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1 Faculty of Agronomy, Northeastern National University,
Sargento Juan Bautista Cabral 2131

Corrientes, W3402, Argentina
E-mail: griseldabobeda@gmail.com

2 Computer Science Department, University of Oviedo,
Computer Science Department, Jesús Arias de Velasco,
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Abstract

In order to define management and marketing strategies, farmers need adequate knowledge about fu-
ture yield with the greatest possible accuracy and anticipation. In citrus orchards, greater variability and
non-normality of yield distributions complicate the early estimation of fruit production. This study was
conducted with the objective of developing a method to estimate citrus load based on orchard characteris-
tics, morphological information of trees and number of fruits in defined locations of the crow. Field data
from 16 citrus orchards obtained from 2005/06 through 2013/14 seasons were used. Machine learning
techniques were applied to predict yield; these methods can reduce the estimation error as well as decrease
the need for in-field measuring, thus reducing both the cost and time of the process.
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1. Introduction

Adequate yield forecasting allows farmers to de-
fine management and marketing strategies. To in-
crease the information base for decision-making it
is necessary to achieve the greatest possible accu-
racy and anticipation of fruit harvest forecasts. In
citrus orchards, the great variability, derived from
longevity of perennial crop conditions, makes it dif-
ficult to estimate fruit production early. The main
problems associated with yield estimation are pri-
marily due to the non-normality of yield distribu-
tions, an issue that has been highlighted in numerous
studies. Yield-mapped datasets are expected to be
normally distributed when derived from large num-
bers of sampling observations1; however, farm and
regional-scale datasets have yielded both normal and
non-normal results2,3,4.

Yield prediction as a feature of precision agricul-
ture has concentrated on annual arable crops rather
than perennial crops. The few studies conducted on
perennial crops, such as apple 5,6,7, pear8 or citrus9

reported yield estimation at harvest (based on col-
oration), when the fruits are already fully colored.
However, the challenge in growing perennial fruits
is to estimate the number and diameter of citrus on
the trees as soon as possible, because the amount of
fruits that can fall from the tree each year is large and
variable10. This may have been one of the reasons
why approaches at the flowering stage have yielded
poor results, in some cases of just 18% accuracy11.
Models for estimating fruit-trees yield based on field
measurements include the identification and estima-
tion of production area (N trees×ha−1), load (N
fruits×ha−1 or N fruits×tree−1) and fruit size or
weight (g×fruit−1). Notice that the first compo-
nent always implies certain knowledge of the trees
in an orchard. For estimating the final size of fruits,
growth curves have already been modeled12. There-
fore, estimating fruit load is a challenge due to the
high differences found between estimated and real
load13,14.

In citrus orchards, production is primarily de-
fined by the amount and size of fruits. Both char-
acteristics are affected by endogenous factors (e.g.
genetic characteristics of species or varieties, and
physiological characteristics) and exogenous ones

(e.g. environmental and crop conditions, especially
irrigation and fertilization)15,16. Production is also
determined by trees age17 and morphological char-
acteristics of trees16. Linear regression equations
were also analyzed in Royal Gala apple orchards 18

in order to estimate load from radiometric leaf area
index, cross-sectional area of trunk, crown area and
volume. De Rezende et al.19 estimated the number
of fruits per tree in sweet orange based on quantifica-
tion of the number of fruits of fixed size in terminal
branches for different varieties and ages of trees; the
authors obtained R2 values between 0.79 and 0.94.

In order to estimate load in Valencia late sweet
orange, different methods based on counting total
fruits or number of fruits into pre-defined sections of
crown have been evaluated. The sampling quadrat
count method consists of counting the number of
fruits in sampling quadrat of known volume and
then calculating the total number of fruit per tree
so that the potential of trees can be estimated based
on crown dimensions. Regarding the estimate of
crown volume, there is no consensus in the equa-
tions that should be used for each species and va-
riety concerned. The proposed formula20, which
considers the shape of trees crown as a sphere, was
used to estimate the volume of Valencia orange21

and Arrayana mandarin17. Morin et al.22 consid-
ered that the citrus tree crown is rounded; other au-
thors used an elongated hemisphere23,24 for man-
darin Nova and Clementina.

