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ABSTRACT The interacting quantum atoms (IQA) method can assess, systematically and in 

great detail, the strength and physics of both covalent and noncovalent interactions. The lack 

of a pair density in density functional theory (DFT), which precludes the direct IQA 

decomposition of the characteristic exchange-correlation energy, has been recently overcome 

by means of a scaling technique, what can largely expand the applicability of the method. To 

better assess the utility of the augmented IQA methodology in order to derive quantum 

chemical decompositions at the atomic and molecular levels, we report the results of HF and 

DFT calculations on the complexes included in the S66 and the ionic H-bond databases of 

benchmark geometry and binding energies. For all the structures, we perform single-point and 

geometry optimizations using HF and selected DFT methods with triple-basis sets followed 

by full IQA calculations. Pairwise dispersion energies are accounted for by the D3 method. We 

analyze the goodness of the HF-D3 and DFT-D3 binding energies, the magnitude of numerical 

errors, the fragment and atomic distribution of formation energies, etc. It is shown that 

fragment-based IQA decomposes the formation energies in comparable terms to those of 

perturbative approaches and that the atomic IQA energies hold the promise of rigorously 

quantifying atomic and group energy contributions in larger biomolecular systems. 
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Introduction 

The development of the Quantum Theory of Atoms in Molecules (QTAIM) has paved the 

way towards rigorous concepts in the theory of chemical bonding that rely on the analysis of 

the topology of scalar fields containing chemical information.[1-2] In this way, a broad array of 

Quantum Chemical Topology (QCT) methods[3] has been developed that provide a wealth of 

quantum mechanical (QM) molecular descriptors (e.g., bond-critical-point properties, atomic 

and inter-atomic properties from which similarity measurements can be computed). 

Furthermore, insightful visualization and characterization of both covalent and non-covalent 

interactions has been greatly enhanced by analyzing the topological properties of the electron 

density and its reduced gradient.[4] New quantitative structure-activity-relationships (QSAR) 

have been formulated using QCT properties like the localization/delocalization matrix, whose 

diagonal and off-diagonal elements encapsulate one- and two-electron information about the 

charge distribution.[5]  

Among the various QCT methods, the interacting quantum atoms (IQA) approach [6-7] 

partitions the first- and second-order reduced density matrices into the atomic regions that 

naturally arise in the QTAIM as the attraction basins (A) of the gradient field of the electron 

density. Such partitioning expresses the total energy of a molecular system as the sum of one- 

and two-center atomic contributions with precise, physical meaning. Thus the one-center terms 

(self-atomic energies, E(A) ) tend to the free atomic energies when the interacting atoms are 

far apart, while the pairwise terms (E(A,B)) include a classical electrostatic term, and an 

exchange-correlation energy term, which accounts for all quantum mechanical effects. This 

energy decomposition, which is orbital invariant, provides results that do not depend on the 

underlying electronic structure method and treats both intra- and intermolecular interactions, 

has been applied in many computational studies to quantify different aspects of chemical bonds 

and intermolecular forces (e.g., the nature and cooperativity of H-bond interactions,[8-11] 
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halogen bonding patterns,[12] interactions within transition metal complexes[13-14], description 

of short-range repulsions,[15] fine-tuning effects of electron correlation within covalent and 

non-bonded interactions,[16] etc.).  

In principle IQA calculations require both the first- and second-order density matrices 

defined within wavefunction methods. Thus, the implementation of IQA in the PROMOLDEN 

code[17] is able to process wavefunctions derived from several electronic-structure methods: 

canonical Hartree Fock (HF), multiconfigurational complete active space (CAS),[7, 18] coupled-

cluster (CC),[19] and full configuration interaction (FCI). The Kohn-Sham formalism of density 

functional theory (DFT) does not yield well-defined second-order density matrices, what 

prevents a direct IQA application within DFT. One- and two-atom partitions of the DFT 

energies have already been proposed in the framework defined by the Hilbert space of atom-

centered basis functions[20-21] and the concept of fuzzy atoms. [22] Within the IQA approach, it 

has also been realized that the lack of second-order DFT density matrices can be circumvented 

by defining ad hoc additive exchange-correlation (xc) energies and use them to scale the one- 

and two-atom terms of the Kohn–Sham xc energy such that the total DFT energy is exactly 

recovered.[23] In this way, the applicability range of IQA is significantly expanded as modern 

DFT methods are the default choice for describing many classes of chemical systems. 

Furthermore, IQA analysis can be enhanced using DFT (and HF) Hamiltonians augmented 

with the popular Grimme’s D3 potential,[24-25] which yields pairwise dispersion energies 

Edisp(A-B) that can be readily used to complement the interaction E(A,B) IQA contributions, 

setting up an effective IQA-D3 decomposition scheme. 

A robust and computationally efficient IQA-D3 implementation would offer the possibility 

of gaining new insight and energetic understanding from QM studies of large non-covalent 

complexes and  biomolecules, for example, by outlining the energy impact of specific inter- 

and intramolecular interactions, formulating and providing data for new quantitative structure-
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activity relationships (QSAR)[5], etc. However, these and other possible applications to larger 

systems still face two major challenges. First, IQA is computationally very expensive due to 

six-dimensional numerical integrations over the irregularly-shaped atomic basins that involve 

the first and second order density matrices. Secondly, numerical errors, which affect the 

accuracy of the total QM energy reconstructed by IQA, arise in the construction of the inter-

atomic surfaces delimiting the atomic basins and in the radial and angular numerical 

quadratures within those basins. Owing to the computational cost and, to a lesser extent, the 

numerical errors, application of IQA to non-covalent complexes and biomolecules has been 

scarce and, therefore, further computational work is still needed to assess its strengths and 

weaknesses in this area. 

As a first step in the pathway to routine IQA applications to the study of intermolecular 

complexes, we report in this work the IQA analysis of a large family of non-covalent 

complexes. In particular, we considered the popular S66 and S66x8 databases of benchmark 

geometry and binding energies constructed by Hobza and co-workers.[26-27] This database 

provides reference data for 66 model complexes formed between 14 neutral monomers, which 

bear typical polar and non-polar functional groups characteristic of biomolecules and/or 

constitute biomolecular building blocks. Interactions between neutral and charged fragments 

are also examined using the ionic H-bond database,[28] which contains high level reference data 

for 15 dimers that are described following similar prescriptions to those used in the S66 set. 

For all the structures, we perform single-point and geometry optimizations using HF and 

selected DFT-D3 methods with a triple- basis set followed by full IQA calculations. Focusing 

on relative trends, we analyze first the goodness of the HF-D3 and DFT-D3 formation energies 

of the dimers as compared with the high level reference data. Then we examine the magnitude 

of numerical errors in the IQA-reconstructed formation energies, the relative weight of intra- 

and intermolecular contributions to formation energies, the imprint of the mode of binding on 
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the IQA-D3 descriptors, their similarities and differences depending on the level of theory, the 

partitioning of formation and deformation energies, and the variation of the fragment-based 

IQA-D3 terms along the dissociation curves provided by the S66x8 data set for selected 

complexes. Altogether these results enlarge the application domain of IQA with respect to 

former applications both in terms of the nature of the examined systems and the levels of theory 

used, allow us to make recommendations of model chemistries and IQA settings for similar 

systems, and could help guide the design and validation of linear scaling IQA-D3 solutions that 

will be required to study larger non-covalent complexes and biomolecular systems. 

Methods 

IQA energy decomposition  

The QTAIM atomic basins (), which stem from the topological properties of the charge 

distribution (r), constitute proper open subsystems for which expectation values of QM 

operators can be computed.[1] Particularly, the sum of the one-domain atomic energies,  

A

A

E E  ,  

yields the total energy for the complete system, but does not allow an appropriate 

consideration of interatomic or intermolecular interactions. This can be achieved with the IQA 

approach,[7] which relies on the availability of two scalar fields derived from the wavefunction, 

the first order reduced density matrix (r1,r1’) and the pair density, (r1,r2), as well as on the 

exhaustive partition of the real space (e.g., the partitioning defined by QTAIM). Then IQA 

decomposes the total energy of a molecular system within the Born-Oppenheimer 

approximation as 

 

 

int

A AB A AA AA

net ne ee

A A B A

AB AB BA AB

nn ne ne ee

A B

E E E T V V

V V V V





    

   

  


  (1) 
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where  A

net net AE E   is the net electronic energy of atom A that includes the kinetic energy 

TA and the potential energy due to nuclei-electron (ne) attractions and electron-electron 

repulsions (ee) within A. On the other hand, the interaction energy  int int ,AB

A BE E    

between atoms A and B in the molecular system collects various potential energy terms (nn, 

en, ne and ee). In addition, the two-electron energy ( ,AA AB

ee eeV V ) can be divided into classical and 

non-classical contributions by expressing the reduced pair density matrix as the sum of the 

Coulombic and exchange-correlation densities (i.e.        2 1 1 2 2, ,xc    1 2 1 1 2r r r r r r ). This 

allows to define a purely classical (electrostatic) component of the interaction energy, 

,

AB AB AB BA AB

class nn ne ne ee CoulV V V V V    , along with a quantum (exchange-correlation) contribution such 

that int

AB AB AB

class xcE V V  . This decomposition can be used to better assess the role of electrostatic 

and quantum effects in intermolecular contacts and/or in chemical bonds.  

