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Abstract.

In the last years, the effective thickness concept has been used to calculate deflections, 

stresses and modal parameters in laminated glass beams and plates, which consists of 

using a monolithic model with equivalent bending properties to a laminated element, i.e. 

the thickness of the equivalent monolithic model is time and temperature dependent. 

Multi-layered laminated glass panels are those with at least three monolithic glass layers 

and two viscoelastic interlayers which are commonly used in floors, roofs and other 

applications where a high level of security is required. In this paper, a static deflection 

effective stiffness for a laminated glass plate consisting of three glass layers and two 

polymeric interlayers is derived. This static effective thickness is then extended to the 

frequency domain using the correspondence principle. The models are validated by static 

experimental tests and operational modal tests carried out on a rectangular multi-layered 

laminated glass plate pinned supported at the four corners.  

Keywords: A. Laminated glass ;  B. Operational Modal Analysis ; C. Effective 

Thickness; D. Viscoelasticity.
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Flexural Stiffness in plates#

Young modulus$ 

Complex flexural  stiffness in beams$% ∗

Flexural stiffness in beams$% 

Viscoelastic relaxation shear modulus for the polymeric interlayer'2((,))

Complex shear modulus for the polymeric interlayer' ∗
2 (+,))

Thickness of glass layer ‘i’ in laminated glass" 

Second moment of area%

Second moment of area of glass layer ‘i’% =
!"3

 

12

L Length of a glass beam

T Temperature

LOWERCASE LETTERS

a Dimension of a plate 

b Dimension of a plate 

Shift factor .)



Width of a glass beam!

Shape function in beams/(0)

Shape function in plates /(0,1)

Imaginary unit 

Wavenumber2  
%

Complex wavenumber2 ∗
3

Time(

t Thickness of the interlayer

Thickness of the interlayer ‘i’( 

Deflection 4
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Modal damping ratio5

η Loss factor

Poisson ratio of layer6

Mass density of glass 7'

Mass density of the interlayer7(

 Frequency+



1 INTRODUCTION

The simplest laminated glass panel consist of two outer monolithic glass layers and one 

interlayer of a polymer which usually exhibits a viscoelastic behavior (Figure 1). Multi-

layered laminated glass panels (Figure 1) are those with at least three monolithic glass 

layers and two interlayers [1, 2]. Glass mechanical behavior is usually modeled as linear-

elastic whereas the mechanical behavior of polymeric interlayers is commonly assumed 

as linear-viscoelastic. With these assumptions, laminated glass elements exhibit a linear-

viscoelastic behavior, i.e. the response of laminated glass elements is time (or frequency) 

and temperature dependent [3, 4, 5, 6]. Due to the shear effect of the interlayers, the 

sections do not behave according to the Euler-Bernoulli Beam theory assumptions, i.e. 

plane sections do not remain plane [7, 8].

Multi-layered laminated glass plates are commonly used in floors, roofs, other horizontal 

glazing accessible to the public [9], glass walkways [10], security glass, blast resistant 

glass, ballistic resistant glass, etc. Moreover, multi-layered laminated glass panels are 

mandatory in some codes and standards [11, 12]. 

Figure 1. Section of a sandwich (a) and a multi-layered (b) glass beam.

Some analytical models were proposed in the past to predict the modal parameters of 

sandwich beams with viscoelastic core [13, 14, 15, 16, 17, 18, 19]. Ross, Kerwin and 

Ungar (RKU) were the first to study the flexural vibration of a sandwich configuration 



[13, 14] and they proposed an effective complex flexural stiffness which can be used to 

determine the modal parameters of a sandwich beam using the equations and the 

wavenumbers corresponding to an Euler-Bernoulli beam. They assumed that the wave 

motion in a constrained layer configuration can be described by a fourth-order differential 

equation. Ditaranto [15, 16] and Mead and Markus [17, 18] demonstrated that the flexural 

motion of a sandwich beam is governed by a sixth-order linear homogeneous differential 

equation. Aenlle and Pelayo [20] proposed a dynamic effective thickness for calculating 

modal parameters in laminated glass beams using simple monolithic elastic models.

