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Abstract—In this work, a novel use of the Non-Uniform Fast Fourier Transform (NUFFT) in
reflectarray antenna analysis is proposed to greatly accelerate the computation of radiation patterns
using a non-uniform, reduced and adaptive grid in the spectral domain. The proposed methodology is
very useful for very large reflectarrays, which have very narrow beamwidths due to their large directivity,
and shaped-beam reflectarrays for satellite applications such as Direct Broadcast Satellite (DBS), which
might require a compliance analysis in very small angular regions. In those cases, high resolution in the
radiation pattern is required, while a low resolution could be enough elsewhere to account for side lobes.
However, current analysis techniques for such reflectarrays present limitations regarding large memory
footprints or slow computations. The methodology presented in this work allows to overcome those
limitations by performing computations in a non-uniform, reduced and adaptive grid in the transformed
UV domain, achieving faster computations using considerably less memory. Numerical examples for
current applications of interest are provided to assess the capabilities of the technique. In particular,
the use of the NUFFT allows to compute efficiently the radiation pattern in any principal plane with
improved resolution for multibeam applications. Also, compliance analyses for DBS applications may
be improved with the use of a reduced, multiresolution grid and the NUFFT. The proposed technique
is thus suitable to greatly accelerate optimization algorithms.

1. INTRODUCTION

The most common use of the Non-Uniform Fast Fourier Transform (NUFFT) in array antenna analysis
is the efficient computation of the radiation pattern of aperiodic arrays [1, 2], which may be applied to
the process of thinning arrays with reduced side lobes [3, 4], multi-objective optimization of aperiodic
arrays using evolutionary algorithms [5], secondary lobe [6] or grating lobe [7] suppresion, maximum
reduction of the interference in wireless communication systems [8], amplitude controlled reflectarrays
using non-uniform frequency selective surfaces [9], and electronically steerable arrays with evolutionary
algorithms [10], among others. In particular, we will focus on a particular type of array antennas, i.e.,
reflectarray antennas, since current applications demand very large reflectarrays composed of thousands
of elements, requiring efficient computational techniques for their analysis, where the NUFFT may be
applied to improve the performance of current analysis techniques.

Reflectarray antennas have been proposed for applications that require very large, high gain
aperture antennas, such as multibeam [11], Synthetic Aperture Radar (SAR) [12–14] or Direct Broadcast
Satellite (DBS) [1, 15–17]. Such reflectarrays are composed of thousands of elements and present very
narrow beamwidths. For instance, the reflectarray in [15] has 7 000 elements while the one in [16] has
close to 13 500 elements with an aperture size of 78λ×74λ at central frequency. In both cases, there are
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coverage zones with an angular range smaller than 1� in the spectral grid. Even larger reflectarrays have
been proposed for multibeam [11] with more than 20 000 elements with an aperture size of 120λ× 120λ
at 20 GHz, providing a beam spacing smaller than 0.6�. In [13] two rectangular reflectarrays composed
of 51 750 and 61 650 elements were proposed for SAR with a beamwidth smaller than 0.4� in azimuth,
while in [14] an extremely large elliptical reflectarray composed of 180 000 elements and 52.8 dBi of gain
was also considered for SAR applications. The radiation pattern computation of such reflectarrays is
a challenging task since they require a high spectral resolution to properly capture their features, but
prevailing analysis techniques present certain limitations that make this computation a challenge from
the point of view of computing time and memory footprint.

Currently, there are two methods for the computation of radiation pattern: an analysis using the
Fast Fourier Transform (FFT) and the direct evaluation of the equations. Both present some limitations
when dealing with very large reflectarrays such as the ones mentioned above. On the one hand, the
analysis with the FFT [18] allows to efficiently compute the array factor, or more generally the spectrum
functions. However, one limitation of the analysis with the FFT is that the spectral grid where the far
field is computed and fixed, usually has M = 2n × 2n points [19], with n ∈ N controlling the far field
resolution. Thus, memory usage grows exponentially as n increases linearly. Due to the high gain of
those reflectarray antennas, this might become an issue when performing reliable compliance analyses
in very small coverage zones, or when computing the radiation pattern of reflectarrays with very narrow
beamwidths. On the other hand, the memory issue may be circumvented by a direct evaluation of the
equations, since there is flexibility to choose the spectral grid in that case, for instance with a grid
with high resolution in the region of interest, and sparse elsewhere, so the total number of points in the
spectral domain is considerably reduced [20, 21]. However, this approach is extremely slow due to the
high number of reflectarray elements involved, which must be evaluated one by one. Until now, there has
not been any technique which is able to compute the radiation pattern of such large reflectarrays with
high resolution in an efficient fashion while having a low memory footprint, since they either employ a
large amount of memory for a high resolution far field [19] or are very slow if using a direct evaluation
of the equations [20, 21].

