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From quantum fragments to Lewis structures: elec-
tron counting in position space†

A. Martín Pendás∗, E. Francisco

An electron counting technique that easily provides Lewis structures from real space analyses of
general wavefunctions is proposed. We base our approach on reformulating the adaptive natural
density partitioning (AdNDP) algorithm proposed by Zubarev and Boldyrev (Phys. Chem. Chem.
Phys. 10, 5207 (2008)) in position space through the use of domain-averaged cumulant densities,
which take into account many-electron correlations. Averages are performed over the basins
provided by the quantum theory of atoms in molecules. The decomposition gives rise to a set of n-
center, two-electron orbitals which describe the dominant Lewis structures of a molecular system,
and is available both for single- and multi-determinant wavefunctions. As shown through several
examples, chemically intuitive Lewis descriptions are now available from fully orbital invariant
position space descriptors. In this sense, real space methods are now in a position to compete
with natural bond order (NBO) orbital procedures without the many biases of the latter.

Introduction
The two-center two-electron (2c,2e) bond is, still today, the ba-
sic buiding block in the accepted theory of chemical bonding.
Proposed about a hundred years ago,1 it has resisted well the
unavoidable aging process of any evolving paradigm. Actually,
grouping electrons in pairs, be them of the core, lone or bond-
ing types, has become inherent to chemistry as a science. In
the meantime, theoretical chemists have argued for a long time
about how to recover the Lewis pair from the underlying quantum
mechanical framework.2 This is relatively simple in the mean-
field approximation, where populating opposite spin one-electron
states in an independent way leads to the doubly occupied or-
bitals. The compatibility of this molecular orbital (MO) picture,3

which generally provides delocalized states, with standard chem-
ical concepts may be achieved via a plethora of orbital localiza-
tion procedures.4–14 The enterprise is far less obvious in the case
of correlated descriptions, although the revitalization of valence
bond (VB) theory in recent times15–20 yields chemical pictures
easier to couple with the chemist’s localized perception of Lewis
pairs.

Localization procedures may fail to provide consistent chemical
descriptions within the orthodox Lewis picture whenever multiple
resonance structures are needed, e.g. when aromaticity sets in, or
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when pairs delocalize over more than two atoms. This gives rise
to multi-center bonding, a concept of historical interest that, for
instance, was basic to rationalize the structure and chemistry of
boron compounds.21 This extended Lewis framework, in which a
set of resonance structures made up from n-center two-electron
bonds (nc,2e) are used to model the electronic structure of a
molecule, has become a de facto standard in the theory of the
chemical bond. From a computational point of view, one of its
best known implementations is the natural bond orbital (NBO)
analysis of Weinhold and coworkers,22–25 together with its asso-
ciated donor-acceptor paradigm.

In brief, the NBO procedure provides a generalization of
Löwdin’s natural orbitals, i.e. the eigenvectors of the first order
reduced density matrix (1RDM) characterized by displaying max-
imal electron occupancies. The procedure works by successively
diagonalizing atomic, di-atomic or generally n-center blocks of
the 1RDM. This is done in Fock space, usually in a localized basis
set, so a first worry is to obtain an appropriate minimal occu-
pied atomic basis together with its unoccupied complement: the
natural atomic orbital (NAO) basis. In order to obtain objects as
independent of the basis set as possible, as well as to avoid other
more subtle problems, the NAO/NBO algorithm is considerably
more cumbersome than this simplified description, involving sev-
eral somewhat controversial decisions.26 Although NBOs may be
obtained from correlated 1RDMs, a reconstruction of the system’s
wavefunction can only be made easily in the case of a single-
determinant. It is also interesting to notice that the NBO scheme
has traditionally not been applied beyond the 3-center case, al-
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though the most recent versions of the code allow for extensions
up to a number of centers equal to nine.

A simpler generalization of the NBO apparatus to the true
many-center situation was provided by Zubarev and Boldyrev,27

through their adaptive natural density partitioning (AdNDP). In
AdNDP, the n-center blocks of the 1RDM are diagonalized after
depleting them from the eigenvectors with large (≈ 2) occupan-
cies obtained in the (n−1)-center step of an iterative process. In
this way, cores and lone pairs are obtained first, then eliminated
from the 1RDM before obtaining (2c,2e) bonds, etc. The proce-
dure is fast and easy to implement. It has also been applied to
periodic systems, and provides a standard Lewis description in
simple cases as well as appealing images of electron delocaliza-
tion in more complex ones, such as metallic clusters.28–32

Despite their clear success, both NBO and AdNDP heavily rest
on prescriptions which are not invariant under orbital transforma-
tions. There exists, however, a whole discipline in the theory of
the chemical bond that advocates for the use of orbital invariant
descriptors based on RDMs. These RDMs may be written either
in momentum or position space, the latter being more interest-
ing to Chemistry. Position space techniques have been quite suc-
cessful33 in the past, providing important insights into chemical
bonding problems without recourse to orbitals. In many of these
approaches, a control scalar field, such as the electron density, ρ,
or the electron localization function (ELF),34 is used to define a
topology and an exhaustive partition of the physical space R3 into
chemical regions. This leads to a direct and orbital invariant as-
sociation of points in space to, for instance, atoms, like it is done
in the quantum theory of atoms in molecules (QTAIM) if the con-
trol scalar field is ρ.35 A rather insightful energy decomposition
analysis, the interacting quantum atoms (IQA) approach,36,37 has
also been devised according to these ideas.

Nevertheless, powerful as it is, position space reasoning lacks
a direct link to the Lewis model, and without orbitals (or effec-
tive one-electron functions), its penetration in the non-theoretical
chemistry community is, to say the least, difficult. As we have
stressed before,38 the theoretical or computational constructs
that have spread most quickly in the literature (like the NBO tech-
nique) are those closer to the Lewis-like mind of Chemistry prac-
titioners. Recovering effective one-electron functions from orbital
invariant position space theories is thus a worthwhile enterprise.

We have recently shown that a full hierarchy of one-electron
functions describing n-center bonding, the natural adaptive or-
bitals (NAdOs),38,39 can be obtained from the domain-averaged
(n+ 1)−th order cumulant density (CD).40 The n−th order CD
(nCD) is simply the diagonal part of the standard n−th order RDM
that can not be expressed in terms of lower order RDMs.41 Since
we do not focus here on technicalities but rather on the usefulness
of the approach to Chemistry, we avoid details and nitty-gritties.
Explicit formulas for CDs can be found elsewhere,39 and more
details on the construction and physical meaning of the NAdOs of
a general order are given in the Supplementary Information.

