xI + j xQ, in
magnitude and phase, x = |x |e j∠x being |x | =

√
x2
I + x2

Q
and

∠x = arctan
(
xQ
xI

)
, or the real composite model, x =

(
xI , xQ

)T .
The complex conjugate is symbolized by an asterisk, i.e.,
x∗ = xI − j xQ = |x |e−j∠x . E {X} stands for the expected
value or the mean value of X . x ∼ CN(0,R) indicates that x is
a complex circular Gaussian random vector of zero mean and
covariance matrix R. Z notes the set of integers and R stands
for the set of real numbers. Moreover, the notations Zn and
Rn represent the Cartesian product of n copies of Z and R, re-
spectively, i.e., Zn =

{
(z0, z1, . . . , zn−1)

T
�� z0, z1, . . . , zn−1 ∈ Z

}
and Rn =

{
(r0,r1, . . . ,rn−1)

T
�� r0,r1, . . . ,rn−1 ∈ R

}
.

II. BACKGROUND AND PROBLEM STATEMENT

We start this section by briefly reviewing some preliminaries
about improper random variables that will be used throughout
the paper. Then, we present the system model and state
the problem. Finally, we also describe a suboptimal design
recently proposed in [23] that will be used for comparison.

A. Improper Random Variables

The next definitions [6], [7], characterize an improper
random variable, which is assumed to be zero mean.

Definition 1. A complex-valued random variable X is said
to be circular (or circularly symmetric) if e jθX has the same
probability distribution as X for all real θ.

Definition 2. A complex-valued zero-mean random variable
X is said to be proper if X is uncorrelated with its complex
conjugate, i.e., E

{
X2} = 0. Otherwise it is called improper.

A random variable X that is circular is also proper, but
the converse is not necessarily true. However, for complex
Gaussian random variables, propriety implies circularity, so
both terms can be used interchangeably.

Definition 3. The complementary variance of a zero-mean
complex random variable X is defined as σ̃2

X = E
{

X2}.

Furthermore, σ2
X and σ̃2

X are a valid pair of variance and
complementary variance if and only if σ2

X ≥ 0 and |σ̃2
X | ≤ σ

2
X .

Definition 4. The circularity coefficient of a zero-mean com-
plex random variable X , which measures the degree of impro-
priety, is defined as

κ =

��E {
X2}��

E
{
|X |2

} = ��σ̃2
X

��
σ2
X

. (1)

The circularity coefficient satisfies 0 ≤ κ ≤ 1. If κ = 0,
then X is proper, otherwise is improper. If κ = 1 we call X
maximally improper.

Any improper random variable V can be generated from a
proper random variable X by a WLT:

V = h1X + h2X∗, (2)

where the coefficients h1 and h2 are chosen to achieve the
desired variance and complementary variance. The interested
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reader is referred to [7] for a comprehensive treatment of
the topic of improper and non-circular signals and their
processing.

B. System Model and Problem Statement

Let us consider a complex AWGN channel

Y =
√
gV + N, (3)

where the noise N ∼ CN(0,1) is circular and Gaussian, V is
the zero-mean and unit variance transmitted signal, and the
channel power gain g is a deterministic value, which we take
as real without loss of generality and represents the SNR.

In this paper, we consider the design of improper finite
constellations with a prescribed circularity coefficient, κ, in
AWGN channels. As we will see in Section V-C, one scenario
where this problem arises is underlay cognitive radio, where
the AWGN channel (3) models the link for a secondary
(unlicensed) user.

Notice that, for an improper input V uncorrelated with the
noise N (and also with N∗), the channel output is also improper
with variance E

{
|Y |2

}
= 1 + g, and circularity coefficient

κy = κ g/(1 + g).
Differently from the widely-studied proper constellations,

such as standard M-QAM, optimal design of their improper
counterparts still remains an open problem. In this work, we
address the design of improper two-dimensional (2D) con-
stellations with asymptotically optimal packing and envelope
shaping properties. We denote a 2D constellation as a complex
random variable V = VI + jVQ taking values in a M-ary
alphabet V =

{
vi = vI i + jvQ i, i = 0,1, . . . ,M − 1

}
. Alterna-

tively, we will also use the real composite notation for the
constellation signal points: vi =

(
vI i, vQ i

)T . We will assume
that the signaling is equiprobable over the signal set, that is, the
symbols are taken with probabilities 1/M . This assumption is
in general suboptimal in terms of mutual information [25],
but it is common in most practical implementations. The
equiprobability assumption lets us focus on the selection of
the set of signal points. In the sequel, we will use the term
constellation for both the complex random variable V and the
M-ary alphabet V.

The designed constellations are optimal in the sense that,
at high signal-to-noise-ratio and for an asymptotically large
number of symbols, yield the lowest probability of error under
an average power constraint for AWGN channels. Since for
any discrete constellation the SER, as well as the mutual
information or the minimum mean-squared error (MMSE), all
have an asymptotic behavior proportional to Q

(√
gd/2

)
, where

Q(·) denotes the Gaussian Q-function and d is the minimum
Euclidean distance of constellation V [26], the problem is
equivalent to finding the 2D signal set of size M that, for
a given channel power gain g, maximizes d.