In this paper, we propose a novel use of the Non-Uniform FFT (NUFFT) [22] which has not been
considered previously in the literature by the antenna community. It allows to efficiently compute the
radiation pattern of very large reflectarrays with high resolution in the area of interest while keeping a
low memory footprint, thus solving the aforementioned limitations of current analysis techniques (FFT
and direct evaluation). It is based on the use of a non-uniform, adaptive grid in the spectral domain
for the computation of the far field with the NUFFT. Unlike the common approach of the NUFFT
in the antenna literature, only employed for an efficient analysis of aperiodic arrays [1, 20, 23], here we
exploit the fact that the NUFFT allows to have non-uniform grids in both domains, the physical element
coordinates (x, y) and, in particular, the spectral grid (u, v). A number of practical scenarios where this
technique may be employed to overcome the computing time and memory footprint issues are presented.
In all cases, the proposed technique is compared with the FFT analysis and direct evaluation of the
equations, showing superior performance. Thus, its use in optimization schemes would allow to greatly
accelerate computations while reducing memory footprint, since the analysis routine is called hundreds
or thousands of times.

2. FAR FIELD COMPUTATION OF LARGE REFLECTARRAYS

2.1. Analysis with the FFT and Limitations

The most time-consuming operation when computing the radiation pattern of a bidimensional planar
aperture is the computation of the spectrum functions. If the aperture has the tangential field uniformly
discretized in N = Nx Ny samples, a generic spectrum function may be expressed as [20]:

P (u, v) = K
N∑

i=1

[
Ei(xi, yi) exp

(
jk0 (uxi + v yi)

)]
, (1)

where Ei is one generic component of the tangential field, (xi, yi) the coordinates of the center of the
i-th sample or element, k0 the free-space wavenumber, and K(u, v) the unit cell pattern which responds
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to [20]:

K(u, v) = a b sinc
(

k0 ua

2

)
sinc

(
k0 v b

2

)
, (2)

a, b being the periodicity of the samples and u = sin θ cos ϕ, v = sin θ sin ϕ (see Figure 1). Although
Figure 1 shows a general case in which both domains, physical and spectral, are non-uniform, in this work
we will focus on periodic reflectarrays with a non-uniform spectral grid, since the aperiodic reflectarray
case is studied elsewhere [1, 20].
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Figure 1. Sketch of an aperiodic array with a non-uniform UV domain, with high resolution in the
regions of interest and a sparse grid elsewhere. The NUFFT allows to perform efficiently this kind of
computations.

When both domains, (x, y) and (u, v), are uniformly discretized, Eq. (1) can be efficiently evaluated
by means of the FFT [19]. For this purpose, the number of points in the source domain (x, y) is extended
in order to obtain a high resolution in the transformed domain (u, v). This is done by setting Ei = 0
to those elements which do not belong to the actual aperture or array. If (a, b) is the periodicity in
(x, y) and M = Mu Mv the number of points in the (u, v) domain, the spectral variables are discretized
according to a fixed grid as follows:

u =
2π p

Mu a k0
− π

a k0
; p = 0, 1, . . . , Mu − 1, (3a)

v =
2π q

Mv b k0
− π

b k0
; q = 0, 1, . . . , Mv − 1, (3b)

where a shift in the indices p and q was applied to center the UV grid [19]. As a result of Eq. (3), the
range of the UV coordinates for the FFT analysis is:

−λ0

2a
≤ u <

λ0

2a
and − λ0

2b
≤ v <

λ0

2b
, (4)

which depends on the array periodicity. As illustrated in Figure 2, when the array periodicity is smaller
than half a wavelength, the FFT computes the array factor (or spectrum function) in a grid larger than
the visible region. Those points that lie outside the unit circle correspond to complex (θ, ϕ) angles and
should be discarded. When the array periodicity is larger than half a wavelength, there are regions of
the unit circle in which the FFT is not able to compute the array factor. In this latter case, there may
still be regions with complex (θ, ϕ) angles (see Figure 2(b)). As demonstrated in [20], the NUFFT is
able to overcome this limitation, computing the radiation pattern in the whole visible region regardless
of the periodicity. Furthermore, for the use of the FFT algorithm, the number of points in the (u, v)
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Figure 2. Influence of the periodicity of the source domain (x, y) in the UV grid for the FFT analysis.
The grey area represents the grid where the FFT computes the array factor or spectrum function.
(a) Periodicity smaller than half a wavelength. (b) Periodicity larger than half a wavelength.