For the time being, it is only necessary to consider the second
order CD, that coincides with the exchange-correlation density,
ρ2

c (rrr1,rrr2) = ρ(rrr1)ρ(rrr2)−ρ2(rrr1,rrr2), where ρ2(rrr1,rrr2) is the diago-
nal 2RDM. The exchange-correlation density measures deviation

of the pair density from that of independent particles. If a divi-
sion of the physical space, R3, into atomic regions is performed,
R3 =

⋃m
a=1 Ωa, and the rrr2 coordinate of ρ2

c (rrr1,rrr2) is averaged over
the Ωa’s, the following decomposition of ρ(rrr) appears38

ρ(rrr) =
m

∑
a

ρ
a(rrr) =

m

∑
a

∫
Ωa

drrr2ρ
2
c (rrr,rrr2). (1)

This can equally be done with the full 2RDM, leading to a de-
composition of ρ(rrr,rrr′) into atomic ρa(rrr;rrr′) components that can
be diagonalized (usually by expressing them in an orbital basis.
Doing so, we may write

ρ
a(rrr) = ∑

i
na

i [φ
a
i (rrr)]

2 , (2)

where the φ a
i (rrr)’s and na

i ’s are the 1-center NAdOs and their occu-
pations, respectively. These φ a

i ’s coincide with the domain nat-
ural orbitals (DNOs) introduced by Ponec in the nineties.42,43

They contain information about electron delocalization and are
self-localizing entities, with occupations that add to the average
electron population of the domain (e.g. atom). The closer to 2.0
na

i is, the more localized φ a
i is in Ωa. If na

i is clearly different
from 2.0, the DNO leaks out of the domain, denoting bonding to
other centers. This links, as expected, bonding with delocaliza-
tion. At the Hartree-Fock level the occupations have been shown
to be directly connected to the statistics of the electron popula-
tions of the domains, and also to their participation in the bond
order (delocalization index, DI) of the domain with the rest of the
system.44,45 It has also been shown that, at this level, exact Lewis
pairs between the domain and its complement can be recovered.
This correspondence ceases to be exact for the correlated case,
although in many cases a good match between DNOs and pairs
can still be obtained.45,46

We use in this work the above ideas, combined with the
NBO/AdNDP formalisms, to show how a generalized Lewis pic-
ture constructed from n-center two-electron functions can be eas-
ily built within the NAdOs hierarchy. With this, we intend to ap-
proach position space techniques to a general chemistry audience.
Since the new protocol is consistent (i.e. compatible) with the un-
derlying QTAIM analyses, all n-center NAdOs, bond indices, do-
main observables or IQA decompositions obtained from a given
molecular wavefunction refer to the same grand image. In this
sense, we believe that real space methods are now in a position to
compete with NBO-like orbital procedures. They offer simultane-
ously a generalized population analysis that includes multi-center
bond indices, rules to build Lewis structures, energy decomposi-
tion analyses, and a large number of other by-products.

We have divided the rest of the article as follows. First, our
method to recover the Lewis structures through a real space adap-
tive natural cumulant partitioning (rs-AdNCP) is described. Then
we illustrate the ability of this new method to describe some di-
atomic and simple polyatomic molecules, the multicenter bond-
ing of some boron compounds, and the bonding patterns of some
exotic sytems. Finally, the main conclusions of this work are sum-
marized.
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Real space adaptive natural cumulant parti-
tioning (rs-AdNCP)

The adaptive natural density partitioning (AdNDP) as defined by
Zubarev and Boldyrev,27 is based on successively diagonalizing
the n-atomic blocks of the 1RDM written in the natural atomic
orbital (NAO) basis of Weinberg and coworkers. In this basis,
each element Pµν of the 1RDM has an atomic label associated
to each of its row and column indices. Ordering the basis func-
tions atomic-wise, we denote PPPi j as the block formed by row and
column indices belonging to atom i and j, respectively. Diago-
nalization of the PPPii block (taking care of non-orthogonality this
leads to solving PPPiiφ

i
λ
= ni

λ
SSSiiφ

i
λ

) provides a set of eigenfunctions
φ i

λ
. Those with occupations close to 2 are considered cores or

lone pairs of center i, and stored. The full density matrix is then
depleted from the stored vectors, PPP← PPP−∑

stored
λ

ni
λ

φφφ
i†
λ

φφφ
i
λ

. After
the one-center step has run over all centers, the two-center 2×2
blocks are constructed from the depleted matrix,

PPP(i j) =

(
PPPii PPPi j

PPP ji PPP j j

)
, (3)

and diagonalized. Highly occupied eigenvectors, φ
(i j)
λ

, inter-
preted as (2c,2e) bonds, are again stored and depleted from the
full density, and the process is repeated with 3×3, and further or-
der blocks until the total number of electrons has been recovered
to a given precision. This provides a generalized Lewis descrip-
tion of the system in terms of a set of (nc,2e) bonds. The AdNDP
recipe is simple, efficient, and leads to very robust results. Or-
bitals from different diagonalizations are not orthogonal, but can
be orthogonalized with no big loss of information, if needed.

These ideas are immediately generalizable in real space. We
will explain our strategy starting with Eqs. 1 and 2, where a is an
atom of the system. As we have said in the Introduction, DNOs φ a

i
with occupations na

i close to 2 are highly localized in their atomic
domains, representing either cores or lone pairs. Similarly, if we
construct a quantum domain formed by the union of two atomic
ones, Ωab = Ωa

⋃
Ωb, the eigenvectors (φ ab

i ) of ρab ≡ ρa +ρb with
occupation numbers (nab

i ) close to 2 will again be highly localized
in the Ωab = Ωa+Ωb domain, containing also (2c,2e) solutions. If
prior to the diagonalization of ρab we deplete it from the Ωa and
Ωb highly occupied vectors, only the (2c,2e) solutions will remain
as eigenvectors with high population. This can be iterated to n
centers.

The algorithm works as follows. In a first step, the ρa matrices
for all the atomic domains (a = 1, . . . ,m) are obtained from the
2CD (Eq. 1). These are usually written in terms of the underlying
canonical, fixed orbital basis, ϕϕϕ: ρa(rrr;rrr′) = ϕϕϕ†(rrr′)GGGa

ϕϕϕ(rrr). Each
GGGa is then diagonalized, its eigenvectors φφφ

a
λ

with high occupa-
tions (na

λ
≈ 2, a threshold value is chosen) selected and stored.

After all centers have been considered, in a second step, the
GGGab = GGGa +GGGb matrices are constructed for ab pairs, and the set
of all previously found highly occupied eigenvectors (expressed

back in the canonical basis) subtracted from them,

G̃GGab
= GGGab−

stored

∑
λ

na
λ

φφφ
a†
λ

φφφ
a
λ
. (4)

Notice that since the basis is common, the GGGab matrix is not ob-
tained through a selection of blocks as in the standard AdNDP ap-
proach, but by a simple matrix addition. Now, the G̃GGab’s are diag-
onalized to find (2c,2e) bonds, which are again stored. The pro-
cedure is then repeated by constructing the GGGabc = GGGa +GGGb +GGGc

matrices for abc trios, which we deplete from all the one- and
two-center stored functions, i.e.,

G̃GGabc
= GGGabc−

stored

∑
λ

na
λ

φφφ
a†
λ

φφφ
a
λ
−

stored

∑
λ

nab
λ

φφφ
ab†
λ

φφφ
ab
λ
, (5)

etc, until the total number of electrons has been exhausted. As in
AdNDP, a generalized Lewis structure is obtained.

