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1 Abstract

We present the first implementation of the exchange-hole dipole moment (XDM) model in

combination with a numerical finite-support local orbital method (the SIESTA method) for

the modeling of non-covalent interactions in periodic solids. The XDM model is parameter-

ized for both the B86bPBE and PBE functionals, using double-ζ- and triple-ζ-quality basis

sets (DZP and TZP). The use of finite-support local orbitals is shown to have minimal impact

on the computed dispersion coefficients for van-der-Waals-bound molecular dimers and small

molecular solids. However, the quality of the basis set affects quite significantly the accuracy

of calculated dimer binding energies and molecular crystal lattice energies, and the size of

the counterpoise correction indicates that this is caused by basis-set incompleteness error. In
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the case of the DZP basis set, its performance for weakly bound gas-phase dimers is similar

to a double-ζ Gaussian basis set without diffuse functions. The new XDM implementation

was tested on graphite and the X23 benchmark set of molecular crystal lattice energies. Our

results indicate that lattice energies similar to plane-wave calculations can be obtained only

if the counterpoise correction is applied. Alternatively, the calculated equilibrium geome-

tries are reasonably close to the plane-wave equivalents, and composite approaches in which

a single-point plane-wave calculation is used at the XDM/DZP equilibrium geometry yield

good accuracy at a significantly lower computational cost.

2 Introduction

The treatment of London dispersion forces1 is crucial for the description of intermolecu-

lar interactions in materials and solids. Weak dispersion forces play an important role in

determining the structural and physical properties of systems such as 2D materials2–4 and

molecular crystals.5–8 There have been longstanding efforts to develop methods capable of

modeling dispersion interactions accurately, especially in the field of density-functional the-

ory (DFT).9–12 While satisfactory accuracy can often be obtained with several dispersion-

corrected DFT methods, it is interesting to develop computationally inexpensive variants

of these methods for purposes such as ab initio molecular dynamics simulations or crystal

structure prediction.13–18

One way of reducing the computational cost of a dispersion-corrected DFT method is by

representing the Kohn-Sham orbitals in a basis set that ensures asymptotic linear scaling with

system size as in, for example, the SIESTA method.19,20 In SIESTA, linear scaling is achieved

through a combination of O(N) algorithms and basis sets composed of finitely supported

atom-centered numerical orbitals.21–23 The SIESTA method is implemented in the program

of the same name,19,20 whose fourth major version release allows the treatment of London

dispersion interactions. Two dispersion methods are currently implemented in SIESTA:
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Grimme’s semiempirical dispersion model (DFT-D2),24,25 and the non-local van-der-Waals

density functionals developed by Langreth and co-workers (vdW-DF126 and vdW-DF227).

DFT-D2 uses an asymptotic energy expression with fixed empirical dispersion coefficients

and it is cheap and relatively accurate, but the coefficients are empirical and do not change

with the chemical environment, which is essential in certain systems.28,29 The vdW-DF

methods incorporate dispersion effects using a non-local correlation energy functional. Non-

local vdW-DF functionals are non-empirical and “seamless”, but their use increases the

computational cost significantly.9

An alternative approach to include dispersion effects is the exchange-hole dipole moment

(XDM) dispersion model.10,30 In XDM, the interatomic dispersion coefficients are calculated

from first principles using the self-consistent density and kinetic-energy density. This makes

the dispersion coefficients sensitive to the chemical environment and non-empirical, while

retaining the computational and conceptual simplicity of an asymptotic pairwise dispersion

expansion. The XDM model has previously been implemented in the Quantum ESPRESSO

(QE) solid-state code, which makes use of plane-wave basis sets,28,31 and it has demonstrated

excellent accuracy in the treatment of non-covalent interactions in the gas phase,32,33 as well

as for surfaces,29 layered materials,34,35 and molecular crystals.6,7,28,36–39

In this work, we present the first implementation of the XDM dispersion model in com-

bination with a finite-support local-orbital method for periodic solids, as implemented in

SIESTA. The resulting XDM implementation is then parameterized on the Kannemann-

Becke set of molecular dimers,40 and tested on solid-state systems such as graphite and the

X23 set of molecular solids. The implications of using local basis sets in SIESTA as opposed

to delocalized plane-waves for the treatment of non-covalent interactions are discussed.
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3 The XDM dispersion model: implementation, parametriza-

tion, and testing

3.1 Theory and implementation details

The XDM dispersion model supplements the total DFT energy with a dispersion energy

term:

E = EDFT + Edisp = EDFT −
1

2

∑
L

∑
n

∑
i 6=j

Cn
ijf(RijL)