Avanza12 studied the number of fruits estimated
by counting the total number of fruits and the num-
ber of fruits in sampling quadrat of known volume,
testing different formulas for crown volume. Al-
though high correlations were found between esti-
mated and real load, estimation errors were impor-
tant and R2 values were low (from 0.16 to 0.51 for
the sampling quadrat method and 0.60 to 0.75 for to-
tal count); total fruit count was the selected method
adjusted by a hidden fruit coefficient. Alvarez25

sampled trees in Valencia sweet orange orchards of
between 7 and 10 years of age and studied the rela-
tionships between morphological characteristics of
trees and load; the author found that trunk perimeter
does not affect fruit load, and defined linear regres-
sion models to estimate fruit load based on plants
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height and crown diameter (with R2 between 0.16
and 0.90), concluding that precision increases with
trees age.

The present work aimed at developing a method
to estimate citrus load based on characteristics of
orchards, morphological information of trees and
number of fruits in defined sectors of the crown. To
that end, we used artificial intelligence (specifically,
machine learning) techniques to build a yield predic-
tion system that can use all the information available
with two aims: first, to intend to decrease the estima-
tion error obtained with fruit-counting methods; sec-
ond, to explore the possibility of reducing the need
of in-field work and, consequently, the overall cost
of the process.

These machine learning methods have already
been successfully used in precision agriculture tasks.
For instance, Yu et al.26 proposed a crop yield fore-
casting model based on the combination of artificial
neural networks (ANNs) while, in 27, Zhou et al. ap-
plied the Grey-Markov forecasting model28 to yield
prediction. Saruta et al.29 found that predictive mod-
els using support vector machines had the potential
to describe the relationship between yield or protein
content and multiple explanatory variables. Sup-
port vector machines were applied to build predic-
tive models for yield and protein contents of brown
rice. Quantitative accuracy of the models was ap-
proximately 1T×ha−1 in yield and 0.8% in protein.
Görgens et al.30 evaluated the performance of three
machine learning tools for predicting stand volume
of fast-growing forest plantations. Rather than be-
ing limited to a subset of predictor variables, ma-
chine learning techniques explored the complete set
of metrics, looking for patterns between them and
the dependent variable.

Schulze et al.31 compared three different mod-
els for mass estimation of mango fruits, using sim-
ple linear regression, multiple linear regression and
artificial neural networks; they found that the latter
method was the most accurate and robust model for
mass estimation. Predictive accuracy of machine
learning and linear regression techniques for crop
yield in 10 crop datasets was also compared 32; the
results showed that M5-Prime model trees achieved
the largest number of crop yield predictions with the

lowest errors (and they are more interpretable than
K-Nearest Neighbours, the other system with low-
est error). In fact, M5-Prime has been successfully
applied to determine the variables with the highest
influence on citrus yield33. For these reasons, in this
work we will use M5-Prime regression trees to build
the yield prediction system.

The goal of this paper is to predict citrus load
avoiding costly features. We apply machine learning
techniques (specifically, the M5-Prime regression
trees) to build yield prediction systems for sweet or-
ange and tangor Murcott orchards, considering in-
formation that includes geographical and morpho-
logical data as well as volume and fruit number es-
timations.

The rest of the paper is organised as follows:
Section 2 describes the data considered in this work
for citrus load prediction. Section 3 details the
method used to estimate citrus load. Section 4 shows
the performance of the approach. Section 5 dis-
cusses the results while Section 6 draws some con-
clusions and presents ideas for future work.

2. Description of the data

The used field information was obtained from 16 cit-
rus orchards located in Corrientes and Entre Rı́os
provinces, Argentina, between 27◦ 39’ 39” and 31◦

23’ 59” S, and 57◦ 00’ 01” and 58◦ 58’ 59” W, dur-
ing 2005/06 to 2013/14 seasons. The trees belonged
to three different varieties, Murcott tangor (Citrus
reticulata Blanco x C. sinensis L. Osbeck) and Va-
lencia late and Salustiana sweet oranges (C. sinen-
sis L. Osbeck), located in different rootstocks, soil
types and irrigation conditions. In each orchard, dif-
ferent numbers of trees were selected, in accordance
with orchard size and present variability. Table 1 de-
scribes the characteristics of orchards.

