
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

Experiments Testing the Commutativity of Finite-Dimensional
Algebras with a Quantum Adiabatic Algorithm

Summary

Determining whether a given algebra is commutative or not is important in the study
of these algebraic objects in general and in the classification of semifields in partic-
ular. The best classical (i.e. non-quantum) algorithm for this task has a running time
which is or orderO(n3), where n is the dimension of the algebra. To reduce this cost,
in this paper we study an approach to test the commutativity of a finite dimensional
algebra using quantum adiabatic computing. Previous quantum algorithms solving
the same problem were based on Grover’s quantum search. The algorithm is built
from a quantum oracle for the multiplication constants of the algebra. Results of the
experiments carried out on a quantum computer simulator, based on two different
annealing schedules, are presented, showing that a quantum adiabatic algorithm for
the problem can determine the commutativity of finite-dimensional algebras with
one-side bounded error with a running time of order O(

√

n3), achieving a quadratic
speed-up over the classical case.

KEYWORDS:
Quantum adiabatic algorithms, Quantum computing, Commutativity, Finite dimensional algebras, Quan-
tum oracles

1 INTRODUCTION

The paradigm of quantum computing1,2,3,4, which is based on a direct manipulation of atomic-scaled states of matter, has been
theoretically shown to outperform classic computations in some cases. For instance, Grover5 and Shor6 algorithms, just to name
the best well-known quantum algorithms, perform respectively quadratically and exponentially better than any other classic
algorithm. Apart from them, other quantum algorithms exist7, but it is seems like there are not so many new alternatives that
outperform classical techniques8. That is the reason why it has been suggested that broading the scope of problems in which the
known quantum algorithms can be applied is an important research direction9.
In this sense, quantum algorithms for the study of problems in algebraic structures have been considered10,11. One of them is

our recent study of commutativity of finite-dimensional algebras over an arbitrary field12. It is based on the model of quantum
gates, that resembles the microdesign of classical algorithms from logical gates13. Our algorithm was theoretically proved to
be quadratically better than any classical algorithm and optimal among the quantum ones (when using the query model). In
practice, however, no large scale experiments have been made, as the current state of technology of general purpose quantum
computers is rather limited14, especially in the number of qubits of the available computers.
Apart from the standard design of quantum algorithms from quantum gates, other approaches exist. Among them, one of

the most popular is that of adiabatic algorithms, which are based on an evolution of the quantum states by a controlled series
of Hamiltonians15,16. So far, This model has practically scaled better, with some quantum machines coping with up to some
hundreds of qubits at the same time17. In this context, we have developed a quantum algorithm for the study of commutativity
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of finite dimensional algebras based on adiabatic techniques. The construction of the required Hamiltonian is based on the
multiplication constant oracle introduced in our previous work and we are able to recover all the good properties of that previous
algorithm in this new setting.
The outline of this paper is as follows. Preliminaries on finite-dimensional algebras and the adiabatic quantum model are

collected in sections 2 and 3. Section 4 is devoted to present a general method to construct a Hamiltonian from a quantum oracle,
and to introduce our adiabatic algorithm based on this methodology. Finally, experiments carried out on a adiabatic quantum
simulator and conclusions can be found in section 5.

2 FINITE-DIMENSIONAL ALGEBRAS OVER A FIELD

In this paper K will be a field (it can be either finite, i.e., a Galois field Fq 18, or infinite such as the real or complex number
fields), and A will be a K−algebra, i.e., a K−vector space equipped with a bilinear product ⋅19. The algebra is commutative or
associative if the multiplication satisfies the commutative or associative properties:

a ⋅ b = b ⋅ a , ∀a, b ∈ A or (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c) , ∀a, b, c ∈ A

If the underlying K−vector space is finite dimensional the K−algebra is called finite-dimensional, and it is known as unital
when the product has an identity element. Examples of unital algebras include division algebras (when any nonzero element has
left and right multiplicative inverses), matrix rings over the field K , Lie and Jordan algebras (i.e., K−algebras satisfying Lie or
Jordan identities20) and finite semifields (i.e., Fq−finite dimensional division algebras21).
If A is a n−dimensional K−algebra (n ∈ ℕ), and B = {x1,… , xn} is a K-basis of a A (i.e., A = K < {x1,… , xn} > and B

is K-linearly independent), then there exists a unique set of constants {Mijk}ni,j,k=1 ⊆ K such that

xi ⋅ xj =
n
∑

k=1
Mijkxk , ∀i, j ∈ {1,… , n}

This set of multiplication constants that completely determines the product in A is called multiplication table corresponding to
A with respect to the basis B. It can be straightforwardly shown that A is a commutative algebra if and only ifMijk =Mjik, for
all 1 ≤ i, j, k ≤ n.
A quantum algorithm for deciding the commutativity of a finite dimensional K−algebra A with basis B = {x1,… , xn} was