The calculation of the kinetic and potential energy terms in eq.(1) involves the integration of 

the first- and second-order reduced density matrices over the atomic basins A and B as 

described in detail elsewhere.[18, 29] It is important to note that the calculation of the ee terms is 

rather expensive because it requires the evaluation of six-dimensional integrals of the reduced 

pair density,  

 1

12 2 ,
A B

AB

eeV d d r 

 
  1 2 1 2r r r r

 

More specifically, the PROMOLDEN code tackles the two-electron integrations by using 

separate radial-angular grids and expanding the interelectronic coordinate r12
-1 in terms of one 

and two-center multipolar series that lead to a N4 integration algorithm for HF methods with a 

large prefactor associated to grid operations (N being the number of electrons). 

DFT-IQA 

In principle, the kinetic energy, the monoelectronic potential energy and the Coulombic 

electron repulsion energy calculated with DFT methods can be processed by IQA following 
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similar prescriptions as those of the HF method. However, the lack of a DFT pair density 

(r1,r2) precludes the direct IQA decomposition of the characteristic DFT exchange-

correlation energy DFT

xcE . As recently proposed,[23] a pragmatic alternative can be formulated by 

defining an effective atomic xc energy: 

   , ,

0
A

A DFT A KS

xc xc xE d a E 


  r r r  

where (r) and xc(r) stand for the electron density and the pure (i.e., non-hybrid part) 

exchange-correlation functional, respectively, and a0 is the fraction of the HF exchange in 

hybrid functionals. The ,A KS

xE  exchange energy is obtained from the HF-like exchange density 

 ,KS

x 1 2r r  built up with the corresponding Kohn-Sham (KS) orbitals, 

 , 1

12

1
,

2 A

A KS KS

x xE d d r 


  1 2 1 2

r r r r . 

The ,A KS

xE  integrals and their inter-atomic counterparts ,AB KS

xE  can be computed using the 

expressions of conventional IQA for the HF exchange ( AB

xcV ). For each atom A, the following 

scaling factor can be computed 

   
,

0, ,

1

A

A DFT

xc

A xcA KS A KS

x x

E
a d

E E
  


    r r r . 

These quantities are used to derive scaled intra- and interatomic xc energies: 

  ,1

2

AB AB KS

xc A B xE E    

either for A=B or A ≠B. As noticed in ref. 20, the total DFT energy is exactly recovered by 

summing the scaled xc energies,  

DFT AA AB

xc xc xc

A A B

E E E


    

Although this particular scaling technique is not the only way to recover the total energy of 

a KS-DFT calculation with IQA-like quantities,[30-31] previous test calculations have shown that 

it is computationally efficient and gives results that are chemically meaningful and easy to 
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interpret. In this work, we will further explore its usefulness to yield IQA descriptors 

   int, ,net A A BE E    for medium-sized systems as described by several DFT methods. 

Fragment-based IQA 

The application of IQA to characterize the energy change upon the formation of a given 

complex requires separate IQA calculations for the complex P···Q and the separate P and Q 

fragments followed by the collection and organization of the various energy terms. As a matter 

of fact, the grouping of the IQA energy components has been performed using different 

notations and protocols. For example, in a previous work,[10] we have introduced the concept 

of group energies E  as the sum of the net and interaction energies of the collection of atoms 

that constitute the molecular group  and used them to analyze the change in energy involved 

in the formation of molecular clusters. Similarly, the so-called fragment-attributed-molecular 

system-energy-changes (FAMSEC) expressions have been defined from IQA descriptors.[32] 

These and other formalisms, which can be readily interconverted into each other, can be 

designed or chosen depending on the particular problem at hand.  

In what follows, we will introduce the arithmetic formulas of the fragment-based IQA 

quantities used in this work and the terminology adopted to describe them. Thus, the IQA 

energy terms in eq. (1) are first collected in following symmetric matrix  : 

     

   

     

1 int 1 2 int 1

int 2 1 2

int 1 int 2

, / 2 , / 2

, / 2

, / 2 , / 2

net N

net

N N net N

E E E

E E

E E E

     
 

   
 
 

      

η  

which is similar to the localization-delocalization matrix defined in QCT.[5] The sum of the 

elements of any row or column A of the “IQA matrix”  defines the additive energy of atom 

A, 

     int

1
,

2

A

add add A net A A B

B A

E E E E


       , 
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so that the sum of all A

addE reproduces the total energy E. At this point, it must be stressed that 

the IQA terminology assumes that interaction energies are the diatomic contributions to the 

absolute energy of a molecule or supermolecule, that is, they are not relative energies 

measuring the stability of a complex with respect to the separate fragments. To avoid 

confusions with the IQA interaction energy terms, the relative energy of a P···Q complex with 

respect to the separate fragments will be termed as its formation energy instead of interaction 

energy.   

The study of molecular complexes using IQA can be done by partitioning the  matrix of the 

complex into submatrices associated to the molecular fragments. For example, we can define 

the following block matrices for two interacting monomers P and Q, 

,

P PQ

PQ Q 

   
    

  

PPQ PQ

PQ P Q

QPQ PQ

η 0η η
η η

0 ηη η
  

where PQη  is the IQA matrix of the complex, and P

PQη  and Q

PQη  denote its submatrices 

associated to the P and Q fragments, respectively, while the non-diagonal block PQ

PQη  comprises 

the atomic interaction energies  int , / 2A BE    with ... Similarly, the matrix P Qη  collects the 

IQA matrices of the isolated monomers (but keeping their internal geometries to those in the 

complex) such that the P···Q formation energy results from the sum of the elements of the 

subtraction matrix PQ P Qη η   

 
AB

AB

E    PQ P Q
η η  

The relative importance of intra- and inter-fragment contributions to the P···Q formation 

energy can be assessed using the submatrices P PQ Pη η , Q PQ Qη η  and PQ

PQη . For example, the sum 

of the elements of the intra-fragment P PQ Pη η  matrix measures the electronic deformation 

energies of the respective fragments:  
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   P P Q Q

def defAB AB
AB AB

E E    PQ P PQ Q
η η η η  

Hence, Edef is mainly associated to purely quantum mechanical effects (Pauli repulsion, 

charge transfer, induction-polarization, e delocalization) that modify the fragment electron 

density within its atomic basic upon complex formation,[8] likewise the covalent bond energy 

of a diatomic molecule is modulated by the same effects. Note also that ,P Q

def defE E do not include 

the distortion of the nuclear framework unless the reference state is taken as the isolated fully 

geometrically relaxed fragments Piso and Qiso. On the other hand, the stabilization achieved by 

inter-fragment interactions is collected by the matrix elements of PQ

PQη , defining thus the P···Q 

interaction energy within the P···Q complex,  

 int

PQ PQ

ij
ij

E  PQ
η . 

