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Abstract 

The application of biodegradable magnesium-based materials in the biomedical field is highly 

restricted by their low fatigue strength and high corrosion rate in biological environments. Herein, 

we treated the surface of a biocompatible magnesium alloy AZ31 by severe shot peening in order 

to evaluate the potential of surface grain refinement to enhance this alloy’s functionality in a 

biological environment. The AZ31 samples were studied in terms of micro/nanostructural, 

mechanical, and chemical characteristics in addition to cytocompatibility properties. The evolution 

of surface grain structure and surface morphology were investigated using optical, scanning and 

transmission electron microscopy. Surface roughness, wettability and chemical composition, as 

well as in depth-microhardness and residual stress distribution, fatigue behaviour and corrosion 

resistance were investigated. Cytocompatibility tests with osteoblasts (bone forming cells) were 

performed using sample extracts. The results revealed for the first time that severe shot peening 

can significantly enhance mechanical properties of AZ31 without causing adverse effects to the 

growth of surrounding osteoblasts. The corrosion behavior, on the other hand, was not improved; 

nevertheless, removing the rough surface layer with a high density of crystallographic lattice 

defects, without removing the entire nanocrystallized layer, provided a good potential for 

improving corrosion characteristics after severe shot peening and thus, this method should be 

studied for a wide range of orthopedic applications in which biodegradable magnesium is used. 
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1. Introduction 

A major challenge in the use of most metallic materials, such as titanium alloys and stainless steels, 

which are commonly used for load-bearing skeletal implants, is their non biodegradability when 

used as fixation plates, pins, rods, screws, etc. Once these stabilizing implants accomplish their 

mission, they become permanent foreign objects that can be prone to late-stage complications, 

such as wear debris, bone loosening, infection, as well as overall a permanent site for 

inflammation. The aforementioned materials also exhibit a notable mismatch of mechanical 

characteristics with natural bone, which can initiate stress shielding. Stress shielding results in 

decreased bone density due to a lack of stimulus for the continual remodelling necessary for 

maintaining bone mass [1] and can cause further complications, such as a delayed union, implant 

migration, subsidence and pseudo-arthrosis [2, 3]. Hence, identifying an implant material with 

mechanical characteristics comparable to those of mammal bone tissue that can stabilize a 

damaged bone segment under relatively large amplitudes of static and dynamic loading over time, 

and then resorb without adverse tissue reactions, can be an attractive strategy to address all of the 

aforementioned issues. 

 

Magnesium (Mg) based materials with bio-resorbable non-toxic degradation products exhibit a 

high strength to weight ratio, and mechanical characteristics closer to bone, when compared to 

other metallic materials currently in clinical use. Mg has a density of 1.74 gcm-1 (bone: 1-2 gcm-1, 

Ti alloys: 4.5 gcm-1, 316L: 8 gcm-1) [4], an elastic modulus of 41-45 GPa (bone: 3-20 GPa, Ti 

alloys: 110-117 GPa and 316L: 193 GPa) and an ultimate tensile strength of 160-263 MPa (bone: 

1.5-283 MPa, Ti alloys: 550-860 MPa and 316L: 490 MPa) [5, 6]. Besides, Mg has been reported 

to be among the most biocompatible metals, indispensable for many biochemical processes in the 

human body, aiding over 300 enzymatic reactions that help maintain the functions of muscles, 

nerves, regulate heartbeat, blood sugar level, and the immune system [7]. There are also reports 

on the positive effect of Mg ion concentration on enhancing osteoblast adhesion and proliferation 

[8-11] and possible improved osteoblast functions on Mg with nanoscale surface features [12, 13]. 

However, fast and uncontrolled degradation of Mg alloys and excessive hydrogen gas production 

in the physiological environment has fundamentally limited their application in the biomedical 

field, despite their long list of favorable characteristics [14]. Unpredicted corrosion can result in a 

rapid loss of structural integrity and premature failure before sufficient healing of the adjacent 

tissue is achieved [15].  

 

Another drawback of Mg alloys is their inadequate fatigue properties especially under the high 

cycle fatigue regime [16-18]. There are some reports of using Mg alloys for cardiovascular stents 

[19] and some recent studies on developing Mg based orthopaedic implants [20], but their 

application for load bearing implants still remains a challenge. Various solutions have been put 

forward to enhance their corrosion resistance, including alloying [21], surface coatings [22, 23], 



and a wide variety of other surface treatments such as thermal, hydrothermal and alkaline heat 

treatments, chemical and electrochemical surface modifications [24], etc. However, many of these 

approaches can cause other complications including a risk of compromising biocompatibility and 

mechanical characteristics or delamination and inadequate bonding of the coating upon which its 

protecting function can be impaired. Thus, the quest to find efficient methods for enhancing the 

mechanical and biodegradation properties of Mg alloys is still challenging and on going. 

 

More recently, researchers have investigated the effect of grain refinement of Mg-based materials 

through the application of severe plastic deformation (SPD) techniques. SPD techniques result in 

extreme grain refinement through large plastic deformations applied at high strain rates and 

relatively low temperatures causing evident enhancement in several mechanical properties and 

global performance [25-28]. In this regard, there have only been a few studies on the application 

of SPD based approaches on different Mg alloys, which report enhanced mechanical properties 

[29-34]. Nevertheless, in terms of corrosion and degradation resistance of Mg alloys after SPD, 

there are many contradicting observations. Lower corrosion current density and a nobler corrosion 

potential were reported for ZE41A after equal channel angular pressing (ECAP) [35]. ECAP-

processed AZ31 also confirmed that the highest corrosion resistance was obtained on samples with 

the smallest grain size after long periods of immersion in phosphate-buffer solution (PBS) [36].  

 

The results of another study on the degradation characteristics of hot rolled and ECAP processed 

AZ31 in Hank's solution, showed later degradation for hot rolled samples (grain size of 15 µm) 

compared to the base material (grain size of 450 µm), while ECAP (grain size of 2.5 µm) did not 

affect degradation rate [37]. Ultra-fine grained AZ31 obtained by ECAP exhibited improved 

corrosion characteristics mainly after long exposure times. Polarization resistance after 5 minutes 

in 0.1 M NaCl was equal to the not treated and ECAPed alloy but it was doubled for the ECAPed 

samples after 168 hours compared to the base material [38].  ECAP was reported to reduce 

localized corrosion through decreasing the size of the second phase particles and promoting 

microstructural homogeneity on ZK60 and pure Mg but showed a minor effect on the general 

corrosion resistance [39].  

Surface mechanical attrition treatment (SMAT) applied to pure Mg and Mg-1Ca alloy, was 

reported to result in enhanced hardness and wettability but reduced corrosion resistance [40]. 

However, treatment of AZ91D magnesium alloys by SMAT resulted in contrasting results on 

corrosion behavior depending on processing parameters. SMAT treatment using 2 mm balls 

resulted in a 50 m affected surface layer depth with an average grain size of 11 nm and significant 

improvement of corrosion properties. However, using 5 mm balls led to a significant decrease in 

corrosion properties, even though smaller grain size (8 nm) and greater thickness of the affected 

layer (150 m) was obtained. Increased defect density during the latter treatment was determined 

as the cause of the deteriorated corrosion properties [41]. Some researchers report dependency of 

electrochemical test results on the applied plastic strain and the induced grain size for AZ31 [42]. 

Another study emphasized the greater effect of the crystallographic orientation and basal texturing 

on defining corrosion characteristics of AZ31B treated by severe plasticity burnishing (SPB) when 

compared to the effect of grain refinement. They reported a remarkable influence of 

crystallographic orientation on the corrosion resistance, whereas grain sizes smaller than 1 µm 

were reported not to affect the corrosion characteristics [43]. With the broad scatter of research in 

terms of material, grain refinement techniques, grain size range, and test conditions, systematic 



studies are still required to address the fundamental gaps in determining the effects of grain 

refinement on the mechanical and corrosion properties of Mg-based alloys.  

