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Novel genetic approaches to behavior in Drosophila
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ABSTRACT
The study of behavior requires manipulation of the controlling neural circuits. The fruit fly, Drosophila
melanogaster, is an ideal model for studying behavior because of its relatively small brain and the
numerous sophisticated genetic tools that have been developed for this animal. Relatively recent tech-
nical advances allow the manipulation of a small subset of neurons with temporal resolution in flies
while they are subject to behavior assays. This review briefly describes the most important genetic tech-
niques, reagents, and approaches that are available to study and manipulate the neural circuits
involved in Drosophila behavior. We also describe some examples of these genetic tools in the study of
the olfactory receptor system.
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Introduction

Many animals exhibit similar behaviors in response to spe-
cific sensory signals. For example Drosophila may exhibit
similar emotional behaviors to those of mammals (Iliadi,
2009). Genetically defined neural circuits likely control
innate behaviors because genetically identical individuals of
the same species have similar behavior responses (Simpson,
2009). And neural circuits of adaptive behaviors are able to
evolve via modification of the synaptic connections between
neurons (Simpson, 2009). For several years, anatomical and
electrophysiological studies have been used to map neural
circuits in both invertebrates and vertebrates and even to
understand the full connectivity circuits of the nervous sys-
tem of C. elegans (Bargmann & Marder, 2013). In
Drosophila, for example, the complete map of conexions in a
center of learning and memory in the larvae was described
recently (Eichler et al., 2017). However, a behavior depends
not only on the contacts between the neurons in the circuit
(the connectome) but also on the mode of signaling of each
neuron, the magnitude of the connections between neurons
and other physiological and environmental factors that can
alter neural circuit dynamics (Bargmann & Marder, 2013).

The greatest difficulties in the study of behavior is the
precise mapping of circuits, determining the roles of each
cell and its connections in the circuit and coupling all of
these factors with behavioral readouts. Invertebrates are
good models to investigate complex brain functions, such as
behavior, because of their relatively small nervous systems.
However, the functional manipulation of neurons is required
to decipher behavior, even in models with a reduced number
of neurons. These neurons must be switched on and off
while monitoring the activity of the circuit and the behavior

of the animal. For example, optogenetics may be used to
modify a behavior when light sensitive channels are
expressed in a neural circuit. Therefore, the targeted expres-
sion of effectors that may modify neuronal activity in a small
subsets of neurons in a circuit, as with optogenetics, would
allow the functional mapping of the circuit (White &
Peabody, 2009). Many molecular and genetic tools that allow
this targeted expression and several effectors used for the
functional manipulation of neural circuits have been devel-
oped in the fruit fly Drosophila melanogaster and these tools
are discussed in this review.

Drosophila as a model for behavior

Since Morgan�s first experiments, the fruit fly has served as a
model in various biological disciplines, and the sequencing
of the Drosophila genome has shown that many fly and
human genes are homologous (Rubin et al., 2000). Flies are
inexpensive to maintain, have short generation times and
produce hundreds of descendants. Furthermore, there are
fewer ethical concerns associated with the studies in
Drosophila than with those using mammalian species.

The fruit fly’s nervous system, with 100,000 neurons in its
brain (Ito, Masuda, Shinomiya, Endo, & Ito, 2013), has an
intermediate complexity between C. elegans and mammals.
They have many sensory organs to sense sounds, images,
smells, tastes, and touches (see reviews: Behnia & Desplan,
2015; Herrero, 2012; Kamikouchi, 2013; Lumpkin, Marshall,
& Nelson, 2010; Martin, Boto, Gomez-Diaz, & Alcorta,
2013). These senses gather information from the external
world that the nervous system translates into behavioral
responses, thus allowing the survival and propagation of the
species. These behaviors have been studied in Drosophila
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using a single-gene mutant approach since the studies per-
formed in Seymour Benzer’s lab in the mid-1960s (Benzer,
1973). They started studying the genes involved in circadian
rhythms, courtship, and learning and memory behaviors (see
review Sokolowski, 2001), and many other behaviors have
been studied using the same approach, ranging from simple
behaviors, such as olfaction and taste preference (Vosshall &
Stocker, 2007), to more complex behaviors, such as group
behaviors (Ramdya, Schneider, & Levine, 2017). This
approach has also been used as a model for human condi-
tions, such as alcoholism (Park, Ghezzi, Wijesekera, &
Atkinson, 2017) and neurodegenerative diseases (McGurk,
Berson, & Bonini, 2015).