domain is usually M = 2n × 2n. Common values are n = 8, 9 or 10, which give (u, v) grids of 256× 256,
512 × 512 and 1024 × 1024 points. However, for very large arrays with high directivity, the main beam
is very narrow, and higher values might be needed, such as n = 11, 12. Although computing time is still
fast since the FFT is employed, memory usage grows exponentially with higher (u, v) resolutions.

2.2. Computation of the Radiation Pattern with the NUFFT

The NUFFT efficiently evaluates Eq. (1) when either or both domains are non-uniform [22], as depicted
in Figure 1. In this way, aperiodic reflectarrays whose radiation pattern is computed in a non-uniformly
sampled UV grid may be efficiently analyzed [21]. This allows to greatly reduce the number of points
in the side lobes region while increasing resolution in the main beam, reducing memory usage and
accelerating computations.

More specifically, the NUFFT is a generalization of the FFT to allow for non-regular grids in either
or both domains [24], reducing the time cost of evaluating Eq. (1) from O(MN) of the inefficient direct
evaluation to O(M log M). This is achieved by approximating the complex exponential with different
interpolating schemes, for instance based on the Gaussian bell or the fast multipole method [24], so the
FFT can be applied in an oversampled uniform grid. The main difference of the NUFFT with regard to
traditional interpolation methods is that the NUFFT has a complete control on the obtained accuracy.
There are many algorithms for the implementation of the NUFFT [22–27], and here we employ one
based on a fast Gaussian interpolation, in which the oversampled uniform grid is obtained through a
convolution with Gaussian functions, and after applying the FFT, the desired function is obtained by
deconvoluting the result of the FFT. Specific details may be found in [22, 25].

Unlike other works in the literature regarding reflectarray analysis, where the NUFFT is applied
only to analyse aperiodic antennas [1, 20], here we provide the insight that by considering a non-uniform
spectral grid, and a more powerful analysis technique may be employed, for either periodic or aperiodic
reflectarrays. Thanks to the NUFFT, the computation of the far field with Eq. (1) becomes more
flexible, since it can be obtained only in a region of interest, since the UV grid is not fixed using the
NUFFT, in contrast as with the FFT by virtue of Eq. (3); or in a multiresolution grid, with low accuracy
for the sidelobes and high accuracy in the region of interest; and even to compute only the principal
planes, which is equivalent to perform a 2D to 1D transformation, as it will be later shown.

Finally, even though the NUFFT achieves the same computational complexity scaling as the FFT,
it is slower and precision dependent. There is a parameter ξ that controls the accuracy of the obtained
results. For the two-dimensional case, its time complexity is [20, 24]:

O(M log M + M log2 ξ−1), (5)

where M > N , and ξ is the desired accuracy, which can be set to obtain an arbitrarily low error, such
that [28]:

||P̃ − P ||
||P || < ξ, (6)
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where P is the exact value and P̃ the computed spectrum function by the NUFFT. However, this comes
at the expense of slower computations. Indeed, compared with the FFT in the same conditions (same
number of points in the UV grid as in [20]), the NUFFT is slower. Here, the UV grids employed with
the NUFFT will have considerably fewer points than the fixed grid employed by the FFT, which will
allow to achieve faster computations with a smaller memory footprint while obtaining higher resolutions
in the areas of interest.

3. VALIDATION

To evaluate and validate the proposed technique, numerical examples are provided for two current
applications of interest. First, a high gain antenna is considered, which is required for satellite multibeam
applications [11], with high resolution and very narrow beamwidth for which only the principle planes
are of interest. Due to the high gain and large number of elements, the use of the FFT requires great
amounts of memory for an adequate spectral resolution, which limits the application of the FFT. The
second example corresponds to a reflectarray for DBS application [15] with coverage zones with different
sizes and covering a very small solid angle in some cases, which makes it difficult to carry out reliable
compliance analyses with the FFT.

