Web Based Tool to Analyze Unbalanced Distribution
Systems
by
Aitor Fuillerat Garcia

Submitted to the Department of Electrical Engineering, Electronics,
Computers and Systems
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Energy Conversion and Power Systems
at the
UNIVERSIDAD DE OVIEDO
November 2017
© Universidad de Oviedo 2017. All rights reserved.

AUINOT . .
Certified by . ..o
Pablo Arboleya
Associate Professor
Thesis Supervisor
Certified by . ..ot

Islam El-Sayed
Post-Doc Researcher
Thesis Supervisor

Web Based Tool to Analyze Unbalanced Distribution Systems
by

Aitor Fuillerat Garcia

Submitted to the Department of Electrical Engineering, Electronics, Computers and
Systems
on November 15, 2017, in partial fulfillment of the
requirements for the degree of
Master of Science in Electrical Energy Conversion and Power Systems

Abstract

This project seeks to be a interactive web tool that applies advanced technologies as visual
analytics and data driven documents (D3), that allows the user to evaluate the impact of the
distributed generation in distribution grids. It consider unbalanced power flows and it has
the possibility to include residential photovoltaic generation and energy storage elements
with different control strategies.

The features of this tool goes from, the possibility of make a better approach in the grid
infrastructure plannification having into account the different levels of distributed renew-
able generation installed, to the economic analysis impact of this distributed generation due
to the fact that, it is able to determine power peaks and energy at the transformer level. In
addition to, this tool will be useful for dimensioning photovoltaic installations and storage
elements.

Thesis Supervisor: Pablo Arboleya
Title: Associate Professor

Thesis Supervisor: Islam El-Sayed
Title: Post-Doc Researcher

Acknowledgments

Special thanks to Pablo Arboleya and Islam El-Sayed whom made, that this master thesis,
could be made in the best conditions possible and for helping me every time [needed. Also,
I would like to thank the whole LEMUR team. Professors, researchers and students for
having a perfect working environment. Specially, I would like to thank Alejandro Gancedo,
Tania Cuesta and Andres Fernandez that were part of this project too, with complementary
works, and to the master course coordinators, Jorge Garcia and Cristina Gonzalez-moran,
who were always available for helping me with any issue.

Finally, I would like to thank my EECPS mates, my parents for the unconditional support
(also economical), my girlfriend Ana that has been always supporting me during these

months and my friends that have missed me lately.

Contents

1 Introduction

2 Residential Energy Demand, Generation and Storage

2.1 Distribution System
2.2 Residential Energy Demand

2.2.1 Nearly-Zero Energy Buildings.
2.3 Residential Distributed Generation
2.4 Residential Energy Storage L L.

3 Power Flow

3.1 GridModelling
3.2 Formulation
33 BUStypes
3.4 Methods To Solve Power Flow
34.1 Gauss-Seidel Method oo
3.4.2 Newton-Raphson Method
3.5 EPRIOpenDSS
3.5.1 OpenDSS

4 Web tool: FloWI

4.1 Front-end Development,
4.1.1 Design and programming
412 Uploadfiles

4.1.3 Visualization of results through on clickevent 39

4.1.4 Visualization of results through sliderevent 41
4.2 Functionality development 43

421 ReadInputData 43

422 Drawthemap 44

423 Drawthe graphics 45

4.2.4 Perform the visualization simulationinthemap 45
IEEE European Low Voltage Test Feeder 47
5.1 Introduction 47
5.2 Description e e e e 48
Study Cases and Results 51
6.1 Node. e 52
6.2 Line e e e 57
6.3 Global variables 64
Conclusions 75
Bibliography 77
HTML Source Code 79
CSS Source Code 91
JavaScript Source Code 99