For each orchard, satellite global position was
determined (latitude and longitude degrees, minutes
and seconds; LatD, LatM, LatS, LongD, LongM,
LongS). During the seasons indicated below, mor-
phological variables of tree crown (height (h), diam-
eter within (dm) and between rows (dM)) and total
number of fruits at harvest (Har) were recorded in
each tree. Crown radius (r) and average diameter (d)
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Table 1. Basic characteristics and control variables of orchards

Orchard Sp Var Season N Soil Irrig Age

AYU Tangor Murcott 2010/11 54 Sandy Yes 15 years
CAC Sweet orange Valencia late 2005/06 17 Sandy No 17 years
DNT Sweet orange Valencia late 2006/07-2009/10 89 Sandy No 15 years
LCI Sweet orange Valencia late 2006/07 46 Sandy No 23 years
LLA Sweet orange Valencia late 2007/08-2009/10 54 Sandy No 23 years
LLU Tangor Murcott 2007/08-2009/10 50 Sandy Yes 11 years
LHE Sweet orange Valencia late 2006/07-2009/10 33 Sandy Yes 29 years
LPA Tangor Murcott 2007/08-2009/10 35 Sandy No 12 years
MEN Sweet orange Valencia late 2005/06 25 Sandy No 12 years
SJR Tangor Murcott 2007/08-2009/10 79 Sandy No 18 years
SJV Tangor Murcott 2007/08-2009/10 73 Sandy Si 30 years
S23 Sweet orange Valencia late 2006/07-2009/10 80 Clay Yes 26 years
S24 Sweet orange Valencia late 2006/07-2009/10 84 Clay Yes 16 years
STM Sweet orange Valencia late 2006/07-2009/10 89 Sandy Yes 9 years
VC1 Sweet orange Salustiana 2013/14 76 Sandy No 4 years
VC2 Sweet orange Salustiana 2013/14 100 Sandy No 4 years

were also calculated. In two moments before har-
vest (60 and 30 days before the estimated harvest
time, Est1 and Est2), total number of visible fruits
were counted (T) and a sampling quadrat of known
volume (V = 0.5 m x 0.5 m x 0.5 m = 0.125m3) was
placed at 1.5 m above the ground on the four cardi-
nal points of crown. Then, the number of fruits per
frame was counted (NumE, NumW, NumN, NumS).
The average number of fruits in frames per tree was
also calculated (AveNum). Volume of tree crown
was calculated using the formulas in Fig. 1 in order
to estimate the number of fruits in the whole crown.

Fig. 1. Estimation of trees crown volume
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3. Data Analysis

Graphical and analytical descriptive statistical tools
were used. Correlation coefficients (R) were cal-
culated to define and characterize relationships be-
tween all variables and production per tree. These
analyses were performed using InfoStat 201734.

Citrus production is predicted via regression
trees, which have been demonstrated to be suit-
able methods for crop yield prediction. The most
common algorithms used to build regression trees
are CART (Classification and Regression Trees)35,
M536 and M5-Prime37.

All of the algorithms used a similar strategy to
construct the tree38. They use a divide and conquer
strategy to build the model. The first node in the
tree is called the root. A node with outgoing edges
is called a test node and a node without outgoing
edges is a leaf. Each path from the root of the tree
to a leaf determines a region, i.e., a more homoge-
neous group subset of the input data. Therefore, the
orchards are grouped according to the characteristics
i.e. groups include orchards with a similar estimated
production. Initially, the whole training set is associ-
ated with a leaf. By applying a recursive procedure,
a test is used to decide if the set associated with a
leaf is split into smaller subsets associated with new
leaves.

The main differences among the described meth-
ods are the splitting criteria, the prune rules and
the mechanism to estimate the leaf value. CART
uses variance as splitting criterion, whereas M5 uses
standard deviation reduction (SDR). In addition, the
estimated value for a leaf is constant in CART,
whereas M5 approximates the leaf values by linear
regression models. In addition, it is able to improve
predictions by introducing a smoothing procedure39.
In addition, trees generated with M5 are smaller than
those generated with CART. Thus, M5 outperforms
CART in accuracy and simplicity. M5-Prime is an
improvement over M5 that can deal with missing
values and enumerated attributes37. According to
the results previously obtained32, M5-prime is the
more suitable modeling tool for yield crop predic-
tion with regard to accuracy metrics. What is more,
it is more interpretable than other ML techniques,
such as K-Nearest Neighbours.