With respect to the modal parameters of laminated glass plates, Wang [21] derived an 

exact relationship between the natural frequencies of a simply supported rectangular 

sandwich plate and those corresponding to a monolithic Kirchhoff plate with the same 

geometry and boundary conditions.  Modification factors can be used in the formulas to 

consider other boundary conditions. Nashif et al. [22] proposed to extend the RKU model 

for beams to the two dimensional case of rectangular laminated glass plates. 

Mead [23] and Mead and Yaman [24] proposed a model to predict the vibration response 

of a rectangular sandwich plate, consisting of two glass layers with same thickness and 

one viscoelastic interlayer, subject to a harmonic line force which varies sinusoidally 

across the plate. Aenlle and Pelayo [25] derived a dynamic effective stiffness to calculated 

modal parameters in laminated glass plates using the analytical equations existing for 

monolithic plates.

Galuppi and Royer-Carfagni [1] developed a model to calculate the static response of a 

multilayered laminated glass beams with three glass layers and two polymeric interlayers.  

Pelayo and Aenlle [26], applying the correspondence principle to the static stiffness 

obtained from the Galuppi and Royer Carfagni model [1], derived a dynamic effective 

stiffness which was used to predict the modal parameters of a multilayered glass beam.

In this paper, the static effective stiffness of a rectangular laminated glass plate with three 

glass layers and two polymeric interlayers is formulated and validated by a static test with 

a concentrated load at the mid-point. Then, the static effective stiffness is then extended 

to the frequency domain using the correspondence principle [20, 25, 26]. In order to 



validate the model, the modal parameters of a laminated glass plate consisting of three 

annealed glass layers and two PVB interlayers, pinned supported at the corners, were 

estimated by operational modal analysis at 20 ºC. The experimental results are compared 

with the predictions provided by the proposed analytical model.

2 STATE OF THE ART IN BEAMS

2.1 Laminated glass beam with two glass layers and one interlayer. 

2.1.1 Mead and Markus Model

Mead and Markus [17, 18] derived a sixth-order differential equation that governs the 

flexural wave motion of a three layered constrained-layer damping beam when it vibrates 

freely at frequency , which particularized for a laminated glass beam, it is given by: +

$%)2 (49%(0,() ‒ / ∗
;2(+,)) (1 + <;2) 4%9(0,()) ‒ + ∗ 2 =2>
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• subindex “2” indicates beam with two glass layers and one interlayer

•  is  the complex natural frequency+ ∗ 2
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•  is the distance of the mid-plane of the i-th glass layer from the mid-Bi ( = 1,2)

plane of the whole laminated glass beam, given by:

• B1 =
"2"12

"1 + "2
(5)

• B2 =‒
"1"12

"1 + "2
 (6)



• "12 = ( + (
"1 + "2

2 ) = B1 ‒ B2 (7)

•  is the mass per unit area i.e.:=2

• =2 = !7'("1 + "2) + !7(( (8)
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sandwich beams,  given by:
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•  is the complex shear modulus.' ∗
( (+,))

Eq. (1) yields the following polynomial equation:

$%)2[(2 ∗
3>)6

‒ / ∗
;2(+)(1 + <;2)(2 ∗

3>)4] ‒ =2+
∗ 2>4(2 ∗

3>)2
+ + ∗ 2=2>

4/ ∗
;2(+) = 0 (10)

Where   is the complex wavenumber.2 ∗
3 = 2C +  ∙ 2%

Eq. (10) can also be expressed as:
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If Eq. (12) is expressed in the same manner as in linear-elastic monolithic beams [28], 

i.e.:
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The following expression for the flexural stiffness of the laminated glass beam is derived:
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2.1.2 Static deflection effective thickness 

Galuppi and Royer-Carfagni [8] derived an analytical expression for the static deflection 

of a laminated glass beam composed of two glass layers and one polymeric interlayer. 