Basic genetic tools in Drosophila

Many sophisticated genetic tools have been developed to
manipulate genes, cells, and ultimately behavior of the fruit
fly. In Drosophila, the natural transposable P-element was
used for germ-line transformation to introduce DNA into
the genome (Rubin & Spradling 1982; Spradling & Rubin
1982). This technique was used to generate a vast collection
of transgenic flies that are used to produce mutations in spe-
cific genes, deletions, and duplications of larger genome sec-
tions, homologous recombination and gene replacements,
gene miss-expression, enhancer-trap, etc. (for review see
Ryder & Russell, 2003). These transgenic fly lines are avail-
able from individual labs and stock collections of research
institutes, as the Janelia Farm that used thousands of these
lines to study the connectome of Drosophila brain (see, e.g.,
Takemura et al., 2015). And there are also public stock cen-
ters devoted to maintain and provide fly lines, such as the
Bloomington Drosophila Stock Center (Bloomington, IN),
the Kyoto Stock Center (Kyoto, Japan) and the Vienna
Drosophila Resource Center (VDRC) (Vienna, Austria).
These transgenic flies include enhancer-trap lines that are
used to produce ‘tissue-specific’ expression of reporters or
drivers (Figure 1(A)). These drivers or reporters may be
expressed in the same pattern as the gene whose enhancer
was ‘trapped’, depending on the insertion site of the trans-
posable element (Bellen et al., 1989; O’Kane & Gehring
1987). The enhancer-trap name is also used for inserted
transposable elements that carry constructs that include the
enhancer and promoter or only the promoter (or regulatory
upstream sequences) of a gene that controls the expression
of a reporter or driver.

The most powerful variant of the enhancer-trap tech-
nique, the Gal4-UAS binary system, provides tight temporal
and/or spatial control of gene expression (Brand &
Perrimon, 1993). This system is composed of two parts: a
Gal4 ‘driver’ line, in which an enhancer-trap element drives
the expression of the yeast transcriptional activator GAL4
under the control of a Drosophila promoter in a specific
temporal and spatial pattern; and a UAS line, in which the
sequence of a gene is inserted downstream of a Gal4
upstream activation sequence (UAS) (Figure 1(B)). Both ele-
ments are incorporated into the Drosophila genome using
P-element mediated transformation in different fly lines, and
these two components are combined in the same fly using

genetic crosses to produce the expression of the gene con-
trolled by UAS in the cells that express Gal4 (Brand &
Perrimon, 1993). This technique has allowed the generation
of thousands of stable fly strains that have P-elements
inserted in unique random positions in the fly genome (for
the Gal4 lines, see http://flystocks.bio.indiana.edu/Browse/
gal4/gal4_main.htm) and that, by virtue of these positions,
can be used to express other genes (controlled by the UAS,
see http://flystocks.bio.indiana.edu/Browse/uas/uashome.htm)
in specific cells in the animal. Gal4 lines that carry the regu-
latory region of a gene (enhancer and promoter or promoter
alone) with known expression patterns were also generated
to drive GAL4 with a similar cell-specificity (Figure 1(C)).
For example, the orco gene encodes for an olfactory co-
receptor that is expressed in approximately 70% of odorant
receptor neurons (ORN), and fragments of the orco regula-
tory region drive genes to these neurons in the orco-
Gal4 line (Ng et al., 2002).

This Gal4-UAS system is controlled via the yeast Gal4
repressor, GAL80, which binds to GAL4 and represses its
activity (Johnston, 1987). Ectopic co-expression of GAL4 and
GAL80 in the fly inhibits the activity of GAL4 (Lee & Luo,
1999). The existence of a temperature-sensitive Gal80 mutant
(Gal80ts) allows the temporal control of Gal4 activity via tem-
perature manipulation GAL4 inhibition occurs below 25 �C
and a loss of suppression occurs above 29 �C (McGuire, Le,
Osborn, Matsumoto, & Davis, 2003) (Figure 1(C)). Another
variant of the Gal4 system, GeneSwitch, also allows temporal
control of gene expression by feeding flies the hormone
RU486 (Osterwalder, Yoon, White, & Keshishian, 2001;
Roman, Endo, Zong, & Davis, 2001).

Although the Gal4-UAS binary system is widely used, two
additional binary systems were developed in Drosophila. The
availability of these additional systems allows Drosophila
biologists to simultaneously perform two gene expression
manipulations in vivo. For example, the GAL4-UAS system
and one of these systems may be used to examine whether
two reporters were expressed in the same or different cells.