 

In the present study, we have applied severe shot peening (SSP) on AZ31 alloy with the aim to 

evaluate its potential in enhancing mechanical and electrochemical corrosion characteristics. As a 

low cost, versatile and flexible SPD treatment, SSP was developed by some of the authors, 

originally to enhance the fatigue properties of metallic materials commonly subjected to cyclic 

loading [44, 45]. The parameters that distinguish SSP from conventional shot peening are 

predominantly higher Almen intensity and surface coverage, which define the kinetic energy of 

the shot stream and the sample’s exposure time, respectively. In SSP, the process parameters are 

set in a way to considerably increase the kinetic energy that is transmitted to the treated material 

in order to induce grain refinement. SSP has been applied to a wide class of materials including 

low alloy steels, stainless steels, cast iron and Al alloys [45-51]. This choice was motivated by 

reports on the favorable effects of conventional shot peening in improving limited fatigue 

properties of Mg alloys typically used in the automotive and aerospace industries [17, 30, 52, 53].  

 

Interestingly, our previous studies also demonstrated the favorable effects of SSP on promoting 

cell-316L substrate interactions and reducing bacterial functions [54, 55]. Thus, herein, we 

considered the as-received (not peened) AZ31 samples as well as samples, which were shot peened 

with conventional parameters commonly used for this class of materials, as reference samples for 

controls. Structural and mechanical properties of the treated samples were evaluated through 

microscopical observations, surface morphology, roughness, wettability as well as microhardness 

and residual stress distribution measurements and three point bending fatigue tests. X-ray 

photoelectron spectroscopy (XPS) analysis and electrochemical corrosion tests were executed to 

characterize the chemical composition and corrosion characteristics of the sample surfaces. 

Cytotoxicity tests with osteoblasts were also performed to ensure that the cytocompatibility of the 

material was not compromised by the SSP treatment. The present results showed for the first time 

the significant potential of SSP treatment to enhance the mechanical properties of Mg-based 

materials, like AZ31, with a limited effect on cytocompatiblity. The electrochemical 

characteristics were not improved after SSP due to the surface roughness and high density of 

structural defects induced on the surface during SSP. Samples that were subjected to slight surface 

grinding to reduce the surface roughness and separate its effect from that of the grain size, showed 

a high potential for decreasing this detrimental effect on material corrosion behavior. Further 

improvements are suggested to optimize the SSP process in order to reach its full potential to 

enhance functionality of Mg alloys in numerous orthopedic applications.  

 

2. Experimental procedure 

2.1. Material and surface treatment 

Cold rolled and annealed AZ31 sheets of 6 mm thickness (Alfa Aesar GmbH, GE) were shot 

peened using the parameters described in Table 1. The parameters of the applied conventional shot 

peening (CSP) were chosen to represent the treatment commonly used for this class of material; 

severe shot peening (SSP) with much higher Almen intensity and surface coverage was considered 

to enhance the kinetic energy of the shot peening process in order to induce grain refinement on 

the top surface layer. The as-received not peened (NP) series was used as reference. Previous 

experimental data and the numerical model earlier developed by some of the authors [44] were 



utilized for the choice of SSP parameters. A repeened severe shot peened (RSSP) series, which 

were first SSP treated and subsequently subjected to a final soft repeening using glass peening 

media, were also considered with the intention of decreasing the surface roughness without 

affecting the surface microstructure after application of SSP treatment.  

 
Table 1. Description of shot peening parameters 

Sample Shot type 

Almen 

intensity  

(mm) 

Surface 

coverage% 

Repeening 

Shot type Surface 

coverage% 

Not peened (NP) - - - - - 

Conventionally shot peened (CSP) AZB100 0.15N 100 - - 

Severely shot peened (SSP) AZB100 0.4N 1000 - - 

Repeened severely shot peened 

(RSSP) 
AZB100 0.4N 1000 

AGB6 100% 

AZB100 are ceramic beads composed of zirconium oxide, silica and alumina with a nominal size of 0.1-0.15 mm and 

a hardness of 640-780 HV. AGB6 are soda-lime glass beads with a nominal size and hardness ranging between 0.043-

0.089 mm and 500-550 HV, respectively. 

 

After the surface treatments, each plate was cut into discs 10 mm in diameter using a milling 

machine. Another complete batch of samples were prepared by slightly grinding all the shot peened 

sample treated surfaces. These samples were ground for a few seconds using 2500 grit size SiC 

paper just to slightly remove the surface morphology caused by shot peening. A series of NP 

samples were also ground to obtain the same surface roughness in all ground series. At this stage, 

grinding was selected to remove the surface highest peaks and provide the ability to evaluate the 

effect of grain size on surface characteristics and corrosion behaviour without the interference of 

surface roughness. However, in case material removal is to be integrated in the production, less 

invasive methods such as electro-polishing procedures can be adopted to eliminate the potential 

role of mechanical grinding in altering the distribution of residual stresses. 

The ground set of samples are denoted in this paper by adding the letter “G” after their original 

series name (described in Table 1) and compared with the “as-treated” series. All the samples were 

rinsed ultrasonically in alcohol for 10 min before any experiment, unless specifically stated. 

 

2.2. Microstructural analysis 

In order to obtain a general understanding of the microstructural evolution in the surface layer and 

beneath it, samples of each series were cross sectioned, impregnated in cold mounting resin, 

ground with a series of SiC papers up to an average scratch size of 5 μm and then further polished 

using a polycrystalline diamond paste up to an average scratch size of 1 μm. The polished cross-

sections were chemically etched using acetic-picral reagent (4.2 g of picric acid, 70 ml ethanol, 10 

ml water and 10 ml acetic acid) and Nital 2% (2 ml nitric acid and 98 ml ethanol) sequentially for 

5 seconds each. All etched samples were observed using a Leica DMLM light optical microscope 

(OM), in bright field mode. Another series of samples were prepared by positioning the samples 

with the treated surface facing up in the mounting resin; these series were also sequentially ground, 

polished and chemically etched following the abovementioned procedure, taking special 

precautions to remove minimum material from their surface. These latter samples were used to 

measure the grain size of the topmost surface layer of NP and CSP series, through image analysis 

of 100 individual grains from 3 samples per treatment using ImageJ software (National Institute 

of Health, US) [56].  



Electron backscattered diffraction (EBSD) analysis of sample cross-sections was performed using 

a scanning electron microscope Tescan LYRA3XMU FEG/SEMxFIB equipped with X-Max80 

EDS detector for X-ray microanalysis and EBSD detector Nordlys by Oxford Instruments with an 

Aztec control system (accelerating voltage of 20 HV). Specimen cross-sections were mounted in 

copper filled diallyl phthalate powder. The samples were ground and polished following the same 

procedure for samples of OM observation. The polished cross-sections were chemically etched 

using Nital 10 % (10 ml nitric acid and 90 ml ethanol) for 60-120 seconds. EBSD analysis was 

performed on an area of 100 × 200 m2 with the step size of 0.4 m to cover the layer close to the 

treated surface as well as the less affected layer beneath it. The obtained data were processed using 

HKL Project Manager by Oxford Instruments determining the grain boundaries with minimum a 

mis-orientation angle larger than 10º. 

 

Cross-section transmission electron microscopy (TEM) samples were prepared by mechanical 

polishing down to 30 m, followed by ion milling in a Gatan PIPS machine at a 4 kV accelerating 

voltage and 7º incidence angle. Low-voltage (2 kV) milling was used as a final ion polishing step 

to reduce the amorphous surface layer that enveloped the specimen caused by ion milling. TEM 

observations were performed using a probe-corrected analytical high-resolution JEM ARM 200F 

electron microscope operating at 200 kV. The microscope was equipped with an IXRF EDS 2006 

microanalysis system for energy dispersive X-ray spectroscopy (EDS). 

 

2.3. Surface characterization 

The surface morphology of the samples was analyzed and compared using a Zeiss Evo MA 15 

scanning electron microscope (SEM). Surface micro-roughness parameters were quantified 

through surface analysis by an Alicona Infinite focus optical microscope with a profile length of 2 

mm and a cut-off wavelength of 0.8 mm at 50× magnification. Five measurements were performed 

at randomly chosen areas on three samples per each series. Commonly used standard surface 

roughness parameters including arithmetic mean (Ra), root mean square deviation (Rq), and 

maximum height of the profile known also as peak to valley (Rz/PV) were measured. In order to 

study the symmetry and density of peaks of the profiles, two other parameters of skewness (Rsk) 

and kurtosis (Rku) are also reported.  