The authors assume that the deflection shape of the laminated glass beam coincide with 

that of a monolithic beam with the same loading and boundary conditions, i.e., the 

deflection of the beam is expressed as:4(0,(,)) 

4(0,(,)) =
/(0)

$%((,))E2 (15)

where  is a shape function that takes the form of the elastic deflection of a monolithic g(x)

beam with constant cross section under the same loading and boundary conditions as the 

laminated glass beam and  is the bending stiffness of the laminated glass beam, $%((,))E2

which can be expressed as:

$%((,))E2 = $%)2 (1 +
<;2
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F;2 >2

/;2((,))

) (16)

where



•  is a constant parameter which depends on the boundary and loading F;2

conditions [2] and it is given by:

F;2 =

>

∫
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•  is a dimensionless shear parameter given by:/2B((,))
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•  is the shear modulus of the interlayer '(((,))

If the shear modulus is constant , the shear parameter is also constant i.e.: '(((,)) = '(
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If Eq. (19) is substituted in Eq. (16), the later becomes:

$%$2 = $%)2 (1 +
<;2

1 +
F; >2

/;$2

) (20)

Which is also constant and it represents the stiffness of the sandwich beam when both the 

core and the glass layers show a linear-elastic behavior.

2.1.3 Dynamic effective thickness by the correspondence principle



The correspondence principle [3, 4] states that if a solution to a linear elasticity problem 

is known, the solution to the corresponding problem for a linearly viscoelastic material 

can be obtained by replacing each quantity which can depend on time by its Fourier 

Transform.  In order to apply the correspondence principle, an elasticity solution must be 

known [6]. Wherever an elastic constant appears, it is replaced with the corresponding 

complex dynamic viscoelastic function. 

For a laminated glass beam with two glass layers and one polymeric interlayer, the 

effective complex flexural stiffness can be derived applying the correspondence principle 

to Eq. (20), i.e.:
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Where the wavenumber  plays in dynamics the same role as the parameter  in 22
% F;2

statics, as it was demonstrated in [25]. 

 With respect to parameter , it can also be derived from Eq. (19) applying the / ∗
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It can be observed that the complex effective stiffness  and the shear parameter $%(+,))2

derived with the correspondence principle (Eqs. (21) and (22), respectively) / ∗
;2((,))  

coincide with those of the Mead and Markus model, i.e., the same solution is obtained.

The natural frequencies and damping ratios can now be estimated with Eq. (13).

 



2.2 Static deflection effective thickness in multilayered laminated glass beams 

In the case of three glass layers of thicknesses  and  and two polymeric "1,"2 "3

interlayers with thicknesses  and , the following expression for the static flexural (1 (2

stiffness can also be derived from the model proposed by Galuppi and Royer-Carfagni 

[1]:
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•  is a constant parameter which takes the same values as those derived F;3 = F;2

for a beam with 2 glass layers [8].

It can be verified that the effective stiffness  and the shear parameter  $%((,))E2 /;2((,))

corresponding to the case with two glass layers can be derived from Eqs. (23) and (31), 

respectively, taking , ,  and "3 = 0 (2 = 0 "23 = 0 B3 = 0

If the shear modulus is constant , the elastic shear parameter is given by:'(((,)) = '(
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Whereas the elastic flexural stiffness is expressed as:
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2.2.1 Dynamic effective thickness by the correspondence principle

Applying the correspondence principle to Eq. (13), the following expression for the 

complex effective thickness is derived:
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With respect to parameter , applying the correspondence principle to Eq. (31) / ∗
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the following expression is obtained:
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The natural frequencies and damping ratios can be calculated with:

+2(1 +  ⋅ @) =
24

%

=3
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where:

=3 = 3!7'" + 27(!(
(37)

is the mass per unit length of the beam.