Thus, in this work we selected M5-Prime as the
method selected in this work to predict citrus pro-
duction. M5-Prime is a learner that constructs re-
gression trees producing a classification based on
piecewise linear functions as they partition the space
into a set of regions and fit the predicted value within
each region using a linear model. This method
works as follows: Assuming a training set with ex-
amples each one defined by its value of a set of at-
tributes (discrete or continuous) and a continuous
target, the method constructs a model that relates the
target values of the training examples to the values
of the variables defining the example. M5-Prime se-
lects the split that maximizes the expected error re-
duction. Once the tree is constructed, a multivariate
linear model is built for the examples at each tree
node via standard regression techniques using only
attributes that are referenced by tests or linear mod-
els somewhere in the sub-tree at this node. The main
characteristics of this method are:

(i) Regression tree construction:

• Splitting criterion: Maximize standard devi-
ation reduction (SDR)

SDR = sd(T )−∑
i

|Ti|
|T |
× sd(Ti)

where T is the set of examples (in this case,
orchards) that reaches the node and T1,T2, . . .
the subsets resulting from the node split ac-
cording to the chosen attribute.

• Stopping criterion: Standard deviation be-
low a given threshold (small enough)

• Pruning: Heuristic estimation of absolute er-
ror of linear regression models by means of

n+ v
n− v

where n is the number of examples that
reach the node and v the number of param-
eters that represents the class value at that
node. Pruning greedily removes terms from
linear regression models to minimize the es-
timated error.

• Smoothing is used to compensate disconti-
nuities between adjacent linear models at the
leaves of the pruned tree. The smoothing
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process uses first the leaf model to compute
the predicted value and then filters that value
along the path back to the root, combining it
with the value predicted by the linear model
for that node. The modified prediction p is
computed by

p′ =
np+ kq

n+ k

where n is the number of examples at the
smoothed node, k is a constant, and p and q
are respectively the predictions passed to the
studied node from below and the value pre-
dicted by the model at the studied node, re-
spectively. Basically, what this process does
is to achieve the effect of incorporating an-
cestor models into the leaves.

(ii) The value at each leaf is estimated using a lin-
ear regression function.

(iii) For each node, only a subset of attributes that
appear in the subtree is used.

The experiments are conducted using the RWeka
Package40, using the M5-Prime function with the
standard configuration, i.e, with pruning, smooth-
ing and with a minimum number of 4 examples per
node. The accuracy of this method is studied in
terms of root mean square error (RMSE), correla-
tion coefficient (R) and the relative mean absolute
error (MAE).

In order to evaluate accuracy of each estimating
method, absolute value percent errors between esti-
mated and real loads were calculated as follows

100× ∑i abs(Ppredictedi−Preali)

∑i Preali
(1)

where Ppredictedi is the production prediction by the
method for the i-th tree and Preali is the actual pro-
duction of the i-th tree (the sum is done considering
all trees in the orchard).

4. Results

In this section some experiments are conducted in
order to obtain the combination of feature set and
regression tree predicting citrus load as accurate as

possible. First of all we study the behavior of pre-
viously defined counting methods (those described
in Section 2). Then, the proposed approach based
on regression trees and feature selection is applied
to perform such prediction.

4.1. Prediction of citrus load using counting
methods

Table 2 shows correlation coefficients (and associ-
ated p-values) between load estimated by different
counting methods and real harvest for orange and
tangor orchards. R coefficients indicate that load
is significantly and positively associated with pro-
duction estimated by all methods. However, it is
strongly correlated only for total number of visible
fruits count (T).
Table 2. Pearson correlation coefficients (R) between different
variables and harvest, and associated p-values.