One of these systems is the LexA-LexAop system, which
takes advantage of the bacterial transcriptional factor, LexA.
LexA binds specifically to LexAop sequences to produce the
transcription of downstream effectors (Lai & Lee, 2006)
(Figure 1(D)). The LexA DNA-binding domain (DBD) in
this system may be linked to the GAL4 activation domain or
the VP16 activation domain, which is a strong activation
domain from the herpes simplex virus. This combination
provides GAL80-repressible (GAL4 activation domain) or
independent (VP16) LexA drivers. The VP16 domain is very
strong, and the LexA drivers that carry it are used to pro-
duce a high level of expression (Rodrigez, del, Didiano, &
Desplan, 2011). The second system is the Q system, which
uses the QF transcription factor from Neurospora. This fac-
tor binds specifically to the QUAS gene cluster-binding site
to drive expression of a downstream gene (Potter & Luo,
2011; Potter, Tasic, Russler, Liang, & Luo, 2010). In this sys-
tem the QS element represses QF function (Figure 1(E)); this
inhibition could be reversed by feeding flies with quinic
acid. This system may be used to study temperature sensitive
behaviors where the Gal80 thermosensitive mutants cannot
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Figure 1. Basic genetic tools. A) The enhancer trap system: A modified P-element (limited by the black triangles) is inserted close to one enhancer that controls the
expression of gene 1, and this produces the expression of a reporter gene carried by the P-element in the same pattern. B) The Gal4/UAS system: the P-element car-
ries the Gal4 gene that it is expressed under the control of the nearby enhancer; the GAL4 protein is expressed in the same pattern as gene 1 and induces the
expression of a reporter gene controlled by a UAS carried by another P-element inserted elsewhere in the genome. C) Control of the Gal4/UAS system by tempera-
ture: A thermosensible Gal80 mutant allele controls the expression of a toxin gene controlled by UAS in the cells that express gene 1 because the Gal4 gene is fused
to the regulatory regions (enhancer and promoter) of that gene. Left, under 25� C the GAL80 protein codified by another P-element is attached to the GAL4 avoiding
the expression of the Toxin. Right, when the temperature is raised above 29 �C, the GAL80 protein is inactivated and does not repress GAL4. Thus, the toxin is pro-
duced, killing the cells where the gene 1 is expressed. D) The LexA/LexAop binary system functions similarly to the GAL4/UAS system, but it does not have a repres-
sor. E) The Q system functions similarly to the GAL4/UAS system, and it has a QS similar to Gal80.
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be used. Another advantages of the Q system is that it pro-
duces less basal expression because it is less leaky that the
Gal4-UAS system (Rodrigez et al., 2011).

The random insertion of the transposable elements of
these transgenic flies may produce position effects that
strongly influence gene expression and complicate the
phenotypic analysis of behaviors and other complex traits
(Levis, Hazelrigg, & Rubin, 1985). A site-specific integration
system was developed in Drosophila using the site-specific
integrase from phage uC31, which mediates recombination
between attB and attP sites, to avoid the random insertion
of transposable elements (Groth, Fish, Nusse, & Calos,
2004). This approach allows quantitative comparisons
between different constructs inserted at the same genomic
location.

Strategies to refine driver expression patterns

Many of the Gal4 driver lines used to study the nervous
system have expression patterns that are too broad to be
useful for fine anatomical and functional mapping of
behaviors, and it is the same for the other binary systems.
Furthermore, some of these lines express the driver not
only in specific cells of the brain but also in other tissues,
and this poses complications to the interpretation of the
neural basis of behavior. To solve these problems, the fly
community has developed a number of intersectional strat-
egies to refine these expression patterns to visualize and
functionally manipulate neurons using several effector
genes that we will discuss later (Sivanantharajah & Zhang,
2015).

One such strategy is the split-Gal4 system (Luan et al.,
2006)Q2 , where the Gal4 is separated into its two basic compo-
nents: the DBD and the transcriptional activation domain
(AD), and each of these are fused to a leucine zipper motif
(Figure 2(A)). These two units are expressed using two dif-
ferent enhancers or promoters, and in cells that co-express
these two enhancers, the leucine zipper motifs bring together
the DBD and AD domains to form a composite Gal4 protein
that can transcribe genes placed downstream of the UAS.
The disadvantages of this system are that a large collection
of new enhancer-trap lines expressing the Gal4 DBD and
AD separately needs to be established and that the modified
AD is no longer sensitive to Gal80 inhibition.