In all cases, computations are performed in a laptop with an Intel i7-4712MQ CPU at 2.3 GHz
and 8 GB of memory. Computing time refers to the evaluation of eight spectrum functions, required to
obtain the radiation patterns with the first principle of equivalence for dual-polarized antennas.

3.1. Efficient Evaluation of a Principal Plane for Improved Resolution

The extremely large reflectarrays proposed for applications such as multibeam or SAR complicate the
analysis and synthesis due to the elevated number of elements and the narrow beams, since a high
resolution is required. Thus, it is proposed to use the NUFFT to compute the radiation pattern only
in one cut in the UV grid, so the gain, beamwidth and side lobes may be readily characterized. This
technique can be applied to any other plane by repeating the process. However, this approach is not
possible using the FFT, since it computes the radiation pattern in a fixed 2D grid, employing high
amounts of memory. In addition, a direct evaluation in just the principal plane is possible, but it
requires more computing time than the NUFFT, as it will be shown later.

As an example of a reflectarray for multibeam application similar to [11], an elliptical reflectarray
with 247×241 elements in its main axes is chosen, with a total of 46 751 unit cells. The working frequency
is 19.7 GHz, and the periodicity is 7.5 × 7.5mm2. The feed is placed at (−661, 0, 2 726) mm from the
reflectarray center and is modeled as a cosq θ function with q = 24, which produces an illumination
taper of −11 dB at the reflectarray edges. The reflectarray produces a phase-shift such that it generates
a pencil beam at (θ, ϕ) = (13�, 0�) in the far field.

To test the technique, the main cut will be non-uniform: high resolution will be imposed around
the main beam in u ∈ [0.15, 0.30], with a step of 2−14; a medium resolution in u ∈ [0, 0.15] ∪ [0.30, 0.45]
for the closest side lobes, with a step of 2−12; and low resolution in the rest of the cut for the farthest
side lobes, with a step of 2−10. Due to the relation between θ and u for v = 0, the discretization in the
corresponding intervals in θ is non-uniform. Figure 3(a) shows the computed cut around the main beam
for the NUFFT and two typical values of n for the FFT plus a spline interpolation of a FFT simulation.
As shown, the NUFFT provides high resolution while the memory usage is negligible (< 1MB). To
achieve the same angular resolution with the FFT, a value n = 14 is needed, since the step between
adjacent points in the main beam is 2−14 for the NUFFT. With that resolution, the FFT would have a
memory footprint of 4 GB per spectrum function. The points computed by the FFT with n = 9, 10 lie
exactly on the curve computed by the NUFFT, but do not provide enough density of points for a proper
representation, including the value of maximum gain. When using the spline interpolation for the FFT
with n = 10, side lobes are not well predicted, and worse results were obtained for the interpolation
for the FFT with n = 9. The other principal plane is shown in Figure 3(b), and the same conclusions
are reached. In fact, this plane presents even worse results, since due to the coarse discretization of the
FFT grid, the peak gain is not well predicted, the first null practically lost, and the spline interpolation
provides a worse fit than before, even for n = 10.
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Figure 3. Comparison of the principal planes computed in an adaptive grid with multi-resolution using
the NUFFT (ξ = 10−8) and two typical values of n using the FFT plus spline interpolation. (a) ϕ = 0�.
(b) θ = 13�.
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Figure 4. Comparison of computing time between the direct evaluation and NUFFT when computing
the radiation pattern only in the main cut.

Instead of employing the FFT to compute the radiation pattern and then only extract the main
cut, a direct evaluation may be used to compute only the points in the main cut. It is known that
the computation of the spectrum functions in the whole visible region is considerably slower using this
method, but in the present case the number of points in the spectral domain is considerably reduced.
A computing time study was performed comparing the direct evaluation and the NUFFT with different
precisions, and it is shown in Figure 4, for the discretizations of Table 1. The computing time for
the NUFFT remains flat due to the interpolation of the grid [25], which turns out to have the same
number of points for all the cases considered in Figure 4 (specific details may be consulted in [22, 25, 28]).
Despite the reduction in the number of points in the UV grid, the direct evaluation is still slower due to
the large amount of reflectarray elements, and is only faster than the NUFFT for ξ = 10−8 in the case
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Table 1. Different discretizations to test the adaptive multi-resolution grid in a principal plane with
the NUFFT.