Sweet orange Tangor Murcott

Variables R p-value R p-value

F1 0.33 < 10−4 0.25 < 10−4

F2 0.51 < 10−4 0.41 < 10−4

F3 0.61 < 10−4 0.36 < 10−4

F4 0.07 < 10−3 0.17 < 10−4

F5 0.10 < 10−4 0.17 < 10−4

F6 0.19 < 10−4 0.19 < 10−4

T 0.92 < 10−4 0.87 < 10−4

Table 3 shows the behavior of the real harvest
estimators. The first and fourth columns show the
error (in percentage) associated with each estima-
tor for predicting orange and tangor harvest, respec-
tively. The second and fifth columns show the av-
erage harvest estimated with each method for or-
ange and tangor, respectively. The third and sixth
columns represent the associated standard deviation
for orange and tangor, respectively. Each estimation
{F1, . . .F6} is obtained by applying the formulas in
Fig. 1 using AveNum as number of fruits.

Note that all the current harvest estimations are
far from the real harvest numbers. The closest es-
timation is the one associated with the total num-
ber of visible fruits counted (T ). Thus, the studied
sampling quadrat methods were not able to estimate
real load and the most accurate method, T , presented
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Table 3. Error percentage (between real and estimate harvest by
different methods (F1, F2, F3, F4, F5, F6, T) for the different
varieties of sweet orange and tangor studied), average estimated
harvest and its standard deviation

Sweet orange Tangor Murcott
Method Error Mean SD Error Mean SD

F1 94.82% 32.66 42.31 89.97% 50.25 107.14
F2 82.85% 102.37 125.08 81.29% 110.21 164.74
F3 84.99% 86.64 83.77 82.71% 102.53 168.77
F4 94.48% 78.24 202.41 92.96% 117.34 340.54
F5 92.92% 65.15 126.81 93.14% 115.97 340.56
F6 87.33% 118.09 191.89 99.94% 190.85 508.54
T 41.69% 329.99 225.74 43.94% 373.66 260.17
Real Harvest 505.55 386.31 566.19 471.26

high variability. In addition, it is a quite costly ac-
tivity.

4.2. Intelligent-based prediction of citrus load

Let us analyse the performance of the proposed arti-
ficial intelligence method in harvest prediction. As it
was previously mentioned, the goal is to predict har-
vest using the least information from orchards pos-
sible and, at the same time, to reduce the error, if
possible.

Because of the high cost of obtaining in-field
data, different combinations of input variables were
tested in order to find an estimation method balanc-
ing the trade-off between an adequate accuracy and
the cost associated with data collection.

Thus, we used the following variable combina-
tions:

• Basic variables. First of all, harvest is predicted
using the following information: LatD, LongD,
Soil type, Irrigation, Age, and Diameter d. Only
d, which is the averaged diameter of tree crowns,
is taken in the field.

• Volume based variables. Basic variables plus dif-
ferent crown volume estimations (F1, F2, F3, F4,
F5, F6).

• Sampling quadrat based variables. Basic vari-
ables plus NumN, NumS, NumE, NuwW variables.
Note that this is a more costly approach, because

obtaining sampling quadrat variables is costly in
terms of work hours.

• VOLi +Num j. We also consider a selective fea-
ture selection with the aim of feeding the ma-
chine learning algorithm with some valuable in-
formation but avoiding the cost of using all the in-
field data. Thus, the algorithm is trained by con-
sidering Basic variables plus each combination
of Volume and Sampling quadrat variables, with
i ∈ {F1,F2,F3,F4,F5,F6} and j ∈ {N,S,E,W}

• All= Basic + Volume + Sampling quadrat vari-
ables. In this case, all the available information is
considered to predict harvest.

Fig. 2 shows the error obtained when harvest is
predicted via M5-Prime using each one of the pre-
viously introduced variable sets. The lines represent
the error obtained when the prediction is estimated
by the total count of visible fruits (T), or with regres-
sion tress using Basic, Volume, Sampling quadrat or
all the variables as input. Note that the estimation
from the total number of visible fruits count is the
worst of them all. On the other hand, each bar rep-
resents the prediction when Basic variables and just
one combination of Volume and Sampling quadrat
is considered. As it can be seen, the errors obtained
for sweet orange when only a combination of Vol-
ume and Sampling quadrat is considered were sim-
ilar to those obtained when considering Basic, Vol-
ume or all the Sampling quadrat . However, these
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approaches are much more expensive. On the other
hand, information provided by Sampling quadrat in
the North combined with VolM2 estimation yielded
the lowest errors.