This rs-AdNCP procedure can be speeded up in several ways.
First, hydrogen atoms can be skipped if desired in the first step,
since it is highly unlikely that any of the nH

λ
’s will be very close to

2.0, unless any of the H atoms have a net charge close to −1.44

Second, the connectivity matrix of the molecule can be obtained
prior to the rs-AdNCP analysis (using, for instance, a pure geo-
metrical recipe based of the covalent radii of the atoms)47 and
the construction of the G̃GGab’s then restricted to those pairs sepa-
rated by no more than nb links (say, nb ∼ 2−4). Finally, when the
total number of electrons is not exhausted through the previous
one and two center diagonalizations, a considerable number of
sterile three- and further order diagonalizacions (i.e., not provid-
ing eigenvectors with occupations close to 2) can be avoided by
carefully selecting the trios, quartets, . . . n-tuples of atoms to be
analyzed. For instance, by considering only sets of atoms in which
each of the atoms is connected to at least one of the remaining
ones in the set.

The rs-AdNCP prescription just described differs in an essential
way from Fock-based AdNDPs. The first order matrix PPP used in
AdNDP contains information about electron correlation in an ef-
fective way, at most. On the contrary, the ρa components from
which the present decomposition is built upon inform about how
the Fermi (actually the full exchange-correlation) hole is delo-
calized. They thus contain explicit correlation information. As
it is known, the first order density is not much affected by elec-
tron correlation, while the exchange-correlation density can be
qualitatively different in strongly correlated regimes. We thus
expect that the decomposition presented in this work may show
relevant differences with respect to NBO/AdNDP in interesting
cases. Although we simply present here the rs-AdNCP machinery
and apply it to a few examples, a system in which such a dis-
crepancy is observed is the B –

5 anion, see below. Further work
needs of course to be done to explore other possibly conflicting
cases. It should also be stated that AdNDP needs not coincide
with rs-AdNCP in every case. Although we have found no coun-
terexamples up to now, we expect them when topological atomic
populations differ considerably from NBO ones.

Although we have decided, for the sake of clarity, to consider
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a spinless version of rs-AdNCP, the algorithms can immediately
be generalized to the spin-resolved case. This is advantageous in
the case of open-shell systems, which can be treated either via
spin-resolved or spinless cumulants. Spin-resolved solutions offer
a simple way to rationalize (nc,me) bonds where m is an odd
number. A simple example will be shown below.

Recovering generalized Lewis structures in
real space through rs-AdNCP
We devote this Section to showing the outcome of the rs-AdNCP
procedure as applied to domain-averaged 2CDs. We have thus
integrated the exchange-correlation density over QTAIM atomic
domains both for single-determinant and correlated cases. The
ρa matrices, expressed in the canonical MO basis, have been then
subjected to the position space iterative diagonalization proce-
dure as explained. Global density matrices were obtained with
the GAMESS 48 (at the HF and DFT levels) and the PYSCF 49

(at the explicitly correlated levels) suites, that feed the PRO-
MOLDEN 50 and EDF 51 codes which provide the QTAIM atomic
basins and the final rs-ADNCP functions, respectively.

Diatomics

Diatomics are particularly simple, yet instructive systems in which
to examine the results obtained. First we recall that if a system
is comprised by just two atoms a and b, then ρa +ρb ≡ ρab = ρ,
so diagonalizing the two-center contributions without depleting
them from one-center functions will simply provide the usual nat-
ural orbital decomposition, with occupations equal to the natural
orbital occupations. At the single-determinant level, they would
simply be the canonical orbitals. This indicates the power of the
approach.

Let us take the Be2 and C2 molecules as two simple examples,
calculated at the NIST52 geometries with the cc-pVDZ basis set.
At the HF level, diagonalization of ρa provides a single core with
eigenvalue almost equal to 2.0 and a remaining set of functions
with smaller eigenvalues that delocalize, more or less, over the
other center. If the threshold for accepting one-center functions is
set to our default value ε = 1.90, the rest of the electrons in both
systems, N−4, are obtained in the two-center step after depleting
ρa +ρb = ρ from the cores. These two-center functions φ ab are
almost canonical orbitals. Two, of σg and σu symmetries, in Be2,
and four, adding a pair of functions (πg,x,πg,y) to the former, in
C2.

These two molecules show two common problems of standard
Lewis structures: how to deal with weak bonds, like in Be2, and
how to distinguish not strictly pure lone pairs, like those found
in C2. A direct calculation of the DI in these two cases provides
the value 0.74 for diberyllium and 3.21 for dicarbon. This ob-
viously indicates that the valence g,u functions interfere rather
destructively. In fact, if the occupation threshold is relaxed, the
situation changes. For instance, decreasing ε to 1.80 in Be2 lo-
calizes all the electrons, although the valence localized functions
extend considerably (10.3%) to the other center. This is shown in
Fig. 1. Similarly, using ε = 1.62 in dicarbon gives rise to distorted
localized hybrids plus the common π Lewis pairs.

ε = 1.90 ε = 1.80

ε = 1.90 ε = 1.62

Fig. 1 |φ | = 0.08 a.u. isosurface of the 2σ -like valence functions of
HF//cc-pVDZ descriptions of Be2 (up) and C2 (down). For each sys-
tem, the left hand side functions are obtained if the occupation threshold
ε ≈ 1.90 is used, and the right hand ones when ε is decreased down to
ε ≈ 1.80 and ε ≈ 1.62 in Be2 and C2, respectively. The π functions in
dicarbon are not affected in the process.

Notice that, interestingly, tuning the ε value may provide a set
of different, non-conflicting bonding descriptions for a given sys-
tem. In fact, the ε = 1.62 image of C2 is basically equivalent to
that provided by the NBO technique in terms of a pair of σ (νν̄)

bonds and quadruple bonding.25 This confirms the ability of the
present position space electron counting method to recover ideas
anchored in Fock space.

As a rule of thumb, playing with occupation thresholds is not
needed in standard situations, and default ε values usually pro-
vide acceptable Lewis structures. It should be noticed that de-
fault thresholds are smaller than in NBO for very clear reasons.
Real space occupations admit a simple interpretation in single-
determinant cases. They measure exactly how many out of the
nominal two electrons per function are contained in the n atomic
basins. Since the (nc,ne) functions leak out of the strict union of
basins that we are considering, the occupation thresholds need to
be weaker than in NBO. When several Lewis structures may com-
pete (these tend to be the interesting cases) some trial and error
may be needed, as we have exemplified above. In general, the
larger the number of electrons the final solution accounts for, the
larger its physical soundness.