Rn
ijL

, (1)

where Cn
ij are the n-th order interatomic dispersion coefficients, f(RijL) is a damping function

that deactivates the dispersion interaction at short range, and

RijL = |Ri −Rj + L| (2)

is the distance between atom i and j in cells separated by lattice vector L. In practice,

the sum over lattice vectors is truncated at a point such that all remaining interatomic

contributions to the total dispersion energy fall below a specified energy threshold. The

Becke-Johnson damping function10,41 has the form

f(RijL) =
1

Rn
vdW,ij +Rn

ijL

, (3)

where

RvdW,ij = a1Rc,ij + a2, (4)

Rc,ij =
1

3

[(
C8,ij

C6,ij

)1/2

+

(
C10,ij

C6,ij

)1/4

+

(
C10,ij

C8,ij

)1/2
]
. (5)

The sum of van der Waals radii (RvdW,ij) is constructed from a critical radius, Rc,ij, cor-

responding to the point where dispersion contributions from the first three leading-order

pairwise dispersion coefficients, C6
ij, C

8
ij, and C10

ij , are equal. The a1 and a2 parameters are
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found by minimizing the residual errors between computed and reference binding energies

for a benchmark set of non-covalently bound dimers (the Kannemann-Becke set40). These

parameters depend on the functional and they serve to match the long-range dispersion and

short-range exchange-correlation contributions.

The XDM dispersion coefficients are determined using second-order perturbation the-

ory.10,30,42 Dispersion forces are calculated as interactions between instantaneous atomic

multipole moments, which originate from the distribution of electron plus exchange hole

dipoles.30 The first three leading-order pairwise dispersion coefficients are

C6 =
αiαj〈M2

1 〉i〈M2
1 〉j

〈M2
1 〉iαj〈M2

1 〉jαi
, (6)

C8 =
3

2

αiαj (〈M2
1 〉i〈M2

2 〉j + 〈M2
2 〉i〈M2

1 〉j)
〈M2

1 〉iαj〈M2
1 〉jαi

, (7)

C10 = 2
αiαj (〈M2

1 〉i〈M2
3 〉j + 〈M2

3 〉i〈M2
1 〉j)

〈M2
1 〉iαj〈M2

1 〉jαi
+
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5

αiαj〈M2
2 〉i〈M2

2 〉j
〈M2

1 〉iαj〈M2
1 〉jαi

. (8)

Combined, the three dispersion energy terms corresponding to the these coefficients have

been shown to describe long-range interactions in solids accurately.10,43 Thus, in the canonical

XDM implementation, the summation in Eq. 1 over n is truncated at the n = 10 term, and

only takes into consideration atomic-pairwise contributions (i.e., n = 6, 8, 10). Nevertheless,

it is important to note that the XDM dispersion model does take into account electronic

many-body effects to all orders by way of the construction of the dispersion coefficients from

the exchange hole, which is evaluated using the fully-interacting electron density.

In order to compute the XDM dispersion coefficients (Eqs. 6-8), the l-th order exchange-

hole multipole moments, Ml (l = 1, 2, 3, ...), and the atomic polarizabilities, αi, are needed:

〈M2
l 〉i =

∑
σ

∫
ωi(r)ρ

ae
σ (r)

[
rli − (ri − dXσ(r))l

]2
dr, (9)

αi =

∫
r3ωi(r)ρ

ae
σ (r)dr∫

r3ρat
i (r)dr

αat
i . (10)
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Here, ρae
σ is the all-electron spin-density and r is the distance to atom i. The ρi,at and αat

i

are the reference free-atom densities and polarizabilities and ωi is the weight of that atom’s

contribution to the spin-density. The weights can, in principle, be constructed using any

partitioning method. In XDM, we use the Hirshfeld partitioning scheme:44,45

ωi(r) =
ρat
i (r)∑

j

ρat
j (r)

, (11)

which is relatively simple to implement. The atomic polarizabilities (Eq. 10) are calculated

from their in vacuo (free) counterparts (αat
i ) by exploiting their proportionality with the

atomic volumes.46 The in-the-solid and free atomic volumes are the numerator and denom-

inator in Eq. 10, respectively. The all-electron spin-density, ρae
σ , is approximated from the

valence spin-density by adding the core electron density.