 

Surface wettability was determined using a Ramé-hart 100 optical contact angle goniometer. The 

water contact angle (WCA) between the surface line of the sample and the curved outline of 5 µl 

DI water droplets were measured on 2 random positions for each sample, using three samples per 

treatment. The measurements were performed at room temperature after a setting time of 5 s.  

 

XPS experiments were carried out in an ultrahigh vacuum system with a base pressure of 1 × 10−8 

Pa, equipped with dual anode Mg/Al laboratory X-ray source (SPECS XR50) and electron energy 

analyzers (SPECS Phoibos 150). XPS spectra were recorded using an excitation energy of hν = 

1253.6 eV (Mg Kα). In order to determine the thickness of an oxide overlayer, the samples were 

sputtered by Ar+ ions (1 keV), with the sputtering rate of 1.6 nm.hour-1 (calibrated using 

attenuation of Mg 2p signal from the substrate, with the attenuation length as per TPP-2M formula 

[57]), in order to reveal the substrate contribution. Afterwards, the thickness was calculated from 

the angular variation of the ratio of the oxide and metal contributions to the Mg 2p signal [58]. 

 



2.4. Mechanical characterization 

Microhardness measurements were performed on the lateral cross-sections of the samples after 

sequential grinding and polishing steps.  HV0.25 indentations were produced by a Future-TECH 

FM-700 microhardness tester using a diamond Vickers indenter on three paths starting from the 

treated surface towards the core material. 

 

X-ray diffraction (XRD) analysis for residual stress measurements were performed in a AST X-

Stress 3000 portable X-ray diffractometer using a CrKα radiation (Kα alpha = 2.2910 Å) source. 

The sin2(ψ) method was used to analyze the data collected at a diffraction angle (2θ) of 152.4° 

corresponding to (104)-reflex scanned with a total of 11 Chi tilts in the range of − 45° to 45° along 

three rotations of 0°, 45° and 90° with a constant step size of 0.029°.  Measurements were carried 

out on square samples of 40 x 40 mm2. Instrumental broadening correction was applied using a 

reference strain free sample supplied by Proto XRD, CA. To obtain the profile of the residual 

stresses in depth, a thin layer of material (~ 0.03-0.04 mm) was removed from the surface of one 

sample per treatment at each step. A solution of acetic acid (94%) and perchloric acid (6%) was 

used in a Struers Lectropol-5 electro polishing instrument with a mask leaving a circular area of 3 

mm in diameter of the sample surface exposed at each material removal step. The removal rate 

was measured between electro-polishing steps by a Mitutoyo micrometer precision 

IDCH0530/0560. Full width at half of the maximum intensity of the XRD peaks known as FWHM 

parameter was directly extracted from the XRD analysis.  

 

Three point bending fatigue tests were performed on three different series of NP, CSP and RSSP 

samples. The latter, based on the microstructural, surface and mechanical analysis, was chosen to 

represent an optimized sample with surface grain refined layer. Force controlled constant 

amplitude bending fatigue tests with stress ratio of R = 0.1 were carried out using Universal MTS 

Acumen test system at a frequency of 30 Hz at room temperature. Three samples were tested for 

each series, all at the constant stress amplitude of 72 MPa to compare the total number of cycles 

that the samples will survive under this loading condition, considering a maximum of 3 million 

cycles for run out. This stress amplitude and the maximum number of cycles were selected based 

on the expected fatigue strength of the base material, in a way to ensure the possibility of 

comparing fatigue performance of the three studied series. Fractography observation of failed 

samples were performed using a Zeiss Evo MA 15 scanning electron microscope (SEM).  

 

2.5. Corrosion properties 

The electrochemical corrosion tests were determined via a potentiostat VSP from BioLogic SAS, 

FR. The tests were carried out at room temperature using a classical three electrode system with 

platinum as a counter electrode, saturated calomel electrode (SCE) (+0.242 V vs. standard 

hydrogen electrode (SHE)) as a reference electrode and the sample as a working electrode [59]. 

Potentiodynamic polarization tests were carried out from -100 to + 200 mV vs SCE with respect 

to the open circuit potential (OCP) at a scan rate of 1 mV.s-1 in a 0.9 % solution of NaCl, simulating 

the chloride concentration in the human body environment [60, 61]. The measurements were 

repeated three times per sample. The plotted potentiodynamic curves were analyzed using Tafel 

fitted by EC-Lab software. 

 

2.6. Assessment of Cytocompatibilty  



Samples were sterilized and cleaned by sequential ultrasonication in acetone and 200-proof 

ethanol, dried, and then submerged in 10 ml of complete DMEM for 3 days to prepare sample 

extracts. The samples were removed and the extracts were centrifuged briefly before being used 

in experiments. Primary human osteoblasts (PromoCell, Heidelberg, Germany) were cultured in 

Dulbecco’s Modified Eagle’s Medium (DMEM, Fisher) supplemented with 10% fetal bovine 

serum (FBS, ATCC) and 1% penicillin/streptomycin (P/S, Fisher) in a 37 °C, humidified, 5% 

CO2/95% air environment. Cells at passage numbers of 3-6 were used in these experiments.  

 

Osteoblasts were seeded into 96-well plates at a density of 5,000 cells/well and cultured for 1 day 

to allow the cells to acclimate. The media in each well was then replaced with sample extracts (and 

normal DMEM for the control group) and cultured under standard culture conditions for 1, 3, and 

7 days. The cell media was changed every three days using the prepared extracts. After the 

prescribed time period, the media/extract was removed from each well and replaced with MTS 

reagent (Promega) mixed with complete DMEM in a 1:6 ratio according to the manufacturer’s 

instructions. The MTS was developed for 3 h at 37 °C, allowing it to react with the metabolic 

products of viable osteoblasts, and then the absorbance of each well was measured at 490 nm. 

Experiments were performed in quadruplicate, and negative controls were employed to account 

for the absorbance of the sample extracts.  

 

2.7. Statistical analysis 

For all the experiments, the reported data refer to average values of all the measurements and their 

standard deviation, using three replicates per each group, unless specified. To evaluate the 

statistical significance of the obtained data, the analysis of variance (ANOVA) method followed 

by a Bonferroni's post-hoc test was used. 

 

3. Results 

3.1. Microstructural analysis 

Top-view microstructural images of the sample surfaces are shown in Fig.1. The NP sample shows 

a regular pattern of fine equiaxed grains where the calculated average grain size was estimated as 

15±2 μm. The CSP sample, Fig. 1 (b), represents visible deformation twins inside the equiaxed 

grains. The average grain size for the top surface of the CSP sample is measured to be about 11±2 

μm. Importantly, these measurements were performed on the top surface layer of the samples after 

going through minimal grinding and polishing steps, and, thus, are not from the topmost layer, but 

the layer just under it. For SSP and RSSP samples, the extremely small grain size and high density 

of twin boundaries impeded individual grain size quantification after chemical etching, therefor, 

in that case, TEM analysis was performed to confirm grain refinement.  

Lateral OM observations, Fig. 1 (c)-(f), clearly illustrate the microstructural evolution in the cross-

sections of all shot peened samples. In the NP sample (Fig. 1 (c)), a single-phase structure alloy 

with even grain morphology and size was observed. For all the shot peened samples, on the other 

hand, the microstructure of the layer just beneath the surface was not distinguishable; this different 

etched top layer corresponds to a highly deformed zone, with grain sizes not observable by OM. 

The thickness of this dense top layer varied between the shot peened samples depending on the 

applied treatment, while the microstructure of the core material was comparable with that of the 

NP sample in all cases. The average thickness of this affected surface layer, measured at 30 



different points on the images taken at 3 different surface areas per treatment, were determined to 

be about 35 μm for CSP and 65 μm for both the SSP and RSSP samples. 

 

 
Figure 1. Representative optical microscopy micrographs of the top surface layer of (a) NP and (b) CSP samples at 

different magnifications. Cross sectional optical micrographs of (c) NP, (d) CSP, (e) SSP and (f) RSSP samples. 

NP: not peened, CSP: conventionally shot peened, SSP: severely shot peened and RSSP: repeened severely shot 

peened. 
 

 
Figure 2. EBSD maps of the lateral cross section of samples, (a) Internal reference from NP sample; near surface 

microstructure for (b) CSP (c) SSP and (d) RSSP samples. NP: not peened, CSP: conventionally shot peened, 

SSP: severely shot peened and RSSP: repeened severely shot peened. 