3 STATE OF THE ART IN PLATES

3.1 Laminated glass plates with two glass layers and one interlayer. 

3.1.1 Mead and Yaman Model

Mead [23] and Mead and Yaman [24] derived a sixth-order differential equation that 

governs the flexural wave motion of a symmetric ( rectangular constrained-" = "1 = "2) 

layer sandwich plate, which particularized for a laminated glass plate yields the following 

characteristic equation:
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•  is a dimensionless shear parameter commonly used in sandwich plates [23, / ∗
3<

24] which defines the shear coupling between the core and outer layers:  
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From which the following equation for the effective complex flexural stiffness is 

formulated:
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3<(+,))

) (44)

3.1.2 Static deflection effective thickness 

Galuppi and Royer-Carfagni [27] extended the model for beams [8] to the two 

dimensional case of a rectangular laminated glass plates under uniform pressure with 



different boundary configurations at the borders [27]. They considered the deflection of 

the plate as:

4(0,1,() =
/(0,1)

#(()E2
(45)

where  is a shape function that takes the form of the elastic deflection of a g(x,y)

monolithic plate with constant cross section under the same loading and boundary 

conditions,  is the stiffness of the laminated glass plate given by:#(()E2
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where the non-dimensional parameter , tune the plate response from the layered limit @

 to the monolithic limit .(@ = 0) (@ = 1)

The in-plane displacements in the x and y directions are approximated as:
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Where  is a non-dimensional parameter which tune the in-plane plate response from the K

layered limit   null in- plane force in the glass layers) to the monolithic limit (K = 0),

. (K = 1)

The total strain energy of the system is expressed as [27]:
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where:

• subindex “s” indicates static

• subindex “p” indicates plate

• subindex “2” indicates two glass layer 

• is a dimensionless geometric parameter given by:<I2 
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•  is a constant parameter which depends on the boundary and loading conditions FI2

[27] and it is given by:
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•  is the dimensionless shear parameter which defines the shear coupling /P2((,))

between the core and outer layers:  
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The flexural stiffness  is derived minimizing the total strain energy [27] with #(()E2

respect to the non-dimensional parameters  and , which results in:@ K
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3.1.3 Dynamic effective thickness by the correspondence principle

Particularizing Eq. (57) for   and applying the correspondence principle, the '(((,)) = '(

effective complex flexural stiffness for a laminated glass plate with two glass layers and 

one polymeric interlayers of thickness t, is derived:
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If Eqs. (51), (58)  and (59) are particularized for the symmetric case ( , it is " = "1 = "2)
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The natural frequencies and the loss factors can be estimated with the expression:
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If Eqs. (4) and (51) are compared, it is inferred that . Thus, the shear parameters <I2 = <;2
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4 MULTILAYERED PLATES 

4.1 Static deflection effective thickness

Assuming again the deflection of the plate as:
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Where  is a shape function that takes the form of the elastic deflection of a /(x,y)
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conditions,  is the flexural stiffness of the plate given by:#((,))E3
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where are given by Eqs. (26 to 28). The total strain energy is given by [27]:B  

Ε(4,J1,J2,J3,L1,L2L3)

= ∫
 

Ω{[1

2

#)3

#((,))E3
+ K2

#)3<I3

(1 + < 2
I3)]O1(/(0,1) +

'(((,))

(

[
" 2

12

(1
+

" 2
23

(2
][ 1

#((,))E3
‒

K

#)3(1 + <I3)]
2

O2(/(0,1) +
P(0,1)

#((,))E3
/(0,1)}

B0B1

(66)

or:

Ε(4,J1,J3,L1,L3)

= ∫
 

Ω{[1

2

#)3

#((,))E3
+ K2

#)3<I3

(1 + < 2
I3)]O1(/(0,1) +

/I3((,))<I3#)3

1 ‒ 62 

[ 1

#((,))E3
‒

K

#)3(1 + <I)]
2

O2(/(0,1) +
P(0,1)

#((,))E3
/(0,1)}B0B1

(67)

where:

• subindex “3” indicates three glass layers

• is a dimensionless geometric parameter given by: <I3 

<I3 =

3

∑
 = 1

12# B
2
 

"2
 

#)3

(68)

• #)3 = #1 + #2 + #3 =
$

12(1 ‒ 62)
("3

1 + "3
2 + "3

3) (69)

•  is the dimensionless shear parameter  given by:  /P3((,))



/I3((,)) =

'(((,))(1 ‒ 62)[
" 2

12

(1
+

" 2
23

(2
].2

<I3#)3

(70)

The flexural stiffness  is derived minimizing the total strain energy with respect #((,))3E

to the non-dimensional parameters  and , resulting in: @ K

#((,))E3 = #)3(1 +
<I3

1 +
FI3.