In Eq. 9, dXσ is the dipole moment between the electron at the reference point r and its

associated exchange-hole (hXσ) given by

dXσ(r) =

∫
r′hXσ(r, r′)dr′ − r. (12)

The exact expression for hXσ is computationally prohibitive in solids because it involves a

double sum over occupied states. Instead, we use the Becke-Roussel (BR) semi-local model

for the spherically averaged exchange hole.47 The BR hole provides a better approximation

to the full exchange-correlation hole than hXσ and, consequently, it results in improved

performance of the resulting dispersion-corrected energies.10,48

The BR model hole has the form of an off-centered exponential function (−Ae−ar) dis-

placed from the electron’s reference point by a distance b.28 The three parameters (A, a, b)

are determined by enforcing three exact constraints related to the hole normalisation and its
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value and curvature at the reference point. This leads to b = dXσ, where b is calculated as

b3 =
x3e−x

8πρval
σ

, (13)

where x = ab is the solution to the non-linear equation

xe−2x/3

x− 2
=

2

3
π2/3ρ

val
σ

5/3

Qσ

, (14)

which is solved numerically using Newton’s method. The hole curvature (Qσ) is

Qσ =
1

6
(∇2ρval

σ − 2Dσ), (15)

with

Dσ = τσ −
1

4

|∇ρval
σ |2

ρval
σ

, (16)

and where τσ is the positive-definite valence spin kinetic-energy density,

τσ =
∑
i

|∇ψiσ|2 . (17)

It is important to make sure that the calculated value of b does not unphysically overshoot

the distance to the closest nucleus.28,30 For this reason, dXσ is set to min(b, ri) instead of

simply b in Eq. 9.

The XDM equations (Eq. 1 to 17) are straightforward to implement in SIESTA. In

contrast to the plane-wave (QE) implementation,31 the electron density and kinetic energy

density are written as a sum over local orbitals:

ρσ =
∑
i

|ψi,σ|2 =
∑
i

∣∣∣∣∣∑
µ,ν

cµ,νφµφν

∣∣∣∣∣ (18)
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and

τσ =
∑
i

|∇ψi,σ|2 =
∑
i

∣∣∣∣∣∑
µ,ν

cµ,ν (∇φµφν + φµ∇φν)

∣∣∣∣∣
2

, (19)

where the cµ,ν are the density matrix elements. The sum extends only over the atomic

orbitals, φµ and φν , that give a non-zero contribution at the reference point. The moments

and volumes are integrated via summation over a uniform grid.

The value of b is calculated at every point on the integration grid from the correspond-

ing values for the valence spin density (ρval
σ ), its gradient norm (|∇ρval

σ |2), its Laplacian

(∇2ρval
σ ), and the spin kinetic-energy density (τσ). To validate the implementation, these

quantities and the resulting b parameter for argon are compared in Figure 1 against the

same values using the XDM implementations in Quantum ESPRESSO (plane waves),31 and

the numerical-orbital Numol program,56,57 as shown in Figure 1. The SIESTA density, its

derivatives, and the kinetic-energy density are in good agreement with Numol and Quantum

ESPRESSO, except close to the core regions, where the three methods differ in their treat-

ment (Numol is an all-electron code, and SIESTA and QE use different pseudopotentials).

Figure 1 confirms that the use of finite-support numerical orbitals in SIESTA does not ad-

versely affect the computed exchange-hole dipole moment values, when compared to either

plane-wave or numerical-orbital implementations of XDM.

We also compared the XDM molecular dispersion coefficients calculated using SIESTA

and Quantum ESPRESSO. The C6 dispersion coefficients were calculated for the isolated

molecules of the X23 lattice-energy benchmark set.28,58 The mean percent errors obtained

with the DZP and TZP finite-support basis sets were 5.6 and -4.9%, respectively, relative to

the B86bPBE plane-wave calculations. Again, this indicates that the use of relatively com-

pact, atom-centered basis functions does not strongly affect the dispersion energies calculated

using the XDM method.

Lastly, from the dispersion energy expression (Eq. 1), it is possible to determine the
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Figure 1: Quantities used to calculate the XDM dispersion coefficients along the internuclear
coordinate in argon. (a) the valence spin density, ρval

σ ; (b) the Weizsaecker term, |∇ρval
σ |2/ρval

σ ;
(c) the Laplacian of the spin density, ∇2ρval

σ ; (d) the spin kinetic-energy density, τσ; and (e)
the exchange-hole dipole moment, b = dXσ. All values are in atomic units. The SIESTA
(red circles) and Quantum ESPRESSO49 (blue boxes) calculations used an argon atom
centered at the origin of a 3.760 Å cubic box, the PBE functional,50 and only one k-point
at Γ. Troullier-Martins51–53 and Goedecker/Hartwigsen/Hutter/Teter54,55 norm-conserving
pseudopotentials were used, respectively. The Numol (black lines) calculations used the local
density approximation (LDA) and an isolated argon dimer. The plots represent the values
along the shortest argon-argon contact (dAr−Ar = 3.76 Å).
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dispersion contribution to the atomic forces and the stress tensor. For atom i, the force is

Fdisp,i =
∑
L

∑
j

∑
n

nCn,ijR
n−2
ijL

(Rn
vdW,ij +Rn

ijL)2
RijL, (20)
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and the components of the stress tensor are

