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Abstract—WebRTC is a joint effort of the IETF RTCWeb and
the W3C WebRTC working groups for real time communications
through the web. This paper proposes a WebRTC platform for
interactive multimedia communication. The platform is based
on open technologies and provides an ubiquitous conferencing
service which may be used to support multi-point e-learning/e-
meeting activities. The platform also takes advantage of the po-
tential of cloud computing to achieve scalability. Iterative design
of the platform architecture is detailed and some preliminary
results in scalability analysis are outlined.

Index Terms—Real-Time Communicactions, WebRTC, Pro-
tocols, Open standards, Multimedia, Cloud computing, System
integration

I. INTRODUTION

Real-Time Communication (RTC) services are usually built
around two planes. The signaling plane is used to locate
endpoints and establish and tear down media sessions. The
data plane is responsible for delivering multimedia data, such
as audio and video.

WebRTC [1] is a set of JavaScript APIs supporting the data
plane of RTC services in web browsers. It provides peer-to-
peer communication with audio, video and other real-time data
types by using standard protocols. Desktop and mobile web
browsers widely support WebRTC, making the development of
real-time communication services possible without any addi-
tional software. WebRTC also supports royalty-free codecs,
secure data transport with the Secure Real-time Transport
Protocol (SRTP), inter-stream synchronization, NAT traversal
mechanisms and so on. WebRTC lets the programmer choose
any signaling mechanism, so it is possible to use existing
signaling protocols to interoperate with legacy telephony and
voice over IP systems.

WebRTC includes mechanisms for Interactive Connectivity
Establishment (ICE), allowing communication between users
even if they are behind firewalls or one or more layers of
NATs. However, WebRTC is only aimed at point-to-point
communication between two browsers, so multi-point com-
munication is out of the scope of the standard. Multi-point
Control Units (MCUs) are then required to enable conferences
with more than two endpoints. This brings the possibility to
deploy various conferencing models with WebRTC depending

This research has been partially funded by the Spanish National Plan
of Research, Development and Innovation under the project MINECO-15-
TIN2014-56047-P

on the signaling topology, ranging from star topologies to
highly distributed multi-point topologies.

This paper proposes a platform for interactive multimedia
communication based on WebRTC and other open standards
and technologies. The platform provides an ubiquitous and
scalable conferencing service, supporting multi-point activities
such as e-learning sessions, e-meetings and product demon-
strations.

The remainder of the paper is organized as follows. In
Section II, related work on existing WebRTC implementations
is discussed. The architecture of the proposed platform is de-
scribed in Section III. Details of the scalability evaluation and
some preliminary results are shown in IV. Finally, Section V
contains the concluding remarks and outlines future work.

II. RELATED WORK

WebRTC has several outstanding advantages over other al-
ternatives in real time interactive multimedia communications.
It is supported by almost all modern browsers, so users do not
need to install or download any additional software. In [2] a
deep analysis of the standard can be found, including details
of the available communication topologies and performance
metrics.

WebRTC has contributed to successful applications in
the fields of tele-health [3], [4], online assistance in e-
businesses [5], distance learning [6]–[8], all of them following
the native peer-to-peer approach (P2P). WebRTC does not
support IP multicast, so multi-point scenarios [9] should
be supported by multi-unicast deployments, using MCUs to
forward media streams between participants. Examples of
WebRTC MCUs can be found in [10]–[12], providing services
such as media transcoding and mixing.

Integration of videoconference systems on the cloud has
been an important research topic in the last years [13], [14].
In [15] a cloud videoconference system for mobile devices,
where the cloud resources improve quality and scalability, is
described. In case of multi-point videoconferences, advantages
and challenges of cloud MCUs are shown in [16]. Cloud
versions of MCUs are also proposed in [17], [18]. Finally,
optimization of resources for computing, network and storage
in videoconference systems over multi-provider hybrid clouds
is presented in [19].



III. PLATFORM ARCHITECTURE

Similarly to other RTC services, the proposed platform
defines a data plane and a signaling plane. The signaling
plane follows a star topology and uses the Session Initiation
Protocol (SIP) to negotiate media sessions between partici-
pants, whereas RTP is used for data plane. These planes are
independent, meaning that SIP and RTP packets can travel
through the network following different routes. The planes can
be even established between different entities. For instance,
parameters of a multimedia session can be negotiated in a
SIP server and multimedia data can be exchanged through an
MCU.