2

/I3((,))

) (71)

where .� 3 = � 2

4.2 Dynamic effective thickness by the correspondence principle

Applying the correspondence principle to Eq. (71), the following expression for the 

effective stiffness is derived:

! ∗ (#,$)3 = !$3 (1 +
% 3

1 +
&2
'(

2 

) ∗
 3(#,$)

) (72)

whereas the parameter , it is given by:) ∗
 3(#,$)

) ∗
 3(*,$) =

+ ∗
* (#,$)(1 ‒ .2)[

/ 2
12

*1
+
/ 2

23

*2
](2

% 3!$3

(73)

The natural frequencies and the loss factors can be estimated with the expression



# ∗ 2
= #2(1 + 0 ⋅ 4) = &4

'

! ∗ (#,$)3

(5/)3
 (74)

where  is the mass per unit area:(5/)3

(5/)3 = 5+(/1 + /2 + /3) + 5*(*1 + *2) (75)

It can be verified that the effective stiffness  and the shear parameter  ! ∗ (#,$)62 ) ∗
 2(#,$)

corresponding to the case with two glass layers can be derived from Eqs. (73) and (74), 

respectively, taking ,  and ./3 = 0 *2 = 0, /23 = 0 73 = 0

4. EXPERIMENTAL TESTS

4.1 Modal tests

A rectangular laminated glass plate  mm and thickness mm, 1400 x 1000 H1 = 3.80 H2

 mm,  mm and , pinned supported at the four = 3.75 H3 = 3.87 *1 = *2 = 0.76 88 

corners using four wooden balls with a diameter of 50 mm (see Fig.  2), were tested using 

operational modal analysis (OMA) [29] at room temperature .T = 20  9C

Figure 2. Multilayered glass plate under simply supported conditions.



The plate was excited applying many small hits on the upper plate surface using an impact 

hammer [30]. The hits were applied randomly in time and space. The responses of the 

plate were measured in 15 points (see Figure 3) using  accelerometers with a sensitivity 8

of  mv/g, uniformly distributed along the plate using three different data sets. The 100

responses were recorded for approximately 4 minutes with a sampling frequency of  1000

Hz and using a 8 channel digital acquisition system. The singular value decomposition of 

the responses is presented in Fig. 4. The spectral densities being calculated using 1024 

frequency lines. It is well known that the effect of leakage is always present in the 

estimation of damping when frequency domain estimation techniques are use unless that 

long data segments are used. In order to minimize this effect, the responses were 

decimated by several orders (see Fig. 5). The results presented in Table 2 correspond to 

the maximum order of decimation that can be used with each mode.

Figure 3. Accelerometers (arrows) Set-up used in the OMA test.

The first 8 modes were identified by OMA and the modal parameters of the plate were 

estimated using both frequency domain decomposition (EFDD) [29] and the stochastic 

subspace iteration (SSI) [29] methods, the results being presented in Table 1 (natural 

frequencies) and Table 2 (damping ratios).

Figure 4. Singular value decomposition of the responses



The modal parameters of the plate were also predicted using Eq. (75).  A Young modulus 

 MPa, Poisson ratio  and density   kg/m3 were considered : = 72000 . = 0.22 5+ = 2500

for the glass [9]. As regarding the core of the beam, made of polyvinyl butiral (PVB), a 

density kg/m3 and the complex shear modulus  determined in previous 5* = 1030 + ∗
2 (#)

works [25, 26, 31]  were considered.

Table 1. Experimental and predicted natural frequencies.