σdisp,ηζ = − 1

2V

∑
L

∑
i 6=j

∑
n

nCn,ijR
n−2
ijL (RijL)η(RijL)ζ

(Rn
vdW,ij +Rn

ijL)2
, (21)

where η, ζ = x, y, z and V is the unit-cell volume. Note that, in these expressions, the

dispersion coefficients are assumed to be constant with respect to changes in the crystal

geometry, which is not strictly correct. However, practise has shown that this approximation

does not noticeably affect the geometry minimization, in most cases. In fact, it is more

computationally efficient to calculate the dispersion coefficients at the first ionic step and

then keep them constant throughout the geometry minimization. “Relaxed” geometries are

then subject to additional geometry optimization calculations, until the newly computed

dispersion coefficients, and consequently the total energy, cease to to change. The effect of

fixing the dispersion coefficients at the first ionic step, as opposed to recalculating them at

every step, has been tested and shown to yield equivalent geometries in both molecules and

solids.

3.2 Computational Methods

SIESTA calculations: The B86bPBE50,59 functional was implemented in our in-house

version of the 4.0b-485 SIESTA code, as it typically yields the best results when paired

with the XDM dispersion model.10 Additional calculations were performed using the PBE50

functional, with either XDM or Grimme’s D2 dispersion correction.24 Both double-ζ, and

triple-ζ, plus polarization (DZP and TZP) basis sets were considered. The D2 damping

parameters were set to sr = 1.1 and s6 = 0.50 or 0.64, for DZP and TZP, respectively.25

DZP is the standard basis set implemented in SIESTA, whereas TZP was constructed and

optimized for H, N, and O atoms by Louwerse and Rothenberg,60 and further extended to

C atoms by Carter and Rohl.61

The confinement radius of the finite numerical orbitals was set by an “energy shift”
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parameter of 0.001 Ry, found to be sufficient in reducing basis set superposition error and

yielding converged energies.18,61,62 The real-space integration grid cutoff value for charge

densities and potentials was set to 200 Ry, consistent with our previous work.18 Troullier-

Martins-type51,52 norm-conserving pseudopotentials63,64 were generated and tested for both

density functionals with the ATOM code.53 These pseudopotentials included nonlinear core

corrections.65

Plane-wave calculations: Reference benchmark calculations were also performed with

B86bPBE-XDM, PBE-XDM, and PBE-D2 as implemented in Quantum ESPRESSO49 v.

5.1, using plane-waves/pseudopotentials66,67 within the projector-augmented wave (PAW)

formalism.68 The damping function parameters, a1 and a2, were set to 0.6512, and 1.4633 Å

for B86bPBE-XDM and to 0.3275, and 2.7673 Å for PBE-XDM.10 The s6 damping parameter

for PBE-D2 was set to a value of 0.75. Wave-function and density cutoffs were set to 80 Ry

and 800 Ry, respectively. Structure relaxations were performed with tighter thresholds for

convergence of the energies and forces, i.e., 10−5 Ry and 10−4 Ry/bohr, respectively.

k-point grid sampling and structure relaxation: For all calculations, a Brillouin-

zone sampling with a 4 × 4 × 4 k-point Monkhorst-Pack (MP) scheme was used to treat

crystal structures, whereas isolated molecules were studied at the Γ-point only. During

structure optimization, unit-cell parameters and atomic positions for crystalline systems

were allowed to fully relax, while for molecules in a large-vacuum simulation box, only the

atomic coordinates were allowed to vary.

Geometry relaxations were carried out using the conjugate-gradient (CG) algorithm.

However, in the last stages of this study we found that the modified Broyden algorithm69

implemented in SIESTA is much more efficient than CG, and yields the same results with

tight convergence criteria (see below). Therefore, we recommend its use for geometry relax-

ations in molecular crystals.

Similarity index: As a tool to measure similarity between crystal structures, the

POWDIFF utility in CRITIC270 was used. This tool is based on the comparison of powder
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diffraction patterns using a cross-correlation function,71 and ranges in value between zero

and one. A result of zero indicates an exact match, while a result of one indicates maximum

dissimilarity between two crystal structures.

3.3 Parametrization of the XDM dispersion model

Table 1: XDM damping parameters for the PBE and B86bPBE functionals and selected
basis sets, along with the resulting error statistics for the fit set.