 

EBSD maps, shown in Fig. 2, confirmed the OM observations, revealing notable grain refinement 

on the surface layers for all shot peened samples with a gradient grain structure, the evolution of 



which varied based on the applied treatment. The thickness of the notably grain refined layer was 

estimated to be around 45 µm for the CSP series and increased to around 80 µm for the SSP and 

RSSP series. Besides the grain size, the material texture was notably influenced by the shot peening 

treatment. A texture alteration from [010] to [120] was observed from EBSD maps of the internal 

reference (Fig. 2(a)) as well as for the material below the affected layer in the shot peened samples. 

All of the used treatment conditions resulted in a random orientation of newly formed fine grains 

in the shot peening affected area. Developed deformation twins can be also observed in the area 

below the highly refined layer, the density of which increased from the CSP sample to SSP and 

RSSP series. The black areas in the EBSD maps indicate a lower number of indexed points in the 

vicinity of the shot peened surfaces where the EBSD algorithm was unable to determine the 

orientation from the blurred or overlapping Kikuchi pattern. The geometry of the Kikuchi pattern 

is a projection of the crystal lattice and is unique for each particular structure and crystal lattice 

orientation.  

 

In the bright field TEM observations of the NP sample (Fig. 3(a)), large grain parts are observed, 

represented by single spots on the corresponding selected area diffraction (SAD) pattern as shown 

in Fig. 3(b). These large grains contain nano-precipitates dispersed in the matrix as part of the 

original material structure; the nano-precipitates induced continuous rings in the corresponding 

SAD pattern. The EDS spectrum acquired from the NP sample in TEM mode is presented in Fig. 

3(c). The peak identifications show the presence of Al, Mg and O attributing the nano-precipitates 

to an oxide compound of Mg and Al. The bright field image of the CSP sample (Fig. 3 (d)) indicates 

minor grain refinement, representing slightly refined grains with dimensions above 100 nm. The 

features observed on the surface originated from ion milling that created a trail of the original 

roughness through the material removal process. The spots in the SAD pattern (Fig. 3 (e)) 

correspond to large well-defined grains in the CSP sample. 

In Fig. 3 (f), on the topmost surface layer of the SSP samples, an amorphous layer containing dark 

areas representing random nano-precipitates can be observed. The corresponding SAD pattern 

with the hollow area in the center confirms the amorphous structure, and the continuous rings 

correspond to the nano-precipitates that are a part of the original structure, as also observed in the 

NP sample. This is confirmed by the interplanar distance between the high-resolution fringes of 

these precipitates, which correspond to Al, as shown in the SAD pattern. Just under the amorphous 

surface layer of the SSP sample, a mixed population of crystalline size was observed with larger 

grains containing small nanocrystals (<100 nm). SAD pattern analysis confirms that the 

nanostructures, causing the continuous rings, are Mg nanograins; this observation shows the effect 

of SSP treatment in inducing grain refinement. The individual spots on the rings correspond to the 

larger crystals. At a depth of 30 µm under the surface of the SSP sample, we can see a collection 

of individual grains with diameters higher than 100 nm. Getting further from the surface, at a depth 

of 150 µm, much larger grains were observed representing the typical structure of the alloy. Darker 

areas inside the large grains indicate the accumulation of strain and high deformation that can be 

attributed to the high plastic deformation exerted by the SSP treatment. A very similar structure to 

that of SSP was observed after RSSP treatment, as expected. Therefore, RSSP TEM observations 

are not included here for the sake of brevity. 

 



 
Figure 3. TEM observations of the AZ31 samples: (a) Bright field image and (b) the corresponding SAED pattern of 

the NP sample; (c) EDS spectrum confirming the presence of Al, Mg and O in the nano-precipitates of the NP sample; 

(d) Bright field image and (e) the corresponding SAED pattern from the top surface of the CSP samples; (f) Bright 

field image from the topmost surface of the SSP samples (the inserts represent higher magnification bright field images 

of the nano-precipitates and its corresponding SAED pattern (MAO stands for Mg0.36Al2.44O4, ASTM file No. 

770729)); (g) Bright field image and (h) the corresponding SAED pattern of the SSP sample from just under the 

amorphous topmost layer; Bright field images from the depth of (i) 30 µm and (j) 150 µm of the SSP sample. NP: not 

peened, CSP: conventionally shot peened, and SSP: severely shot peened. 

 

XPS was used to obtain an estimation of the elemental composition and, thus, assess the thickness 

of the oxide film at the surface of the samples after shot peening treatments. This thickness was 

estimated based on the chemical state information obtained on the surface layers after sputtering 

the sample surface with Ar+ ions.  In particular, for the NP sample, no metallic Mg2p signal was 

attained even after 6 hours of sputtering. Therefore, only the lower bound for the thickness of the 

oxide on NP was estimated. The thickness of the oxide layers were assessed to be > 186 Aº, 146 

Aº, 95 Aº and 170 Aº for NP, CSP, SSP and RSSP samples, respectively.  

 



3.2. Surface characteristics  

SEM micrographs of the NP sample shows a flat surface with some random scratches, while those 

of the shot peened series represent a rough surface with a chaotic texture typical for shot peened 

materials. CSP and RSSP samples displayed a relatively similar morphology. The SSP SEM 

observations, instead, revealed a higher density of visibly deeper surface indents caused by the 

multiple high energy impacts.  

 

The data obtained in terms of surface roughness parameters for the as-treated samples, shown in 

Fig. 4 (e), vary significantly between different series, apart from CSP and RSSP that present no 

statistically significant difference in any of the measured parameters. The trend of Ra, Rq and Rz 

parameters are similar showing an increase in roughness from the CSP to SSP series.  

 

Two additional surface roughness parameters of skewness and kurtosis were also quite similar on 

all of the as-treated series. Skewness is a measure of the symmetry of the profile describing the 

dominance of peaks or valleys. The skewness parameter was found to be very similar and close to 

zero for all samples, indicating that all the samples had a symmetrical surface topography with as 

many peaks as valleys. Similarly, the Kurtosis parameter was alike on all the samples and very 

close to 3. Kurtosis represents a key feature of the height distribution, namely the ‘peakedness’ of 

the profile. A surface with spiked height distribution has a kurtosis value greater than 3; while a 

surface that has a more low-tailed and broad spread height distribution would have a kurtosis value 

of less than 3.  

The data obtained for the ground samples, Fig.4 (f), show no significant differences in terms of 

surface roughness parameters, demonstrating a similar topography obtained after grinding all the 

samples. This is essential to guarantee the suitability of the ground samples to highlight solely the 

effect of the micro/nanostructure on properties of the materials.  

 

The results of the WCA measurements, presented in Fig.4 (g), indicated that a shot peening 

treatment in general promotes hydrophilicity of the AZ31 samples. For the as-treated series, a 

difference was seen in the contact angles by different shot peening treatments, showing the highest 

wettability for the RSSP series. In order to separate the contribution of surface roughness from that 

of grain refinement, the tests were conducted also on the ground series. The NPG and CSPG 

samples showed the same average contact angle and lower, but comparably similar data within the 

pair, was obtained also for the SSPG and RSSPG series. On the other hand, the results indicated 

an evident increase in wettability from the NP-CSP pair to the SSP-RSSP one, Fig.4 (g). 

 

3.3. Mechanical characteristics 

Microhardness profiles measured on sample cross-sections are presented in Fig.4 (h). The NP 

sample showed a constant microhardness typical of the base material that was around 43HV 

throughout the cross-section. Shot peening significantly increased the microhardness of the treated 

surface. The trends for all shot peened series depicted maximum microhardness close to the treated 

surface that gradually decreased to reach that of the base material at higher depths. No notable 

difference was observed on the maximum microhardness of CSP (88HV) compared to the other 

two shot peened series (100HV). However, amplifying the kinetic energy of the shot peening 

treatment notably increased the thickness of the affected layer; that is, the thickness of the layer 

displaying higher microhardness compared to the base material. This thickness was measured to 



be around 250 µm for the CSP samples, compared to around 350 µm and 400 µm SSP and RSSP, 

respectively.  