NATURAL FREQUENCIES

[Hz]

EXPERIMENTAL

ERROR

[%]
MODE WAVENUMBER

EFDD SSI

PREDICTION

Eq. (75) EFDD- 

Eq. (75)

SSI- 

Eq. (75)

1 2.2005 15.604 15.607 15.734 0.824 0.805

2 3.4147 35.269 35.279 37.469 5.870 5.844

3 3.6706 41.869 41.812 43.186 3.049 3.181

4 4.1861 52.645 52.643 55.863 5.761 5.765

5 5.3207 85.858 85.721 88.997 3.527 3.681

6 5.6002 94.726 94.721 98.219 3.556 3.561

7 6.0224 107.024 106.956 112.923 5.511 5.578

8 6.8416 139.363 139.276 144.042 3.357 3.422



Table 2. Experimental and predicted damping ratios.

DAMPING RATIOS [%]

EXPERIMENTAL

ERROR

[%]

MODE

EFDD SSI

PREDICTION

Eq. (75)
EFDD- Eq. (75) SSI- Eq. (75)

1 1.032 0.930 0.967 6.749 3.812

2 1.610 1.715 1.603 0.427 6.977

3 1.719 1.667 1.714 0.300 2.734

4 0.819 0.792 1.921 57.368 58.753

5 1.757 1.698 2.392 26.548 29.015

6 0.818 0.797 2.523 67.579 68.411

7 1.604 1.447 2.735 70.625 70.511

8 1.793 1.829 3.188 77.141 74.302



Figure 5. Effect of decimation in the damping estimation for the first mode.

The wavenumbers needed in Eqs. (72) and (74) were estimated using a monolithic FE 

model with the same dimensions thickness ( = 1400 88, ; = 1000 88, / = /1 + /2

, pinned supported at the corners and material properties + /3 + *1 + *2 = 12.94 88 

corresponding to the glass ( ). From the natural frequencies  of the FE model, :, 5), . #<:=

the corresponding wavenumbers were obtained using the standard equation of natural 

frequencies in monolithic plates [28]:

# 2
<:= = &4

'

:1

/3

12

 (1 ‒ .2)5+/
 

(76)

where the only unknowns are the wavenumbers . The estimated wavenumbers are &'

presented in Table 1 together with the experimental and the numerical natural frequencies, 

whereas the damping ratios are shown in Table 2. It has been considered that loss factor 

and the modal damping ratio  are related by [32]: >

4 = 2 ⋅ > (77)

The experimental and the numerical mode shapes, corresponding to a monolithic plate 

are shown in Table 3. 

It can be observed that the natural frequencies can be estimated with and error less than 

6% for all the modes considered in the investigation. With respect to the experimental 

loss factors, larger discrepancies have been obtained, the maxima error being close to 

75% for the higher modes. This large error is expected because in Eqs. (72) and (74) we 

assume that the real part of the complex wavenumber  is .& ∗= = &? + 0 ∙ &' &? = 0



Table 3. Experimental and numerical mode shapes.

MODE FEM EXPERIMENTAL

1

2

3

4

5

6

7



8

4.1 Static test

The same plate with the same boundary conditions were subject to a constant concentrated 

static load of 300 N in the mid-point of the plate (Fig. 6). The test was carried out at a 

temperature of . $ = 249A

The displacements of the beam were measured in two points (A and B in Fig. 6) using 

two laser sensors. The experimental displacements together with those estimated with 

Eqs. (62) and (71) are shown in Fig. 7 and 8, from which is inferred that the displacements 

are predicted with an error less than 14%. Due to the fact that the tests were performed at 

room temperature for 24 hours, the temperature was not constant but varying from 24.5ºC 

at the beginning of the test to 21.5 ºC at the end of the test. The predictions presented in 

Figure 7 and 8 correspond to a temperature of 24.5 ºC which gives the largest error. If 

both temperatures (24ºC and 21.5 ºC are plotted (Fig. 7 and 8), it can be observed that the 

error diminish.



Figure 6. Experimental Set-up for the static test. 