Of course, similar fragment-based decompositions can be readily extended to other IQA 

components (e.g., Vclass). Particularly, the total int

PQE  can be easily decomposed into a classical 

(Coulombic) interaction energy int,class

PQE  and a purely QM correlation-exchange contribution 

int,

PQ

XCE . Finally, it is straightforward to see that the total formation or stabilization energy of the 

P···Q complex can be written as the sum of the deformation and interaction energy terms,  

int int,class int,

P Q PQ P Q PQ PQ

def def def def xcE E E E E E E E         

This expression basically defines the fragment-based IQA decomposition of E. At this 

point, it must be stressed that conceptual and lexical links have been established[33] between 

the IQA components and those defined in other methodologies like the energy decomposition 

analysis (EDA),[34-35]  natural energy decomposition analysis (NEDA)[36], or even perturbative 

approaches like the well-established SAPT (symmetry-adapted perturbation theory)[37]. For 

instance, according to the conventional EDA prescriptions, the formation energy is calculated 

as the sum of a classical electrostatic interaction energy between non-deformed fragments (
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elstatV ), a Pauli repulsion term ( PauliE ) that incorporates the kinetic and potential energy changes 

due to the antisymmetrization of the fragment wavefunctions and an orbital relaxation energy 

( orbE ) that arises from inter-fragment charge transfer and polarization effects, 

elstat Pauli orbE V E E        

When two fragments interact weakly, a first order perturbation treatment may be reasonable 

and the orbital relaxation is negligible. In this scenario, it has been shown that the 

int,

P Q PQ

def def xcE E E   sum in IQA (termed as exchange-correlation-repulsion) converges onto PauliE  

while int,class

PQE approaches to elstatV . In a certain way IQA unravels PauliE  since this contribution 

results from the balance between intra-fragment deformation and inter-fragment exchange-

correlation effects. Although the extension of e- rearrangement is generally small in non-

covalent complexes, previous computational experience[8-9, 33] has revealed that int,

PQ

xcE  is a 

favorable contribution that can be one order of magnitude greater than the formation energy 

E. However, this inter-fragment exchange stabilization is compensated to a great extent by 

the intra-fragment electronic distortion mainly associated to the antisymmetrization of the 

fragments wavefunction. This combination of opposite but similarly large energies result in a 

small formation energy that may become dominated either by the electrostatic term in polar 

complexes or the net exchange-correlation-repulsion term in non-polar ones.  

Pairwise DFT-D3 dispersion energy 

Inclusion of long-range dispersion energy in QM calculations is indispensable to reproduce 

the energetic properties of large biomolecular systems. Therefore, several methods have been 

proposed to correct the well-known shortcoming of HF and semilocal KS-DFT methods in 

properly describing dispersion energy.[24-25] One of the most popular methods is the third-

generation dispersion (D3) correction for DFT,[38] which is a semiclassical potential inspired 

on the London formula for the dispersion attraction between two atoms A and B at large 



 13 

distance ( 6

ABC R ). At short interatomic distances, the AB dispersion energy tends to a constant 

contribution to the total correlation energy and this asymptotic behavior can be reproduced 

using the so-called Becke-Johnson (BJ)[39] rational damping function. Thus, the D3(BJ) 

dispersion energy is given by the following formula that includes two multipolar contributions 

(n=6, 8) 

 6,8

AB

AB n

disp n n
n o

n
AB

C
E s

R f R

 


  

where AB

nC is the dispersion coefficient of the AB pair that is precomputed from accurate 

dynamic polarizabilities of atoms and small molecules, R is the interatomic distance, ns  is an 

empirical scaling factor (s6=1 for most common DFT methods) and   1 2

o o

AB ABf R a R a  is the BJ 

damping function with 8 6

o AB AB

ABR C C and a1, a2 being fitting parameters. Optimized a1, a2 and 

s8 values are available for many DFT functionals and the HF method.[25] For clarity reasons, 

the D3(BJ) correction will be dubbed simply as D3 all throughout the manuscript. 

The pairwise formalism for the correction of dispersion energy can be combined with the 

IQA decomposition scheme in order to obtain more reliable quantitative trends and 

categorizations of non-covalent interactions using a D3-corrected HF or DFT method. To this 

end, we simply add the AB

dispE  energies to the IQA interaction energies  int int ,AB

A BE E    such 

that the total D3-corrected energy results,  

 int

A AB AB

net disp

A A B

E E E E


          (2) 

Of course inclusion of the dispersion energy does not alter the underlying electron density 

used in the IQA calculations. We also note in passing that another combination of an empirical 

dispersion energy and a QM energy decomposition method has been recently proposed[40] in 

order to replace the costly ab initio dispersion calculations in the DFT-SAPT method by the 

D3 formula with a reparametrized damping function. 
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Results and Discussion 

Choice of datasets and levels of theory 

The S66 database[27] has been designed to cover typical non-covalent interactions in 

biomolecular systems in a balanced manner. This has been achieved by the selection of 14 

monomers, ranging from small molecules with important functional groups to building blocks 

like uracil, which are combined to form the 66 dimers that exhibit various binding modes (e.g., 

linear H-bond, cyclic H-bond, , etc.). Three different categories are distinguished a priori 

in the dataset, the H-bond complexes (23 dimers), the dispersion-dominated or non-polar 

complexes (23), and a mixed set (20) exhibiting polar-nonpolar interactions (e.g. X-H···). On 

the other hand, the “ionic H-bond” set, which is consistent with the S66 one, covers the typical 

charged moieties found in proteins (mimicked by acetate, methylammonium, guanidinium and 

imidazolium) interacting with small donor/acceptor molecules (water, methanol, methylamine, 

and formaldehyde) through short H-bonds. 

The benchmark datasets will allow us to examine in detail how the IQA approach can 

perform in the characterization of different types of polar and non-polar direct interactions. 

Keeping in mind future IQA applications to larger systems, we restricted our study to self-

consistent-field (SCF) QM methods like HF or KS-DFT that are efficiently implemented as 

linear scaling methods in many software packages and are, therefore, routinely employed in 

QM and hybrid QM/MM studies of biomolecules. We chose the HF method, not only because 

its dispersion-corrected HF-D3 form is a valuable tool to describe the structure and energetics 

of biomolecules,[41-42] but because HF lacks entirely dispersion energy and, thereby, HF-D3 

with the BJ damping function can provide a straight physical partitioning of energy. Among 

the myriad of local DFT methods, we selected the well-known hybrid B3LYP functional, which 

is still widely used for the prediction of all kinds of molecular properties, and PW6B95, which 

is one of the Minnesota hybrid functionals that has been found as one of the most robust hybrid 
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functionals in combination with D3.[43] We also employed the PBE0 method, which is the 

hybrid version of the nonempirical PBE functional and has been recently found to yield better 

electron densities as compared with other DFT methods.[44] The three DFT methods are 

augmented with the D3 formula although the weight of the dispersion correction varies 

significantly. All these methods were combined with a triple basis sets (cc-pVTZ or aug-cc-

pVTZ) in all the calculations, what constitutes a compromise choice between quality and 

computational cost. In this respect, it has been noticed[45] that the cc-pVTZ basis offers a good 

balance in terms of its description of noncovalent interactions arising from both electrostatic 

and dispersion forces and introduces a small basis set superposition error. 

Comparison between benchmark and calculated interaction energies 

Statistical error measures of the selected levels of theory against the benchmark values in the 

reference datasets are collected in Table 1 (correlation plots are shown in Figures S1 and S2). 

In this Table, the influence of the D3 dispersion energy and that of the counterpoise (CP) 

correction to the basis set superposition error (BSSE) are assessed separately.  
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Table 1. Statistical measurements comparing the calculated formation energies with the 

bnchmark values: The determination coefficient (R2), the Spearman correlation coefficient (), 

the root mean square (RMS) error and mean absolute deviation (MAD) in kcal/mol.  

 R2  RMS MAD 

HF-D3 0.991 0.976 1.322 1.128 

CP HF-D3 0.989 0.972 0.881 0.625 

IQA HF-D3 0.978 0.957 1.580 1.230 

B3LYP-D3 0.994 0.986 1.189 1.009 

CP B3LYP-D3 0.998 0.996 0.337 0.207 

IQA B3LYP-D3 0.980 0.960 1.340 1.089 

PW6B95-D3 0.994 0.982 0.678 0.582 

CP PW6B95-D3 0.996 0.988 0.386 0.306 

IQA PW6B95-D3 0.988 0.977 0.665 0.542 

PBE0-D3 0.991 0.980 1.123 0.885 

CP PBE0-D3 0.994 0.991 0.460 0.317 

IQA PBE0-D3 0.982 0.961 1.057 0.842 

Ionic H-bond complexes 

 R2  RMS MAD 

HF-D3 0.951 0.914 1.193 0.875 

CP HF-D3 0.951 0.914 1.125 0.814 

IQA HF-D3 0.930 0.932 1.222 0.967 

B3LYP-D3 0.995 0.982 0.822 0.688 

CP B3LYP-D3 0.995 0.982 0.706 0.545 

IQA B3LYP-D3 0.992 0.982 0.817 0.669 

PW6B95-D3 0.997 0.989 0.273 0.221 

CP PW6B95-D3 0.997 0.986 0.344 0.296 

IQA PW6B95-D3 0.991 0.982 0.508 0.404 

PBE0-D3 0.993 0.989 1.177 0.978 

CP PBE0-D3 0.993 0.989 1.074 0.848 

IQA PBE0-D3 0.988 0.954 1.123 0.814 
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Let us discuss first the energy calculations on the S66 complexes. The four selected levels of 

theory (HF/cc-pVTZ, B3LYP/cc-pVTZ, PW6B95/cc-pVTZ and PBE0/cc-pVTZ) in 

combination with the D3 formula produce formation energies that are satisfactorily correlated 

to the reference data (R2=0.991-0.994). The four methods perform better for complexes in the 