Let us also consider LiF (computed also at the HF//cc-pVDZ
level) as an extreme case of ionic bonding. In this case, the
one-center step of the rs-AdNCP algorithm exhausts the full set
of electrons. 1s-like cores are found in the Li and F centers
together with four extra F-centered functions which we depict
in Fig. 2. The eigenvalues of the 2s,2px,2py and 2pz orbitals
are 2.000,1.986,1.986, and 1.958, respectively. Only the latter is
slightly delocalized (2.1%) over the Li atom. This picture clearly
corresponds to the standard ionic structure and becomes rein-
forced by noticing that the QTAIM net charge of F is −0.941 a.u.
and that an electron distribution function analysis51,53 (EDF) pro-
vides a probability of finding 10 electrons on F and 2 on Li equal
to p(10,2) = 0.921.

Inclusion of electron correlation provides further insight. We
stress that our procedure is clearly different to that in NBO or Ad-
NDP, where the first order density is always used, even in corre-
lated situations. Here, correlated descriptions are obtained from
the exchange-correlation density (Eq. 1), thus including true cor-
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2.000 1.986
(100.0%F,0.0%Li) (99.4%F,0.6%Li)

1.986 1.958
(99.4%F,0.6%Li) (97.9%F,2.1%Li)

Fig. 2 |φ | = 0.08 a.u. isosurface of the non-core one-center functions
found in LiF at the HF//cc-pVDZ level. Notice, from left to right, the quasi-
atomic nature of the F-centered 2s,2px,2py functions together with the
clear polarization of the 2pz one.

relation effects. In a full configuration interaction (FCI) calcula-
tion in Be2 with the same basis set, for instance, the same two
pictures shown above remain. If a large threshold is chosen, the
cores are mostly unaffected, and the σg and σu valence func-
tions retained, but now with non-integer occupation numbers,
which decrease from 2.0 to 1.962 and 1.906 electrons, respec-
tively. This is due to residual exchange-correlation density not
accounted for by the standard Lewis structure. If a low thresh-
old is selected, again a localized set appears, with valence local-
ized orbitals showing occupations equal to 1.574 (1.709 in the HF
case). The decrease in the total number of electrons accounted for
with respect to the single-determinant HF case is a measure of the
strength of electron correlation effects. The situation in dicarbon
is rather similar. As we showed within a NAdOs description,38

the 2σg,2σu pair is to be understood at the root of recent debates
on its purported quadruple bond.54–56 Correlation considerably
decreases the contribution to the DI of the ungerade function,
this being translated in the present language to a smaller occupa-
tion number, 1.628 at the FCI level, while that of the 2σg orbital
remains considerably populated, 1.968 electrons. As electron cor-
relation becomes more and more intense, it is clear that some oc-
cupation numbers decrease, so that electron counting (or equiv-
alently the value of simple Lewis structures) decreases. Thus,
occupation thresholds need to be relaxed slightly when dealing
with explicitly correlated wavefunctions.

Other interesting systems are transition metal dimers, where
large scale multiple bonding has been invoked. To ascertain the
role of electron correlation, we have performed high level heat
bath configuration interaction (HCI)57 calculations on Cr2 with
the cc-pwcVTZ basis set. The calculated DI is 2.757, far from the
naïve bond order of six. This is well known, and as a system
becomes more and more multireference in character, the DI de-
creases due to negative interference effects, i.e. to localization
of pairs due to Coulomb correlation or to the increasing role of
antibonding orbitals if a traditional view is held. However, the

effect at the rs-AdNCP level is minor. Six (2c,2e) contributions
are immediately found in pairs of σ ,π, and δ symmetry, with oc-
cupations that add to 10.96 e. They are depicted in Fig. 3. Notice
that the distance from 10.96 to 12 electrons is large, and can be
understood as a measure of the multireference nature of this sys-
tem. It is also interesting that each symmetry has a characteristic
occupation window that decreases in the order σ > π > δ , as ex-
pected. If we recall that the DI is directly related to the covalent
energy component of a given interaction,58 we come to the con-
clusion that a completely paired Lewis structure may be found
with a sextuple bond which is compatible with a low covalent
energy contribution coming from correlation induced electron lo-
calization.

1.996 1.850

1.872×2 1.687×2

Fig. 3 |φ |= 0.06 a.u. isosurface of the (2c,2e) contributions found in Cr2.
Details of the calculations are given in the text. In the upper panel the
two σ functions are depicted, while in the lower a representative π (left)
and δ (right) orbital are found.

Although we focus in this work on closed-shell examples, the rs-
AdNCP algorithm can also be applied to open-shell systems. The
Ne +

2 and F –
2 are, for instance, paradigms of the (2c,3e) bond.

We have performed B3LYP//TZV(d) calculations on both and ex-
amined the spin-resolved α and β channels, as explained above.
Let us comment on Ne +

2 . As expected, the majority spin chan-
nel, in which the L atomic shells are filled, localizes completely
after the rs-AdNCP procedure, giving rise to a set of quasi-atomic
2s and 2p functions in each atom with occupations larger than
1.99 for the 2px,y components and a bit smaller, but still large
1.97 value for the 2pz one. The minority spin channel, on the
contrary, displays the same localized 2s and 2px,y functions but
a completely delocalized σ pz function with occupation exactly
equal to 2.0. In this view, the (2c,3e) bond comes from a (2c,1e)
contribution of the delocalized spin channel. If spinless cumu-
lants are used, which is a perfectly legitimate, albeit less informa-
tive option in our opinion, symmetry broken solutions are found,
and either Ne-Ne+ or Ne+-Ne Lewis structures appear. This is
the standard resonance explaining these (3c,2e) bonds in Valence
Bond approaches. Completely analogous results are found in the
F –

2 anion.
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Simple polyatomics

We examine now a few cases with well defined dominating Lewis
structures taken from second period organic molecules. Fig. 4
shows the Lewis structure of ethylene at the HF//cc-pVDZ and
quasi-FCI//cc-pVDZ levels, the latter obtained from a density ma-
trix renormalization group (DMRG) calculation carried out us-
ing the PYSCF suite49. DMRG59 wavefunctions together with
their density matrices, approaching the FCI level to better than
1 kcal/mol, were computed with the BLOCK code60–64, with all
electrons and orbitals included.

Only two C one-center cores are found, the rest of the elec-
trons being recovered at the two-center level. As seen, the degree
of localization of the C-C and C-H σ bonds is similar, but the C-C
π bond leaks slightly into the H atoms (1.6% its population lies
within each of the four equivalent hydrogens). As in NBO descrip-
tions, the polarity of two-center functions can be directly read. In
our case, in terms of the percentage overlap of the orbitals in each
atomic region.