C. Widely Linear Improper Constellations

Recently, a family of improper discrete constellations, which
are generated by a WLT of a standard proper M-QAM
constellation, has been proposed in [23]. More specifically,
starting from a standard unit energy M-QAM constellation

X = XI + jXQ, the improper constellation with a prescribed
circularity coefficient κ is generated as

V = VI + jVQ = h1X + h2X∗, (4)

where h1 =
√

0.5(1 + α) and h2 =
√

0.5(1 − α)e jφ , where α =√
(1 − κ2), and the optimal phase φ∗ ∈ [0, π/2] is chosen to

maximize the minimum distance between constellation points.
For 0 ≤ κ ≤ 0.5 the optimal phase in (4) for an arbitrary M is
φ∗ = π/2. On the other hand, when 0.5 ≤ κ ≤ 2√

5
the optimal

phase satisfies the nonlinear equation

(1 − κ cos(φ)) = 2 (1 − κ sin(φ)) ⇔ 2 sin(φ) − cos(φ) =
1
κ
, (5)

whose solution is straightforwardly obtained as

φ∗ = arccos

(
−1 + 2

√
5κ2 − 1

5κ

)
∈ [0, π/2]. (6)

Meanwhile, for M = 4 it is possible to calculate φ∗ for
0.5 ≤ κ ≤ 1 using (6), the φ∗ for M > 4 and 2√

5
< κ ≤ 1 must

be found by an iterative algorithm that explores all pairwise
distances between constellation points.

The widely linear transformation (4) can be expressed in
matrix form as[

VI

VQ

]
︸︷︷︸

v

=

[
h1 + |h2 | cos(φ) |h2 | sin(φ)
|h2 | sin(φ) h1 − |h2 | cos(φ)

]
︸                                          ︷︷                                          ︸

H(φ,κ)

[
XI

XQ

]
︸︷︷︸

x

, (7)

The WLT constellation generated as (7) is easy to obtain
and allows us to derive linear MMSE-like receivers (or to
apply successive cancelation techniques). Nonetheless, even if
φ∗ is used, the produced improper constellation is not optimal
from an error rate point of view. In this paper, we propose
another improper constellation with lower probability of error
in AWGN channels, as well as better shaping, coding, and
power gains. These concepts are briefly reviewed in the next
section.

III. SHAPING, CODING, AND POWER GAINS

A. 2D lattices

A signal constellation is commonly defined as a set of points
of a repetitive grid or lattice, denoted here as Λ, that are within
a selected boundary. An n-dimensional lattice is defined as a
discrete subset of Rn that has a group structure under common
vector addition [27], [28].

In this work, we focus on 2-dimensional (2D) lattices which
are of interest to define M-QAM constellations. Two typical
examples are the square lattice Z2 =

{
(a, b)T

�� a, b ∈ Z
}
, and

the hexagonal lattice H2 =

{
a (1,0)T + b

(
1
2 ,
√

3
2

)T ���� a, b ∈ Z
}
.

The minimum distance between any two lattice points for both
Z2 and H2 equals one, i.e., dmin

(
Z2) = dmin (H2) = 1. In

general, however, we will consider arbitrary scaled versions
of the aforementioned lattices with minimum distance denoted
as d = dmin (Λ). It is well known that the optimal 2D lattice
for both coding and quantization purposes (i.e., considering
the packing efficiency and covering efficiency of the lattice)
is the hexagonal lattice [28]. Therefore, in this paper we
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focus on this lattice to design the improper constellations. For
higher-dimensional lattices, the so-called Voronoi constella-
tions, based on partitions of N-dimensional lattices are known
to achieve good shaping gains [29].

The Voronoi region of a 2D lattice point x is the set of all
points in R2 that are closer to x than any other lattice point
[27]. Due to the repetitive structure of the lattice, the Voronoi
regions of its points are alike and, since they are disjoint,
induce a partition or tiling of R2. The volume (or surface in
R2) of the Voronoi region defines the fundamental volume of
a lattice, denoted as Vol (Λ). For instance, the Voronoi region
for Z2 is a square of side d = 1: Vol

(
Z2) = d2 = 1; and for

H2 is an hexagon of apothem d
2 =

1
2 : Vol (H2) =

√
3

2 d2 =
√

3
2 .

The result of a lattice, Λ, shifted (or translated) by a vector
c < Λ, denoted by Λ + c, is not another lattice because the
resultant grid does not include point 0 and, consequently,
the group structure is lost. Nonetheless, the translated lattice
preserves the periodic structure and thus the geometrical
properties of Λ. In this paper, we consider 2D constellations

carved from Z2 +
(

1
2 ,

1
2

)T
(square constellations) and from

H2 +
(

1
2 ,0

)T
(hexagonal constellations).

B. Shaping and Coding Gains
Since there exists one lattice point per fundamental volume,

its reciprocal is the number of lattice points per unit volume
and, when properly scaled, is a measure of the packing of the
lattice points. Specifically, the coding gain of a 2D lattice is
defined as [30]

γc (Λ) ,
d2

Vol (Λ)
. (8)

Note that γc
(
Z2) = 1 and γc (H2) =

2√
3
≈ 1.1547.

A signal constellation may be shaped by choosing the points
of Λ or Λ + c that are within some region R, i.e.: C (Λ,R) =
(Λ + c) ∩ R. R is commonly referred as the envelope of the
constellation C (Λ,R) (or simply C). A proper selection of the
shifting vector c and of the constellation envelope R provides
certain desirable properties to C, such as: zero mean, number
of signals that is a power of 2, or increased power efficiency.