 

 
Figure 4. Top surface scanning electron micrographs of (a) NP, (b) CSP, (c) SSP and (d) RSSP samples; Surface 

roughness parameters measured on (e) as treated and (f) ground samples and (g) WCA data on as treated and ground 

samples; (h) Microhardness distribution on the sample cross section (the inserts are the optical micrographs of the 

indents at different depths on SSP sample); In-depth distribution of (i) residual stresses and (j) FWHM; NP: not 

peened, CSP: conventionally shot peened, SSP: severely shot peened and RSSP: repeened severely shot peened; 

Data = mean ± St. Dev.; N = 3, *** p <0.001.  

 



XRD measurements provided the in-depth distribution of residual stresses and the FWHM 

parameter. The obtained in-depth residual stress profiles are shown in Fig.4 (i). Stresses for the 

NP series fluctuated around zero, as expected for the as-received material since it should not have 

noteworthy residual stresses. The two SSP and RSSP samples showed a similar distribution of 

compressive residual stresses. The residual stress distributions clearly varied between CSP and the 

two SSP series in terms of both maximum stress values (-30 MPa reached at a depth of 50 µm vs. 

-56 MPa reached at a depth of 180 µm) and the depth of annulment of compressive residual stresses 

(~300 µm vs. ~570 µm). These results point out the notable effect of increase kinetic energy of the 

process by using higher Almen intensity and surface coverage. 

 

The FWHM parameter, extracted form XRD measurements, was influenced by lattice distortion, 

dislocation density, grain refinement, work hardening and instrumental broadening. The 

contribution of instrumental broadening was eliminated by correction using a strain free reference 

sample. Considering the NP sample as a control, the results presented in Fig. 4 (j) confirmed that 

all of the shot peening treatments introduced a substantial increase in FWHM close to the surface; 

this enhancement was observed to gradually decrease towards the core matrix. The important 

difference in the evolution of FWHM parameter was the depth at which the value reached that of 

the base material. This depth that can be considered as an estimation of the work hardened layer, 

which was measured to be around 130 µm for the CSP sample, 360 µm for SSP and 290 µm for 

RSSP.  

Fatigue tests data presented in Table 2 indicate a notable difference between the fatigue 

performances of the differently treated samples. Shot peening in all cases enhanced the number of 

cycles to failure with respect to NP series. The CSP series showed superior fatigue performance 

compared to the NP samples and a limited fatigue life enhancement, while none of the RSSP tested 

samples failed up to the designated maximum number of cycles (3 million cycle). SEM observation 

of fracture surfaces indicated that for NP samples (Fig. 5a and b), the fatigue cracks initiated from 

the surface, while CSP samples (Fig. 5e and f) exhibited subsurface crack initiation. In all cases, 

multiple cleavage facets and steps can be observed as the predominant features of the fracture 

surfaces in the stable crack propagation area (Fig.5 c); whereas, dominant presence of dimples are 

observed on the areas corresponding to the final rupture and unstable crack growth, suggesting a 

final ductile fracture behavior (Fig.5 d). The radial ratchet marks in the fracture surfaces indicate 

the direction of crack growth and can be traced back towards the origin of the cracks. 
 

Table 2. Three point bending fatigue test results  

Sample 
Stress amplitude 

(MPa) 
Number of cycles 

to failure 

NP1 72 106422 
NP2 72 143626 
NP3 72 150516 
CSP1 72 246236 
CSP2 72 338841 
CSP3 72 204584 

RSSP1 72 3000000 (Run out) 
RSSP2 72 3000000 (Run out) 
RSSP3 72 3000000 (Run out) 

 



 
Figure 5. Fractography observation of NP (a, b) and CSP (e,f) samples highlighting crack initiation zones and common 

features of fracture surfaces in (c,d) (black arrows indicate crack initiation zones) 

 

3.4. Corrosion tests 

Potentiodynamic polarization curves of AZ31 samples plotted on a semi-logarithmic scale are 

shown in Fig.6 for both the as-treated and ground series. The obtained kinetic and thermodynamic 

corrosion electrochemical characteristics complemented by the values of the Tafel constants (βa 

and βc), expressing the slope of anodic and cathodic polarization curves, are listed in Table 3. 

Thermodynamic nobleness of the surface is expressed by more positive values of corrosion 

potential, Ecorr. The results indicated that in all the tested series, shot peening slightly shifted the 

Ecorr to more positive values compared to the as-received NP series. The ground series exhibited a 

larger positive shift of Ecorr values. However, the measured Ecorr values were still very negative. 

The icorr values were reported in Table 3 for all the tested series, where much higher values were 

obtained for all shot peened samples when compared to the NP one.  

 

The ground series, on the other hand, showed far lower values of icorr, comparable to that of the 

NPG. Optical micrographs of the exposed surface of the SSPG surface shown in Fig. 5 (b)-(d) 

respectively after 15 min, 17 h and 168 h exposure times, marked the presence of dimples and 

craters caused by high energy impacts even after slight grinding. These craters seemed to have 

acted as local corrosion sites. One week of immersion in a corrosive environment led to 

extensive formation of magnesium corrosion products of almost 2 mm height from the original 

surface profile; it also resulted in intensive local dissolution inducing 1.5 mm deep craters in the 

most thermodynamically active regions. 

 

3.5. Assessment of Cytocompatibility 

Fig.7 shows the viability of osteoblasts cultured in sample extracts compared to control cells grown 

in normal DMEM. After 1 day of culture, cells grown in all media displayed roughly the same 

metabolic activity. While cells grown in the NP and CSP sample extracts maintained this trend, 

cells grown in the SSP and RSSP extracts exhibited decreased viabilities at day 3. However, after 

7 days of culture, cells grown in the extract from all AZ31 samples displayed the same or slightly 



increased activities compared to the control. This indicates that, although diminished cellular 

activity was observed in the first three days of culture, there were no lasting cytotoxic effects of 

SSP samples on osteoblasts. 

 

 
Figure 6. (a) Potentiodynamic curves of AZ31 samples in 0.9 % NaCl solution; Optical micrograph of the SSPG 

surface after (b) 15 min, (c) 17 h, and (d) 168 h immersion in 0.9 % NaCl solution at room temperature; the arrows 

indicate localized corrosion in correspondence with the residual craters caused by the high energy impacts. NP: not 

peened, CSP: conventionally shot peened, SSP: severely shot peened and RSSP: repeened severely shot peened. 
 

 

Table 3. Electrochemical corrosion characteristics obtained by Tafel extrapolation analysis of the measured 

potentiodynamic curves  

Sample Ecorr [mV] icorr [µA.cm-2] βc [mV] βa [mV] 

NP -1542 ± 25 21 ± 2 189 ± 10 66 ± 5 
CSP -1503 ± 23 325 ± 5 144 ± 5 140 ± 6 
SSP -1479 ± 26 326 ± 4 141 ± 6 144 ± 6 

RSSP -1483 ± 27 321 ± 6 148 ± 6 145 ± 8 
NPG -1508 ± 16 19 ± 2 180 ± 8 65 ± 4 
CSPG -1492 ± 19 30 ± 3 225 ± 10 68 ± 2 
SSPG -1448 ± 15 81 ± 5 290 ± 9 75 ± 4 

 



 
Figure 7. Viability of primary human osteoblasts cultured in sample extracts for 1, 3, and 7 days, as measured by an 

MTS assay. Data = mean ± St. Dev; N = 3, *p<0.01 compared to the control at the same time point. The overall 

activity of osteoblasts in each group statistically increased from day 1 to 3 to 7. NP: not peened, CSP: conventionally 

shot peened, SSP: severely shot peened and RSSP: repeened severely shot peened. 

 

4. Discussion 

Biodegradable Mg-based alloys have the potential to reduce the rate of cumbersome re-operation 

and retrieval surgeries by replacing non-degradable metallic materials commonly used in 

orthopaedic, trauma and maxillofacial surgery. However, there are still plenty of challenges to 

engineer mechanically and chemically functional biodegradable Mg-based implants. Metallurgical 

alloying and a wide range of surface coatings have been put forward to modulate the interaction 

of Mg materials with the biological environment; however, these methods have not been fully 

efficacious and there are still numerous challenges to be addressed. In the present study, AZ31 Mg 

alloy samples were treated by SSP, an impact based mechanical surface treatment that induces 

surface grain refinement, compressive residual stress fields, and an increasing surface roughness. 