A second split system, the Split-LexA, has been developed
to overcome some of the disadvantages of the split-Gal4
(Ting et al., 2011). In this system, the LexA-DBD is
expressed under UAS control in existing Gal4 lines; there-
fore, it could be repressed with Gal80 (Figure 2(B)).
However, this system requires the production of a large
number of LexA-AD constructs and is not compatible with
existing UAS lines.

Another intersectional strategy is to refine Gal4 expres-
sion patterns using Gal80 repression. The Gal80 is produced
through enhancer trapping or driven by specific promoters
(Clyne & Miesenbock, 2008; Keene et al., 2004), and in
regions where expression of Gal4 and Gal80 overlap, the
Gal80 suppresses the expression of a UAS-effector gene by
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Figure 2. Basic intersectional strategies. A) The Split Gal4 system, consisting of
the two parts of Gal4, the DNA-binding (DBD) and the transactivation domains
(AD), are expressed using different enhancers, and a functional GAL4 is only
reconstituted in cells that express both parts. B) The Split LexA system, the LexA
DNA-binding (DBD) domain is expressed under the control of an enhancer with
the Gal4/UAS system and the LexA transactivation domains (AD) is directly con-
trolled by a second enhancer. A functional LexA is only reconstituted in cells
that express both parts. C) The expression of Gal4 and its repressor with two dif-
ferent enhancers produce the expression of the reporter in the region where
enhancer 1 but not enhancer 2 control the expression (�), there is no expression
where the two enhancers are expressed (��) because of the GAL80 repressor.
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inhibiting the Gal4 activity (Figure 2(C)). A similar strategy
could be used in the Q system using its QS repressor
(Potter, Tasic, Russler, Liang, & Luo, 2010). This technique
may be limited by the ability to produce intersectional pat-
terns small enough for accurate mapping of the minimal
number of cells required for a behavior.

To further refine these patterns a second approach has
been taken, where Gal80 expression is controlled by a strong
promoter [e.g. the tubulin promoter (tubP)], and its expres-
sion pattern is refined using site-specific mitotic recombin-
ation using the yeast FLP-FRT system (Lee & Luo, 2001;
Gordon & Scott, 2009). In this system, the recombinase flip-
pase (FLP) recognizes two Flippase recognition target (FRT)
sites and produces the recombination between them. If both
FRT sites are in the same chromosome and in the same
orientation, it would lead to the deletion of the sequence
between them (Golic & Lindquist, 1989). There are some
methods that use Gal80 constructs surrounded by two FRT
sites to eliminate it in the presence of FLP (Figure 3(A)).
For example, this is used in the mosaic analysis with a
repressible cell marker (MARCM) method that allows the
visualization of cell morphology, mapping of cellular connec-
tions, and tracing of cell linages during development. In the
MARCM technique, the Gal80 represses Gal4-driven expres-
sion of the green fluorescent protein (GFP) reporter and
uses a FLP controlled by a heat shock promoter (hs-FLP) to
delete the Gal80 repression in response to a temperature
pulse at a given time during development. This process
marks both the cells in which flip-out of Gal80 occurs and
their descendants throughout development with GFP fluores-
cence (Lee & Luo, 2001). This same approach of a Gal80
flip-out using a hs-FLP has been used to intersect Gal4 neu-
rons in the taste circuit of flies (Gordon & Scott, 2009).

A similar technique, but using enhancer/promoter driven
FLP constructs, is called flippase-induced intersectional
Gal80/Gal4 repression (FINGR) (Bohm et al., 2010)
(Figure 3(B)). In this method, two FLP-dependent Gal80
constructs are used to mediate the activation or inhibition of
Gal4 activity. In cells where FLP is present, with the
tubPFRTGal80FRT construct, the excision of Gal80 will result
in the effector gene expression. However, in lines with a
second construct that have a stop codon surrounded by FRT
sites (tubPFRTSTOPFRT Gal80), the presence of FLP produces
the excision of the STOP, thus allowing the expression of
Gal80 and, consequently, both the inhibition of Gal4 and the
suppression of the effector gene expression. For this method,
more than 1000 enhancer trap FLP lines have been produced
and are used to refine the spatial and temporal resolution of
existing Gal4 lines (Sivanantharajah & Zhang, 2015).