The shaping gain of a 2D region R is defined as [30]

γs (R) ,
Vol (R)
6ε (R)

, (9)

where Vol (R) is the volume of the region R and ε (R) denotes
the average energy (or the non-centered second order moment)
of a uniformly distributed random variable x over the region
R:

ε (R) =
1

Vol (R)

∫
R

‖x‖2 dx. (10)

The factor 6 that appears in the denominator of (9) produces
a unit value shaping gain for an

√
Md-side square region R that

is the envelope of a standard square M-QAM constellation.
Given an M-ary discrete constellation C with sufficiently

large M , ε (R) approaches the average energy of C, ε (C),
which is known as the continuous approximation

ε (C) =
1
M

M−1∑
i=0
‖xi ‖2 ≈ ε (R) . (11)

Neglecting the constellation borders effect, it is also pos-
sible to approximately compute M by means of the quotient
between the volume of R and the fundamental volume:

M ≈
Vol (R)
Vol (Λ)

. (12)

C. Constellation Figure of Merit and Power Gain

The aggregate effect of the coding and shaping gains of
a constellation C is measured by the Constellation Figure of
Merit [27], which for a 2D constellation is defined as

CFM (C) ,
d2

ε (C)
. (13)

For large M , we can use the approximations given in (11)
and (12) to write CFM (C) as

CFM (C) =
6
M

M
6

d2

ε (C)
≈

6
M

Vol (R)
6Vol (Λ)

d2

ε (R)
, (14)

which can be finally expressed in terms of the coding and
shaping gains as

CFM (C) ≈ CFM0 · γs (R) · γc (Λ) , (15)

where CFM0 =
6
M is the approximate value for large

M of the CFM of a square M-QAM constellation(
CFM (M-QAM) = 6

M−1

)
.

The CFM of a unit energy constellation equals d2, thus, the
asymptotic behavior of the error probability is proportional
to Q

(√
g CFM (C)/2

)
. As a consequence, it is possible to

define the asymptotic power gain of constellation C1 over
constellation C2, both with M symbols, as the quotient

g1,2 =
CFM (C1)

CFM (C2)
≈
γc (Λ1)

γc (Λ2)

γs (R1)

γs (R2)
. (16)

Example 1. Let C1 be a M-QAM constellation carved from
the hexagonal lattice with a circular envelope for which
γc (H2) =

2√
3

and γs (R2) =
π
3 ; and let C2 be a square

M-QAM constellation whose coding and shaping gains are,
respectively, γc

(
Z2) = 1 and γs (R1) = 1, then, it follows

that: g1,2 ≈
2π

3
√

3
≈ 1.21 (0.825 dB).

Example 2. Let C1 be a square M-QAM constellation whose
minimum distance is noted as d; and let C2 be the optimal
WLT of C1, as described in [23], with circularity coefficient
κ ∈

[
0, 2√

5

]
. Since the minimum distance of C2 is dmin (C2) =√

d (1 − κ cos (φ)), then if follows that: g1,2 =
d2

d2
min(C2)

= 1 if

κ ∈ [0,0.5] (φ∗ = π/2), and g1,2 =
5

6−2
√

5κ2−1
if κ ∈

[
0.5, 2√

5

]
(see (6) for φ∗).

IV. DESIGN OF OPTIMAL IMPROPER M -QAM
CONSTELLATIONS

A. Asymptotic case

In the proper case, it is well-known that as M → ∞

the optimum signal constellation v =
(
VI , VQ

)T is the
intersection of the hexagonal lattice (Λ = H2) with a circle of
radius R, R = C = {x | ‖x‖ ≤ R}, i.e., C(H2, C). This result
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has been proven in [31] and follows from standard results
in [32].

In the improper case, a similar result holds, and the optimum
constellation is the intersection of the hexagonal lattice with an
ellipse, R = E, that determines the prescribed circularity co-
efficient κ, i.e., C(H2, E). The optimal improper constellation
preserves the coding gain of its proper counterpart, because
both are carved from the hexagonal lattice, and it only suffers
from a reduction on the shaping gain that is necessary to
achieve κ. Specifically, we have

gproper,imp =
CFM (C(H2, C))

CFM (C(H2, E))
=
γs (C)

γs (E)
=

1
√

1 − κ2
. (17)

To determine the ellipse E we have the following proposi-
tion.

Proposition 1. Let v =
(
VI ,VQ

)T be a continuous random
variable uniformly distributed over an elliptic domain E ⊂ R2

whose semi-major axis and semi-minor axes are denoted as
a and b, respectively. Then, the circularity coefficient of V =
VI + jVQ is

κ =

��E {
V2}��

E
{
|V |2

} = a2 − b2

a2 + b2 =
1 −

(
b
a

)2

1 +
(
b
a

)2 . (18)

Proof. See Appendix A. �

Note that the major axis of E may form an arbitrary angle
θ with the horizontal axis. In the sequel, we will use E0
when θ = 0 (horizontal ellipse). Note also that when a = b
the ellipse degenerates on a circumference and the proper
case κ = 0 is recovered. On the other hand, the maximally
improper case κ = 1 is achieved when b = 0 and then
E becomes a linear segment of length 2a. Since maximally
improper constellations reduce trivially to rectilinear M-PAM
constellations, which can easily be designed, in the sequel we
consider the design of improper constellations with κ ∈ [0,1).

Considering the expression of φ∗ given in Subsection II-C, it
is possible to obtain an analytical expression of the asymptotic
power gain of the optimal improper constellation over the WLT
of a square M-QAM for κ ∈

[
0, 2√

5

]
. Recalling the result of

Example 1 and considering (17), it follows that the asymptotic
power gain of the optimal improper constellation V (carved
from the hexagonal lattice bounded by an elliptic envelope
with circularity coefficient κ) over a square M-QAM is

gV ,M-QAM =
CFM(V)

CFM(M-QAM)
≈

2π
3
√

3

√
1 − κ2. (19)

In addition, using the result of Example 2 and (19), the
asymptotic power gain of V over the optimal WLT of the
square M-QAM constellation, W , may be approximated by

gV ,W ≈


2π

3
√

3

√
1 − κ2, for κ ∈ [0,0.5];

2π
3
√

3

√
1 − κ2 5

6−2
√

5κ2−1
, for κ ∈

[
0.5, 2√

5

]
;

(20)

Fig. 1 plots, in logarithmic units, the power gain of V over W .
The minimum value of the asymptotic power gain gV ,W that
appears at κ = 0.5 is because for such circularity coefficient

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

κ

g V
,W

(d
B
)

Fig. 1. Asymptotic power gain, M → ∞ and high SNR, of the optimal
improper constellation, V , over the optimal WLT of a square M-QAM, W ,
for κ ∈

[
0, 2√

5

]
.

the lattice from which both improper constellations are carved
is hexagonal and thus, their coding gain is 2/

√
3 and they only

differ on their envelope shape that yields a power gain of π/3
(0.2 dB).