Method Na a1 a2 (Å) MPEb MAPEc MAXd

SIESTA
PBE/DZP 49 – – -17.0 39.5 232.2 (c6h6-c6h6-stack)
PBE-D2/DZP 49 – – 20.8 33.5 130.6 (cf4-cf4)
PBE-D2/TZP 34 – – 25.9 26.5 62.0 (ch4-nh3)
PBE-XDM/DZP 49 1.4588 0.0000e 14.7 30.3 132.0 (cf4-cf4)
PBE-XDM/DZP 34 1.4025 0.0000e 11.2 22.5 94.3 (ch4-nh3)
PBE-XDM/DZP+CPf 34 1.2901 0.0000e -3.6 19.2 73.9 (ch4-c2h4)
PBE-XDM/TZP 34 0.7086 2.3542 1.1 12.3 56.0 (ch4-c2h4)
PBE-XDM/TZP+CPf 34 1.2480 0.0000e -3.1 18.6 74.0 (ch4-c2h4)
B86bPBE/DZP 49 – – -32.7 43.3 158.6 (c6h6-c6h6-stack)
B86bPBE-XDM/DZP 49 0.2307 3.4210 8.7 21.7 62.4 (ch4-nh3)
B86bPBE-XDM/DZP 34 0.5000 2.5556 4.9 18.2 65.2 (ch4-nh3)
B86bPBE-XDM/DZP+CPf 34 1.2343 0.0000e -9.7 20.4 80.4 (c6h6-ch4)
B86bPBE-XDM/TZP 34 1.3543 0.0000e -1.2 11.2 40.4 (ch4-c2h4)
B86bPBE-XDM/TZP+CPf 34 1.1874 0.0000e -8.4 19.2 82.7 (c6h6-ch4)
QE
PBE-D2 49 – – 13.2 18.4 69.7 (ch4-hf)
PBE-XDM 49 0.3275 2.7673 3.9 13.7 37.8 (h2s-h2s)
B86bPBE-XDM 49 0.6512 1.4633 2.6 11.4 23.1 (ch4-nh3)

a Number of molecular dimers contained in the parameterisation set. b Mean percent error; a negative (positive) sign indicates
underbinding (overbinding) with respect to the benchmark data. c Mean absolute percent error. d Maximum absolute percent
error. Labels in parentheses identify the dimer that gives the maximum error. e In order to avoid unphysical (negative) values,
a2 was set to zero in the fit. f Counterpoise corrections were applied to the computed dimer binding energies.

The XDM dispersion model was parametrized for both the (newly implemented) B86bPBE

and PBE functionals by minimizing residual errors with respect to high-level benchmark data

from the Kannemann-Becke (KB49) set of 49 weakly bound molecular dimers.40 In all cases,

single-point energy calculations were performed at the fixed benchmark set geometries. The

optimal parameters obtained by least-squares fit and the performance of the XDM-corrected

methods are shown in Table 1 for the standard DZP basis set and the extended TZP basis

set.60,61 Because the TZP basis is not available for all elements contained in the KB49 data

(namely, Si, S and F), the XDM model was parametrized on a subset of the KB set con-

taining 34 dimers (of a total of 49, not counting the noble gas dimers). For consistency, the

parameters obtained by fitting to the 34-dimer set will be used for both the DZP and TZP
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basis sets in the rest of the article.

The B86bPBE average errors in Table 1 are consistently lower than those from PBE, when

paired with XDM. This has been observed in previous studies,31 and is expected from the

large-gradient-limit behavior of the exchange enhancement factor in these functionals.10,72,73

Using the largest basis set in this study (TZP), the MAPE of both functionals (12.3% for

PBE and 11.2% for B86bPBE) are very similar to those obtained using QE (13.7% and

11.4%) and also to the near-complete-basis-set values using Gaussian basis sets reported in

a previous study32 (14.3% and 13.1% for the full KB49 set, with the latter value obtained

using the psi4 program7,74). For comparison, PBE-D2 gives MAPEs of 33.5% (DZP), 26.5%

(TZP), and 18.4% using the QE implementation. However, it must be noted that the PBE-

D2 was not specifically fitted to the KB set.

The performance of B86bPBE-XDM and PBE-XDM suffers considerably from basis set

incompleteness when the smaller DZP basis set provided in the SIESTA package are used,

with MAPE of 18.2% (B86bPBE) and 22.5% (PBE) (21.7% and 30.3%, respectively, if the

49 dimers in the KB set are considered). These values are consistent with the results for

double-ζ Gaussian basis sets lacking diffuse functions, which have been shown in the past to

be inadequate for non-covalent interactions.32,75 For instance, the MAPE of the PBE-XDM

parametrization to the 49-dimer KB set with non-diffuse double-ζ Gaussian basis sets is

37.2% (6-31G∗) and 45.9% (cc-pVDZ). In contrast, the MAPE of 6-31+G∗, which contains

one set of diffuse functions, is 17.8%. SIESTA’s DZP basis set, with a 30.3% MAPE (Table 1),

is intermediate between these two results and the TZP basis sets benefits from the increased

cutoff radii compared to DZP. Other functionals, such as PBE-D2, are similarly affected by

basis-set incompleteness, with MAPEs of 26.5% (TZP) and 33.5% (DZP). Therefore, it is

clear that reliable calculation of non-covalent binding energies in SIESTA necessitates the

use of larger basis sets than the standard DZP, or the design of new basis sets with increased

cutoff radii.