Finally, another intersectional method is to refine
UAS-effector gene patterns using FLP recombinase. When a
construct of a UASFRTSTOPFRT effector is inserted into the
genome, a cell-specific expression of FLP recombinase results
in the removal of the STOP signal, allowing expression of
the effector driven by a Gal4 (Figure 3(C)). This ‘flip-In’
method was first used to study courtship (Stockinger,
Kvitsiani, Rotkopf, Tirian, & Dickson, 2005), where effectors,
such as temperature-sensitive paralytic shibire (shits)
(Kitamoto, 2001) or the tetanus toxin light chain (TNT)

(Sweeney, Broadie, Keane, Niemann, & O’kane, 1995), were
expressed to impair synaptic transmission. This same
approach has been followed by combining two binary sys-
tems. An enhancer-trap LexA was used to produce tissue-
specific FLP via LexAop-FLP. In cells in which LexA and
Gal4 expression overlap, the STOP sequence is excised from
the UASFRTSTOPFRT effector to permit Gal4-driven effector
expression in restricted patterns (Yagi, Mayer, & Basler,
2010).

Effector lines to study neural circuits

The Drosophila community generated a large collection of
UAS-effectors (or other binary systems) to visualize cells,
ablate cells, monitor neuronal and glial activity and manipu-
late neuronal function, and these effectors may be used to
investigate the nervous system and behavior
(Sivanantharajah & Zhang, 2015). These effectors may be
expressed in specific patterns using the intersectional meth-
ods explained in the previous section to gain access to a very
detailed anatomical and functional map of the neural circuit
that controls a behavior.

To visualize and anatomically study the neural circuits
responsible for a behavior, there are a number of fluorescent
protein markers and techniques that can be used to study
the structure of neurons, map the connections between cells
in the circuit and even trace their lineages during develop-
ment. Cells in the nervous system are generally visualized
using the Gal4–UAS system to express UAS-Reporter genes
that encode fluorescent proteins. The most common protein
is the GFP (Yeh, Gustafson, & Boulianne, 1995) and the shift
color derivatives red and yellow fluorescent proteins (RFP
and YFP). Usually, these fluorescent proteins are targeted to
mark different parts of cells of interest, such as the mem-
brane (e.g. mCD8-GFP, a fusion protein between the trans-
membrane mouse lymphocyte marker CD8 and GFP) (Lee &
Luo, 1999), nucleus (e.g. nuclear localization signal (nls)-
GFP, where GFP is fused to a portion of the Tra protein of
Drosophila, which is a nuclear localization signal) (Barolo,
Carver, & Posakony, 2000), specific organelles (e.g. mito-
GFP for mitochondria, a chimeric gene encoding the N-ter-
minal of human cytochrome c oxidase subunit VIII
(cCoxVIII) followed by GFP) (Pilling, Horiuchi, Lively, &
Saxton, 2006), axons (e.g. Tau-GFP, where the microtubule
binding protein Tau is fused to GFP) (Ito, Sass, Urban,
Hofbauer, & Schneuwly, 1997), and dendrites (e.g. DenMark,
a hybrid protein of the mouse protein ICAM5/telencephalin
and the red fluorescent protein mCherry) (Nicolai et al.,
2010). There are also UAS lines designed to label synapses
to visualize the connections between the neurons of a circuit,
and these markers may be presynaptic (e.g. nSyb-GFP, that
marks the synaptic vesicles and the synaptic termini) (Estes
et al., 2000), postsynaptic (e.g. Dlg-GFP, a fusion with Disc
large, a postsynaptic density marker) (Koh, Popova, Thomas,
Griffith, & Budnik, 1999) or trans-synaptic labels (e.g.
GRASP system, which expresses two transgenes encoding
complementary parts of GFP in two populations of neurons,
the GFP activity is reconstituted at synapses between the two
populations) (Gordon & Scott, 2009). Several recombinase-
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Figure 3. FLP/FRT based intersectional strategies. A) Gal80 flip-out: A Gal80 gene under the control of the Tubulin promoter (TubP) is inserted in between two FRT
sites (white triangles). This Gal80 is going to repressed the expression of the reporter controlled by the Gal4/UAS system (left), but after a heat shock, the expression
of a FLP gene under the control of a heat shock promoter (hs) is going to produce the flip out of the Gal80 gene as well as the expression of the reporter in the cells
in which this occurs (right). The expression of the reporter is going to depend on the time during development when the heat shock was applied. B) The FINGR sys-
tem, the FLP is controlled by an enhancer to refine the expression of the Gal4 driven by another enhancer. It could be induced by the flip out of the Gal80 gene
where both enhancers intersect (left) or could be inhibited by the flip in of the Gal80 gene (because of the flip out of a Stop codon before the Gal80 gene) where
both enhancers intersect (right). C) The UAS flip-in system, an enhancer driven FLP refines the expression of another enhancer-Gal4. The reporter is only expressed
when both enhancers intersect (��) because the expression of the FLP produces the flip out of a stop codon between the UAS and the reporter.
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based cell labeling techniques are used to further refine
the visualization of the neural circuits, such as the
MARCM method explained above (Lee & Luo, 2001), the
flybow system (a derivative of the mouse brainbow system,
that allow a multicolor cell labeling in neural circuits
(Hadjieconomou et al., 2011)), or the coinFLP system
(Bosch, Tran, & Hariharan, 2015) that uses enhancer/pro-
moter driven FLP constructs to produce mosaic individuals
with restricted clonal expression of GAL4 and to visualize
clonal boundaries. Real-time and lineage-traced expression
patterns are also identifiable thanks to the Gal4-based sys-
tem G-TRACE, which reports gene expression at a given
developmental stage in combination with lineage informa-
tion on expression at earlier developmental stages (Evans
et al., 2009).