It is interesting to note that due to the optimal pack-
ing properties of the hexagonal lattice the optimal improper
constellation V asymptotically outperforms the WLT of a
square M-QAM for any circularity coefficient κ. Moreover,
(19) shows that V even outperforms the square M-QAM for
κ ∈ [0,0.5622].

B. Constellation Design for Finite M

For large M , the volume of the ellipse E, Vol(E), can
be approximated by the sum of the volumes of the Voronoi
regions of the M signals, that is

Vol(E) = abπ ≈ M

√
3

2
d2 = MVol (H2) . (21)

From (18) and (21) it is straightforward to obtain the semi-
axes of the ellipse as

a ≈ d

√√√
M
2π

√
3
(

1 + κ
1 − κ

)
, (22)

b ≈ d

√√√
M
2π

√
3
(

1 − κ
1 + κ

)
. (23)

For large M , C(H2, E0) with E0 being a horizontal ellipse
with semi-axes given by (22) and (23) is the optimal improper
constellation with prescribed circularity coefficient κ. Never-
theless, the accuracy of the continuous approximation, used to
derive (22) and (23), degrades as M decreases and, thus, the
following problems may appear:
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• There is no guarantee that E0 with semi-axes given by
(22) and (23) will enclose exactly M signal points of the
hexagonal lattice.

• Even if E0 encloses exactly M signal points, the actual
circularity coefficient of the constellation may differ from
the prescribed κ.

The proposed algorithm to produce improper constellations
solves these issues in two stages. During the first stage, a
purely hexagonal M-ary constellation V is found by enclosing
exactly M hexagonal lattice points within a rotated version
of E0. Since the circularity coefficient of V , κV , might not
be the targeted one κ, the second stage proposes a simple
widely linear transformation that attains the prescribed κ with
a small distortion of the hexagonal lattice. These two stages
and the final procedure are described in detail throughout the
next paragraphs.

1) Stage I. Finding a pure hexagonal constellation V:
The elliptic domain E0 defined by (22) and (23) and whose
semi-major axis is aligned with the I axis may not enclose
M points of the translated hexagonal lattice. The idea to
solve this problem is to find a rotated version of E0 that
contains exactly M lattice points. We use the lattice shifting

vector c =
(

1
2 ,0

)T
because the translated lattice guarantees

zero-mean symmetric constellations with an even number of
constellation points. This simplifies this stage and guarantees
asymptotical optimality. Due to symmetry, the rotation angle
θ may be confined within the interval

[
0, π2

]
. Specifically,

the proposed method (sketched in Algorithm 1) finds all L
candidate constellations, Vi , whose envelope is E0 rotated by
θ[i], i = 1,2, . . . , L. To explore all the possible constellations
that a counterclockwise rotated version of the ellipse may
produce, it is necessary to carefully select the ellipse rotation
angles. For each lattice point that might be part of a candidate

constellation,
{
vn ∈ H2 +

(
1
2 ,0

)T ���� ‖vn‖ ≤ a
}
, we define an

input and an output angle. The input angle of vn, noted as
θn in, is the smallest non-negative rotation angle for which
vn lays within the rotated ellipse. An initially considered vn
is disregarded if θn in > π

2 because it cannot belong to any
rotated ellipse. In addition, for each vn it is possible to find
an interval of rotation angles [θn in, θn in + ∆θ] for which vn
is within the rotated ellipse, then we define ∆θn = max {∆θ}
and the output angle of vn as θn out = θn in + ∆θn. If θn in = 0
and θn out >

π
2 then vn lays within all the rotated versions

of the ellipse. Then, the set of considered rotation angles
({θ[i], i = 1,2, . . . , L}) can be formed by the set of sorted
distinct input and output angles for all eligible lattice points.
From all the M-ary candidate constellations, Algorithm 1
selects the one, V , that maximizes the minimum constellation
distance d.

2) Stage II. Applying a WLT over V: Algorithm 1 provides
a constellation V carved from the hexagonal lattice and whose
circularity coefficient, κV , approximates the targeted κ. In this
second stage of the method, the pure hexagonal constellation
V is widely linear transformed if κV is not sufficiently close to
κ (|κV − κ | > ε). ε is a parameter that measures the maximum
tolerable error on the obtained circularity coefficient. The WLT

Algorithm 1: Design of a hexagonal M-ary constella-
tion with circularity coefficient κV ≈ κ.
Input: M and κ;
Output: V , d, and κV ;
set ε ;

V ←− 0; d ←−
√

12
M2−1 /*dmin of unit energy

M-PAM*/;
define E0 (set a, as in (22), and b, as in (23));

define θn in and θn out for each vn ∈ H2 +
(

1
2 ,0

)T
such

that ‖vn‖ ≤ a;
θ ←− non repeated values of θn in and θn out; sort θ;
for i ←− 1 to L do
Ei ←− rotate E0 angle θ[i];
find lattice points within Ei , noted {v}i;
Mi ←− # {v}i; /*Compute the cardinality of {v}i*/
if Mi = M then

σ2
i ←− E

{
|Vi |

2}; σ̃2
i ←− E

{
V2
i

}
;

Vi ←−
Vi

σi
e−j

∠σ̃2
i

2 ; κi ←− E
{
V2
i

}
;

if |κi − κ | ≤ ε then
di ←− dmin(Vi); /*dmin of the hexagonal
constellation*/

else
di ←− dmin(WLT(Vi)); /*dmin of the
quasi-hex. constellation*/

end
if di > d then

V ←− Vi; d ←− di; κV ←− κi;
end

end
end

of V produces a quasi-hexagonal constellation V ′ = h1V+h2V∗

with the desired circularity coefficient κ. A large value of ε
can be used to avoid the WLT of V , hence preserving the
optimal packing properties of the hexagonal lattice. A small
value of ε should be used when it is necessary to obtain,
with high accuracy, a constellation with a prescribed circularity
coefficient.