Fig. 2. Errors obtained using the different variable sets for
sweet orange.

The errors for tangor (Fig. 3) behaved a little dif-
ferently, since some errors were greater than those
obtained by T. This result may be attributed to the
fact that the features provided low quality informa-
tion. In fact, when only Basic or Volume variables
were considered as input of the learning procedure,
again the performance was worse than that obtained
by T. In addition, there were a lot of combinations of
sampling quadrat positions and volume estimations
with low errors, although the combination of sam-
pling quadrat at west (NrW) and volume 6 (VolM6)
estimations is the one that performed best.

Fig. 3. Errors obtained using the different variable sets for
tangor Murcott.

Tables 4 and 5 show the results obtained with
M5-Prime for the best combinations of variables.
The first column of both tables represents the er-
ror computed according to formula 1, i.e., computed

tree by tree. The second column shows the total er-
ror, i.e., the difference between the real production
and the predicted one considering all the trees and
all the orchards. Note that these errors are differ-
ent because the errors associated with each tree are
overall compensated. The third column contains the
correlation coefficient associated with each combi-
nation of variables. The fourth and fifth columns
indicate the complexity of the model, i.e., the num-
ber of tree leaves and the number of variables used
for constructing regression equations at leaves.

Notice that, when analyzing the errors obtained,
it is necessary to consider that the information
needed to calculate volume is determined only once
a year; if sampling quadrat values are needed, the re-
quired in-field work increases and so does the cost,
and it is important to evaluate the benefits of ob-
taining higher accuracy at the expense of increased
costs.

5. Discussion

The correlation between the different classical meth-
ods for estimating the number of fruits and the actual
load was significant, as indicated by the p-values;
however, in most cases the R values showed a weak
association. Only in the case of the total count (T )
was this correlation strong. In sweet orange, R2 for
sampling quadrat estimations varied from 0.005 to
0.37 and its value was 0.85 for total count estima-
tion; in tangor Murcott, R2 for sampling quadrat es-
timations varied from 0.03 to 0.17 and for total count
it was 0.76.

These results for sampling quadrat estimation of
sweet orange and tangor Murcott are lower than
values found in sweet orange 12,19,25. Total count
correlation coefficients were similar to previously
found values 12. When differences between esti-
mated and real load or absolute value percent er-
rors are considered, the sampling quadrat method
combined with the different crown volume formulas
showed lower accuracy than total count, with errors
between 82.82% and 94.48% versus 41.69% of to-
tal count in sweet orange, and between 81.29% and
99.94% against 43.94 in tangor Murcott.

When harvest was predicted using M5-Prime, er-
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Table 4. Characteristics of each method for sweet orange har-
vest prediction.

Method Error Total Error Correlation Number of Leaves Number of Variables
(computed by tree) coefficient

Basic 29.9% 0.005% 0.83 10 8
Volume 27.8% 0.003% 0.84 14 11
Sampling quadrat 27.8% 0.020% 0.84 1 11
All 24.7% 0.006% 0.91 10 17
VolM2-NrW 24.3% 0.007% 0.86 25 11

Table 5. Characteristics of each method for tangorMurcott har-
vest prediction.

Method Error Total Error Correlation Number of Leaves Number of Variables
(computed by tree) coefficient

Basic 58.7% 0.071% 0.64 7 4
Volume 45.4% 0.061% 0.73 12 10
Sampling quadrat 39.8% 0.096% 0.81 5 10
All 39.2% 0.060% 0.78 1 12
VolM6-NrW 34.5% 0.006% 0.84 7 10

rors decreased to values between 24.3% and 29.9%
for sweet orange, which are lower than values found
for total count. For tangor Murcott, errors varied be-
tween 34.5% and 58.7%. In this case, not all the
combinations obtained an error lower than that of
the total count (T).