List of Figures

2-1
2-2
2-3

3-1
3-2
3-3

4-1
4-2

4-4

6-1
6-2
6-3

6-5
6-6
6-7

6-8
6-9

Power system components. 16
Unbalanced and radial distribution. 17
Generation power profiles. L L L. 20
Generation and storage power profiles. 22
Power system components. oL 25
Storage defaultmode. Lo 32
Storage defaultmode. L L L 34
FloWI Initial Page. 36
FloWI before files were uploaded. 36
Bus Graphics Layout. 39
[llustration of how power demanded is represented in the map. 42
Node 36 load power profile. 53
Node 36 consumed and generated power profile. 53
Node 36 net power that flows through the feeder. 54
Node 36 stored energy profile and /O power. 54
Node 36 power flowing through the feeder. 55
Node 36 power monotone CUrve. v v v v v v i e 55

Line graphics in base case, active power (kW), Currents (A), Losses (kW)

and MONOtONe CUIVE. v v v ittt e e e e e e 58
Line curves in the case of 25% of PV panelsinthenodes. 59
Activepowerflow L L 60

9

6-10 Line curves in the case of 75% of PV panelsinthenodes.
6-11 Line curves in the case of 25% of PV panels and storage in the nodes.

6-12 Line curves in the case of 75% of PV panels and storage in the nodes.

6-13 Global graphics forthe basecase.
6-14 Global graphics for the 75% of nodes with PV panelscase.
6-15 Global graphics for the 75% of nodes with PV panels and storage case. . . .
6-16 Real-time simulation of consumed power.
6-17 Real-time simulation of voltage level.
6-18 Real-time simulation of voltage level with PV panels installed.
6-19 Real-time simulation of generated power with PV panels installed.
6-20 Real-time simulation of net power with PV panels installed.
6-21 Real-time simulation of demanded power with PV panels installed and stor-

age devices. e e e

10

70
71

73

List of Tables

4.1 FloWIElements. 37
6.1 Conclusions from the node analysis. 56
6.2 Conclusions from the global variables analysis. 74

11

12

Chapter 1

Introduction

During the recent years has increased the global awareness and understanding that there
is a necessity of changing the traditional fossil fuel based energy system, towards a new
era of sustainability, low CO2 emissions and high efficiency. Researchers, companies and
governments must join forces to reach this goal. More policies as the 20/20/20 agreement
must be approved, not only in the European Union but in the whole world. The 20/20/20
agreement, that basically stands: “20% percent of CO2 emissions, 20% more of renewables

capacity installed by the year 2020, suppose a path to move to this new energy system.

Among the main factors that composed this post-industrial revolution, it has to be con-
sidered the changes in the electrical energy generation, where the distributed generation,
located at the costumers site, will grow in the electrical grids. Also, the installation of all
the new generation devices and its maintenance will have a positive impact on the local
economy focused on the electrical installations sector. And it is not only the generation,
but the storage too. There is a need to store the energy produced during the middle hours
of the day, so it can be consumed later when the people arrive home and switch on the
TV, the computer, charge his smartphone and cook. First batteries operating models have
been launched into the market last year by the company Tesla, along with solar roof tiles
and electric cars. There are more companies researching and selling this kind of goods and
electric cars too, but most important thing is that people are buying, which basically means

that the movement towards this new energy system is happening, right now.

13

Other factor that must be considered is that the energy demand will grow. Even if the
appliances in the homes are more efficient, or people substitute classic light bulbs by LEDs,
the energy demand is higher. Then, the efficiency is a main issue. Nearly zero energy build-
ings seem to be a good answer to this claim. These buildings, have really good isolation
materials in their walls, so there is a slight thermal flow between inside and outside the
building. Then it reduces the necessity of heating and cooling during winter and summer
seasons. Also they must have their own generation units, solar or wind turbines and batter-

ies to store it, and supply it when needed.

With this new concept, the role of the utilities and the system operator will change
and have more weight on the grid stability and electricity quality. This is why this project
has been developed. FloWI tries to be an analysis tool for measuring the impact of the
distributed generation and storage devices in the distribution grid. Providing good and in-
tuitive results, with a good visualization based on data driven documents and interactive

results and simulations.