HF
1.967 1.966 1.870

(50.8%C,47.5%H) (49.2%,49.2%) (46.7%,46.7%)

FCI
1.931 1.932 1.781

(53.6%C,45.1%H) (49.4%,49.4%) (47.5%,47.5%)

Fig. 4 |φ | = 0.08 a.u. isosurface of the non-core valence two-center
functions found in ethylene at the HF//cc-pVDZ and quasi-FCI//cc-pVDZ
levels. The shapes of the functions are only slightly altered in the two
descriptions, so only the HF orbitals are shown. Only one C-H σ bond is
reported. Two-center populations nab are also depicted, together with the
percentage degree of localization of the functions in the two centers.

Notice that inclusion of correlation does not change the Lewis
picture, although the existence of partially occupied orbitals in
the multi-determinant case induces a slight decrease in the occu-
pation numbers of the (2c,2e) functions. At this quasi FCI level,
correlation induces a slight localization of both the σ and π C-C
functions, as well as a contraction of the C-H orbitals toward the
C end.

A similar analysis provides the σ + 2π canonical description
in acetylene. If we perform this time the analysis only at the
FCI//cc-pVDZ correlated level, two C-H bonds with populations
equal to 1.961 electrons (61.6%C,31.3%H), and a σ and two π C-C
functions with occupations equal to 1.967 and 2×1.870 electrons,
respectively, are found, but the latter delocalize slightly (0.9%)
over each H atom. In this case, where a clear Lewis structure dom-
inates again, correlation does not change the single-determinant
image at all. It is also clear that the C-H function is considerably
more C centered in acetylene than in ethylene, in agreement with
electronegativity arguments or with the NBO hybrid structure.

To exemplify the role of lone pairs, our next example is

methanol, where we have performed the rs-AdNCP analysis at the
CCSD(T)//cc-pVDZ level. Besides the 1s cores, two extra one-
center functions are found centered on the oxygen atom. As it
occurs in NBO or AdNDP analyses, the density matrix which is
diagonalized (in our case ρa for each atom) has the point group
symmetry of the atom in which it is obtained. Similarly, the two-
center functions possess the symmetry of the bond, and so on.
This means that lone pairs will belong to the irreducible repre-
sentations of the atomic point group. For oxygen, the σ plane
forces a pair of symmetric and antisymmetric lone pairs. These
are shown in Fig. 5. In order to obtain a tetrahedral arrangement
of the pairs, like that found when examining ∇2ρ, for instance,
one can perform an isopycnic localization.65 We will not pursue
this goal here. The considerably polar nature of the O-H and C-O
bonds is also clear from the analysis.

1.961 1.904 1.925
(99.3%) (97.4%) (25.6%C,73.1%O)

1.896 1.899 1.939
(51.0%C,46.1%H) (49.6%C,47.6%H) (80.7%O,18.2%H)

Fig. 5 |φ | = 0.08 a.u. isosurface of the non-core valence 1c and 2c
functions found in methanol at the CCSD(T)//cc-pVDZ level. Two-center
occupations and percentage of population localized are also shown as in
Fig. 4.

The last example on simple Lewis structures is provided by
formic acid. Only the oxygens’ lone pairs and the π system of
the -COOH group computed at the HF//cc-pVDZ level are shown
in Fig. 6. As expected, and as it can be corroborated by the ELF
or the Laplacian of the density, the two lone pairs of the car-
bonylic oxygen lie in the molecular plane. An isopycnic local-
ization would mix them, if desired. What is interesting here is to
point out the nature of the p- or π-like lone pair of the hydrox-
ylic oxygen. If ε = 1.84, as depicted, then this is found at the 1c
step as a lone pair centered on oxygen, with occupation equal to
1.886. Using ε > 1.886 will lead to consider this pair as a two cen-
ter function, paving the way to a three-center delocalization with
the other carbonylic π orbital. This will be clearly shown when we
examine the formate anion in the next subsection*. Repeating the
rs-AdNCP analysis of formic accid, this time at the CCSD(T)//cc-
pVDZ level and using ε = 1.80, the lone pair of the hydroxylic
oxygen is found at the 1c step with an occupation equal to 1.804,
to be compared with the value found at the HF level (1.886). It is
worth noting that when ε = 1.84 is used in the correlated calcu-
lation, the σ bond between the hydroxylic oxygen and the acidic
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hydrogen has an occupation (1.865) smaller than that found for a
three-centered π MO between both oxygen atoms (1.909).

1.987 1.886 1.998
(99.4%) (99.3%) (99.9%)

1.905 1.950
(95.2%) (16.3%C,81.2%O)

Fig. 6 |φ | = 0.08 a.u. isosurface of the non-core valence 1c and 2c
functions found in the -COOH group of formic acid at the HF//cc-pVDZ
level. The C-O and O-H σ functions have been omitted. Two-center
occupations are also shown. The ε value has been set to 1.84. At this
level, only the last function is obtained in the two-center step.

We end this subsection by showing how the rs-AdNCP algo-
rithm may be used in slightly larger cases. Anion-π interactions
have been much discussed in recent years,66 and doubts exist
about the ionic or multi-center nature of their binding. We have
computed the complex of the Cl– anion with hexafluorobenzene
in its on-top conformation at the M06-2x//def2-qzVPD level. This
is enough for our purposes here. Standard ε thresholds provide a
very clear image with four valence (1c,2e) functions for the chlo-
ride anion which are clearly compatible with an anionic Lewis
picture, this not impeding a certain degree of covalency. Actually,
the chloride 3pz function is clearly polarized, as shown in Fig. 7.
The QTAIM net charge of Cl− is −0.946 e, and the total DI be-
tween the chloride and the hexafluorobenzene is 0.269, typical of
an ionic interaction. The associated IQA covalent contribution is
−12 kcal/mol.

1.982 1.941

Fig. 7 |φ | = 0.1 a.u. isosurface of the chloride valence functions found
for the ClC6F –

6 complex. Details of the calculations are given in the text.
We show the 3px (left, equivalent to 3py) and 3pz (right) functions.