introduced in12. In that paper, the multiplication constants of the algebra A with respect to B are query-modeled input data.
These multiplication constants (being elements of the field K) were given by an l−bit representation (when K = Fq is a finite
field with q elements, then l can be taken as ⌈log2 q⌉, whereas when K is an infinite field an standard numerical representation
must be used).
For technical reasons, the algebraAwas embedded in an algebra Âwith holds the same commutative character asA but whose

dimension is slightly larger. In the present paper we proceed in a similar way, but we benefit from the need of more conservative
dimensions than in our previous work. As in the previous paper, an oracle made from the oracle OÂ will be used in the quantum
computations. Then, here is an analogue of12, Lemma 1 that allows us to consider dimensions that are always a power of 2.

Lemma 1. For any n ∈ ℕ, takem ∈ ℕ such that n ≤ 2m. Then, n̂ = 2m, and the n̂−dimensional algebraK−algebra Â = A×K n̂−n

with the product given by the rule (a, �) ⋅ (b, �) = (ab, 0), is commutative if and only A is. In particular, n̂ = Θ(n), and a query
oracle OÂ for the multiplication constants of Â can be made from a query to the oracle OA for the multiplication constants of
A, at most.

Proof. Obviously, the only way Â can be non-commutative is if there exist a and b in A such that a ⋅ b ≠ b ⋅ a in the original A,
for on the new, added elements the multiplication is always 0. What is more, to recover a multiplication constant we only need
to check whether it corresponds to elements from A (in which case we consult OA exactly once) or not (and then we return 0).
What is more, it is clear that this operation can be implemented in a quantum circuit (i.e. with a unitary transformation) provided
we have a quantum circuit for OA.

In this context we model the oracle OÂ in such a way that 3m index register qubits provide the encoding of the triple ijk
while the multiplication constant M̂ijk is added to the l oracle qubits. From it, we build the problem oracle, that models the
binary function f (i, j, k) = 1− �M̂ijk,M̂jik

that marks with a one those multiplication constantsMijk which are different from the
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correspondingMjik, i.e., those constants witnessing the noncommutativity of A. As such an oracle is different whenK has only
two elements or it has more than two, as we will show in detail in Section 4.
The main theorem of12 is the following:

Theorem 1. There is a quantum decision algorithm on the gate model requiring Θ(
√

n3) queries to the oracle OA such that, on
output NO certifies the noncommutativity of A with certainty, while on output YES the probability of A being noncommutative
is a constant strictly smaller than 1. Moreover, it is query-optimal among the quantum algorithms, in the sense that any other
algorithm with bounded error probability for testing the commutativity of the finite dimensional K−algebra A uses Ω(

√

n3)
queries.

Our objective in this paper is to construct a quantum adiabatic algorithm that recovers this quadratic speed-up over the classical
case while retaining the one-sided bounded error.

3 ADIABATIC QUANTUM ALGORITHMS

Adiabatic quantum computation is a polynomially equivalent model to the standard gate model of quantum computation15,22

that has been applied, for instance, to the simulation of quantum systems23, to solving NP -complete problems24 and to deep
learning25. Its theoretical fundation is theQuantum Adiabatic Theorem26 that states, roughly speaking, that if a quantum system
is prepared in an initial ground state of a Hamiltonian (i.e. a state of minimal energy or, equivalently, an eigenvector associated
to a minimal eigenvalue of the Hamiltonian) the system is driven by a sequence of slightly changing Hamiltonians then, with
high probability, the final state will be also in the ground state of the last Hamiltonian27.
The idea is, then, to code the information of the problem to solve by means of a Hamiltonian such that its ground states are

the solutions to the problem. Usually, getting a system in a ground state of that Hamiltonian is not a simple task, so instead we
prepare a quantum system in a easy to get initial state and let it slowly evolve according to a time-dependent Hamiltonian that
eventually reaches the desired, final Hamiltonian whose ground states are the solutions to the problem.
Technically, let us assume a quantum system evolves according to the Schrödinger equation

iℏ d
dt
| t⟩ = H(t)| t⟩

in a time range 0 ≤ t ≤ T . If t(s) is a strictly increasing function from 0 to T as 0 ≤ s ≤ 1, then let us denote H̄(s) = H(t(s)) and
| ̄s⟩ = | t(s)⟩. The Schrödinger equation can now be written as d

ds
| ̄s⟩ = −i�(s)H̄(s)| ̄s⟩, for a certain function �(s). Finally,

if E0(s) and E1(s) are the first and second eigenvalues of the Hamiltonian H̄(s), then let us denote the minimum spectral gap as
Δ = min0≤s≤1[E1(s) − E0(s)].