Effectors that kill the cells in which they are expressed are
also used to investigate behavior. These effectors include
pre-apoptotic genes, such as reaper (Zhou et al., 1997), or
toxin subunits, such as the diphtheria toxin light chain
(UAS-DTl) (Han et al., 2000).

Other useful effectors are those that are used to monitor
the activity of the cells. They sense the rise in neuronal
activity and produce an increase in their emitted fluores-
cence. These types of effectors include voltage sensitive
GFPs, such as Arclight (Cao et al., 2013); pH sensitive fluo-
rophores, such as pHluorin (Poskanzer, Marek, Sweeney, &
Davis, 2003); and Ca2þ sensors, such as GCaMP6 (Chen
et al., 2013) or R-GECO (Dana et al., 2016). Some systems
use molecular sensors that are irreversibly altered in the
presence of elevated Ca2þ levels to identify neurons and
neural circuits involved in a behavior response in fixed tis-
sues. One of these systems is the CaLexA (calcium-depend-
ent nuclear import of LexA), which uses a modified LexA
fused to a transcription factor that is imported into the
nucleus in an activity-dependent manner (the nuclear factor
of activated T cells (NFAT)). Activated neurons are marked
in this system because LexAop-GFP is expressed in their
nuclei (Masuyama, Zhang, Rao, & Wang, 2012). Another
system uses the artificial protein calcium-modulated photo-
activatable ratiometric integrator (CaMPARI), to identify
activated neurons because it undergoes irreversible green-to-
red light emission conversion only when elevated intracellu-
lar Ca2þ and experimenter-controlled violet illumination
coincide (Fosque et al., 2015).

The Gal4-UAS and the other binary systems may be
used to investigate the neurons involved in a particular
behavior, and also the required genes in these neurons.
There are large collections of UAS-RNAi lines for the con-
ditional inactivation of virtually any Drosophila gene thanks
to the efforts of the Vienna Drosophila Resource Center
(VDRC) (Dietzl et al., 2007) and the Transgenic RNAi
Project (TRiP) (Ni et al., 2008). These UAS-RNAi lines
express the interference RNA of a particular gene under
the conditional control of a particular Gal4 line and
required the presence of an UAS-dcr2 construct for Dicer
protein expression, which is necessary for the correct proc-
essing of RNAi. An in site-specific integration system
derived from phage uC31 is used in the TRIP RNAi lines
to avoid position effects (Ni et al., 2008).

Manipulation of neural circuit function

Manipulation of cellular or circuit activity is required to
map the cells required for a particular behavior. Several
effectors are capable of increasing or reducing synaptic activ-
ity (i.e. change the trafficking of the synaptic vesicles) and
other effectors produce excitation or silencing of the neur-
onal activity (usually transmembrane ion channels that
change the electric properties of the neuron). For example,
UAS-Syx3–39 encodes a single-point mutation in Syntaxin
and specifically enhances synaptic vesicle fusion (Lagow
et al., 2007). In contrast, UAS-TNT expresses the tetanus
toxin (TNT) light chain that cleaves synaptobrevin and silen-
ces synaptic vesicle exocytosis (Sweeney et al., 1995).
Expression of Kþ rectifier channels, such as UAS-Kir2.1
(Baines, Uhler, Thompson, Sweeney, & Bate, 2001; Paradis,
Sweeney, & Davis, 2001), UAS-EKO (White et al., 2001) or
UAS-dORK (Nitabach, Blau, & Holmes, 2002), silences neur-
onal activity. In contrast, the UAS-NaChBac, which
expresses a bacterial sodium channel and increases Naþ con-
ductance, which induces neuronal excitation (Nitabach et al.,
2006).