Multicenter bonding cases

We start our presentation of the performance of the method in
multi-center bonding cases by examining diborane, B2H6, at the
HF//cc-pVDZ level. Setting ε = 1.80 we obtain the standard
description in terms of four (2c,2e) σ B-Ht functions and two
(3c,2e) B-Hb-B links (t stands for terminal, and b for bridge).
However, the QTAIM description of B2H6 gives rise to consider-
ably charged atoms. At the HF level, the QTAIM net charges of B,
Ht and Hb atoms are 1.990,−0.664, and −0.659 a.u., respectively.
In this sense, as expected from electronegativity differences, hy-
drogens are on their way to becoming hydrides, being thus large,
polarized entitities. The fluctuation of electron populations, as
measured by the delocalization indices (DIs) is also informative.
The B-B, B-Ht , B-Hb, vicinal Ht -Ht and Hb-Hb DIs are, respec-
tively, 0.068,0.520,0.300,0.125,0.107. Notice that the B-Hb direct
delocalization channel is only three-times stronger than the Hb-
Hb one. Along with the orthodox Lewis structure of diborane,
secondary interactions are non-negligible in this type of systems.
This has already been put forward.67 In the present context, this
means that it is very easy to recover different Lewis structures
on varying ε. For instance, Fig. 8 shows that the multi-center

1.809 1.809

1.911 1.881

Fig. 8 |φ |= 0.08 a.u. isosurface of the orbitals that include the Hb atoms
in diborane, together with their occupation numbers. At ε = 1.80 (top) two
(3c,2e) bonds are found, while at ε = 1.86 (bottom) two (4c,2e) bonds
describe the whole bridge.

character of the bonds in the bridge may change easily from two
3-center bonds, with no direct Hb-Hb interaction, to two 4-center
bonds. The occupation numbers of the functions, as found in the
figure, add up to only a slightly larger value in the four-center
description (3.79 versus 3.62 electrons). This is due to consid-
erable charge leak over the rest of the molecule. The (3c,2e)
orbitals are localized 72.0% and 9.3% over the Hb and B atoms,
3.5% over the opposing Hb (this being related to the large Hb-Hb

DI), and 6.4% globally over the terminal hydrogens. In the four-
center description, the delocalization of the three-center bonds
over the opposing bridging atom is absorbed by building in-phase
and out-of-phase combinations, which are essentially equivalent
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to a pair of the HF canonical orbitals. These (4c,2e) functions are
localized 36.8% and 11% over the Hb and B atoms in the gerade
combination, respectively, and 38.8%,7.2% in the ungerade one,
in the same order.

Actually, the modelling here is too restrictive, since we are deal-
ing with a set of four electrons delocalized in four centers, a sit-
uation which should be described as a (4c,4e) link. We have no
good pictorial representation of anything beyond an electron pair,
a fact that forces considering this (n > 2)e bonds in terms of in-
dependent pairs, although a classification migth be possible in
terms of EDFs. Similar comments apply to benzene, which will be
discussed below.

When several competing Lewis structures are at stake, the gen-
eral rule to choose one over the others should be the total electron
count, the larger the better. Notice, however, that a trade between
chemical soundness and electron count is at some point needed.
In single determinant closed-shell cases, for instance, it is clear
that the original canonical orbitals (and any of their infinite uni-
tary transformations) lead to an exact electron count from the
start, without any transformation. This is also true of NBO and
AdNDP. In single determinant (or pseudo-determinant) cases it is
also possible to construct a Slater determinant from the different
Lewis structures at stake and compare their energies, much like it
is done in the NBO framework. We have not undertaken such an
enterprise in this introductory paper.

If the ε thresholds are tightened even more, then the (2c,2e)
B-Ht bonds, which are localized 77.8%,16.1% over the B,Ht pairs
and 2.0%,1.9%,1.9% over the companion Ht atom and the bridg-
ing hydrogens, become also multi-centered. This discussion high-
lights the power and the limits of NBO-like reasoning and of the
(nc,2e) bond concept.

Applying the algorithm to HF//cc-pVDZ benzene leads to a set
of carbon cores and (2c,2e) σ bonds for all the C-C and C-H pairs.
This leaves about six electrons that can be localized in a rather
large variety of ways, as it occurs in other procedures (i.e. with
the Pipek-Mezey6 algorithm). We can get three (2c,2e) Kekulé-
like pairs in their two possible motifs, in agreement with the text-
book resonance, or several arrangements of three-center bonds,
for instance. Again, we have a well-defined (6c,6e) situation that
is forced to fit in terms of three independent pairs, leading to a
plurality of equivalent descriptions.

1.989 2.000 2.000

Fig. 9 |φ | = 0.08 a.u. isosurface of one of the four equivalent peripheral
(2c,2e) bonds in the B4 cluster together with the two (4c,2e) aromatic
channels. Occupancies are also detailed.

More interesting cases, for which the AdNDP or rs-AdNCP
recipes show a clear superiority over the normal NBO scheme are
exemplified by small metallic clusters. We will consider the B4

and B−5 aggregates in their ground state optimized geometries at

the HF//aug-cc-pVDZ and B3LYP//6-311G* levels, respectively.
In the former, with a D2h

1Ag state, Fig. 9 shows that the valence
electrons may be well described by a set of four (2c,2e) periph-
eral bonds and two completely delocalized (4c,2e) aromatic chan-
nels of σ and π symmetry. This is virtually the same description
as that reported from Fock-based AdNDP procedures.27 Instead
of the four fully delocalized electrons, a standard NBO analysis
gives rise to eight lone pairs with occupation close to 0.5 elec-
trons, which have no direct chemical interpretation. We think
that the (4c,2e) description of both AdNDP and rs-AdNCP will
be also found with NBO if larger order multi-center bonding is
allowed.

1.942 1.942 1.962 1.982

1.982 1.844 1.844 1.942

Fig. 10 |φ |= 0.08 a.u. isosurface of the two- to five-centered functions in
B−5 . Occupancies are also detailed.

A similar case is that of the B−5 anion,27 another of the pro-
totypes in which NBO provides a set of low occupancy func-
tions difficult to rationalize from the chemical point of view.
The C2v

1A1 ground state provides canonical orbitals which are
interpreted in terms of conflicting aromaticity with an antiaro-
matic σ skeleton coming from two occupied orbitals plus an aro-
matic π delocalized fragment. A set of reasonable ε thresholds,
1.96,1.92,1.84,1.84,1.84 for the n = 1 . . .5 steps of the procedure
provides the same image found with AdNDPs. Five (2c,2e) pe-
ripheral orbitals differing in their localization degrees are found.
In agreement with the AdNDP paritioning, the highest occupan-
cies are those of σ functions linking the left and right boron
pairs, which are slightly polarized (54.5%,44.7%) toward the
lower atom. With occupancies slightly smaller than these ones,
we find a (2c,2e) bond that links the two B atoms found in op-
position to the appex of the pentagon. Actually, the two bonds
connecting the apical atom to the borons at the corners have a
clear lone pair contribution, being polarized against the appical
atom (55.0%,42.2%), and becoming isolated as lone pairs if more
stringent thresholds are used. Upon this, two (3c,2e) contribu-
tions appear which have lower occupancies (as in AdNDP). They
may be interpreted as antiaromatic σ islands, and leave about
two electrons for a totally symmetric (5c,2e) delocalized canoni-
cal orbital.

At this point we want to caution against taking Lewis inter-
pretations too far. For instance, an ELF analysis of the same B−5
Kohn-Sham pseudodeterminant is found to locate two clear lone
pairs, with attractor η ≈ 0.982, as visualized in Fig. 11. At lower η

values, the peripheral bonds appear, in rather exo positions with
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Fig. 11 ELF isosurfaces at η = 0.88 (left) and η = 0.80 (right), showing
the fusing of the lone pairs with the apical to corner B-B bond domains
and the formation of the three-center islands.

respect to the wire framework. This is also found from examin-
ing the bond critical points of the density and from the outwards
features of the above (2c,2e) functions. Notice that the lone pairs
fuse with the apical to corner B-B bonding ELF domains. If η

is decreased at about a value close to 0.80 the two three-center
islands are retreived.