Theorem 2 (Adiabatic). 28 Let | 0⟩ be the ground state of the Hamiltonian H(0). If Δ > 0 and �(s) >>
‖

d
ds
H̄(s)‖

Δ2
, where ‖ ⋅ ‖

is the matrix norm induced by the L2 metric, then with high probability | T ⟩ is the ground state ofH(T ).

In practice, the computation procedure is implemented as follows:

1. An objective real valued function f on m variables which is to be minimized is considered

2. An initial HamiltonianHI is chosen, so that its ground state is easy to simulate in a register QI of m′ ≥ m qubits (some
extra ancillary qubits might be necessary).

3. A final HamiltonianHF is built from f so that the ground state ofQF is an eigenstate ofHF having minimum eigenvalue,
i.e., it encodes a solution to the minimization problem of f .

4. A changing Hamiltonian performing a gradual transition fromHI toHF is created by the rule:

H(t) = (1 − s(t))HI + s(t)HF

for all t ≤ T , and a certain function s(t) that increases from 0 to 1.

5. By choosing T sufficiently large the evolution of the initial stateQI by that series of Hamiltonians can be brought arbitrarily
close to QF , so that a final appropriate measurament provides the ground state of QF with high probability.
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It is clear that the computational complexity of an adiabatic quantum algorithm is largely determined by the minimum spectral
gap that separates the ground state and the next excited state. The problem of determining the complexity of a quantum adiabatic
process is, in general, hard, as stated in29:

Determining this gap in the limit of large problem size is currently an important open problem in adiabatic quantum
computing [...]. It is thus not possible to determine the computational complexity of adiabatic quantum algorithms in
general, nor, consequently, of the specific adiabatic quantum algorithms presented in this paper.

Fortunately, for our particular problem we will be able to use some existing results about this gap, as we will mention in
Section 5.
Thus, in this paper, we apply the general framework of adiabatic quantum computation to our specific problem. The objective

function to be minimized is f and for that purpose we create an appropriate final Hamiltonian from the oracle Of introduced
above. How to achieve this in general will be explained in the next section.

4 FROM QUANTUM ORACLES TO HAMILTONIANS

In this section we state, for completeness, a general procedure to derive, from a given quantum oracle, a Hamiltonian that
encodes, as its ground state, the solution to an optimization problem.

Lemma 2. Let O be a quantum oracle that evaluates a binary function g on m qubits, i.e.,

O(|x⟩|y⟩) = |x⟩|y ⊕ g(x)⟩ , ∀|x⟩ ∈ (ℤ∕2ℤ)m,∀|y⟩ ∈ ℤ∕2ℤ

IfM is the set of x ∈ (ℤ∕2ℤ)m such that g(x) = 1, then both O and Id+O
2

are Hamiltonians whose ground state is generated by
{

|x⟩
(

|0⟩ − |1⟩
2

)

| x ∈M
}

The corresponding eigenvalues are -1 and 0, respectively.

Proof. It is enough to prove the lemma for O, as the second case can be straightforwardly deduced from it. First, notice that
O2 = Id and that O† = O−1 because O is a unitary operator. Then, O† = O, the operator O is Hermitian and therefore it is a
Hamiltonian.
Also, for all x ∈ (ℤ∕2ℤ)m, we have

O
(

|x⟩
(

|0⟩ + |1⟩
2

))

= |x⟩
(

|0⊕ g(x)⟩ + |1⊕ g(x)⟩
2

)

= |x⟩
(

|0⟩ + |1⟩
2

)

and
O
(

|x⟩
(

|0⟩ − |1⟩
2

))

= |x⟩
(

|0⊕ g(x)⟩ − |1⊕ g(x)⟩
2

)

= (−1)g(x)|x⟩
(

|0⟩ − |1⟩
2

)

This means that ℂ⊗(m+1) = E(1)⊕E(−1), where E(�) are subspaces of eigenvectors with eigenvalue � ∈ {−1, 1}:

E(1) =
⟨{

|x⟩
(

|0⟩ + |1⟩
2

)

, x ∈ (ℤ∕2ℤ)m
}

∪
{

|x⟩
(

|0⟩ − |1⟩
2

)

, x ∈ (ℤ∕2ℤ)m s.t. g(x) = 0
}⟩

E(−1) =
⟨{

|x⟩
(

|0⟩ − |1⟩
2

)