The use of counterpoise (CP) corrections76 to account for basis set superposition error
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(BSSE), in conjunction with the DZP or TZP basis sets, does not improve the performance

of any method other than PBE-XDM/DZP. The CP correction tends to over-compensate,

causing the dimers to be underbound on average, in agreement with previous reports.77 The

size of the CP correction indicates that, even if the average error from its application is

lower, there is still significant basis-set incompleteness error in the TZP results, probably

stemming from the finite-support nature of the basis sets.

3.4 Graphite exfoliation

We now calculate the exfoliation of graphite using the new XDM-corrected functionals in

SIESTA.31 Graphite exfoliation is a simple test of the accuracy in the treatment of non-

covalent interactions for which high-level experimental reference data exists.78 For each

method in Table 1, a scan was performed by systematically varying the interlayer distance

between graphene sheets in graphite, while the intralayer hexagonal lattice parameter was

kept fixed at 2.456 Å. The resulting potential energy curves are shown in Figure 2.

In all cases, the energy curves for the uncorrected functionals (PBE and B86bPBE) are

very slightly binding, or non-binding, and the XDM dispersion correction brings the results

into close agreement with experiment. The equilibrium interlayer separations using DZP

and TZP are slightly higher (≈0.1–0.2 Å) than the plane-wave results and the experimental

reference data. The exfoliation energies are in excellent agreement with experiment and the

QE calculations, although slightly underestimated with the DZP basis set. Strangely, TZP

gives greater interlayer binding than DZP with all functionals, with or without dispersion

correction. In particular, uncorrected B86bPBE and PBE show between 10–20 meV/atom of

spurious binding, another indication that there is significant basis set incompleteness even at

the TZP level. Overall, the DFT-XDM methods perform slightly better at reproducing the

experimental graphite interlayer distance and exfoliation energy than PBE-D2, regardless of

the choice of local or plane-wave basis sets.

There is an important point to note about geometry optimizations in weakly bound crys-
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Figure 2: Graphite exfoliation curves calculated with plane-wave/pseudopotentials in (a)
QE, (b) SIESTA using a DZP basis set, and (c) SIESTA using a TZP basis set, compared
to experimental data.78
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tals using SIESTA. The default convergence thresholds for maximum atomic force and max-

imum stress components in SIESTA are 0.04 eV/Å and 1.0 GPa, respectively. While these

are suitable for hard solids, they lead to unfinished geometry optimizations in molecular crys-

tals, which makes the energy landscapes dependent on the choice of input geometries.18 This

is illustrated by varying maximum stress component threshold for calculations on graphite

(Table 2). The default convergence threshold (1.0 GPa) leads to incomplete geometry op-

timizations and erroneous equilibrium geometries. From these tests and previous work,18

maximum force and stress thresholds of 0.01 eV/Å and 0.02 GPa, which are tighter than the
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Table 2: Results of geometry optimizations on graphite performed with DFT-XDM/DZP and
DFT-D2/DZP using various input values of the c lattice parameter (specified in parentheses),
as a function of the stress convergence threshold.a

Stress thr. Nopt c (6.0) Nopt c (7.0) Nopt c (8.0)
B86bPBE-XDM

1.0 21 6.939 6 6.998 31 7.315
0.02 78 6.936 58 6.937 146 6.940
0.002 126 6.936 179 6.937 248 6.937

PBE-XDM
1.0 21 6.988 6 6.999 30 7.069
0.02 47 6.996 23 6.998 163 6.995
0.002 309 6.976 291 6.977 314 6.991

PBE-D2
1.0 13 6.871 2 6.994 19 6.820
0.02 19 6.796 46 6.797 62 6.798
0.002 66 6.795 105 6.795 137 6.795

a The units are GPa for the cell stresses, and Å for the c lattice parameter. Nopt is the
number of optimization steps.

defaults, seem to be sufficient. These convergence thresholds will be used in the rest of the

article. It is important to note that excessively tight stress thresholds are also problematic

because of numerical instabilities that arise near the cutoff radii of the finite-support atomic

orbitals when performing numerical integration.19,20 This can lead to “endless” geometry

optimizations, as pointed out by the SIESTA developers.

3.5 Lattice energies of molecular crystals

We now assess the SIESTA implementation of XDM for molecular crystals. The statistics

on the X23 benchmark set are shown in Table 3. The X23 set28,58 contains reference lattice

energies for 23 small-molecule crystals. With the DZP basis set, B86bPBE-XDM performs

best overall, yielding an MAE of 8.2 kJ/mol, followed by PBE-D2 and PBE-XDM. However,

the use of the larger TZP basis set does not necessarily improve the quality of the results.