We have found that the present method can recover basically all
the insights into the multi-center bonding of small boron clusters
described by the AdNDP methodology. They will not be analyzed
any further.

1.997 1.886 1.997

1.886 2.000 1.979

Fig. 12 |φ | = 0.08 a.u. isosurface of the valence two- and three-center
functions in the formate anion. The C-H and C-O σ bonds have been
omitted. Occupancies are also detailed.

We end this subsection by showing B3LYP//6-311G(d,p) results
in the formate anion. This is an interesting example, since two
very similar descriptions are available. If thresholds are set to
ε = 1.84, a two-center localized image is found, with standard
σ lone pairs on the oxygens and two equivalent (2c,2e) C-O π

bonds. We can surely obtain a three-center picture of the -COO−

π system. However, this has to be done with care, since the above-
mentioned lone pairs are relatively delocalized over the C atoms
(3.3%). If (3c,2e) orbitals are forced, their occupancies turn out
to be equal to 1.98 electrons, a figure to be compared to the 1.96
occupation of their (2c,2e) counterparts. Actually the total elec-
tron population accounted for by both descriptions differs only in
0.1 electrons in favor of the multi-center bonding.

1.926 1.949 1.994

1.985 2.00

Fig. 13 |φ |= 0.08 a.u. isosurface of the lone pair, (2c,2e), (3c,2e), (5c,2e)
valence functions in the planar C2

5− anion. Occupancies are also de-
tailed. Only one of the lone pairs, σ (2c,2e), π (2c,2e), and π (2c,2e)
functions, as well as the (5c,2e) function, are shown.

Exotic systems
In this last subsection, we summarize the results found for the
C2−

5 ,68 C5H4,68 and CAl3P69 systems, all of them displaying a
planar tetracoordinated carbon atom, as well as the pentagonal-
pyramidal hexamethylbenzene dication, C6(CH3)2+

6 , character-
ized by a hexacoordinated carbon.70 The geometry optimiza-
tion and rs-AdNCP analyses of the first three were carried out
using the Density Functional Theory (DFT) with the Chai and
Head-Gordon range-separated functional wB97X-D, which in-
cludes atom-atom dispersion corrections,71 and the def2-tzvpd
basis set. In the case of the C6(CH3)2+

6 dication (Table 1), the rs-
AdNCP analysis was performed at the wB97X-D//def2-tzvpd level
with the geometry optimized using the wB97X-D//def2-svpd ba-
sis set. Fig. 13 shows the valence functions of C2−

5 . Despite the
exotic coordination of the central C, the Lewis structure of this
system is simple and clear. Together with the four equivalent lone
pairs in the outer C’s, we find a (2c,2e) C-C σ bond in the left
and right C2 pairs with occupancy 1.949, two (3c,2e) bonds, one
σ and one π, in the left and right C3 trios with occupancies 1.994
and 1.985, and a (5c,2e) π bond. Each (3c,2e) σ function is lo-
calized 53% and 23% in the central in each of the outer carbon
atoms, respectively, while the π one is more localized in the outer
C’s (37%) than in the central carbon (25%). It is worth noting
that no σ (2c,2e) functions between the central carbon atom and
the outer ones are detected, regardless the threshold value chosen
for ε.

The C5H4 molecule adds two electrons over the C2−
5 cation, so

that we have twelve valence functions (see Fig. 14). The lone
pairs of the outer C’s in C2−

5 transform to standard (2c,2e) σ C-
H bonds with occupancy 1.982, while the (2c,2e) C-C σ functions
are retained in C5H4 with a slightly larger occupancy (1.974). The
rest of the Lewis pairs differ in some aspects from those found in
C2−

5 . For instance, besides the (2c,2e) σ bond in the left and right
C2 pairs, each of these pairs displays also a (2c,2e) π function
with occupancy 1.903. It also seems that each (3c,2c) π func-
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tion in C2−
5 has transformed into a (2c,2c) π function in C5H4 by

decreasing the degree of localization from 25% to 2.3% in the
central carbon atom. The (3c,2e) σ bonds in the left and right
carbon trios of C2−

5 are also obtained here, although with a con-
siderable decreased occupancy (1.981). Actually, each (3c,2e) σ

bond, if plotted with an isosurface value of |φ |= 0.09 a.u., instead
of the 0.08 value used in Fig. 14, looks like a superposition of two
(2c,2e) σ bonds between the central carbon and each of the two
left (or right) C atoms. The (5c,2e) function found in C2−

5 dissa-
pears in C5H4. Instead, we have two equivalent (3c,2e) σ bonds
between the central C atom and the upper and lower carbon pairs.
These two (3c,2e) bonds, as well as the other two (3c,2e) σ func-
tions commented above, are significantly more localized in the
central C atom than in the outer ones.

1.982 1.974 1.903

1.913 1.981

Fig. 14 |φ | = 0.08 a.u. isosurface of the (2c,2e) and (3c,2e) functions
in planar C5H4. Occupancies are also detailed. Only one of the four
equivalent σ C-H bonds, the σ and π functions in the left C-C pair, and
the three-center functions in the lower and left trios of carbon atoms, are
shown.

CAl3P is our next system. The underlying QTAIM calculation
displays a slightly positively charged P atom (Q = +0.37 au), to-
gether with highly charged Al units (Q = +0.77). This leads a
heavily negative C atom behind. Simple bond paths are found
between the central atom and the outer ligands, with no path
among the latter. The density at the C-P critical point, 0.18 au,
points toward a well established carbon-phosphorous link, while
that between the C and each of the Al atoms ( 0.06) is consistent
with their closed-shell character. Taking out the cores we are left
with nine valence functions. We have found that quite a number
of similar rs-AdNCP descriptions, different marginally in the sum
of eigenvalues, can be found. We show in Fig. 15 one of these
rs-AdNCP distributions. A clear phosphorous lone pair appears
together with three quasi-lone pairs at each Al atom that delocal-
ize over the carbon. A very clear C-P double bond with σ and π

components can also be distinguished. The C atom can be read in
terms of a close to sp2+p configuration, using one of the hybrids
to form the C-P σ link, that leaves two hybrids to form close to
(3c,2e) links with each of the lateral Al2 units (they are asym-
metric and more localized on one of the Al atoms than on the

1.945(97%C) 1.947(77%C,21%Al) 1.965(21%C,77%Al)

1.882(80%C,5%Al,14%Al) 1.905(16%C,79%Al) 1.882(80%C,5%Al,14%Al)

1.905(16%C,79%Al) 1.966(80%C,19%P) 1.867(60%C,24%P)

Fig. 15 |φ |= 0.08 a.u. isosurface of lone pair, (2c,2e) and (3c,2e) valence
functions in planar CAl3P. Occupancies and degrees of localization of all
the functions in the different atoms are also detailed.

other). A final C-Al (2c,2e) σ bond completes the picture, justi-
fying the shorter vertical C-Al distance and its associated larger
critical point density. Overall, the P atom bears a formally +1
charge in the Lewis structure, compensated at the C end. If the
aluminums are also assigned a formal +1 charge, the C octet is
filled up.