With respect to the parameter  needed in Eq. (71) and corresponding to a rectangular � 3

laminated glass plate pinned supported at the four corners and subject to a concentrated 

loading, it cannot be found in the literature. A finite element model of the plate was 

assembled in ABAQUS. Shell continuum elements were used for the glass layers whereas 

3D Hexaedral elements were used for the viscoelastic core layers [26]. Elastic properties 

for both glass and PVB (at long term ) and the stiffness of the plate was +*(* = ∞,$)

obtained from:

!(* = ∞,$)63 =
 

C (79)

Where  is the loading applied at the mid-point of the plate and  the displacement at the  C

same point. Then, the parameter  was calculated using Eq. (71).� 3



Figure 7. Displacement of the central point of the plate (Point A)

Figure 8. Displacement of the border mid-point (Point B).

5 CONCLUSIONS

Multi-layered laminated glass plates are commonly used in safety and security 

applications, acoustic isolation, balustrades and floor glazing applications. In the last 



years, several papers have been published proposing analytical equations to calculate of 

stresses, displacements and modal parameters of laminated glass elements consisting of 

two glass layers and one viscoelastic interlayer, using the effective thickness concept [1, 

8, 27] . With this technique the response of laminated glass elements is estimated 

combining the effective thickness equations with the responses obtained with a 

monolithic model of the element under the same loading and boundary conditions [1, 8, 

27]. With respect to multilayered panels, only equations for multilayered beams have 

been proposed [1].

In this paper, an analytical expression for the static effective stiffness (from which the 

effective thickness can easily be derived) of a rectangular laminated glass plate with three 

glass layers and two viscoelastic polymeric interlayers, has been derived. Then the static 

effective stiffness has been extended to the dynamic case using the correspondence 

principle [3, 4, 6]. 

The analytical expressions developed in this paper have been used to predict the static 

displacement at room temperature (24.5 ºC) of a multilayered glass plate composed of 

three glass layers and two polymeric interlayers, pinned supported at the four corners, and 

subject to a concentrated loading of 300 N for approximately 24 hours and applied at the 

mid-point of the plate. The parameter  needed in Eq. (71) has been obtained from the � 3

results of a finite element model assembled in ABAQUS. The analytical predictions have 

been validated with a static test. The results (Figs. 7 and 8) show that the displacements 

can be predicted with an error less than 14%. 

In order to validate the dynamic equations for a multi-layered plate, the natural 

frequencies and the damping ratios of the same plate and with the same boundary 

conditions at 20ºC were estimated with Eq. (74). The wavenumbers needed in Eqs. (72) 

and (74) were obtained from a linear-elastic monolithic finite element model, with the 



same dimensions, thickness and boundary conditions. In order to validate the analytical 

predictions, operational experimental modal tests were carried out on the plate and the 

modal parameters were estimated by both frequency domain decomposition (EFDD) [29] 

and the stochastic subspace iteration (SSI) [29] method.

The discrepancies in natural frequencies between the analytical predictions and those 

estimated with operational modal analysis are less than 6 %. With regard to the damping 

ratios, the maximum discrepancies between the experimental damping ratios and those 

predicted with the analytical model are less than 75%.  However, these large discrepancies 

are expected because we assume that the real part of the complex wavenumber & ∗= = &?

 is . Moreover, it is known from statistical theory that the uncertainty + 0 ∙ &' &? = 0

bounds of damping ratios are much higher than those of natural frequencies.
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FIGURE CAPTIONS

Figure 1. Section of a sandwich (a) and a multi-layered (b) glass beam.

Figure 2. Multilayered glass plate under simply supported conditions.

Figure 3. Accelerometers (arrows) Set-up used in the OMA test.

Figure 4. Singular value decomposition of the responses

Figure 5. Effect of decimation in the damping estimation for the first mode.

Figure 6. Experimental Set-up for the static test. 

Figure 7. Displacement of the central point of the plate (Position A)

Figure 8. Displacement of the border mid-point (Position B).