Similar to Carter and Rohl,61 we observe that the lattice energy error statistics with finite-

support basis sets are somewhat poorer than using plane waves. Carter and Rohl obtained

a MAE of ca. 23 kJ/mol on the C21 subset of X23 (with 21 lattice energies28) using the
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Table 3: Statistics for the X23 set of lattice energies using DFT-XDM and DFT-D2 methods,
in kJ/mol per molecule, relative to back-corrected, experimental sublimation enthalpies.28,58

Method MEa MAEb MAXc

SIESTA
PBE-D2/DZP 7.5 11.4 25.1 (ant)
PBE-D2/TZP 3.9 5.7 14.5 (ada)
PBE-XDM/DZP 11.8 14.1 29.9 (suc)
PBE-XDM/TZP -9.4 10.0 23.0 (cyt)
B86bPBE-XDM/DZP 3.1 8.2 24.3 (ant)
B86bPBE-XDM/TZP -8.4 8.9 21.3 (cyt)
PBE-XDM/DZP+CPd -0.8 4.4 14.4 (ant)
PBE-XDM/TZP+CPd -2.1 4.4 18.2 (ant)
B86bPBE-XDM/DZP+CPd -3.2 4.7 15.8 (ant)
B86bPBE-XDM/TZP+CPd -3.6 4.7 17.5 (ant)
QE
PBE-D2 3.7 5.8 18.4 (ada)
PBE-XDM -3.2 4.7 17.9 (cyt)
B86bPBE-XDM 0.5 3.6 13.4 (cyt)
QE//SIESTAe

PBE-D2/DZP 2.9 5.5 13.7 (cya)
PBE-XDM/DZP -2.5 4.3 17.2 (cyt)
B86bPBE-XDM/DZP -0.1 3.7 12.7 (cyt)

a Mean error; a negative (positive) ME indicates underbinding (overbinding) with respect to
the benchmark data. b Mean absolute error. c Maximum absolute error; labels in parentheses
identify the crystal responsible (ada: adamantane, ant: anthracene, cya: cyanamide, cyt:
cytosine, suc: succinic acid). d Counterpoise corrections were applied to the crystal lattice
energies, following the approach of Carter and Rohl.61 e Composite methods using plane-
wave single-point energies evaluated using the geometries obtained from SIESTA with the
same functional and the DZP basis.

non-local vdW-DF methods and a DZP basis set. For comparison, plane-wave calculations

with the same functionals yield MAEs of ca. 10 kJ/mol.28 Thus, for molecular crystals,

B86bPBE-XDM/DZP outperforms the vdW-DF methods, even when employed with plane-

waves, at a considerably reduced computational cost. (Although it is possible that some

of the more recent exchange functionals used in combination with vdW-DF work better for

lattice energies of molecular crystals.)

Carter and Rohl also demonstrated that the application of counterpoise corrections

greatly reduced the errors in the computed lattice energies with SIESTA, restoring the perfor-
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mance of the vdW-DF functionals to the same quality as their plane-wave implementation.61

Upon applying CP corrections, all of the DFT-XDM methods yield MAEs of 4.4–4.7 kJ/mol,

approaching those of the plane-wave reference calculations. However, as argued previously,61

although CP corrections significantly improve lattice energies and return values similar to

plane-wave calculations, they are not straightforward to apply.

The impact of basis set incompleteness error on the lattice energies in Table 3 raises the

question of whether the equilibrium geometries are similarly affected. This question is also

important in the context of composite methods, in which high-level single-point calculations

(using plane-waves) are used at geometries obtained using a low-level calculation (SIESTA).

Composite methods have been proposed as a computationally efficient alternative to plane

waves for the calculation of lattice energies in molecular crystals,18,61 but their performance

relies on whether the low-level method offers equilibrium geometries close to those of the

high-level method.

Table 4: Statistics for the X23 set of lattice energies using composite methods, in kJ/mol
per molecule, relative to plane-wave calculations with the same density functional.

SIESTA QE//SIESTA
Method MAEa MEb MAEa MAXc POWDIFFd

PBE-D2/DZP 10.8 -0.8 1.2 5.4 (ada) 0.2935
PBE-XDM/DZP 15.0 0.8 0.8 2.0 (pyr) 0.1578
B86bPBE-XDM/DZP 7.0 0.5 0.6 1.2 (eth) 0.1975

a Mean error; a negative (positive) ME indicates underbinding (overbinding) with respect to
the benchmark data. b Mean absolute error. c Maximum absolute error; labels in parentheses
identify the crystal responsible (ada: adamantane, eth: ethylcarbamate, pyr: pyrazole). d

The deviation between the SIESTA and QE equilibrium geometries is quantified by the
powder diffraction similarity measure.