# of points Step in u
[0.15, 0.30] [0, 0.15]∪ [0.30, 0.45] [-1, 0]∪ [0.45, 1]

5276 2−14 2−12 2−10

3433 2−13 2−11 2−10

1718 2−12 2−10 2−9

860 2−11 2−9 2−8

with the smallest number of points in the tested cut. In any case, ξ = 10−2 provides enough accuracy
for the computation of radiation patterns [20].

3.2. Reduced Grid and Multiresolution in the Spectral Domain

To further demonstrate the capabilities of the technique, the large reflectarray for DBS described in [15]
is considered here. It is a 1.2 m elliptical periodic reflectarray composed of 6944 elements with a
periodicity of 13 mm in both dimensions. The coverage zone divides the South American continent
in several areas with different specifications (see Figures 5 and 6). The solid angle covering some of
these areas is very small, so a good far field resolution is required to properly analyse the compliance.
Typical values for n employed in the analysis and synthesis of very large arrays are n = 9, 10 [29],
which might not provide enough points to analyse certain regions for this coverage, such as SC1 or SC2.
Nevertheless, as n increases linearly to improve the resolution, the number of points in the FFT grid
grows exponentially. Although for a single analysis the FFT is still fast, the memory footprint might
become an issue since eight spectrum functions are required using the first principle of equivalence. In
addition, in optimization processes where the analysis routine is called thousands of times, computing
time might increase considerably. The use of the NUFFT with a reduced, adaptive grid solves both the
computing time and memory issues.

A study was carried out for a uniform reduced grid using direct evaluation and NUFFT for different
resolutions. The considered reduced grid is the same region as employed in [15] for the representation
of the results, which roughly is u ∈ [0.05, 0.35] and v ∈ [−0.22, 0.12]. Points outside that region are not
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Figure 5. Adaptive grid for the coverage of
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an improved compliance analysis.
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Table 2. Number of points considered for the computing time and memory studies of Figure 7. The
NUFFT and direct evaluation employ a reduced grid based on that of the FFT.

n FFT points NUFFT and direct evaluation points
9 218 7110
10 220 28620
11 222 114798
12 224 458556
13 226 1836939
14 228 7350642

considered in the computation of the radiation pattern with the NUFFT or direct evaluation. For the
FFT the same resolution is employed, but in the whole visible region due to its limitations. Table 2
summarizes the number of points employed by each method for different values of n. The results for
computing time and memory usage are shown in Figure 7. As can be seen, the direct evaluation of the
equations is the slowest method and should be avoided. The NUFFT was evaluated with several values
of the precision parameter, and in all instances it was faster than the FFT for n ≥ 11, even for the
highest accuracy considered in the study (ξ = 10−8). For values ξ = 10−2, 10−4 the NUFFT is faster
than the FFT even for n = 9, which is only faster for smaller resolutions and high precisions of the
NUFFT. This is possible due to the use of the reduced UV grid, and for n = 9 it has ∼2.6 · 105 points
for the FFT, while it has only 7110 for the NUFFT. Apart from faster computations, the memory used
by the NUFFT is reduced by more than one order of magnitude, as can be seen in Figure 7(b).
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Figure 7. For different analysis methods and reduced UV grid around the coverage area: (a) computing
time for eight spectrum functions, and (b) memory usage per spectrum function (NUFFT with
ξ = 10−10).

Table 3. Number of points in each zone for the Amazonas coverage for different FFT spectral grid
resolutions and an adaptive grid for the NUFFT taking into account overlapping among zones.

SA1 SA2 SB SC1 SC2 SD
n = 9 138 102 261 50 14 328
n = 10 567 428 1015 211 49 1301
n = 11 2261 1709 4074 837 194 5212
n = 12 9024 6859 16269 3355 775 20864

Adaptive grid 825 815 2007 792 798 818
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Table 4. Surface resolution in percentage of each coverage zone for the cases shown in Table 3.