Based on the assumption that κV will be not too far from
the desired κ and that σ̃2

V = κV (note that in Algorithm 1 the
phase of the complementary variance of the energy normalized
output V is set to zero), in Appendix B we derive the following
WLT for this problem

h1 =

√√√
1
2

(
1 − κV κ
1 − κ2

V

+ α

)
, (24)

h2 =

√√√
1
2

(
1 − κV κ
1 − κ2

V

− α

)
e jφ, (25)

where φ = 0 for κ > κV , and φ = π for κ < κV ; and

α =

√
1−κ2

1−κ2
V

. Notice that h1 and h2 are both real scalars

for the proposed WLT.
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The proposed WLT requires no optimization and slightly
distorts the hexagonal lattice. To show the latter statement, let
vm = vI m+ jvQm and vn = vI n+ jvQ n be two arbitrary points
of the original constellation V with squared distance

d2 (vm, vn) = (vI m − vI n)
2 +

(
vQm − vQ n

)2
. (26)

Applying the proposed WLT we get the transformed points
v′m = h1vm + h2v

∗
m and v′n = h1vn + h2v

∗
n, whose squared

distance can be expressed as

d2 (
v′m, v

′
n

)
= (vI m − vI n)

2 (h1 + |h2 |)
2

+
(
vQm − vQ n

)2
(h1 − |h2 |)

2 . (27)

Taking into account the definition of h1 and h2 in (24)
and (25), respectively, it is easy to get

d2 (
v′m, v

′
n

)
=

[
(vI m − vI n)

2 −
(
vQm − vQ n

)2
] (

κ − κV

1 − κ2
V

)
+d2 (vm, vn)

(
1 − κV κ
1 − κ2

V

)
. (28)

Since we are assuming that κV is close to κ, the first term in
the right hand side of (28) is typically much smaller than the
second one. This, in turn, means that the squared distances are
only slightly modified by the proposed WLT and, therefore, the
quasi-hexagonal constellation V ′ is a barely distorted version
of the starting hexagonal constellation V .

Figures 2 and 3 show a graphical comparison between the
hexagonal, V , and the quasi-hexagonal, V ′, 16-ary and 64-ary
constellations for a target κ = 0.4. In both cases, the distortion
of the constellation provoked by the WLT is negligible and the
power efficiency loss is minor. The power gain of the 16-ary
hexagonal constellation over its quasi-hexagonal counterpart
is 0.22 dB. The same result for the 64-ary constellation is
just 0.01 dB. In general, for larger values of M the distortion
and the power efficiency loss with respect to the hexagonal
constellation diminishes because κ and κV are usually closer,
as shown in the example.

3) Final algorithm: Stages I and II combined yield either a
quasi-hexagonal or a hexagonal constellation with a circularity
coefficient that matches, within the maximum tolerance ε , the
target κ. This combination may be summarized as follows.
First, Algorithm 1 is applied to obtain a purely hexagonal M-
QAM constellation V with an elliptical envelope of prescribed
eccentricity. The circularity coefficient of V , noted as κV ,
approximates κ due to the definition of the intersecting ellipse
semi-axes according to (22) and (23). If the error of this
approximation is larger than the established ε , we apply the
WLT detailed in Stage II.

Nonetheless, the constellation V that eventually maximizes
the minimum distance of V ′ is not always obtained using
an ellipse of circularity coefficient κ. The final algorithm
takes this issue into account and takes advantage of the fast
computation of the minimum distance of the transformed
constellation V ′ to expand the search. In Stage I, this expanded
search uses several values for the target circularity coefficient
around the target one κ. The result of this search is a hexagonal
or quasi-hexagonal constellation that, achieving a circularity

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1

0

1

2

Re

I
m

Hexagonal
Quasi-Hex.

Fig. 2. Comparison of a hexagonal 16-QAM constellation V with κV =
0.35446 and dmin(V ) = 0.6576 with its WLT quasi-hexagonal constellation
V ′ with κ = 0.4 and dmin(V

′) = 0.64087.
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m
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Fig. 3. Comparison of a hexagonal 64-QAM constellation V with κV =
0.40495 and dmin(V ) = 0.32233 with its WLT quasi-hexagonal constellation
V ′ with κ = 0.4 and dmin(V

′) = 0.3219.

coefficient within the prescribed precision ε , provides the
largest minimum distance among all explored constellations.
Algorithm 2 sketches the final procedure.

From a computational viewpoint, an efficient implementa-
tion of Stage I has complexity O (L log (L)), with L being the
number of distinct input/output angles, whereas the complexity
of Stage II is O(M).

V. SIMULATION RESULTS

In the sequel, we will note a general square M-QAM
constellation as X and its optimal WLT, described in [23],
as W . In addition, we will write V ′ for a general improper
M-QAM constellation obtained by means of the procedure



8

Algorithm 2: Design of an improper M-ary constella-
tion with circularity coefficient κ.