Table 4 evaluates the ability of DZP calculations with SIESTA to reproduce plane-wave

equilibrium geometries, using the same density functional and dispersion correction. The

plane-wave geometries are close to the complete-basis-set limit and, in our experience, the

choice of PAW dataset/pseudopotential has very little effect on non-covalent equilibrium

geometries, provided enough plane waves are used in the calculation. The powder similarity

measure (POWDIFF) indicates that there are significant differences between the SIESTA
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and plane-wave geometries, and that this deviation is somewhat smaller for XDM than for

D2. However, the lattice energies calculated using the corresponding composite methods are

excellent, with MAEs being within at most 1.2 kJ/mol from the pure plane-wave calcula-

tions. Therefore, even though the lattice energies calculated using the DZP basis set are

significantly affected by basis-set incompleteness error (Table 3), the corresponding equilib-

rium geometries seem to be reasonably close to the plane-wave reference and, consequently,

the composite methods built with a DFT-XDM/DZP low-level approach are quite accurate

and significantly cheaper than a pure plane-wave optimization.

4 Conclusions

In this article, we presented the first implementation of the XDM dispersion model with

the numerical finite-supported orbital method in the SIESTA software package. The new

SIESTA/XDM code was verified by comparing the calculated dispersion coefficients to other

XDM implementations using plane waves (QE) and numerical orbitals in the gas phase (Nu-

mol). The XDM method in SIESTA was then parametrized for the PBE and the B86bPBE

functionals with double-ζ (DZP) and triple-ζ (TZP) basis sets against the Kannemann-Becke

(KB) set of binding energies of non-covalently bound gas-phase dimers. DZP is the standard

basis set implemented in SIESTA, while TZP, which contains more basis functions, has been

recently proposed for C, H, O, and N by Louwerse and Rothenberg60 and Carter and Rohl.61

The performance of the new XDM-corrected methods for the molecular dimers in the KB

set is of similar quality to the results using plane-waves, provided that the TZP basis set is

employed. DZP, on the other hand, suffers from significant basis-set incompleteness, and its

performance is similar to double-ζ Gaussian basis sets without diffuse functions.

The new XDM implementation was tested in two cases: graphite exfoliation and the

calculation of lattice energies of molecular crystals. The application of the XDM correction

brings the potential energy curves for graphite exfoliation into close agreement with exper-
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imental data, although care needs to be taken to use tighter stress convergence thresholds

than the SIESTA defaults.

For molecular crystal lattice energies, the XDM-corrected SIESTA methods also give good

results. In particular, B86bPBE-XDM/DZP showed promise as an excellent balance between

accuracy and efficiency when determining lattice energies. The performance of this method

is a significant improvement over the currently implemented post-SCF dispersion corrections

(DFT-D2) and non-local functionals (vdW-DF1 and vdW-DF2) in SIESTA. However, both

the DZP and TZP basis sets display considerable basis set incompleteness effects, which

reveals the necessity of designing specialized SIESTA basis sets for non-covalent interactions.

Because of this, SIESTA’s XDM-corrected results are inferior to their plane-wave equivalents

for the lattice energies of molecular crystals unless counterpoise corrections are applied, which

is undesirable in practice. The equilibrium geometries obtained from all XDM methods in

SIESTA, however, are quite close to the plane-wave results. It was shown that composite

approaches, in which a single-point plane-wave calculation is performed at SIESTA’s DZP

equilibrium geometries, are quite accurate and computationally efficient.
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Martinez, E.; Bultinck, P. Information-Theoretic Approaches to Atoms-in-Molecules:

Hirshfeld Family of Partioning Schemes. J. Phys. Chem. A 2018, 122, 4219–4245.

(46) Kannemann, F. O.; Becke, A. D. Atomic Volumes and Polarizabilities in Density-

Functional Theory. J. Chem. Phys. 2012, 136, 034109.

(47) Becke, A. D.; Roussel, M. R. Exchange Holes in Inhomogeneous Systems: A Coordinate

Space Model. Phys. Rev. A 1989, 39, 3761–3767.

(48) Becke, A. D.; Johnson, E. R. A Density-Functional Model of the Dispersion Interaction.

J. Chem. Phys. 2005, 123, 154101.

26



(49) Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Ca-

landra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; Colonna, N.; Carn-

imeo, I.; Dal Corso, A.; de Gironcoli, S.; Delugas, P.; DiStasio, R.; Ferretti, A.;

Floris, A.; Fratesi, G.; Fugallo, G.; Gebauer, R.; Gerstmann, U.; Giustino, F.; Gorni, T.;

Jia, J.; Kawamura, M.; Ko, H.-Y.; Kokalj, A.; Küçükbenli, E.; Lazzeri, M.; Mar-
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