H-bond and “others” categories (R2~ 0.997-0.998) than for dispersion complexes (R2~ 0.886-

0.938). In terms of the mean absolute deviations (MAD), the PW6B95-D3 formation energies 

are the most accurate (MAD=0.58 kcal/mol). The relatively good accuracy of the PW6B95-

based data is not unexpected as this semiempirical functional has been optimized for 

thermochemistry applications, but the good performance of the other methods including HF-

D3 is equally remarkable (MAD=0.9-1.1 kcal/mol). These errors are partly due to the basis set 

limitations as shown in a previous study that has assessed DFT-D3 methods [46] with a 

quadruple- basis set (def2-QTZVP) against the S66 data set, finding MAD values of 0.18 

kcal/mol and 0.28 kcal/mol for the PW6B95 and B3LYP methods, respectively. 

Preliminary calculations for the ionic H-bond complexes (not shown here) were carried out 

with the same cc-pVTZ basis set used in the S66 structures, but the resulting formation energies 

were less accurate than the S66 ones, having larger MADs around 2-3 kcal/mol. We decided 

then to add diffuse Gaussian type functions into the basis set, which are usually required for 

anionic and highly polarizable systems. The augmented basis sets improve the accuracy of the 

formation energies, the MAD values lying in the [0.2-1.0] kcal/mol interval.  The R2 values and 

the scattering plots in Figure S2 reveal that the performance of the HF-D3 method for the ionic 

complexes is not as good as those of the DFT methods (e.g., R2 of HF-D3 data is 0.951 vs 0.997 

at PW6B95-D3), PW6B95-D3 being also rather accurate with an MAD value  of 0.22 kcal/mol. 

The influence of the BSSE in the calculated formation energies is tested by means of the CP 

procedure. The CP-corrected energies hardly affect the correlation measurements of the S66 

complexes (all the R2 values remain nearly constant). The CP-corrected formation energies 
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exhibit smaller MAD values between 0.62 and 0.22 kcal/mol for HF-D3 and B3LYP-D3, 

respectively, in the S66 complexes, showing thus that the cc-pVTZ formation energies perform 

similarly as the def2-QTZVP ones after removal of the BSSE.  For the ionic H-bond complexes, 

a larger basis set, aug-cc-pVTZ, is used, the estimated BSSE have smaller values and the impact 

of the CP corrections on the RMS errors is more erratic (slight reductions or increases). 

Therefore, since the BSSE does not alter the relative trends in the formation energies derived 

from the cc-pVTZ or aug-cc-pVTZ basis sets and the average CP-correction is little or 

moderate, we did not consider BSSE effects in the subsequent IQA analysis of interaction 

energies. This choice is also necessary to avoid important problems in the QTAIM space 

partitioning (e.g., spurious distortions in the interatomic surfaces, abundance of nonnuclear 

maxima on the charge density)[8] associated to the ghost functions in the IQA calculations. 
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Figure 1.  Numerical errors (in kcal/mol) of the IQA-reconstructed formation energies at the 

various levels of theory. Mean values and standard deviations are given in parentheses. The 

coloring of the S66 data points corresponds to H-bond (in red), non-polar (in blue) and mixed 

(in magenta) categories. For the ionic H-bond errors, red coloring indicates anionic complexes 

and blue is for cationic complexes. 

S66 Complexes 

 
Ionic H-bond complexes 

 

  

HF (0.50 0.44) B3LYP (0.44 0.43)

PW6B95 (0.25 0.22) PBE0 (0.39 0.34)

HF (0.40 0.36) B3LYP (0.32 0.26)

PW6B95 (0.26 0.23) PBE0 (0.32 0.33)
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Assessment of numerical errors in the IQA-calculations 

The PROMOLDEN settings used in the IQA analysis of the S66 complexes were adopted 

after having verified their satisfactory performance in reproducing the total energy of a set of 

22 small molecules (see Table S1) with a mean error below 0.001 hartrees (~0.6 kcal/mol) for 

the four theoretical methods. However, such numerical errors typically increase with the 

number of atoms and/or the presence of intermolecular contacts that may reshape atomic 

basins. Hence, to better assess the robustness of the IQA approach to partitioning formation 

energies (E), we compare herein the formation energy E values derived from the total HF 

or DFT energies (E) with their counterpart differences obtained from the IQA-reconstructed 

energy (referred to thereafter as EIQA ) of the complex and separate fragments. Thus, we define 

the typicall “IQA numerical error” as the absolute difference |E EIQA| and the results are 

plotted against the atomic size for all the complexes in Figure 1.  

 

We see first in Figure 1 that most of the error values are below ~1 kcal/mol for the HF, 

B3LYP and PBE0 energies or ~0.5 kcal/mol for PW6B95. For a few S66 complexes, the IQA 

integration of their charge densities results in larger |E EIQA| errors close to 2.0 kcal/mol, 

especially with the HF and B3LYP methods. The integration of the PWB96B5 density results 

in average IQA numerical errors that are quite small, 0.25±0.22 and 0.26±0.23 kcal/mol for the 

S66 and the ionic H-bond complexes. Furthermore, these error values are completely 

uncorrelated with the atomic size of the complexes (see Figure 1), what suggests that the EIQA 

values may benefit from error compensation and anticipates also the utility of IQA for larger 

systems. The numerical errors seem also randomly distributed given that the comparison 

between the benchmark E energies and the EIQA values at the different levels of theory yields 

both R2 determination coefficients and MAD values that remain quite similar to those obtained 

with the original HF/DFT E data (see Table 1). 
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From data in Figure 1, we conclude that the “IQA numerical errors” remain within reasonable 

bounds (~0.5 kcal/mol on average). Certainly, for the weakly-bound non-polar complexes, 

these small absolute errors translate into large percentage relative errors in the EIQA values. 

Nevertheless, the actual interest of the IQA energy partitioning resides in the atomic and/or 

fragment-based IQA components and their changes upon complex formation, which are 

generally one or two orders of magnitude larger than the complex formation energies (see 

below). Thus, the IQA numerical errors illustrated in Figure 1 can be taken as indicative of the 

uncertainty in the IQA descriptors and, consequently we expect that any structure-energy 

relationships formulated with them would not be affected by numerical inaccuracies provided 

that the corresponding energy variations are above ~0.5-1.0 kcal/mol.  

Fragment-based IQA partitioning 

As above discussed, IQA decomposes the formation energy E of the binary P···Q complex 

into deformation ( P

defE and Q

defE ) and interaction energies ( int

PQE ) that, in turn, are readily 

computed from the atomic and inter-atomic IQA energies arranged in the matrices P PQ Pη η ,

Q PQ Qη η  and PQ

PQη . Each Edef value reflects the change in the IQA descriptors of a given fragment 

within the complex and in its respective isolated state, whereas int

PQE collects the atomic 

interaction energies between the P and Q atoms while PQ

dispE  corresponds to the D3 dispersion 

correction. Thus, the formation energy emerges from two opposite effects, the intra-fragment 

distortion and the inter-fragment attraction 

   int

P Q PQ PQ

def def dispE E E E E      

Further insight can be gained by decomposing int

PQE  into the classical (Coulombic) interaction 

energy int,class

PQE  and the purely QM correlation-exchange contribution int,

PQ

xcE . This enables the 

collection of the exchange-correlation-repulsion energies plus the dispersion correction into a 
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single contribution, int,

PQ P Q PQ PQ

xcr def def xc dispE E E E E    , which, in turn, allows us to describe the total 

formation energy as the result of two contributions, QM and classical: 

xcr int,

PQ PQ

classE E E    

The various IQA-D3 quantities ( , , ,...P Q PQ

def def dispE E E ) for all the S66 complexes are collected in 

Tables S2-S6 in the Supporting Information. For the sake of brevity, we focus on a selection 

of the S66 complexes (4 H-bond, 4 dispersion and 4 “others” complexes) for which the IQA 

energies were calculated at eight different intermonomeric distances as defined in the S66x8 

dataset. These calculations were done at the PW6B95-D3/cc-pVTZ level and the results are 

displayed in Figure 2 (the numerical values of the IQA contributions to E for the most stable 

geometries are also indicated in Figure 2). We note first that the IQA data unambiguously 

quantify the intra-fragment distortion and the inter-fragment attraction energies, which have 

absolute values that are ~3-4 (H-bond complexes) or ~5-10 (dispersion complexes) times larger 

in absolute value than E. Several trends can be outlined from these data: (i) the electronic 

distortion of the H-donor fragments in H-bond complexes is lower by a few kcal/mol than that 

of the H-acceptor monomer regardless of their molecular size; (ii) the two interacting moieties 

in asymmetrical dispersion complexes (e.g., benzene···n-pentane) experience quite similar 

distortion effects; (iii) the most polar fragment in the a priori mixed complexes (e.g., 

benzene···methanol) tend to be less distorted.  