Contrary to many other SPD based grain refining techniques, SSP is low cost and flexible in terms 

of size and geometry of the material to be treated. Our previous results also confirmed its efficacy 

in enhancing mechanical properties, promoting interaction of the treated surface with osteoblasts 

and reducing early bacterial adhesion on 316L samples [55]. We applied SSP to a series of AZ31 

samples and their functionality was compared to two other shot peened series, treated with various 

process parameters (CSP and RSSP), in order to induce different combinations of grain size and 

surface roughness, as well as a reference as-received (NP) series. A grinding step was also 

performed on NP, CSP, SSP and RSSP series in order to isolate the effects of surface topography 

from grain refinement. The AZ31 alloy provides a good combination of chemical and mechanical 

characteristics and is primarily used for biomedical, aerospace and automotive applications. Its 

main alloying elements, as denoted by its designation, are aluminium and zinc with their respective 

weight concentration percentages of 3 % and 1 %. The rationale behind this work was to apply 

this cost effective surface treatment to a biodegradable AZ31 alloy in order to simultaneously 

enhance its mechanical characteristics, modulate corrosion resistance, and verify the potential of 

SSP treatment in controlling the functionality of this alloy in the biological environment. 

Cytocompatibility tests were also performed using osteoblasts to evaluate the effect of various shot 

peening treatments on the cytocompatibility of the base material during degradation.  



Microstructural OM top surface observations performed on NP and CSP samples revealed the 

general propensity of shot peening to induce surface grain refinement by indications of slight grain 

refinement even after CSP treatment compared to the NP material (11±2 μm vs. 15±2 μm). 

Considering that these measurements have been performed after grinding and polishing steps, 

which removed around 15-20 µm of the surface material, relatively more grain refinement should 

be expected on the treated surface of CSP samples, as validated by EBSD data. Furthermore, a 

high density of deformation twins were visible close to the surface after CSP treatment (Fig.1 (b)). 

A limited number of slip systems at room temperature is characteristic of hexagonal close packed 

(HCP) structures, such as Mg alloys, which predetermines the creation of deformation twins 

instead of dislocation slip under loading. Deformation twins, caused by high strains, introduce new 

boundaries within existing grains subdividing them into smaller areas and facilitating the grain 

refinement process  [62]. It is to be noted that the high density of deformation twins on the top 

surface of SSP and RSSP samples impeded the possibility of measuring their surface grain size 

through OM image analysis; thus, EBSD and TEM were used to provide grain size information on 

these samples. 

 

The results obtained from lateral cross section microscopical observations confirmed that 

increasing the kinetic energy of the process from CSP to SSP clearly increased the thickness of the 

affected surface layer, almost doubling it. This notable difference is a direct consequence of the 

higher Almen intensity used for the SSP treatments. RSSP samples have undergone a final re-

peening process, just to reduce the surface roughness without changing the microstructure; hence, 

the RSSP samples are not expected to have a different surface structure when compared to SSP. 

The OM images confirmed the similarity of the microstructure and thickness of the affected layer 

for the two SSP and RSSP series.  

EBSD mapping (Fig. 2) confirmed the OM observations, providing additional information about 

the shot peening affected areas and grain orientation within them. The results showed that shot 

peening treatment significantly reduced the grain size on a surface layer that was separated from 

the rest of the material matrix by sharp boundaries. TEM observations also confirmed smaller grain 

sizes in the top surface layer of CSP samples compared to NP, as well as nanograins in the surface 

layer of SSP samples. Both EBSD mapping and TEM analysis established gradual grain variation 

by depth in shot peened samples, starting from nanograins on the top surface and progressively 

increasing to submicron and then micron size traveling towards the core matrix. As EBSD maps 

exhibit, in the affected layer, the grains were significantly smaller compared to the core material. 

Fig. 2 illustrates that the extension of this grain-refined layer was found to increase with increasing 

kinetic energy of the treatment, from CSP to SSP and RSSP. These results are in agreement with 

our findings on the direct influence of SSP parameters on the thickness of the affected layer also 

on other materials [63]. The SSP treatment was also found to affect the texture that was a 

characteristic feature of the studied AZ31 magnesium alloy, as well as its grain orientation. The 

texture of the base material was altered in crystallographic orientations from [010] to [120] (Fig. 

2). Random orientations of fine grains in the affected surface layer were observed on all shot 

peened series (Fig. 2). Even though there was a negligible effect of shot peening on grain size and 

grain orientation in the areas under the affected layer, the presence of deformation twins was quite 

notable in these regions. The density of deformation twins in the underlying structure increased by 

enhancing the kinetic energy of the applied treatment, similar to the trend observed for the 

extension of the affected layer (Fig. 2 (a)-(c)). Similar results for material response to plastic 



deformation was documented also by Amanov et al. [64] who treated AZ91D Mg alloy by a surface 

grain refinement technique called ultrasonic nanocrystalline surface modification. Evidence of 

accumulated strain and high deformation were observed at higher depths of around 150 μm in SSP 

samples (Fig. 3 (i) and (j)). Overall, the EBSD and TEM observations confirm that the extent of 

grain refinement within the surface layer and its depth varied linearly with the kinetic energy of 

the applied treatment.  

 

Surface roughness is an important side effect of shot peening which can decisively influence the 

functionality of the treated material in many applications [65]. SEM observations and roughness 

measurements indicated that the surface morphology and surface roughness of the samples were 

notably changed after shot peening. SEM micrographs of SSP samples showed numerous 

overlapped indents and craters on its top surface; fewer defects were observed on the surface of 

the CSP and RSSP samples. However, it is interesting to note that the damage induced on the 

surface of all shot peened samples are fewer and less evident compared to the results reported for 

shot peening treatments on similar materials with similar Almen intensities but lower surface 

coverage [31], where a high density of pits was observed on treated surfaces even at lower Almen 

intensities. This difference can be attributed to the choice of the peening media.  

 

During the shot peening process, despite the random sequence and impact location of the shots, a 

deformed surface with a relatively regular distribution of indents is obtained at high surface 

coverage. Homogenous final roughness is caused by the numerous overlapping plastic 

indentations; thus, it is common to use the most extensive standard surface roughness parameters 

to describe the surface topography of shot peened samples. The results of roughness measurements 

indicated a linear and direct relationship between the Almen intensity and the surface roughness 

parameters. The highest surface roughness was measured on the SSP sample. Slight repeening 

after SSP treatment (RSSP), resulted in a similar morphology and comparable roughness to the 

CSP series, despite the notable difference in Almen intensity. This similarity indicates the efficacy 

of the applied repeening treatment in smoothing the rough surface of the SSP series, rearranging 

the surface morphology after the SSP treatment. These results indicate that the high surface 

roughness induced by the high energy impacts of the SSP treatment, a potentially negative 

parameter for the fatigue strength, can be moderately decreased by slight repeening without 

affecting the positive effects of SSP, i.e. maintaining the compressive residual stresses and the 

nanograined surface layer. Both the skewness and peakedness parameters did not vary significantly 

with the shot peening treatments, signifying that the surface remains symmetric with a balanced 

distribution of peaks and valleys regardless of the process parameters. 

 

Wettability tests determine how the differently treated surfaces would interact with the wetting 

media. This parameter is a key factor in protein absorption and subsequent interactions of the 

treated surface with cells [54]. The WCA measurements indicated a favorable effect of all shot 

peening treatments in enhancing the base material’s wettability, with SSP samples showing the 

highest wettability. The WCA data were found to be inversely related to the surface roughness 

parameters. However, since the samples exhibited both different surface roughness and grain 

structure, this increased hydrophilicity could be due to both parameters. The influence of grain 

size was confirmed by the WCA measured on CSP and RSSP samples; as these two series have 

the same surface roughness, evidenced in Fig.4 (e), but their WCA are essentially different. This 



difference can be explained by the impact of different microstructures on WCA. To better 

understand the role of surface microstructure, WCAs were also measured on ground samples. 