Some of these effectors are activated with temporal con-
trol using several methods and can be classified based on
optogenetic, thermogenetic, and pharmacogenetic
techniques.

One example of pharmacogenetics was the use of the cap-
saicin-sensitive cation receptor/channel VR1 to activate neu-
rons by simply feeding capsaicin to flies (Donlea, Thimgan,
Suzuki, Gottschalk, & Shaw, 2011; Kottler et al., 2013).
However, pharmacogenetics lacks the advantage of optoge-
netic and thermogenetic techniques because the latter techni-
ques allow for acute manipulation of neural activity in freely
moving animals with precise temporal control.

The first thermogenetic experiments used the UAS-shits1

transgene which expresses a temperature sensitive dynamin.
Neurotransmission is transiently blocked by elevating the
temperature of the flies above the restrictive 29 �C
(Kitamoto, 2001). Other thermogenetic techniques use
members from the transient receptor potential (Trp) cation
channel family and activate the neurons with cold, such as
UAS-TrpM8 (Peabody et al., 2009), or heat, such as UAS-
trpA1 (Keene & Masek, 2012; Marella, Mann, & Scott, 2012;
Rosenzweig et al., 2005).

The first experiment with light-triggered neural activation
(optogenetics) in live behaving fruit flies used the rat ATP-
responsive P2X2 receptor expression in neurons. Then, neu-
rons were selectively activated via the photo release of an
injected caged ATP (Lima & Miesenbock, 2005). The most
widely used optogenetic tools currently are based on micro-
bial opsins, the channelrhodopsins. These proteins are cation
channels that required a critical cofactor, the all-trans-retinal,
which is provided in the fly’s diet. Exposure of channelrho-
dopsin-expressing flies to intense blue light activates these
channels and subsequent depolarizes neurons (Schroll et al.,
2006). However, the low channel conductance and poor
penetration through the fly cuticle of the short wavelength
light that is required to activate channelrhodopsin impeded
its application in adult fly behavioral studies. The first study
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of learning in Drosophila that expressed a UAS-channelrho-
dopsin2 (chR2) used transparent larvae (Schroll et al., 2006).
UAS-chR2 was also used to examine the consequences of
peripheral sensory neuron activation in adult flies (Gordon
& Scott, 2009; Root et al., 2008; Suh et al., 2007), and it has
been successfully used in physiological studies in which the
brain is directly illuminated after part of the head cuticle is
removed (Gaudry, Hong, Kain, de Bivort, & Wilson, 2013;
Gruntman & Turner, 2013; Nagel, Hong, & Wilson, 2015;
Yaksi & Wilson, 2010).

Channelrhodopsin variants that are much more useful for
adult fly behavior analyses were recently created. For
example, the ChR2-XXL variant is most suitable for low-light
stimulation because of its high expression levels and long
open-state (Dawydow et al., 2014). Activation has been
shifted into the red spectrum in other variants, such as
UAS-ReaChR or CsChrimson, which increased the light
penetration through the fly cuticle. The use of these light
wavelengths apparently does not interfere with normal fly
vision. These variants were successfully used in studies of
adult behavior (Inagaki et al., 2014; Joseph, Sun, Tam, &
Carlson, 2017; Klapoetke et al., 2014; Owald et al., 2015; Wu
et al., 2016).

Another opsin coupled to Cl2þ conductance, halorhodop-
sin, produces cell activity inhibition, and it has been used in
studies of behavior (Inada, Kohsaka, Takasu, Matsunaga, &
Nose, 2011).

The use of genetic tools in the study of behavior:
some examples in the olfactory receptor system

Many of the genetic tools described in this review were used
in the study of the olfactory system in Drosophila at the
receptor level and odor-driven behaviors. For example,
mutagenesis by a single P-element insertion in enhancer-trap
lines successfully generated olfactory reception behavior
mutants (Anholt, Lyman, & Mackay, 1996). The use of Gal4
P-element insertion mutagenesis allows the generation of
olfactory behavior mutants (Martin, Kim, Gomez-Diaz,
Hovemann, & Alcorta, 2006) and further manipulation of
ORN via the UAS expression control of genes and effectors,
such as the overexpression of genes involved in transduction
pathways or the impairment of the synaptic transmission
with the TNT effector (Gomez-Diaz, Martin, & Alcorta,
2004, 2006).