Another observation derived from data in Figure 2 and in Tables S2-S6 concerns the relative 

weights of the classical (electrostatic) int, class

PQE and QM (exchange-correlation-repulsion) 
xcr

PQE

terms. The classical term corresponds to the Coulombic interaction energy (e-nuclei and e-e) 

involving the atomic basins in molecules P and Q. For the H-bond complexes, the int, class

PQE  values 

are close to the IQA-reconstructed formation energies EIQA (e.g., at the PW6B95-D3/cc-

pVTZ level, EIQA=6.9 kcal/mol and int,class 6.0PQE    kcal/mol for the methanol dimer, 
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IQA=9.2 and int,class 8.9PQE    for the peptide dimer, etc.). This indicates that exchange-

correlation and polarization effects involved in the deformation and interaction energies cancel 

each other to a large extent in such a way that electrostatics plays a major role. We note in 

passing that this electrostatic fingerprint of H-bonds and other subtle details like the actual 

compatibility between the electrostatic image and the local covalency of H-bonds have been 

analyzed in detail in previous IQA applications.[8]  

For the typical dispersion complexes like the benzene dimer and the alkane dimers, the 

Coulombic energy int, class

PQE  is very small (~0.5-0.1 kcal/mol), signaling thus the negligible role 

played by classical electrostatics in the stabilization of non-polar complexes in consonance 

with expectations. Alternatively, the balance between fragment distortion (repulsive) and inter-

fragment exchange-correlation (attractive) favors the latter contribution and, therefore, their 

QM term, 
xcr

PQE  is akin to the formation energy (e.g., see the neopentane dimer in Figure 2). In 

this respect, we note that the D3 dispersion correction PQ

dispE  , which is conceptually related to 

correlation energy, is the most important contribution to  , playing thus an essential role from 

a quantitative point of view.  
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Figure 2. IQA deformation and interaction energy components (in kcal/mol) for selected S66 

and Ionic-HB complexes at the PW6B95-D3/cc-pVTZ level as a function of the scaling factor 

multiplying the intermolecular distance. Connecting curves passing through the calculated 

values were obtained by spline interpolation. Total formation energy (EIQA from IQA-

reconstructed energies; red curves), fragment deformation energies ( P

defE and Q

defE  in blue and 

blue-navy curves, respectively), fragment interaction energies including D3 dispersion (
int

PQ PQ

dispE E

,green curve); 
int,class

PQE  from Coulombic IQA terms (in magenta); 
xcr

PQE from deformation and 

exchange-correlation IQA terms and D3 dispersion (in dark magenta). The interaction type (E, 

Electrostatics-dominated; D, Dispersion-dominated and M, Mixed) is also indicated for the S66 

complexes. The numerical values of the energy components for the most stable dimer geometry 

are also indicated. 
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Several S66 complexes become simultaneously stabilized by the classical electrostatic 

interaction and the QM exchange-correlation-repulsion effects. They belong to the “dispersion” 

and “others” categories (e.g., the  uracil dimer, the benzene-acetamide -complex, etc.). 

These intermediate cases represent a gradual variation of the electrostatic and QM binding 

determinants in the formation of non-covalent complexes. As a matter of fact, the varying 

influence of the IQA term int, class

PQE  suggests a practical way of characterizing the S66 systems as 

being electrostatics dominated, dispersion dominated or mixed (dispersion/electrostatics). The 

same categorization has been attained in the original S66 article[27] using the DFT-SAPT 

approach[37] to calculate the ratio between the electrostatics/dispersion energy. Since PQ

dispE    

accounts for dispersion energy corrections that depend on the level of theory, herein we 

consider the ratio between the classical interaction energy and the total formation energy 

(including D3 corrections) of a given complex, int,class

PQf E E  , and propose to classify it as an 

electrostatic complex if f > 2/3. Reciprocally, if f < 1/3 the complex would be categorized as a 

dispersion one, and the mixed category would correspond to intermediate values of f between 

1/3 and 2/3. This choice of thresholds for f gives rise to groups of complexes that agree well 

with the empirical classification (H-bonded, dispersion, “others”) as shown in Figure 2, which 

also displays the labels (E, D or M) assigned to the S66 complexes at the PW6B95/cc-pVTZ 

level (all the numerical values of f are reported in Tables S2-S5). Thus, the family of H-bond 

complexes is entirely classified as electrostatic with f ratios about 0.8-0.9 for the structures 

having one H-bond or f=1.2-1.3 for those with two H-bonds. Similarly, the empirical category 

of dispersion complexes is associated to f values that are close to zero or slightly negative (e.g., 

alkane··alkane dimers). In this set of complexes the presence of the polar nucleobase uracil 

increases the weight of electrostatics and some uracil complexes are labelled as mixed (M). 

The “others” group of heterogeneous complexes receives 4 E, 6 M and 10 D labels using the 

PW6BP5-D3 method (Table S4). For example, dimers formed between the small ethyne 
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molecule and other polar molecules (water, acetic acid) turn out to be electrostatics dominated 

while -complexes between benzene and polar molecules have an intermediate mixed 

character. The importance of electrostatics further decreases when the polar molecules interact 

with alkanes or in the T-structures (TS) constituted by two aromatic rings, all these complexes 

being labelled as D.  

The E/D/M labelling derived from the IQA partitioning practically matches that produced by 

DFT-SAPT, the few exceptions arising in the case of some H-bond complexes with 

methylamine (denoted as mixed complexes by DFT-SAPT) and in a few -complexes. We also 

note that the numerical values of the f index can vary with the level of theory used in the IQA 

calculations. As would be expected, the HF method is associated with larger classical 

electrostatics effects (i.e., f > 1 for the majority of E complexes). Some borderline cases may 

change their E/D/M category depending on the HF or DFT method, but the overall 

categorization of the S66 complexes is quite similar in the four examined levels of theory (see 

Tables S2-S5). 

The evolution along the intermonomeric distances of the attractive and repulsive IQA-D3 

terms are displayed in Figure 2. In general, these energy contributions change smoothly when 

the intermolecular separation is elongated or shortened around the equilibrium value (scaling 

factor=1). As expected, deformation energies and the correlation-exchange contribution tend 

to nearly zero values at the long distance regime (scaling factor=2) whereas the classical 

electrostatic term int, class

PQE  retains small negative values (-1, -3 kcal/mol), especially for the polar 

and “others” groups of complexes. These plots show that, as the two monomers approach each 

other, the IQA-D3 calculations consistently depict the energetic impact of the 

quantum/classical and intra-/inter-molecular effects involved in the non-covalent interactions, 

and doing so with the same kind of descriptors and terminology that have been previously 
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employed to describe the electronic and energetic features of covalent or ionic bond 

formation.[47]  

The fragment-based IQA decomposition of selected ionic H-bond complexes is also 

summarized in Figure 2 (full data are reported in Table S6). These are cationic or anionic 

dimers whose stability is expected to be largely determined by classical Coulombic 

interactions. Indeed this is confirmed by the f ratios having values between 0.90 and 1.00 for 

most of the equilibrium structures. There are, however, two exceptions labelled as mixed 

complexes (f =0.5-0.6) that involve H-acceptor methylamine molecules and correspond to the 

most stable complexes according to the reference data. The dominant role of Coulombic 

interactions is also noticed in the relatively large classical interaction energy (~-6, -8 kcal/mol) 

when the intermolecular separation is doubled.  