Considering that surface roughness measurements confirmed similar topography on all ground 

series (Fig.4 (f)), the only difference between the WCA measured on these samples should be 

attributed to their surface grain structure. The results show similar WCA on NPG and CSPG 

samples; it can be due to the very limited thickness of the affected layer by CSP treatment, which 

was possibly removed after grinding and thus the exposed surface area in this case had the same 

microstructural characteristics of the NP sample. This is valid also for the SSPG and RSSPG 

samples, where the surface-restricted effect of repeening treatment was removed by the slight 

grinding; also, in this case, the similar roughness and similar grain structure resulted in similar 

wettability data on SSP and RSSP series. However, the statistically significant difference between 

the WCA data obtained for the NP-CSP pair and the SSP-RSSP pair can be attributed mainly to 

the different grain structures of their surface layers. This notable increase in surface wettability 

highlights the favorable effect of grain refinement on the interaction of the material with aqueous 

media.  

XPS analysis provided quantitative data on the surface chemistry of each sample after shot peening 

treatment. These data were used to assess the thickness of the oxide film formed on the samples 

surfaces after shot peening. The XPS data indicated that the thickness of the oxide layer was the 

highest on the NP sample. The multiple impacts during the shot peening treatment seem to have 

dissected the original oxide overlay on the as-received NP material. The oxide layer was formed 

over the sample surface again after the shot peening treatment but its thickness was measured to 

be considerably thinner on the SSP sample. The RSSP samples, on the other hand, showed the 

highest oxide layer thickness among the shot peened series. The repeening treatment seems to have 

provided the possibility of increased oxidation on the RSSP sample surfaces. We postulated that 

the thickness of the oxide layer developed after shot peening could be influenced not only by 

surface roughness but also by the grain structure of the underlying layer, which directly affects the 

surface energy and reactivity. It was reported that ultra-fine grained AZ31 achieved via ECAP, 

that is, a SPD method used to obtain bulk grain refinement, offered more corrosion nucleation 

sites; however, the obtained ultra-fine structure led to easier and faster regeneration of the 

corrosion protective layer, which resulted in improved global corrosion properties [66]. 

 

Microhardness measurements confirmed the generally favorable effect of shot peening in work 

hardening the top surface layer (Fig. 4(h)). The extent of hardening was directly related to the 

kinetic energy of the applied shot peening treatment. The difference in microhardness of the SSP 

and RSSP series with respect to NP series is of particular interest, as it highlights a surface 

microhardness enhancement of more than 230% compared to the base material, as well as a thicker 

layer with higher microhardness compared to CSP series. 

 

Compressive residual stresses are the key feature typically induced by shot peening. These stresses 

are expected have a vital role in reducing crack propagation by promoting the crack closure effect 

under the action of tensile cyclic loads and reducing their propagation rate under stress. 

 

XRD measurements showed the prominent effect of shot peening on the distribution of induced 

residual stresses. The measurements revealed higher compressive residual stresses and a greater 

depth of material affected by these stresses for the severely treated series (SSP and RSSP samples), 



highlighting the positive effect of increased kinetic energy in enhancing the compressive residual 

stresses (Fig. 4(i)).  

 

FWHM evolution (Fig. 4(j)) also underlined the effects of the applied shot peening treatments in 

inducing lattice distortion, work hardening and grain refinement. The FWHM of shot peened 

samples exhibited the same trend as the microhardness. The depth of the layer showing higher 

FWHM values with respect to the base material was much greater for the SSP and RSSP series 

when compared to CSP. The Bragg reflection broadening after SSP treatments and the slight shift 

of peak centroid position were recognized as a result of micro strains and work hardening as well 

as grain refinement on the surface layers. Similar results for the SSP and RSSP samples were 

obtained, as expected, since the repeening treatment of the RSSP sample was not intense enough 

to induce any noticeable change with respect to SSP for both the compressive residual stress field 

and FWHM. The purpose of the repeening step was just to decrease the surface roughness without 

interfering with the other aspects of the material. 

 

The induction of the compressive residual stress is generally expected to positively affect the 

material’s fatigue strength. Moreover, surface grain refinement can play a positive role in delaying 

crack initiation or change the crack initiation mechanism thus, promote fatigue strength 

enhancement [18, 45]; however, at the same time, increased surface roughness can dwindle the 

fatigue behaviour by forming potential sites of stress concentration [46]. 

In order to investigate the synergistic contribution of all these parameters in the fatigue 

performance of the SSP treated material, three point bending fatigue tests were performed on NP, 

CSP and RSSP samples at a constant stress amplitude to compare the number of cycles that each 

series would endure under this applied stress. The quite repeatable test data for each series 

indicated a general positive effect of shot peening in enhancing fatigue life of the AZ31. In 

particular, RSSP series, which were preferred to the SSP samples for their lower surface roughness, 

showed a significant fatigue life improvement with respect to both NP and CSP series, highlighting 

that the combined positive effects of surface grain refinement and compressive residual stresses, 

was able to overshadow the damaging influence of the surface roughness. SEM observation of 

fracture surfaces confirmed the effect of shot peening in translating the crack initiation zone to the 

subsurface layer, despite the presence of the plastic indents and the higher surface roughness.” 

 

Potentiodynamic polarization curves indicated that shot peening treatments induced a slight shift 

in the negative corrosion potential, Ecorr, of AZ31 samples to more positive values. This shift was 

more pronounced in the ground series. However, considering the standard deviation of the 

measured data and the clearly negative values of the determined corrosion potentials, the effect of 

this positive shift on general thermodynamic corrosion properties can be negligible. The minimal 

effect of shot peening on Ecorr was in agreement with [59], where a shift of 40 mV was determined 

even when the roughness of shot peened AZ31 changed from Ra = 3.02 m for the ground surface 

to Ra = 12.33 m for the shot peened surface. The corrosion current density icorr, expressing the 

kinetics of ongoing corrosion processes in an electrolyte, can be considered a more relevant 

parameter for comparing the effect of various surface treatments on corrosion resistance of AZ31 

samples [60]. This electrochemical characteristic has a direct relation with the corrosion rate and 

can be used to estimate the extent of corrosion in a specific electrolyte [67]. The corrosion current 

density results indicated that shot peening deteriorated the corrosion resistance of the base 



material, overall. For the treated series, icorr increased significantly on all shot peened surfaces 

when compared to the NP samples, regardless of the parameters used for shot peening. The higher 

electrochemical reactivity of the shot peened surfaces could be caused by the increased surface 

roughness and craters and defects induced in the top surface layers. Similar data in terms of 

reduced corrosion resistance of SMAT treated pure Mg and Mg–1Ca alloy were reported to be due 

to the high density of strain-induced crystalline defects in the top surface layer. An increased 

exposure time was reported to affect just the thickness of the grain refined layer and not the 

corrosion behavior of the SMATed samples [40].  

The ground series, on the other hand, exhibited a significant decrease in corrosion current density 

when compared to the as-treated series, due to improved uniformity of the surface morphology. In 

this case, the determined icorr for the CSPG series reached values comparable to the NPG material. 

Slightly higher values were obtained for SSPG samples compared to NPG. Comparison between 

the icorr of the as-treated and the ground series highlights the remarkable role of surface roughness 

in reducing corrosion resistance from the kinetic point of view. Increased surface roughness is 

known to enlarge the exposed surface area, enhancing the active anodic surface and consequently 

reducing the corrosion resistance [59]. The subsequent slight grinding process reduced the surface 

roughness and significantly decreased the icorr of ground samples. The difference between the icorr 

values of CSPG and SSPG samples could be attributed to the reduced but still considerable 

presence of dislocation densities and microstructural defects that acted as corrosion attack active 

sites, resulting in higher reactivity and lower stability for SSPG sample surfaces. Considering the 

limited thickness of the grain refined layer, a very slight grinding was applied to avoid removing 

the whole grain refined layer. Indeed, after slight grinding, as observed in in Fig. 6 (b) and (c), 

there are still remaining signs of indentations on the surface of the SSPG sample. The optical 

micrographs of the SSPG surface over time indicates that these dimples provided localized sites 

of preferential corrosion initiation.  
We postulate that by optimizing the SSP treatment in a way to increase the thickness of the grain 

refined layer, it would be possible to entirely eliminate the surface indents, while still keeping a 

fine grained top layer to better study the effect of grain refinement on electrochemical corrosion 

behaviour of the treated material. To further evidence the potential of grain refinement to enhance 

corrosion resistance, the obtained results were compared with electrochemical performance of cast 

AZ31 samples treated with a series of shot peening treatments that can be categorized as CSP [59]. 