The identification of two gene families that encodes the
molecular odorant receptors, the OR family and its orco co-
receptor (Clyne et al., 1999; Gao & Chess, 1999; Vosshall,
Amrein, Morozov, Rzhetsky, & Axel, 1999) and the IR fam-
ily (Benton Vannice, Gomez-Diaz, & Vosshall, 2009),
allowed the generation of Or-Gal4 and Ir-Gal4 constructs,
which were used to investigate many aspects of the olfactory
system of Drosophila at the receptor level. For example, these
constructs were used to perform expression experiments by
driving reporters, such as GFP under UAS control. This
technique demonstrated that only one or a few receptors are
expressed in one ORN (Vosshall et al., 2000), that there are
49 classes of ORNs in adults based on the receptor that the
ORN expresses (Abuin et al., 2011; Benton et al., 2009;

Couto, Alenius, & Dickson, 2005; Silbering et al., 2011), and
that they are stereotypically innervate 22 sensilla subtypes
(special hairs with porous walls that house between 1 and 4
neurons) (Benton et al., 2009; Couto et al., 2005; Ronderos
& Smith, 2009; Silbering et al., 2011). Every ORN that
expresses a particular odorant receptor projects its axon to
the same glomerulus in the antennal lobe in the brain
(Couto et al., 2005; Silbering et al., 2011), which produced a
complete projection map of 49 glomeruli in the antennal
lobe.

The Gal4-UAS binary system was also used to investigate
the odorant response electrophysiological profiles of recep-
tors by their ectopic expression in an empty neuron (Hallem
& Carlson, 2006; Hallem et al., 2004) and to analyze the
contribution of individual ORNs to odor coding and behav-
ior in the larvae (Fishilevich et al., 2005).

These odorant receptors Gal4 lines were also used to
express functional effectors. For example, optogenetics was
used to describe an innate olfactory avoidance response to
CO2 (Suh et al., 2007). Pharmacogenetics (UAS-VR1 with
capsaicin) along with Ca2þactivity monitoring (UAS-
GCaMP) were used to investigate the presynaptic control
mechanism that fine tunes olfactory behavior (Root et al.,
2008). Non-synaptic lateral inhibition between the neurons
grouped together in a sensilla was also demonstrated using
optogenetic activation (UAS-ChR2) and inhibition of synap-
tic transmission (UAS-TNT) in electrophysiological record-
ings and behavior assays (Su, Menuz, Reisert, & Carlson,
2012). Optogenetics was used in Drosophila larvae olfactory
receptor neurons to investigate how individual neurons
affected behavior (St€ortkuhl & Fiala, 2011) and chemotaxis
along odor gradients (Schulze et al., 2015).

Concluding remarks

In this review, we have given a general overview of the exist-
ing and new genetically encoded tools in Drosophila to
investigate fly neurobiology. We described several strategies
to map the cells required for Drosophila behaviors and the
new effectors or approaches to manipulate neural circuits in
living behaving animals. Some of these techniques were
developed in flies, but they are also applicable to other gen-
etic model organisms, such as zebrafish and mice. For
example, the recombinase-based intersectional methods were
developed in mouse (Madisen et al., 2015).

The fly neurobiology field has a very bright future
because of the steady appearance of new resources for
manipulating neuronal function, such as new effectors, the
expansion of the collections of various intersectional tools,
such as split-Gal4, or the possible combination of genetic on
and off switches together with neuronal activity recording
methods and behavioral analyses. The development of teth-
ered fly preparations permit neural manipulation and
recording during animal behavior (Maimon, Straw, &
Dickinson, 2010; Seelig et al., 2010). For example, one prep-
aration used a pharyngeal pumping assay and the expression
of effectors that inhibits (UAS-TNT) or activates (UAS-
CsChrimson) neurons to identify one gustatory neuron that
limited sucrose consumption and the molecular receptor
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required for this behavior (Ir60b) (Joseph et al., 2017).
The fly brain uses similar neurotransmitters, channels, and
wiring modules as mammalian brains. Therefore, this
research will continue to be useful to improve our under-
standing of the principles and mechanisms of the basic brain
functions associated with behaviors.
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