Input: M and κ;
Output: V ′ and d;
set ε ;
define the search interval around κ, denoted as κI ;
for i ←− 1 to length of κI do

κi ←− κI [i];
use Algorithm 1 to obtain Vi , di , and κVi ;
if di > d then

if
��κVi − κ

�� ≤ ε then
V ′←− V ; d ←− di; /*Output hexagonal

constellation*/
else

set h1, as in (24), and h2, as in (25);
V ′←− h1Vi + h2V∗i ; d ←− di; /*Output

quasi-hex. constellation*/
end

end
end

described in this paper. Finally, we are using ε = 10−8 as the
maximum error on the obtained circularity coefficient.

A. A first example

Fig. 4a shows an improper constellation with M = 256
signal points designed with the proposed algorithm. The quasi-
hexagonal lattice provides a nearly optimal packing, while
the elliptic boundary optimally shapes the constellation for
a prescribed circularity coefficient κ = 0.95. For comparison,
the constellation designed with the optimal WLT of the 256-
QAM is shown in Fig. 4b. In this case, the minimum distances
of each constellations are: dmin(W) = 0.0860 and dmin(V ′) =
0.0942 (note that dmin(X) = 0.1534). Thus, the power gain of
the quasi-hexagonal constellation over the optimal WLT of the
256-QAM is about 0.8 dB.

B. SER evaluation

In this subsection, we study the SER performance of the
proposed improper constellations, V ′, by means of 10 000
simulations each one considering the decoding of 10 000
symbols. The receiver applies the optimal maximum likelihood
decoder for this problem, which amounts to finding the closest
lattice point to a given noisy observation [33], [34].

We compare the performance of V ′ with the proper square
M-QAM constellation, X , and its improper counterpart ob-
tained by means of the WLT, described in [23], with both
ML (WLT-ML) and MMSE (WLT-MMSE) decoding. Fig. 5
shows the results for improper constellations with M = 16 and
κ = 0.8. For high SNRs the proposed quasi-hexagonal design
provides an improvement of about 0.5 dB with respect to the
WLT design using ML decoding, meanwhile the asymptotic
result (see Fig. 1) is about 0.78 dB. The performance of the
MMSE decoder for the WLT constellation degrades signifi-
cantly in comparison to the optimal ML decoding due to noise

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1

0

1

2

Re

I
m

(a)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

Re

I
m

(b)

Fig. 4. Comparison of 256-QAM improper constellations with κ = 0.95. (a)
Quasi-hexagonal packing constellation with elliptic envelope, V ′. (b) Optimal
WLT of a square 256-QAM, W .

enhancement. When the circularity coefficient is reduced to
κ = 0.2 we obtain the curves shown in Fig. 6. Interestingly, in
this case the proposed improper constellation even outperforms
the proper 16-QAM constellation. Particularly in this case, the
power gain is about 0.3 dB.

In the second example, we design constellations with M =
64 symbols. The results for κ = 0.8 and κ = 0.2 are shown
in Figs. 7 and 8, respectively. For high SNRs, the proposed
quasi-hexagonal design for κ = 0.8 provides an improvement
of about 0.6 dB with respect to the WLT design using ML
decoding which is closer to the asymptotic result than for M =
16. For κ = 0.2 the proposed constellation provides a power
gain about 0.5 dB over the proper 64-QAM constellation that
also gets closer to the asymptotic result (0.74 dB) than for
M = 16. In general, the power gain of V ′ over W gets closer
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Fig. 5. SER vs. Eb/N0 for different 16-QAM constellation designs. We
compare the following designs: a square 16-QAM constellation (“Proper”)
and its WLT with ML decoding (“WLT-ML”) and with MMSE decoding
(“WLT-MMSE”); and the proposed constellation with quasi-hexagonal pack-
ing (“Proposed”). The improper constellations produce κ = 0.8
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Fig. 6. SER vs. Eb/N0 for different 16-QAM constellation designs. The
improper constellations produce κ = 0.2.

to the asymptotic gain of Fig. 1 when the constellation size
increases. Nonetheless, even for a moderate alphabet size (as
small as M = 16) and for different values of the circularity
coefficient κ, a noticeable power saving is achieved by the use
of the quasi-hexagonal constellation proposed in this paper.

C. Application to UCR

Let us consider an underlay cognitive radio scenario with
single antenna transmitters and receivers, whose model is
depicted in Fig. 9. Assuming a flat-fading wireless channel,

0 5 10 15 20 25
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Fig. 7. SER vs. Eb/N0 for different 64-QAM constellation designs. The
improper constellations produce κ = 0.8.
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Fig. 8. SER vs. Eb/N0 for different 64-QAM constellation designs. The
improper constellations produce κ = 0.2.

the received signals can be modeled as

Yp =
√
gp Vp +

√
gps V + Np , (29)

Y =
√
gV + N , (30)

where Vp and V are, respectively, the unit energy transmitted
signal from the PU and from the SU; Np and N are circular
(proper) Gaussian noise with zero mean and unit variance;
gp and g are, respectively, the power gains at the PU and at
the SU channels that numerically match the signal-to-noise-
ratio at the PU and at the SU receivers; and gps is the power
gain of the cross channel, which is a deterministic and known
constant that matches the interference-to-noise ratio at the PU
receiver. Note that the interference from the PU to the SU can
be regarded as an increased noise level or equivalently as a
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√
gp

√ gps

√
g

Vp

V

Yp

Y

+

+

Np ∼ CN(0, 1)

N ∼ CN(0, 1)

Fig. 9. UCR channel model. The top link is the PU, whereas the bottom link
is the SU, which may transmit improper signals.

decreased signal level and is thus implicit in the power gain
g in (30).

In the UCR paradigm the unlicensed SU, represented by
the bottom link in Fig. 9 and modeled in (30), is allowed to
coexist with the PU (top link represented by (29)) as long as
it ensures a minimum transmission rate for the PU. That is,
the transmit power and signaling scheme of the SU must be
selected to control the interference level at the primary receiver
such that the PU’s rate requirement is guaranteed.