Confidentiality of communications is achieved only if both
the signaling and data planes are encrypted. The data plane is
encrypted by using the secure profile of RTP. For the signaling
plane, SIP does not provide encryption, and secure transport
protocols, such as TLS, must be used.

Several technologies have arisen around VoIP that can be
aplied to every real time communication service, including
collaborative and e-leaning platforms. Some of them are
analyzed below.

It is quite feasible to develop a telephone service with
the SIP/RTP protocols and a VoIP PBX (Private Branch
eXchange) such as Asterisk. Asterisk allows communication
between terminals (extensions) with one or more lines con-
nected to the Public Switched Telephone Network (PSTN).
This way, terminals can establish calls with other terminals
in the PTSN. Other funcionalities provided by Asterisk are
voicemail, call on hold, interactive voice response (IVR), call
recording, etc.

Asterisk uses SIP, among other protocols, for call signaling.
It behaves as a B2BUA (Back-to-Back User Agent) in a
VoIP call, operating between the participants both in the
signaling and data planes. Configuring Asterisk for data to
flow directly between participants (pass-through mode) is also
posible. In this case, Asterisk operates between participants
only in the signaling plane, but multimedia data flows between
participants directly.

The functionality offered by Asterisk can be extended using
two APIs. First, AMI (Asterisk Manager Interface) can be
used to control Asterisk from other applications or services.
This API allows to initiate calls, configure voicemail, redirect
calls, etc. Second, AGI (Asterisk Gateway Interface) can be
used to trigger other applications when events in current calls
arise. A version of this API, named FastAGI, allows triggering
applications in remote machines through TCP sockets.

A. Initial Design

The construction of the platform follows and iterative pro-
cess, with new designs adding flexibility and reliability, but
also complexity, to the platform.

The initial and simplest platform design is shown in Fig. 1.
This design supports multi-point conferences between partici-
pants. An Asterik PBX plays the role of a SIP signaling server
and gives access to the conference. Participants make calls to
the conference SIP URI to join it using a WebRTC client with

SIP signaling. These calls are forwarded to a Kurento server
acting as an MCU that merges audio and video data streams
of all participants. Kurento can not use SIP directly, so a SIP
wrapper must be developed to process calls on its behalf. The
wrapper is a server that interacts with Kurento through its
API and with the other entities of the platform within the SIP
signaling plane. Since a terminal has to register in Asterisk
in order to receive calls, the Kurento SIP wrapper must be
registered in Asterisk.
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Fig. 1. Initial architecture design.

The Kurento SIP wrapper has full control of the conference.
It must support multiple concurrent SIP calls, one per par-
ticipant. It must reject calls from non authorized participants
and even exclude disturbing participants during the confer-
ence. The inclusion and exclusion of participants also implies
the reconfiguration of the data plane. The MCU must send
multimedia streams only to active participants.

Although Asterisk may also act as an MCU, it is not as
efficient as a dedicated MCU such as Kurento. In fact, Kurento
is more specialized in multimedia data processing. Besides, a
design with a signaling server and a dedicated MCU results
in more flexible and convenient, increasing modularity and
scalability.

Figure 2 shows the signaling messages needed to join a
conference. Asterisk is configured in pass-through mode for
the data to flow directly between the participant and the MCU.

The participant must call the URI conference,
sip:conf@domain.com in the example. This URI
is associated with an extension that must be configured in
the Asterisk dialplan to point to the Kurento SIP wrapper, so
the call is forwarded to the MCU. The participant sends a
SIP INVITE message to initiate the call. If the call initiation
successes, the call is established between the participant and
Asterisk. Thus, Asterisk may send the participant the call
dial tone or information about errors (for instance, an invalid
extension).