, x ∈ (ℤ∕2ℤ)m s.t. g(x) = 1
}⟩

Notice that this lemma is useful for it allows to transform the problem of searching states marked by an oracle from the
quantum circuit model to the quantum adiabatic computational paradigm.
In our case, for the problem of determining the commutativity of finite-dimensional algebras, we suppose we are given an

oracle to access the multiplication constantes of the algebra. This oracle allows us to obtain (a quantum state representing)Mijk
given (quantum states representing) i, j and k as presented in Figure 1. Notice that we use l qubits to represent each constant,
with l a number that will only depend on the size of the underlying field K (if K is infinite, an approximate representation must
be adopted).
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|i⟩ ∕m

OÂ

|i⟩
|j⟩ ∕m |j⟩
|k⟩ ∕m |k⟩
| ⟩ ∕l | ⊕ M̂ijk⟩

FIGURE 1 Oracle for the multiplication constants of the algebra

From this circuit, we can then construct an oracle that will output 0 on those triples (i, j, j) for which Mijk = Mjik and 1
on those triples (i, j, j) for which Mijk ≠ Mjik; that is, it marks those indices that are witnesses of the non-commutativity of
the algebra. If the underlying field is ℤ∕2ℤ, the construction of this new oracle is straightforward: we just need to consult the
constants Mijk and Mjik and compute their sum modulo 2. This can be accomplished with two consults to the oracle for the
multiplicative constants and two swap operations (see Figure 2).

|i⟩ ∕m

OÂ

×

OÂ

× |i⟩
|j⟩ ∕m × × |j⟩
|k⟩ ∕m |k⟩
| ⟩ | ⊕Mijk ⊕Mjik⟩

FIGURE 2 Problem oracle for fields with characteristic 2

For the general case, when K is not ℤ∕2ℤ and more than one qubit is necessary to represent the underlying field, the con-
struction is a bit more complex (see Figure 3) for we have to use ancilla qubits and we need to uncompute the values on those
qubits to return their state to |0⟩.

|i⟩ ∕m

OÂ

×

OÂ OÂ

×

OÂ

|i⟩
|j⟩ ∕m × × |j⟩
|k⟩ ∕m |k⟩

X ∙ X |0⟩

X ∙ X |0⟩

X ∙ X |0⟩

| ⟩ X | ⊕ 1⊕ �M̂ijk,M̂jik
⟩

⌊

{

⌈

|0⟩⊗l

FIGURE 3 Problem oracle for fields with characteristic different from 2

Notice, however, that the number of consults to the original multiplication oracle is, in both cases, a constant that does not
depend on the dimension n of the algebra under study (namely, it is 2 if l = 1 and 4 if l > 1).
We will use this construction in the next section in order to transform our original search problem into a quantum adiabatic

optimisation problem.
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5 EXPERIMENTS AND RESULTS

We have carried out experiments based on our previous theoretical considerations to determine if concrete ℤ∕2ℤ−finite dimen-
sional algebras are commutative or not. Assuming that we have been given a multiplication constant oracle OA, we construct
the corresponding final Hamiltonian HF = Of on 3m qubits using the results of sections 2 and 4 (m = log2 n). Let us notice
that, just like in12, a standard phase-oracle technique allows to remove the last ancillary qubit in the construction of the oracle
Of . Our choice for the initial Hamiltonian was

HI = Id − | 0⟩⟨ 0|
where

| 0⟩ =
1

√

23m

23m−1
∑

i=0
|i⟩

Notice that its ground state contains the initial state that was taken: | 0⟩ with eigenvalue equal to 0.
In all the cases, the quantum adiabatic algorithm is used to search for a triple (i, j, k) such thatMijk ≠ Mjik. If such a triple

is found, then we declare that the algebra is not commutative. In other case, we state that algebra is commutative. Explicitly, the
algorithm is as follows:

Algorithm 1: Quantum adiabatic algorithm to test the commutativity

Set the state of the computer to | 0⟩, the ground state of the initial HamiltonHI
Apply the HamiltonianH(t) = (1 − s(t))HI + s(t)HF for times t ∈ [0, T ]
Measure the system to obtain (i, j, k)
IfMijk ≠Mjik, return NO
Else, return YES

Notice that the only source of error of the algorithm comes from an answer inwhichwe declare that the algebra is commutative,
for we only say that is non-commutative we have found an explicit violation of the commutativity constrains.
The practical details of the experiment are as follows.We have chosen dimensions n = 2, 4, 8 and 16. Also, we have considered

both global and local annealing schedules for the evolution of the Hamiltonian. In the first case, the linear function s(t) = t was
chosen, where as in the second case the function s(t) was chosen according to30, that is, s verifying:

t = 1
2�

N
√

N − 1

(

arctan
(

√

N − 1(2s − 1)
)