As it can be seen in figures 2 and 3, sweet or-
ange and tangor Murcott harvest predictions were
slightly different. In the case of sweet orange, when
all orchards were considered (see table 4), any pre-
diction was more accurate than the best previous
prediction (T ). In addition, when only Basic vari-
ables were considered for harvest prediction, the er-
ror decreased from 41.7% to 29.9%. That means
that just with the introduction of some basic infor-
mation related to each tree, such as tree Age, the
estimation improved. In addition, prediction accu-
racy increased with increasing amount of added in-
formation, reaching the lowest error (21.3%) when
Basic, Volume and Sampling quadrat variables were
considered. However, this is the most costly op-
tion. Thus, the different options VOLi +Num j were
studied. As shown in Fig. 2 , the best combina-
tion in terms of accuracy was that of Basic vari-

ables plus VolM2 and NrW. We must remark, how-
ever, that when errors were considered for each or-
chard, in VC1 and VC2 orchards, errors of estima-
tion based on Basic and Volume variable sets were
higher than the others, including human estimator
(T ). This might be explained by the condition of
trees in these orchards, which some time before har-
vest had suffered a hard frost that caused a strong
fruit drop. This suggests that under normal condi-
tions, the method has good accuracy for estimating
load; under exceptional conditions and with consid-
erable variation of the number of fruits, the method
is sensitive to these changes and has to be used care-
fully. Sampling quadrat measurements and human
estimation were performed after fruit fall, which jus-
tifies their better behaviour.

The behavior of tangor Murcott harvest predic-
tion was similar to that obtained when harvest for
sweet orange was predicted, meaning that when
more information was added to the method, the er-
ror decreased. However, when only Basic or Volume
variables were considered, the error was higher than
the obtained by the human estimator (T ). In addi-
tion, it is possible to obtain the lowest errors when
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NrW sampling quadrat and VolM6 are combined.

6. Conclusions and Future Work

In this work, we have applied machine learning tech-
niques (specifically, the M5-Prime regression trees)
to build yield prediction systems for sweet orange
and tangor Murcott orchards. We have considered
information that includes geographical and morpho-
logical data as well as volume and fruit number es-
timations.

Compared to traditional prediction systems, ar-
tificial intelligence methods allowed us to decrease
the estimation error in all cases for sweet orange
orchards and in most cases for tangor Murcott or-
chards. Moreover, with an adequate choice of the
variables fed to the system it is possible to reduce
the amount of in-field work needed to obtain an ac-
curate prediction, thus reducing the overall cost and
time of the process.

In future studies, we will test the possibility
of including meteorological information as well as
satellite imagery data. We will further explore the
construction of more accurate prediction systems,
for instance with the use of feature selection and ex-
traction methods.
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J. Gaiad, “Machine learning applied to the prediction
of citrus production,” Spanish Journal of Agricultural
Research, vol. 15, no. 2, p. 0205, 2017.

34. J. Di Rienzo, F. Casanoves, M. Balzarini, L. Gonzalez,
M. Tablada, and C. Robledo, “Infostat version 2017,”
2017.

35. L. Breiman et al., “Statistical modeling: The two cul-
tures (with comments and a rejoinder by the author),”
Statistical Science, vol. 16, no. 3, pp. 199–231, 2001.

36. J. R. Quinlan et al., “Learning with continuous
classes,” in 5th Australian joint conference on arti-
ficial intelligence, vol. 92, pp. 343–348, Singapore,
1992.

37. Y. Wang and I. H. Witten, Induction of model trees for
predicting continuous classes. Department of Com-
puter Science, University of Waikato, 1996.

38. H. El Gibreen and M. S. Aksoy, “Classifying contin-
uous classes with reinforcement learning rules,” in In-
telligent Information and Database Systems, pp. 116–
127, Springer, 2015.

39. R. J. Quinlan, “C4.5: Programs for machine learning,”
Machine Learning, vol. 16, no. 3, pp. 235–240, 1994.

40. K. Hornik, C. Buchta, and A. Zeileis, “Open-source
machine learning: R meets Weka,” Computational
Statistics, vol. 24, no. 2, pp. 225–232, 2009.


	1 Introduction
	2 Description of the data
	3 Data Analysis
	4 Results
	4.1 Prediction of citrus load using counting methods
	4.2 Intelligent-based prediction of citrus load

	5 Discussion
	6 Conclusions and Future Work