The stronger electronic distortion experienced by the H-bond acceptor fragments in the S66 

set is observed again in the anionic complexes (e.g., see acetate···methanol in Figure 2). This 

asymmetry in P

defE  and Q

defE is considerably reinforced in the cationic complexes what is in 

consonance with the lower polarizability of cations. Thus, the IQA partitioning points out that 

the methylammonium, guanidinium and imidazolium cations are moderately perturbed ( cation

defE

<10 kcal/mol) while they efficiently polarize their H-bond acceptor partners ( neutral

defE >20 

kcal/mol). This effect is maximum at the methylammonium···methylamine and 

imidazolium···methylamine complexes with 5cation

defE   and 35neutral

defE   kcal/mol, and is also 

accompanied by the largest fragment-interaction contributions ( int 60PQE    kcal/mol). This 

means that the NH···N H-bonds benefit from classical electrostatic and QM exchange-

correlation effects (their int, class

PQE  and 
xcr

PQE  energies are comparable; see methylammonium 

···methylamine in Figure 2), suggesting thus a reinforced covalent character, which is already 

present at intermediate separations (scaling factor 1.3-1.5). Most likely, this energetic pattern 

is the consequence of the identical or similar basicity of the two neutral monomers 
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(methylamine and imidazole) and is also seen in the long bond length of the acidic N-H bond 

(1.10 Å). 

Atomic distribution of formation energies 

Clearly, a significant advantage of the IQA approach is that it provides atomic partitions of 

all the energetic properties and that such partitioning is intimately related with the topology of 

the charge density and the QM description of chemical bonding.  

Among the IQA descriptors that could be considered for gaining insight at the atomic level 

concerning the formation energies, the change induced by fragment interactions into the 

additive energy of atom A (with A P ),  

   A PQ P

add add A add AE E E     ,  

can be particularly useful to quantify the importance of individual atoms or groups of atoms 

in the global stabilization of the PQ complex. Of course, the sum of the A

addE values matches 

the total formation energy of the PQ complex. Hence, we calculated the A

addE  terms including 

the D3 dispersion corrections for all the complexes basing on the IQA data for the binary 

complexes and for the separated fragments. The resulting PW6B95-D3 A

addE values for some 

representative complexes are shown in Figure 3 while Table S7 reports A

addE  values for 

selected S66 complexes at the four levels of theory considered. Figures S3 and S4 in the 

Supporting Information show the atomic distribution of the PW6B95-D3 A

addE  values for the 

S66 and the ionic H-bond data sets, respectively.  

In Figure 3, the A

addE  values are shown as atomic labels assigned to ball-and-stick 

representations of the complexes. To enhance the visual interpretation of the data, the atomic 

basins A are shown as colored transparent surfaces. As mentioned in Methods, the settings 

for the calculation of the basin surfaces in these drawings were optimized for visualization 

purposes, but they are useful anyway to show the relative size and shape of the atomic basins 

considered in the IQA calculations. For example, Figure 3 illustrate how the basins of sp3 
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centers are partially hidden by the terminal basins and that the basin of hydrogen atoms 

involved in X-H···:Y interactions is largely flattened between the X and Y basins. The 

numerical values of A

addE are mapped onto the basin surfaces (blue indicates 0A

addE  , grey 

0A

addE   and red 0A

addE  ) so that we can grasp at a glance the relevance of specific atoms for 

the complex stability. 

Figure 3. Ball-and-stick view of selected S66 and ionic-HB complexes. Atomic labels 

correspond to the change of additive atomic energies (in kcal/mol) upon complex formation. 

Atomic basins A are shown as coloured transparent surfaces. As mentioned in Methods (blue 

and red colouring represents destabilized/stabilized atoms, respectively. 

  

  

 

Some patterns about the distribution of the A

addE  values in the S66 dataset can be found in 

data in Figures 3 and S3. Thus, the localized nature of H-bonds is readily seen in the energetics 

of structures with a single O-H···:Y bond, which is largely dominated by the A

addE changes of 

the interacting atoms: the H-acceptor end (:Y) and the H atom are stabilized ( 5, 10A

addE   
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kcal/mol) whereas the H-donor X and H-atoms attached to Y tend to be destabilized by ~5 

kcal/mol. Similar variations occur in the N-H···:Y bonds, albeit the two atoms in the N-H 

moiety are moderately destabilized. When amide groups participate in H-bond interactions, the 

four -O=C-NH- atoms are appreciably perturbed, but more specifically the carbonyl group 

atoms. The case of the uracil dimer can be of particular interest given that the A

addE spreading 

throughout the two heterocycles depicts a certain asymmetry of the two H-bond contacts (see 

Figure 3). Regarding the category of dispersion complexes, the A

addE  values are quite small (< 

1.0 kcal/mol for C and H atoms) and are evenly distributed across all the hydrocarbon atoms, 

what seems in consonance with the weak and non-specific character of the dispersion 

interactions. When heteroatoms (O, N) are present (e.g., in pyridine, uracil), they exhibit 

slightly larger A

addE changes (~ ±2 kcal/mol). Some trends may be also outlined as in the case 

of the alkane dimers in which the stabilizing effects are concentrated in the closest H-atoms 

between the two monomers (see the neopentane dimer in Figure 3). For the third category of 

mixed complexes, the patters of atomic distribution of the non-polar and polar monomers 

resemble those in the dispersion and H-bond groups, respectively, the magnitude of the A

addE

changes in the non-polar molecules being reinforced and those in the polar functional groups 

being less pronounced.  

The A

addE values for some ionic H-bond complexes, which are also shown in Figure 3, display 

features akin to those of the neutral H-bond complexes in the S66 dataset. The OH/NH2 groups 

belonging to the neutral monomer concentrate the more intense energetic rearrangement, 

irrespective of their role as H-donor (e.g., acetate···methanol) or H-acceptors (e.g., 

methylammonium···methylamine). As the strength of the ionic H-bond contacts is relatively 

large, the magnitude of the underlying A

addE  values is also large (e.g., ~60-70 kcal/mol for the 

O/N atoms and ~30-40 for H) and tend to be somewhat more pronounced in the cationic H-
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bonds. The pictures in Figure 3 make evident again the weaker perturbation suffered by the 

cationic moieties with respect to the neutral or anionic fragments.  

To find out to what extent the trends in the atomic distribution of the complex formation 

energies may depend on the level of theory, we compared the A

addE  values as obtained with 

the HF-D3, B3LYP-D3, PW6B95-D3 and PBE0-D3 methods for selected S66 complexes 

(Table S7). It turns out that the three DFT methods provide results that are close to each other: 

the mean unsigned difference (MUD) of the B3LYP-D3 and PBE0-D3 A

addE with respect to the 

PW6B95-D3 ones are both 0.1 kcal/mol. The HF-D3 MUD is slightly larger, 0.3 kcal/mol. For 

the examined complexes, the HF-D3, B3LYP-D3 and PBE0-D3 data are well correlated against 

the PW6B95-D3 data (R2 values ~0.95-0.99). The only exception arises in the neo-pentane 

dimer, which presents quite small A

addE  values so that the HF-D3 data are uncorrelated with 

PW6B95-D3 (R2 =0.50 and 0.80 for the B3LYP-D3 and PBE0-D3). Therefore, we conclude 

that, in general, the IQA-D3 calculations with the examined methods give comparable and 

consistent results concerning the atomic energy changes. Only in the weakest interacting alkane 

complexes, the atomic partitioning may fluctuate with the level of theory, what is likely due to 

several factors (the small magnitude of the energy changes, the IQA numerical errors and the 

importance of correlation and exchange effects). 

Effects of geometry optimization  

As previously noticed, the benchmark energies in the S66 and ionic H-bond data sets have 

been evaluated using fixed monomer geometries. For the sake of simplicity in the comparative 

assessments of the formation energies, the IQA descriptors, their numerical errors and so on, 

those fixed geometries were employed for carrying out the HF/DFT and IQA calculations that 

are analyzed in the preceding subsections. Nonetheless, geometry optimization using either 

HF-D3 or DFT-D3 levels of theory is routinely done during the computational study of 

medium- and large-size molecules and, therefore, we also examined the changes in the 
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formation energies and IQA analysis after having optimized all the dimers at the corresponding 

levels of theory.  