SA1 SA2 SB SC1 SC2 SD
n = 9 0.72 0.98 0.38 2.00 7.14 0.30
n = 10 0.18 0.23 0.10 0.47 2.04 0.08
n = 11 0.04 0.06 0.02 0.12 0.52 0.02
n = 12 0.01 0.01 < 0.01 0.03 0.13 < 0.01

Adaptive grid 0.12 0.12 0.05 0.13 0.13 0.12

DBS applications also require an analysis of the copolar and crosspolar discrimination (XPD)
compliances in the coverage zones, which must be carried out point by point [15]. Each zone has a
minimum copolar gain that must be met (copolar compliance). The XPD is defined as the difference,
point by point, of the copolar and crosspolar gain values. When a coverage area is discretized with
more points, the granularity or resolution to perform the compliance analyses is better. In this regard,
another issue with the Amazonas coverage shown in Figure 5 is the difference in surface extension of
each coverage zone. When being analyzed with the FFT, the step in the spectral grid is fixed [19].
Thus, each zone will have a different number of points, and the disparity will be large between large
and small surfaces. As an example, Table 3 shows the number of points for each zone for some values
of n. As can be seen, the disparity in the number of points between zones grows as n increases. In
addition, small zones such as SC2 require large values of n to have a good number of points to use
for compliance analysis, which results in a slower analysis and high memory footprint using the FFT.
Table 4 shows the surface resolution for the data presented in Table 3. The variation in resolution
between the smallest (SC2) and largest (SD) surfaces is more than one order of magnitude. In addition,
the surface resolution for SC2 is 7.14% and 2.04% for n = 9 and 10, which is not enough to perform
reliable compliance analyses.

To solve this issue, a spectral grid as the one shown in Figure 5 could be used. In this grid, each
coverage zone has roughly 800 points (a surface precision better than 0.2%) with the exception of SB.
This is caused by the overlapping of SA1 and SA2 with SB. (In fact, since SA1 and SA2 are completely
included in SB, the minimum number of points of SB would be the points of SA1 plus SA2.) To
achieve something similar with the FFT, values n ≥ 12 are required (see Table 3), demanding more
computational time and memory, as shown in Figure 7.

Table 5. Computing time in seconds of a multiresolution grid in the spectral domain using different
methods of analysis.

Grid FFT (n=12) Dir. Ev. NUFFT
ξ = 10−6 ξ = 10−2

Figure 5: 8174 points 6.83 1.65 0.08 0.03
Figure 6: 5056 points 6.83 1.05 0.07 0.02

Figure 6 shows the coverage zones only, and the radiation pattern was computed only in those points
with the NUFFT. The main advantage of using the adaptive, multiresolution grids shown in Figures 5
and 6 is the reduced number of points which are employed for an efficient localized computation of the
radiation patterns. Table 5 shows the computing time of different analysis techniques using the spectral
grids shown in Figures 5 (8174 points) and 6 (5056 points). As can be seen, the FFT is the slowest
method of analysis in this case, since a grid of ∼1.7 ·107 points is needed to achieve similar resolution in
the coverage zones (n = 12). The direct evaluation is faster than the FFT due to the reduced number of
points in the UV grid, although its computing time grows fast with the number of points, as it is evident
comparing the computing time for the two grids (this is also true if the number of reflectarray elements
grows). Finally, computations with the NUFFT are the fastest for the adaptive, multiresolution grids,
even for high accuracies (corresponding to low values of the parameter ξ).
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4. CONCLUSIONS

This paper has presented a novel use of the NUFFT for an efficient analysis of very large reflectarrays
using a non-uniform adaptive grid in the spectral domain. The purpose is to overcome some limitations
of current analysis techniques when dealing with very large reflectarrays with high gain. Specifically,
the use of the FFT leads to a high memory footprint and a direct evaluation of the equations is
computationally inefficient. By using the NUFFT to obtain the radiation pattern, those limitations are
overcome, achieving faster computations and a smaller memory footprint thanks to the use of a reduced
spectral grid. Several examples for practical applications such as multibeam and DBS were provided
to demonstrate the capabilities of the proposed technique. First, the NUFFT is employed to perform a
2D to 1D transformation in order to efficiently compute the radiation pattern of some extremely large
reflectarrays in a principal plane, doing so faster than the FFT and direct evaluation with negligible
memory usage for the correct prediction of gain, beamwidth and sidelobes. Then, a large reflectarray
for DBS application is considered, using a multiresolution grid for better gain and XPD compliance
analyses as well as faster computations of the radiation pattern. Memory usage is also reduced by more
than one order of magnitude with regard to the FFT. Due to the superior performance of the proposed
technique with regard to the usual analysis techniques, it is very useful for the optimization of very large
reflectarrays, for instance using multiresolution grids such as the one in Figure 5, since it also includes
a transition zone, copolar isolation and non-coverage areas to control side lobes.
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