Once the call between the participant and Asterisk has
been established, the latter makes a call to the Kurento SIP
wrapper. When the wrapper receives the INVITE message
from Asterisk, it decides if the participant is authorized to
join the conference or nor, so the authorization is done in two
steps: in Asterisk (using the dialplan) and in the SIP wrapper
(accepting or rejecting incoming calls).
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Fig. 2. Messages to join a conference

If the participant is authorized to join the conference, the
wrapper uses the Kurento API to get the multimedia configu-
ration (SDP description) to be used in the media negotiation
during the call establishment. As a result, the SIP wrapper is
responsible for keeping a call with each participant, and the
Kurento server is responsible for multimedia data exchange.

When Asterisk has established the two calls between the
participant and the SIP wrapper, it reconfigures both calls to
make data flow directly between the participant and the SIP
wrapper. Thus, the data plane follows a star topology as shown
in Fig. 1.

This initial design for the platform has several shortcomings
that may reduce scalability:

1) Asterisk is the entry point to the conference and all the
calls must go through it, so it becomes a single point
of failure. Besides, although configured in pass-through
mode, the workload that Asterisk must deal with during
the joining and leaving of participants in the conference
is significant. During these periods, Asterisk sends and
receives multimedia data, so this peak workload might
limit quality of service.

2) The Kurento server, playing the role of an MCU, re-
ceives and merges multimedia data streams from all

participants, so its workload could be high. In fact, with
a star topology, and depending on the strategy for the
data distribution followed, the workload of the MCU
could increase exponentially [20].

3) The SIP wrapper is also a single point of failure that
could compromise the signaling plane in the conference.

B. Elastic Design

A new elastic design provides solutions to the aforemen-
tioned shortcomings of the initial design:

1) A SIP Proxy distributes incoming calls among a set of
Asterisk PBXs using a round-robin policy (see figure 3).

2) Several MCUs, and their corresponding SIP wrappers,
act as one virtual MCU, as shown in Fig. 4, providing
an scalable approach to an increasing number of partic-
ipants.

3) A second SIP proxy acts as a backup proxy.
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Fig. 3. SIP Proxy.
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Fig. 4. Elastic architecture.

Using several MCUs poses a new scenario where some
issues related to load balace must be solved. These issues are
adressed in the following sections.

1) MCU Instantiation: New MCU instances should be
provisoned in a cloud provider to support the increasing
workload associated with the number of participants in the
conference. This can be done through the Asterisk FastAGI
API, triggering a control application (controller) when specific
call events arise, and using the corresponding scripting API of
the cloud provider. Figure 5 shows the elements involved in
MCU provisioning. When serveral Asterisk PBXs are used all
of them must invoque the same controller.

The steps to follow when a new participant joins the
conference are: 1) The Asterisk dialplan is responsible for the
participant authorization and triggering the controller; 2) The
controller decides if the new participant is assigned to an active
MCU or a new MCU must be provisioned; 3) If the participant



is assigned to an active MCU, the controller redirects the call
to the corresponding SIP wrapper (using the extension defined
in the dialplan); and 4) If a new MCU is necessary a script is
executed to provision it. As a consequence, a new SIP wrapper
is registered in Asterisk (through the proxy if using several
Asterisk PBXs) and finally the controller redirects the call
to the new SIP wrapper. Policies for provisioning MCUs in
advance are mandatory to reduce the initial latency perceived
by participants asigned to new MCUs.

AsteriskController
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SIP

MCU

incoming call

redirect

provision /
de-provision

Fig. 5. MCU provision.

2) Load Balance: The conference controller is also respon-
sible for load balance between MCUs within the virtual MCU.
The complexity of load balance algorithm depends on the
flexibility of the multimedia configuration of participants. If
all the participants have been asigned the same multimedia
configuration (media, codecs and codecs configuration), then
a simple round-robin algorithm could be used in the controller.
In any case, the implementation of MCU monitoring channels
could improve decision making for load balance in the con-
troller.

3) Data plane reconfigurable topology: An MCU can carry
out several actions on the streams coming from participants:
simply forward them to the other participants, filter streams
(i.e. using voice detection or floor-control) or mix and send
them to all the participants. The data plane topology is a
star when a single MCU is used in virtual MCU. In this
case, all participants are connected to the MCU and the
streams are homogeneusly processed. With more than one
MCU in the virtual MCU, stream forwarding, filtering and
mixing must be coordinated among MCUs. This is carried
out using communication channels among MCUs (trunks) in
a hybrid data plane topology as shown in Fig. 6. A custom
communication protocol between MCUs and the controller
is also necessary to reconfigure the topology after an MCU
becomes active or inactive in the virtual MCU.