In [14], it was shown that for improper Gaussian signaling
improves the SU rate, while ensuring the PU a prescribed rate
R̄, if

gps > g

(
1 −

gp

22R̄ − 1

)
. (31)

If this condition is satisfied, the SU can transmit at a higher
rate by increasing its transmit power and its circularity coeffi-
cient according to the expressions provided in [14]. That is, the
transmit power is increased over the transmit power used by
the proper signaling scheme. Since improper Gaussian signals
maximize the differential entropy among all random signals
with the same κ, the rate of the PU, R̄, is still ensured if
the SU uses an improper discrete modulation scheme instead
of improper Gaussian signaling. The prescribed PU rate con-
straint has been chosen as α log2(1 + gp), where 0 ≤ α ≤ 1 is
called the loading factor and the second term is the channel
capacity.

We consider a UCR system with α = 0.25 and equal channel
power gains gp = g = 30 dB. The SU transmits a 64-QAM
constellation. Fig. 10 shows the resulting SER achieved by the
SU using the following three constellations: the conventional
proper (or square) 64-QAM, the improper WLT design [23]
with ML detection, and the proposed design. We observe
that the improper modulation schemes provide significant
SER reduction over the conventional QAM constellation.
Furthermore, the proposed design outperforms the WLT-based
design from [23], as suggested by the SER evaluation of
Subsection V-B. This practical example also shows that the
results and conclusions drawn from Gaussian signaling carry
over to more realistic discrete modulation schemes.

VI. CONCLUSIONS

Motivated by a problem in UCR networks, this paper has
addressed the design of improper discrete constellations with
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E
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Fig. 10. Comparison of the SER achieved by an SU in an UCR scenario
using different 64-QAM constellation designs. The loading factor is α = 0.25
and the SNR is 30 dB.

a given circularity coefficient under a given power constraint
in AWGN channels. At high SNR the proposed method is
asymptotically (as the number of symbols grows to infinity)
optimal. The proposed algorithm for M-ary constellations
consists of two stages. In the first stage we find a rotated ellipse
that intersects the hexagonal lattice enclosing exactly M lattice
points. The circularity coefficient of the constellation designed
in this way approximates the desired one. To exactly achieve
the prescribed circularity coefficient, in the second stage of the
algorithm we apply a widely linear transformation with a slight
distortion of the hexagonal lattice. A secondary user of an
underlay CR network transmitting the designed constellations
may achieve a significant SER reduction in comparison to the
use of proper M-QAM constellations or previously proposed
improper constellations.

APPENDIX A
PROOF OF PROPOSITION 1

Let us define a continuous random variable v =
(
VI ,VQ

)T
that is uniformly distributed over an elliptic domain E0 ⊂ R

2

whose semi-major axis is noted as a and whose semi-minor
axis is noted as b. Without loss of generality we also assume
that the semi-major axis of the ellipse is aligned with horizon-
tal axis I. Under these assumptions, the circularity coefficient
κ of a complex random variable constructed as V = VI + jVQ

is defined as follows

κ =

��E {
V2}��

E
{
|V |2

} =
���� +∞∫
−∞

+∞∫
−∞

v2 fV (v)dvIdvQ

����
+∞∫
−∞

+∞∫
−∞

|v |2 fV (v)dvIdvQ

, (32)

where fV (v) notes the probability density function of the
random variable V at point v = vI + jvQ.

Since V is uniformly distributed over its domain of defini-
tion, then fV (v) = 1

Vol(E0)
, where Vol (E0) = abπ is the volume
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(surface, in this bidimensional case) of E0. As a consequence,
equation (32) takes the form

κ =

���∫
E0

v2dvIdvQ
���∫

E0
|v |2 dvIdvQ

. (33)

In order to solve the integrals that appear in (33) it is very
convenient to use a variable change to convert the elliptic
domain expressed in Cartesian coordinates, vI and vQ, into
a unit circle expressed in polar coordinates, ρ and θ. In this
manner, if we note as g

(
vI , vQ

)
a general scalar function

depending on v = vI + jvQ then is is possible to write∫
E0

g
(
vI , vQ

)
dvIdvQ =

1∫
0

2π∫
0

g (F1 (F2 (ρ, θ))) ab ρ dθdρ,

(34)
where ab is the Jacobian determinant of the vector function(
vI , vQ

)
= F1

(
xI , xQ

)
=

(
axI , bxQ

)
that transforms the unit

circle into ellipse E0, and ρ is the Jacobian determinant of
the vector function

(
xI , xQ

)
= F2 (ρ, θ) = (ρ cos θ, ρ sin θ) that

transforms polar coordinates into Cartesian ones.
Moreover, it is straightforward to express g

(
vI , vQ

)
= v2 in

polar coordinates

v2 =
(
vI + jvQ

)2
= (aρ cos θ + jbρ sin θ)2 =

= ρ2
[
a2

(
1 + cos 2θ

2

)
− b2

(
1 − cos 2θ

2

)
+ jab sin 2θ] , (35)

where it has been considered that cos2 θ =
(

1+cos 2θ
2

)
, sin2 θ =(

1−cos 2θ
2

)
, and sin 2θ = 2 sin θ cos θ.

As a consequence,∫
E0

v2dvIdvQ =

1∫
0

2π∫
0

v2abρ dθdρ =
abπ

4
[
a2 − b2] , (36)

where it has been used that
2π∫
0

cos 2θdθ =
2π∫
0

sin 2θdθ = 0.