Concerning the equilibrium geometries of the S66 intermolecular complexes, the HF-D3 or 

DFT-D3 relaxed structures depart slightly from the benchmark ones. The magnitude of the 

deviations is generally small as characterized by the RMS deviations between Cartesian 

coordinates that amount to ~0.04-0.08 Å (these are typical median RMSD values; see Table 

S8). The B3LYP-D3 geometries are somewhat closer to the benchmark data followed by the 

HF-D3, PBE0-D3 and PW6B95-D3. The largest deviations arise in the  or T-shaped 

complexes with maximum RMSDs around 0.7-0.8 Å that hint a moderate reorientation of the 

interacting monomers. Nevertheless, in all the cases, the nature of the interaction is well 

preserved and this is corroborated by the calculated formation energies E (using the monomer 

geometries taken from the optimized dimers). Thus, the good correlation between the HF-D3 

and DFT-D3 formation energies and the reference data is practically maintained when using 

the relaxed geometries of the dimers (see Figure S5). For example, the R2 correlation coefficient 

for the HF-D3 formation energies varies from 0.991 to 0.986 Å ongoing from the fixed S66 

geometries to the relaxed ones (0.994 to 0.991 for PW6B95-D3) and the RMS errors remain 

within reasonable bounds (1.25 and 0.73 kcal/mol for the HF-D3 and PW6B95-D3 data).  

The geometry relaxation of the ionic complexes led to similar findings: the optimized 

structures deviate slightly from the benchmark structures (RMSDs  ~0.02-0.04 Å), the most 

significant changes occurring at the acetate···methylamine complex due to an internal rotation 

around the C-COO bond and at the imidazolium···methylamine complex due to small 

readjustments of the NH···:N contact. The B3LYP-D3 geometries are on average closer to the 

reference structures while the HF-D3 ones show the largest RMSD scores. The impact on the 

formation energies is dissimilar among the levels of theory: the DFT-D3 formation energies 

retain fairly good correlation coefficients (R2=0.939-0.989) and low RMS errors of ~1.0-2.0 
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kcal/mol, the B3LYP-D3 method providing the best results (R2=0.989 and RMS=1.06 

kcal/mol). The global performance of HF-D3 seems deteriorated (e.g. R2 = 0.883) mainly 

because it overestimates the stability of the ionic N-H···:N  H-bonds. This greater sensitivity 

of the geometries and formation energies with the level of theory is probably related to the 

charge transfer effects in the ionic complexes that have QTAIM qPQ values between 0.04 and 

0.15 e- whereas the corresponding qPQ values in the neutral H-bond S66 complexes lie in the 

0.01-0.04 interval. 

Figure 4. Ball-and-stick views of the uracil monomers and the methylammonium and 

methylamine monomers in their isolated state. The atomic labels correspond to the atomic IQA 

partitioning (Eadd in kcal/mol) of the fragment distortion energy due to geometric 

rearrangement. The atomic basins are shown as transparent surfaces and colored according to 

the corresponding Eadd  values (red means Eadd <0; blue Eadd >0). 

 

We also checked that the numerical errors in the subsequent IQA calculations and the trends 

exhibited by the IQA descriptors are not substantially affected by the minor changes in the 

formation energies and the molecular geometries caused by geometry optimization. The 
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resulting mean IQA numerical errors of the S66 complexes are now 0.51±0.44, 0.37±0.32, 

0.30±0.25 and 0.22±0.19 kcal/mol for the HF, B3LYP, PW6B95 and PBE0-based calculations, 

respectively, these values being indeed comparable to those reported in Figure 1. The 

equivalent values for the ionic H-bond complexes are 0.45±0.32, 0.25±0.19, 0.65±0.86 and 

0.57±0.68 kcal/mol. Similarly, the decomposition of the formation energies into deformation 

and interaction components and the related categorization of the complexes result in analogous 

trends regarding the weight of intra- and inter-fragment energy changes and the E/M/D labels 

assigned to the complexes. Apart from minimal variations in the fragment-based or atomic IQA 

energies (~0.1-1.0 kcal/mol depending on their actual size) as well as a few E/M exchanges at 

borderline cases (see Tables S4, S6 and S9), the overall picture of formation energies outlined 

in the IQA calculations is well preserved in the relaxed dimers.  

Geometry optimization of the complexes and the separated fragments allows us to estimate 

the energetic cost due to the distortion of the monomer geometries upon the formation of the 

complex (the so-called preparation energy in the EDA scheme). The corresponding difference 

between the energy of a P fragment in the dimer geometry, PE , and in its isolated state, *PE , 

would be amenable of IQA analysis to ascertain the localization and size of atomic distortion. 

However, we found that the actual values of the *P PE E  differences are well below 0.5 

kcal/mol for the majority of the S66 and ionic H-bond complexes. The IQA decomposition of 

such minor energetic effects due to geometric distortion correspond to very small changes of 

atomic additive energies (e.g., 0.05, 0.1 kcal/mol) that are unsuitable for meaningful analysis. 

Only in the case of the doubly H-bonded complexes (uracil···uracil, CH3COOH···HOOC-

CH3) and of the ionic complexes with short H-bonds (methylammonium···methylamine, 

imidazolium···methylamin), the internal rearrangement of the monomer geometries result in a 

significant energy cost of ~1-3 kcal/mol per fragment so that the IQA decomposition in terms 

of additive energies ( A

addE ) may render useful insight into the distortion energy. Two examples 
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are shown in Figure 4, which displays the atomic basins of two uracil fragments and the 

distribution of A

addE values as well as those of the methylammonium and methylamine 

fragments. Inspection of Figure 4 reveals the particular regions of the monomers that become 

strained (in blue) owing to the geometric rearrangement caused by the inter-fragment 

interactions. For the methylammonium and methylamine fragments, the N-H and :N  H-bond 

ends, but also other two basins adjacent to the H-bond, become destabilized. The uracil 

monomers show a more complex pattern of stabilization/destabilization effects associated to 

their internal rearrangement (see Figure 6). Overall, although the geometric distortion in the 

examined complexes may have little importance, it may be interesting to note that ligand 

distortion can play an important role to determine the stability and selectivity of larger host-

ligand complexes. 

Conclusions 

Certainly, the availability of standardized databases of high level ab initio energies and 

geometries for intermolecular complexes[26] can be of great help to carry out computational 

experiments aimed to method development and validation. In this respect, the S66 and ionic 

H-bond datasets have be reexamined in this work using HF and DFT methods augmented with 

the empirical D3 dispersion corrections, but with the more specific goal of deriving fragment- 

and atom-based decompositions of any QM energy contributions to non-covalent binding 

energies using the IQA approach. The two datasets together comprise a variety of H-bond and 

dispersion complexes that are representative of typical intermolecular contacts in biomolecules.  

The limitation to using HF and DFT methods in this study is because of the good applicability 

of the SCF methods to large systems and to maintain the computational cost of the IQA 

calculations within tractable bounds. Using triple- basis sets, the examined methods predict 

reasonable formation energies that correlate quite well (R2~0.99) with the benchmark data and 

have acceptable RMS errors, the PW6B95-D3 method providing the best performance. This 
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comparative analysis suggests that reliable energetic trends could be derived from similar QM 

calculations on a series of heterogeneous intermolecular complexes (e.g., host-ligand systems). 

It may also be reasonably expected that the IQA calculations fed with HF and DFT densities 

could reliably measure the relative importance of functional groups, residues or specific atoms 

for the total stability of the complexes  

The implementation of the IQA approach for the decomposition of molecular energy across 

the QTAIM basins relies heavily on numerical integration tasks, which, besides being 

expensive, introduce some numerical error into the IQA descriptors. We have shown in this 

work, however, that the combination of IQA settings that tradeoff accuracy and computational 

cost with partial cancellation of errors in the calculation of formation energies, results in IQA-

reconstructed EIQA that have acceptable absolute errors, close to 0.5 kcal/mol on average, that 

can be taken as a measurement of the numerical error in the fragment- or atomic IQA 

components of formation energies (e.g., Eadd,). Such errors are generally much smaller than 

the values of the IQA terms, therefore, we conclude that the numerical accuracy of practical 

IQA calculations is good enough.  

The decomposition of QM energies into chemically meaningful quantities is a topic of 

ongoing interest (e.g., see the recent development of the variational EDA technique based on 

absolutely localized molecular orbitals[48] and the interaction energy decomposition associated 

to the local pair natural orbital coupled cluster framework[49]). In this respect, the usefulness of 

the combined IQA-D3 approach to analyze noncovalent intermolecular interactions is well 

illustrated in the fragment-based decomposition of the formation energies of the S66 and ionic 

H-bond complexes in terms of fragment-deformation ( P

defE ), fragment- interaction ( int

PQE ) and 

dispersion corrections. Compared with other energy decomposition methods that normally 

distinguish more energy contributions (exchange, electrostatic, induction-polarization, 

correlation-dispersion, etc.), these IQA terms constitute a simpler partitioning that nevertheless 
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captures interesting features of the polar and non-polar complexes (e.g., the larger electronic 

distortion of H-acceptor fragments in H-bond complexes). Of course additional details can be 

gained by looking at other energy components, among which the classical energy ( int,class

PQE ) due 

to Coulombic e-e and e-nuclei interactions turns out to be particularly useful to categorize the 

noncovalent complexes as electrostatic, dispersion or mixed. As similarly done in the original 

S66 reference using SAPT quantities, the ratio between int,class

PQE  and the total formation energy 

can be considered as a sort of noncovalent bonding index with a clear physical meaning.  