IV. SCALABILITY EVALUATION

Audio and video streams demand a lot of resources, so
those elements of the platform receiving and sending the
highest number of media streams are more prone to become
a bottleneck. Since, each participant sends and receives one
video stream and one audio stream, the resources required by
participants are negligible compared to those required by other
entities.

MCU MCU
trunk

Fig. 6. Hybrid topology.

The MCUs are the entities that forward media streams
between participants and between other MCUs, so they are
supposed to require a high amount of resources. However,
conferences usually include some floor-control mechanism to
limit the number of streams flowing through the platform (for
instance, to avoid media overlapping). As a result, only a few
participants are allowed to send media streams at any time, so
the load supported by MCUs is limited. They must process a
few data streams and forward them to participants.

Media streams flow usually from participants to MCUs and
vice versa directly, so the Asterisk PBXs and the proxy do
not receive or send media streams, but only SIP messages.
However, there are occassions when the load supported by
these entities can not be ignored. For instance, conferences are
usually scheduled, so many participants join in a short period
of time. This may cause load peaks, specially in the Asterisk
PBXs, since they must send audio streams to the participants
with the dial tone until the SIP call is actually established.

In order to test the scalability of the platform the following
testbed is used. A SIPp traffic generator emulates participants
joining a conference. One or more Asterisk PBXs authenticate
participants and provide access to the conference. A SIP proxy
balances incoming SIP calls from participants to the Asterisk
PBXs using round-robin load balancing. All the entities of the
platform are implemented in Ubuntu Server machines, with an
Intel Core i7 CPU running at 3.6 GHz, with 4 GiB and with
SSD storage.

Figure 7 shows the resource consumption in the Asterisk
PBX and the percentage of calls that can be successfully
established in a conference with only one Asterisk as the
number of participants grows. All the participants join the
conference at the same time, so Asterisk sends as many
GSM audio streams conveying the dial tone as participants.
Eventually, Asterisk stops sending the audio stream to the
participant when the call is establish between the latter and
the Kurento SIP wrapper. As can be seen in Fig. 7, the
resource consumption grows with the number of participants
almost linearly until saturation. At this point, the percentage
of successful calls decreases preventing some participants to
join the conference.

Figure 8 shows the same information as Fig.7 but when
using a deployment with two Asterisk PBXs and a proxy
balancing incoming calls between the two. The resource
consumption are depicted for only one of the two Asterisk
PBXs. As expected, the scalability of the platform is higher
than with a single PBX. The resource consumption is shared



between the two PBXs. The final decrease on the percentage
of successfull calls is caused by the SIPp reaching saturation.

As results in Fig. 7 and Fig. 8 prove, the platform may
scale to hundreds of participants easily and even thousands
when using load balancings between various Asterisk PBXs.
This relies on the fact that the number of streams managed by
the virtual MCU is limited or floor-controlled. However, it is
unlikely that hundreds of participants join to a conference in
a short period of time in order to make Asterisk send so many
dial tone audio streams. The time while Asterisk sends the dial
tone to a participant depends on the number of participants
concurrently joining the conference and the time needed by
the SIP wrapper to accept or reject an incoming call.

50 200 400 600 800 1,000 1,200
0

20

40

60

80

100

# concurrent participants

%

CPU
memory

succes. calls

Fig. 7. Conference with one Asterisk PBX.
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Fig. 8. Conference with two Asterisk PBXs in a load-balancing configuration.

V. CONCLUSIONS

The architecture of an scalable platform for interactive mul-
timedia communication based on WebRTC and supported by
open technologies has been presented. The ubiquity provided
by WebRTC and the interoperability with existing applications
due to the fact of using standard protocols are other remarkable
features of the platform.

Preliminary results prove that the platform may scale to hun-
dreds or even thousands of users provided that the conference
is floor-controlled.

Future work will be focused on assessing the performance
of the virtual MCU in the platform when the number of media
streams are not limited and the quality of experience perceived
by users.
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