In addition, the expression of |v |2 in polar coordinates takes
the form

|v |2 =
��vI + jvQ

��2 = |aρ cos θ + jbρ sin θ |2 =

= ρ2
[
a2

(
1 + cos 2θ

2

)
+ b2

(
1 − cos 2θ

2

)]
. (37)

Therefore, following a similar operative than above, it
follows that∫

E0

|v |2 dvIdvQ =

1∫
0

2π∫
0

|v |2 abρ dθdρ =
abπ

4
[
a2 + b2] ,

(38)
Finally, substituting (36) and (38) in (33), produces the

handy expression of the circularity coefficient for a continuous
random variable uniformly distributed over the ellipse E0 that
is stated at Proposition 1, i.e.

κ =
a2 − b2

a2 + b2 . (39)

APPENDIX B
DERIVATION OF THE WL TRANSFORMATION

Let us assume that we want to transform V , a unit variance
(σ2

V = 1) and purely hexagonal zero mean constellation
with elliptic envelope and circularity coefficient κV , into
constellation V ′, a quasi-hexagonal constellation with a target
circularity coefficient κ , κV . To that end, we apply a common
WLT to V that takes the form

V ′ = h1V + h2V∗, (40)

where h1 and h2 are the complex coefficients that characterize
the WLT. Note that the WLT preserves the zero mean of V .

Considering that h1 and h2 are such that maintain the
variance of V it follows that

σ2
V ′ = E

{
|V ′ |2

}
= |h1 |

2 + |h2 |
2 + 2Re

{
h1h∗2σ̃

2
V

}
= 1, (41)

where σ̃2
V notes the complementary variance of V . Using (41)

is straightforward to find out that the complementary variance
of V ′ matches the expression

σ̃2
V ′ = E

{
V ′2

}
= h2

1σ̃
2
V + h2

2

(
σ̃2
V

)∗
+ 2h1h2. (42)

Without loss of generality we consider that V has a com-
plementary variance that is a real positive number. This
assumption implies that V has to be rotated a proper angle
to achieve that goal (see the next-to-last line of Algorithm 1).
Under this assumption and considering that σ2

V = 1, it follows
that κV = σ̃2

V ∈ [0,1]. Thus, (41) may be written as

σ2
V ′ = |h1 |

2 + |h2 |
2 + 2κV Re

{
h1h∗2

}
= 1, (43)

and (42) becomes

σ̃2
V ′ = κV

(
h2

1 + h2
2

)
+ 2h1h2. (44)

Eqs. (43) and (44) form a set of three non-linear equations
because the latter may be decomposed into its real and imag-
inary parts. In addition, we may express complex parameters
h1 and h2 in magnitude and phase convention as follows:
h1 = |h1 | e jφ1 and h2 = |h2 | e j(φ1+φ). Then, it is possible to
write the problem to solve as

Re
{
σ̃2
V ′

}
= κV

(
|h1 |

2 cos (2φ1) + |h2 |
2 cos (2φ1 + 2φ)

)
+2|h1 | |h2 | cos (2φ1 + φ) , (45)

Im
{
σ̃2
V ′

}
= κV

(
|h1 |

2 sin (2φ1) + |h2 |
2 sin (2φ1 + 2φ)

)
+2|h1 | |h2 | sin (2φ1 + φ) , (46)

1 = |h1 |
2 + |h2 |

2 + 2|h1 | |h2 |κV cos (φ) . (47)

The non-linear system with four unknowns and three equa-
tions described in (45), (46) and (47) is undetermined. Nev-
ertheless, the target κ is assumed to be close to κV and, thus,
V should also be similar to its WLT constellation. In such a
case, we may consider that h1 and h2 are in phase (φ = 0) if
κ > κV , and are in counterphase (φ = π) if κ < κV . Taking
this into account, the non-linear system of equations becomes

Re
{
σ̃2
V ′

}
=

[
κV

(
|h1 |

2 + |h2 |
2
)
+ 2|h1 | |h2 |e jφ

]
cos 2φ1;(48)

Im
{
σ̃2
V ′

}
=

[
κV

(
|h1 |

2 + |h2 |
2
)
+ 2|h1 | |h2 |e jφ

]
sin 2φ1;(49)

1= |h1 |
2 + |h2 |

2 + 2|h1 | |h2 |e jφκV . (50)
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Without loss of generality, we may also impose that V ′ has
a real positive valued complementary variance and, therefore,
κ = σ̃2

V ′ . Finally, the non-linear system of equations may be
rewritten as

κ =
[
κV

(
|h1 |

2 + |h2 |
2
)
+ 2|h1 | |h2 |e jφ

]
cos 2φ1; (51)

0 =
[
κV

(
|h1 |

2 + |h2 |
2
)
+ 2|h1 | |h2 |e jφ

]
sin 2φ1; (52)

1 = |h1 |
2 + |h2 |

2 + 2|h1 | |h2 |e jφκV . (53)

From (52) it is clear that, for arbitrary |h1 | and |h2 |, the angle
φ1 must be zero. As a consequence, the system of equations
simplifies to

κ = κV

(
|h1 |

2 + |h2 |
2
)
+ 2|h1 | |h2 |e jφ, (54)

1 = |h1 |
2 + |h2 |

2 + 2|h1 | |h2 |e jφκV . (55)

From (54) and (55) it is straightforward to obtain

2|h1 | |h2 | =
κ − κV

1 − κ2
V

e jφ, (56)

|h1 |
2 + |h2 |

2 =
1 − κV κ
1 − κ2

V

. (57)

Solving the block of equations (56) and (57) yields

h1 = |h1 | =

√√√
1
2

(
1 − κV κ
1 − κ2

V

+ α

)
, (58)

h2 = |h2 |e φ =

√√√
1
2

(
1 − κV κ
1 − κ2

V

− α

)
e φ, (59)

where φ = 0 if κ > κV , and φ = π if κ < κV ; and α =
√

1−κ2

1−κ2
V

.
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