+ arctan
(

√

N − 1
)

)

where

N = 23m

and � verifies

T = �
2�

√

N

The experiments were carried out in a standard computer using the Qutip python package31,32.
In the first experiment, we compare the behavior of global vs. local evolution for algebras of dimensions n = 2, 4, 8 and 16. In

these cases we assume that only one pair of multiplication constants (out of the n3 possible multiplication constants) witnesses
the noncommutativity of the algebra. The probability of the adiabatic quantum algorithm finding one of those witnesses against
the number of iterations made is plotted in Figures 4 through 7.
As stated in30, global schedule yields a computation time of linear order, so there is no advantage of the method compared to

a classical search. However, when the local schedule is considered, we have a quadratic speed-up compared to classical search
(so the algorithm can be viewed as the adiabatic evolution version of the Grover’s algorithm presented in12). Notice also that in
this case the success probability exhibits an oscillatory pattern, as noticed in33,34.
In the second experiment, we take a noncommutative algebra of dimension n = 8 with different numbers of multiplication

constants witnessing its noncommutativity. Namely, we consider sets of 56, 112, 168 and 224 nonmatching pairs ofmultiplication
constants out of the (28)3−(28)2

2
= 224 possible noncommutative witness pairs. The probability of finding one of those constants,



7

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

S
u
cc
es
s
P
ro
b
ab

il
it
y

Time

Local
Global

FIGURE 4 Probability of detecting the unique pair of noncommutative witnesses for ℤ∕2ℤ−algebras of dimension n = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

S
u
cc
es
s
P
ro
b
ab

il
it
y

Time

Local
Global

FIGURE 5 Probability of detecting the unique pair of noncommutative witnesses for ℤ∕2ℤ−algebras of dimension n = 4
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FIGURE 6 Probability of detecting the unique pair of noncommutative witnesses for ℤ∕2ℤ−algebras of dimension n = 8

when local search is carried out, is presented in Figure 8. Observe, once again, the oscillatory pattern in the success probability
(even though it is predicted to converge to one as the number of iterations increases).
Finally, we have studied the number of iterations required to find a unique noncommutative witness pair of multiplication

constants with probabilities at least 1
4
, 1
2
, 3
4
, 9
10

and 99
100

(for algebras of dimensions n = 2, 4 and 8with global and local schedules
and also n = 16 with local schedule). As shown in Figures 9 and 10, the local annealing schedule yields better results than
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FIGURE 7 Probability of detecting the unique pair of noncommutative witnesses for ℤ∕2ℤ−algebras of dimension n = 16
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FIGURE 8 Probability of detecting a noncommutative witness pair (out of the 56, 112, 168 or 224) for a ℤ∕2ℤ−algebra of
dimension n = 8

the global schedule: in the first case the number of iterations increases with a factor of
√

23, whereas in the second case the
increasing factor is 23.

6 CONCLUSIONS AND FUTURE WORK

In this paper we have presented experiments testing the commutativity of finite-dimensional algebras with a Quantum Adiabatic
Algorithm. This type of quantum model is a (polynomially equivalent) alternative to the standard quantum gate model that was
considered for the same problem in12. Experiments were carried out with both global and local annealing schedules and it has
been shown that in the later case Grover’s order of complexity is recovered. This is technically relevant because the adiabatic
quantummodel has developed larger real models in practice so performance on a quantum computer with more number of qubits
(and so, dealing with algebras of bigger dimensions) without sacrificing the theoretical complexity seems feasible. Also, the
new algorithm retains the property of having one side error: we always determine with certainty when the algebra under study
is non-commutative and the only possible error is when we declare it to be commutative.
In future works, we plan to explore the possibilities of applying quantum computing approaches (both with the quantum circuit

model and with quantum adiabatic algorithms) to other problems related to the classification of finite-dimensional algebras in
general and of semifields in particular, including, for instance, determining when an algebra is associative and finding all the
matrices over the underlying field K that represent a semifield for a given dimension.



9

0

200

400

600

800

1000

1200

1400

1600

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
in
im

u
m

T
im

e

Success Probability

2
4
8

FIGURE 9 Number of iterations required to achieve a given probability of detecting the unique pair of noncommutative
witnesses for ℤ∕2ℤ−algebras of dimensions n = 2, 4, 8 with global schedule
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FIGURE 10 Number of iterations required to achieve a given probability of detecting the unique pair of noncommutative
witnesses for ℤ∕2ℤ−algebras of dimensions n = 2, 4, 8, 16 with local schedule
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