We have searched for (2c,2e) and (nc,2e) (n ≥ 3) bonds in the
cation C6(CH3)2+

6 (Fig. 16), using the thresholds ε = 1.90 and
ε = 1.80, respectively. No (2c,2e) bonds are detected between
the equatorial carbon atoms (Ceq) in the pyramid and the apical
one (Cap), and the simplest Lewis structure is built from standard
(2c,2e) C-Cmethyl and C-H bonds and three (3c,2e) bonds that link
the apical C in the pyramid with two equatorial carbons, with de-
tails that can be found in Table 1. Since this number of bonds
is incommesurate with the symmetry of the pyramid, we face a
situation similar to that of benzene, and now there are

(5
3
)
= 20

almost equivalent distributions of the trio of bonds over the pyra-
mid. As in benzene, this shows that we should consider a (6c,6e)
bond, in perfect agreement with the consideration of this cation
as a case of three-dimensional atomaticity.72

Each of the (3c,2e) functions, as the three in Table 1, is local-
ized around 41% in Cap and 25% in each of two Ceq’s, with a
rather small overlap in the other three equatorial carbons. We
have also determined the DIs between Cap and the five Ceq’s, as
well as between Cap and the carbon atom above it, finding values
of about 0.58 in the first case and 1.01 in the second. This gives
a total bond order of Cap with its six neighbors equal to 3.9, con-
firming that, despite its hypercoordination, the apical carbon is
not hypervalent72.
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function occ Cap Ceq,1 Ceq,2 Ceq,3 Ceq,4 Ceq,5
1 1.82 41.4 24.7 25.4 2.2 2.1 1.7
2 1.82 41.4 24.7 2.1 1.7 25.4 2.2
3 1.82 41.2 1.7 2.2 24.9 2.2 25.3

Table 1 Electron occupancies (column 2) and degrees of localization of one of the possible sets of three (3c,2e) functions found between the apical
carbon atom, Cap, and the five equatorial carbon atoms, Cap,i (i = 1,5) in the C6(CH3)2+

6 cation.

Fig. 16 The C6(CH3)2+
6 cation with the hexacoordinated carbon atom in

red.

The tetrahedral PtO2+
4 complex

This tetrahedral cation has aroused interest lately due to the al-
leged X oxidation state of platinum.73 We have carried out Heat-
Bath Configuration Interaction (HCI) calculations57 on this sys-
tem with a 10−3 Eh threshold and using the Automated Construc-
tion of Molecular Active Spaces (AVAS) method (with 24 elec-
trons in 17 valence orbitals),74 as implemented in the PySCF
suite.49 The resulting wavefunction provides QPt = 2.84, QO =

−0.21, and was analyzed with the rs-AdNCP procedure using the
threshold ε = 1.90. Out of the 54 two-electron functions, 42 of
them are practically monocentric (34 localized in the Pt atom and
2 in each oxygen atom with an almost pure 1s and 2s charac-
ter). The remaining twelve functions are of the (2c,2e) type, dis-
tributed into four equivalent sets of one σ and two degenerate π

Pt-O bonds, see Fig. 17. These are basically obtained from Pt d
functions and oxygen 2p orbitals. The degrees of localization of
each (2c,2e) function in the Pt atom (43%σ ,40%π) are slightly
smaller than in the O atom (56%σ ,58%π), a result compatible
with the small charges of the oxygens. Overall, the sum of the
rs-AdNCP eigenvalues leaves less than one electron remaining to
account for dynamical correlation and multi-center bonding ef-
fects. An electron distribution function analysis51,53 shows that
the most probable electron distributions is Pt+2O0

4, with Pt,O de-
localization index of about 1.29−1.30. There is a negligible value
(< 10−5) for the probability of the four oxygen atoms displaying
simultaneously a net charge of −2, and a probability smaller than
2.2% that a single O atom has a negative net charge of −1. These
facts seem to indicate that the formal oxidation number of Pt is
far from being reflected by the electronic structure of the system.

1.942(43.1%,55.9%) 1.909(40.0%,58.2% 1.909(40.0%,58.2%)

Fig. 17 |φ |= 0.08 a.u. isosurface of the (2c,2e) Pt-O functions in PtO2
4+

complex. Only one Pt-O pair is shown. Occupancies and degrees of
localization of the three functions in the Pt,O pair of atoms are also de-
tailed.

Conclusions
Position space narratives in the theory of chemical bonding pos-
sess the intrinsic advantage of being based on orbital invariant
descriptors, thus being immune to the interpretation biases that
are inherent to any computational framework used to build a
molecule’s wavefunction. However, lacking orbitals, they have
not been immediately adopted by the Chemistry community. In
recent years, several proposals that construct effective one elec-
tron functions from real space indicators, like the domain natural
orbitals of Ponec and coworkers,42,43 or the generalization pro-
vided by our natural adaptive orbitals38 have appeared that ease
the transition from an orbital picture to a real space one. How-
ever, none of these provide a simple electron counting mechanism
or gives rise to simple Lewis images. We have shown in this paper
how the adaptive natural density partitioning proposed by Zurek
and Boldyrev,27 a generalization of the well known natural bond
orbital approach of Weinhold and collaborators,22–25 can be re-
framed into real space through the use of domain-averaged cumu-
lants. The simplest hierarchy coming from our real space adap-
tive natural cumulant partitioning (rs-AdNCP) uses the second
order cumulant, or exchange-correlation density. This is domain-
averaged and diagonalized in each atomic center, described from
QTAIM basins, in a first step, and depleted from large occupancy
functions in a second one. The procedure is iterated for two cen-
ters, three, etc, until all electrons to a given threshold have been
exhausted. Both single and multi-determinant wavefunctions can
be used.

As shown through several examples, from simple molecules de-
scribed correctly with (2c,2e) Lewis structures to others in which
accounting for multi-center bonding is essential, the present rs-
AdNCP framework reproduces essentially the AdNDP results in
archetypal systems, showing that NBO-like arguments, Lewis
structure searches and electron counting techniques can be
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equally obtained from orbital invariant real space analyses. More-
over, our procedure generates a complete hierarchy that may ac-
count for true many-particle correlations if further order cumu-
lant densities are used. These are however computationally in-
tensive objects which are not easily accessible. We leave this en-
terprise for future work.
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