Mhaede et al. [59] tested three different sets of shot peened samples with Almen intensities ranging 

between 0.042-0.262 mmN and 100% coverage. The corrosion resistance of these CSP series were 

tested using the same test condition as applied in the present paper. The reported data for the three 

CSP series indicated lower corrosion resistance compared to the bare material and also showed 

increased icorr by increasing Almen intensity. On the contrary, our SSP series that have much higher 

Almen intensity and kinetic energy represent quite the same icorr values as our CSP series. This 

notable trend alteration can be attributed to the presence of the grain refined layer, that is the major 

difference between our tested series and the ones reported in [59]. 

 

It is also interesting to note that there are many reports confirming that tensile residual stresses are 

detrimental to stress corrosion cracking resistance in Mg alloys, whereas compressive residual 

stresses are found to enhance stress corrosion cracking resistance due to the crack closure effect 

[68]. Therefore, the induced stresses by SSP are expected to play a positive role in the functionality 



of the material under stress corrosion conditions, considering that the presence of the compressive 

residual stresses induced by SSP can improve the resistance to crack initiation and propagation. 
 

Apart from surface roughness and grain size, the crystallographic orientation of the grains are also 

supposed to play an important role in defining corrosion characteristics [69]. Experimental and 

theoretical studies have revealed that the corrosion resistance of the basal plane of AZ31 is higher 

than that of the other planes, thanks to its higher atomic coordination and thus lower surface 

energy; samples with decreased basal texture have shown lower corrosion resistance [70, 71]. Pu 

et al. [43] confirmed the significant influence of crystallographic orientations on corrosion 

resistance of grain refined AZ31, reporting that samples with little basal texture showed higher 

corrosion resistance compared to the series with strong basal texture, while grain size was held 

constant. Thus, further studies on crystallographic orientation are required to better explain the 

electrochemical corrosion characteristics of treated Mg alloys.  

 

Table 4 summarizes the obtained results. Considering the combination of the investigated 

characteristics, RSSP treatment can be considered the optimal choice for the functionality of the 

treated material. RSSP series demonstrate similar grain size, thickness of grain refined layer, 

microhardness and residual stress distribution, corrosion characteristics and cytotoxicity to SSP 

series but represent better wettability and reduced surface irregularities.   

 
Table 4. Summary of the data obtained from the characterization experiments 

 NP CSP SSP RSSP 

Microstructure Original 

microstructure 

Slight surface grain 

refinement for 

thickness of ~45 μm 

Notable surface 

grain refinement for 

thickness of ~80 μm 

Notable surface grain 

refinement for 

thickness of ~80 μm 

Surface 

roughness 

(µm) 

Ra=1.07±0.12 

Rq=1.38±0.11 

Rz=5.84±0.50 

Ra=1.63±0.12 

Rq=2.03±0.15 

Rz=8.35±0.54 

Ra=2.67±0.19 

Rq=3.30±0.20 

Rz=13.19±0.99 

Ra=1.68±0.11 

Rq=2.14±0.16 

Rz=8.49±0.68 

Surface  

wettability 

WCA (º) 

As treated: 60.60±0.97 

Ground: 43.95±0.86 

As treated: 

53.10±0.89 

Ground: 42.85±1.01 

As treated: 

48.90±0.62 

Ground: 32.70±1.10 

As treated: 

43.05±0.74 

Ground: 32.30±1.49 

Microhardness Surface: 43.8±0.65 HV 

Thickness: - 

Surface: 88.1±1.19 

HV 

Thickness: 250 µm 

Surface: 102±1.42 

HV 

Thickness: 350 µm 

Surface: 97.9±1.01 

HV 

Thickness: 400 µm 

Residual 

stresses  

Max stress:-17±5 MPa 

Total depth: 370 µm 

Max stress:-28.4±7 

Total depth: 440 µm 

Max stress:-56.3±6 

Total depth: 570 µm 

Max stress:-58.77±6 

Total depth: 570 µm 

Average 

fatigue life 

corresponding 

to stress 

amplitude of 

72 MPa 

 

 

133521 

cycles 

 

 

263220 

cycles 

 

 

- 

 

 

3000000 

cycles 

(Run out) 

icorr [µA.cm-2] As treated: 21±2 

Ground: 19±2 

As treated: 325±5 

Ground: 30±3 

As treated: 326±4 

Ground: 81±5 

As treated: 321±6 

Ground: - 

Cytotoxicity Negative Negative Negative Negative 

 

On the subject of increasing the thickness of the affected layer, it is interesting to note that 

overpeening indications have been observed on Mg alloys at relatively low Almen intensities [72, 

73]. This can be attributed to the limited deformability of the HCP crystal structure of Mg caused 



by a low number of active slip planes at room temperature. Grain refining after shot peening is 

primarily caused by twinning, the main plastic deformation mechanism of Mg alloys at low 

temperature [74]. It has been reported that for HCP crystal structure, non-basal slip systems would 

be activated at temperatures higher than 225 ºC [75, 76]. At these temperatures, the flow stress 

increases, resulting in higher total strain and thus enhanced deformability [77]. Warm conventional 

shot peening of wrought Mg alloy Mg–9Gd–2Y performed at 240 ºC was reported to induce higher 

work hardened depth, higher compressive residual stresses and less surface damage at the optimum 

Almen intensity of 0.15 mmN, when compared to shot peening at room temperature [78]. 

Performing SSP treatment at higher temperatures to activate more slip systems and amplify the 

effect of the treatment is the subject of a future study. This approach can result in a greater depth 

of grain refined layer and thus can provide the possibility of applying additional post treatments 

such as surface finishing to remove the majority of the surface micro defects without removing the 

whole grain refined surface layer.  

 

5. Conclusions and outlook 

AZ31 magnesium alloy samples were shot peened with different sets of parameters ranging from 

conventional treatment to severe shot peening to induce different combinations of grain size and 

surface roughness.  

 

The results indicated that, despite the limited deformability of Mg alloy at room temperature, 

increasing the kinetic energy of the shot peening process induced notable grain refinement down 

to the nano regime on the top surface layer; in addition, the severe shot peening treatment increased 

the surface roughness (up to 150%), enhanced the microhardness (up to 133%) and surface 

wettability (up to 20%), and induced compressive residual stresses in a deep surface layer (max 

compressive stress of -56 MPa), compared to as received material. The trends of surface roughness, 

microhardness, residual stresses, FWHM, as well as extent of grain refinement and density of 

deformation twins, exhibited a direct relationship with the kinetic energy of the applied shot 

peening treatment. Repeening treatment after severe shot peening was found to be effective in 

reconfiguring the surface morphology and roughness with minimal changes to the other studied 

characteristics (37% surface roughness reduction compared to severe shot peening). Hence, the 

repeened severely shot peened series (RSSP) can be considered the optimal choice for the 

functionality of the AZ31 considering reduced risk of stress concentration and crack initiation, 

while showing greater wettability and better mechanical performance when compared to the other 

treatments. RSSP series also indicated notable fatigue life enhancement compared to the CSP and 

NP series. Slight surface grinding after shot peening treatments successfully separated the effect 

of surface roughness form that of grain refinement, highlighting the impact of grain size on 

promoting hydrophilicity of the samples’ surfaces. 

 

In all the cases, shot peening was found to decrease corrosion resistance in the AZ31 samples. 

Slight grinding after shot peening led to a considerable improvement in electrochemical corrosion 

characteristics. The increased rate of corrosion from SSP and RSSP samples, due to their higher 

surface roughness, led to a small decrease in osteoblast viability during the first three days of 

culture. However, the cells fully recovered by day seven, indicating that there was no lasting 

cytotoxicity induced by the degradation of the SSP treated samples. 

 



In the future, we plan to increase the thickness of the affected grain refined layer through optimized 

warm severe shot peening treatment. A higher thickness of the grain refined layer can provide the 

possibility of eliminating the surface defects through grinding while keeping the nanograins at the 

exposed surface and maintaining enhanced mechanical properties. This approach will make it 

possible to evaluate the sole effect of grain refinement on corrosion resistance of the shot peened 

surface. 
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