Although the fragment-based IQA quantities allow us to analyze formation energies of the 

noncovalent dimers in comparable terms to those of perturbative approaches, the ability of IQA 

to split the total energy into atomic contributions is a unique feature that deserves further 

interest because it holds the promise of unambiguously quantifying atomic and group energy 

contributions in biomolecular systems with many functional groups. To this end, we have 

resorted to the additive atomic energies defined in IQA (although other IQA descriptors might 

be used). As shown graphically in Figures 4-5, the variation of these atomic properties ( A

addE ) 

offers a detailed picture of the hot spots in a given complex, which are essentially in agreement 

with expectations (e.g., the atoms directly involved in H-bonds concentrate the energy changes 

while small or moderate changes are more evenly distributed in dispersion complexes). 

However, it is also clear that this type of IQA calculations may distinguish specific traits of 

functional groups behavior and/or score a series of inter- and intramolecular interactions in 

larger systems.  

Altogether, the results presented in this work give support to the use of HF-D3 and DFT-D3 

calculations followed by IQA-D3 energy decompositions to take further advantage of QM 

studies of non-covalent complexes in the form of atomic and residue energy contributions that 

may give new insight into the structural features controlling the stability of these systems. 

Similar computational work aimed at the study of intramolecular interactions and 
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conformational preferences will be also required to better assess the reliability of IQA in order 

to study the energetics of biomolecular complexes. These and other applications will require 

the inclusion of environment effects into the IQA framework (continuum solvents, MM point 

charges, …) as well as the design and testing of a nearly linear scaling IQA implementation 

having good numerical accuracy on biomolecules comprising ~100-200 QM atoms. 

Computational Details 

Molecular geometries and benchmark energies 

Cartesian coordinates and reference interaction energies for all the complexes were retrieved 

from the BEGDB (Benchmark Energy and Geometry Database) website.[50] In particular, we 

accessed to the S66 dataset[27] that collects the geometries of 66 optimized dimers at the 

counterpoise-corrected MP2/cc-pVTZ level. The benchmark energies correspond to formation 

energies derived by means of a composite approach that combines CCSD(T)/aug-cc-pVDZ and 

MP2/aug-cc-pVXZ (X=T,Q) energies to estimate the CCSD(T) energy at the complete basis 

set (CBS) limit. The formation energies are calculated using fixed monomer geometries as 

taken from the dimer optimizations and, therefore, no contribution due to the deformation of 

the monomer geometry is included. Similarly, we extracted the minimum-energy structures of 

15 dimers from the “ionic hydrogen bonds” dataset,[51] which also contains MP2/cc-pVTZ 

molecular geometries and CCSD(T)/CBS benchmark energies. 

HF and DFT calculations 

To generate the molecular orbitals required by the IQA calculations, we carried out single-

point HF calculations on all the reference geometries using the cc-pVTZ (S66 complexes) and 

aug-cc-pVTZ (ionic H-bond complexes) basis sets.[52] Single-point DFT calculations were also 

performed with three different exchange-correlation functionals: the hybrids B3LYP[53-54] and 

PBE0[55-56] functionals as well as the hybrid-meta PW6B95 functional,[57] which combines 

Perdew-Wang exchange[58] and Becke-95 correlation[59] and includes 6 parameters optimized 
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for thermochemical calculations. These calculations were done with the GAMESS 

program[60](HF, B3LYP, PBE0) and the ORCA 3.0.3 package[61] (PW6B95). Single-point 

dispersion energies were obtained separately using the DFT-D3 program[40] and choosing the 

Becke-Johnson damping function[39, 62] that correctly reproduces the asymptotic behavior of 

the dispersion energy at small distances.[63] The sensitivity of the interaction energies to the 

Basis Set Superposition Error (BSSE) [64] was estimated by means of the Counterpoise (CP) 

correction.[65]  

To further assess the influence of the various levels of theory on the formation energies and 

on the IQA decomposition, we relaxed the structures of the intermolecular complexes by means 

of unconstrained energy minimizations that were started from the corresponding benchmark 

geometries. The ORCA package was employed to carry out all the energy minimizations with 

DFT-D3 dispersion energy and gradient corrections. Subsequently, the HF or KS molecular 

orbitals were computed on the optimized structures using the GAMESS program excepting for 

the PW6B95/cc-pVTZ ones, for which the ORCA program was used again.  

IQA calculations 

The IQA decomposition of the total energies to yield the net atomic energies,  A

net net AE E  , 

and the interaction energies,  int int ,AB

A BE E   , was performed with the PROMOLDEN 

program[17] at the considered levels of theory (e.g., HF/cc-pVTZ, B3LYP/cc-pVTZ, etc.). The 

scaled exchange-correlation terms AB

xcE associated to the DFT functionals were calculated with 

the LIBXC library[66] that has been interfaced to PROMOLDEN. Pairwise dispersion energy 

corrections AB

dispE  were obtained separately using the DFT-D3 code.  

The IQA terms are numerically integrated by PROMOLDEN over the QTAIM basins. These 

constitute finite and irregular integration domains and demand the application of angular and 

radial grids in atomic spherical quadratures that are much finer than those typically used by 

QM software. Even so the previous computational experience has shown that the IQA-
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reconstructed energy of small and medium-sized molecules still differs from the parent HF or 

DFT energies in ~10-3-10-4 au. In this work, we performed a preliminary study on the accuracy 

of IQA calculations on 22 small molecules (CH4, C2H2, C2H4, C2H6, C6H6, CH2NH, HCl, HF, 

CH3Cl, CH3F, CH3COOH, CH3COO, OH, NH3, NH4
+, CH3NH2, CH3NH3

+, CH3OCH3, H2O, 

CH3OH, CO2, H2CO, H2S, CH3SH, C3H4N2(imidazole) and NH2CONH2 (urea)). After some 

computational experimentation with different integration settings, the following parameters, 

which represented a compromise choice between computational cost and accuracy, were set to 

carry out the rest of PROMOLDEN integrations. First a sphere around each atom was 

considered (i.e., a sphere completely contained inside the atomic basin), with a radius equal to 

60 % the distance of its nucleus to the closest bond critical point in the electron density. High-

quality Lebedev angular grids were used with 5810 and 974 points outside and within the -

spheres, respectively. Euler-McLaurin radial quadratures were employed with 512 and 384 

radial points outside and inside the spheres, respectively, the largest value of the radial 

coordinate in the integrations being 15.0 au. Maximum angular moments, max, of 10 and 6 

were assigned to the Laplace and bipolar expansions of  outside and within the -spheres. 

As shown in the Supporting Information, these settings give a mean unsigned difference 

between the IQA-reconstructed and the parent energies that is equal or below 0.001 hartrees 

for the 22 molecule set.  

As already mentioned, we adopted the space partition into atomic basins derived from 

QTAIM, which is the common choice in IQA calculations although other divisions are also 

possible. In principle, every atomic basin shows one electron density cusp around the nucleus, 

but non-nuclear maxima (NNM) can also appear giving rise to extra QTAIM basins. Such 

NNM basins are not uncommon in molecules with multiple bonds (e.g., N2) although their 

appearance depends on the level of theory and the bond distance. Among the systems studied 

in this work, NNM were only located in the middle of the C≡C bond of ethyne molecules. 

1

12r 
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Hence, one NNM basin was added to the atomic basins of ethyne in order to fully integrate the 

first- and second-order density matrices. Regardless of the unclear meaning of the individual 

NNM IQA energy terms, the presence of the NNM basins does not introduce any difficulty or 

ambiguity in the fragment-based IQA decomposition of the interaction energies.  

The Chimera visualization system[67] was used to draw the ball-and-stick models of the 

complexes surrounded by the translucent surfaces of the QTAIM basins as calculated by the 

PROMOLDEN code. For reasons of computational efficiency and better handling of computer 

images, the basin surfaces were generated using a () angular grid of 72 x 36. For aesthetic 

considerations, the largest value of the radial coordinate in these surface calculations was 

limited to 4.0 au.  
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