This document describes the residential generation and demand in chapter 2. Then the
power flow concept, the resolution algorithms and the description of the softwares used to
obtain the power flow results is described in chapter 3. The web tool FloWI is completely
described in chapter 4. Then in the next chapter it is explained a study case presented by
the Institute of Electrical and Electronic Engineering (IEEE), to perform some simulations
with the given data using FloWI. Finally in chapter 6, the results of some study cases are
compared showing the main features of FloWI. The codes used to develop this tool are

included in the appendixes.

14

Chapter 2

Residential Energy Demand, Generation

and Storage

This chapter is a brief introduction to the distribution system and the energy demand in

distribution grids and also the residential distributed generation and energy storage.

2.1 Distribution System

The distribution system begins under the distribution substation. This substation is fed by
one or more sub transmission lines or by a high voltage line. Figure 2-1 shows a scheme of

the power system components.

The substations are composed by three-phase transformers or three single-phase trans-
formers interconnected that reduce the voltage to the distribution voltage level. There are
few standard levels, 34.5 kV, 23.9 kV, 14.4 kV, 13.2 kV, 12.47 kV, and, in older systems,
4.16 kV [1]. Then this substation serve one or more primary feeders, usually radial. This
means that power flow only has one path from the substation to the consumer. The distribu-
tion system will have more than one substation and there will be also in-line transformers
and distribution transformer. This ones reduce the voltage level to the low voltage (LV)

consumer level, which is 230/400 V the standard in Europe. Then, even if the main feeder

15

Step-up

Generator
Transformer

Interconnected
Transmission
System

Bulk Power
Station

Subtransmission
Network

Figure 2-1: Power system components.

has 3 phases, each consumer is connected just to one of them.

The distribution feeders have unbalanced power flows because of the unequal number of
single-phase loads connected to each phase. So, as the loads vary along the feeders, the
voltage drop will vary too between the transformer and the consumers. This is a fact that
voltage drop is not equal on the 3 phases, having a lower voltage level at those phases with
higher load values and distances. This requires the fact of introducing voltage regulation,
which typically is accomplished by using load tap changing (LTC) transformers to adapt
the LV value to the requirements of the system at some instants, having a higher LV level
when voltage drop happens. Figure 2-2 shows how the radial distribution, and how the

loads are single-phase and not each phase has the same amount of loads connected to it, so

it is unbalanced.

2.2 Residential Energy Demand

Along the power system the consumption can be at three levels. First, at high voltage,
which is called industrial consumption, where large factories with many loads and an al-

most 24 hour consumption. Those factories have their own substation and are connected to

16

Distribution
Substation

Distribution

System

ABC

 A*B~®
_ABC e
. B*B"

A

Distribution Radial
Transformer Distribution

Figure 2-2: Unbalanced and radial distribution.

the high voltage grid in order to obtain a lower price in the electricity bill. Then, there are
other consumers at medium-voltage. Large buildings like hospitals, medium factories and
malls. These also have their own transformer from medium voltage to low voltage. And
finally, there are all the small consumers, that include flats, apartments and houses, which is
the residential demand and also small companies offices and services. All those consumers

are connected to the low voltage grid and usually in a radial distribution.

Is quite complicated to analyse the residential energy demand because there is no
steady-state load. In fact, the loads are constantly changing due to any appliance or to
the lighting when a light-bulb turns on or off. But it is very important for the future trends
on the energy consumption to study the energy demand of the consumers in the residential
market which will be useful to move towards the nearly zero energy buildings (nZEB). This
is because usually, the maximum demand hours are in the morning and in the night when
people are in their homes and the appliances are working. However, the solar photovoltaic
(PV) generation, depends on the sunlight and its better performance is during the middle
hours of the day when probably there is no consumption or just the base load of the house
(freezer, standby appliances, Wi-Fi). So the generated energy would be only used during
these hours to fit the base consumption. But, if it is possible to know the energy consumed
during the whole day, it can be possible to install storage in order to save that energy for

the peak of demand. This will be explained in the following sections.

17

The annual report from the Spanish system operator "Red Electrica de Espafia (REE)"
of year 2016 says that for the first time in history the maximum demand was in a summer
day instead of winter and also the energy demand during the whole summer was higher
than in winter. Also the residential consumption has represented the 23.5% of the electrical
energy demand in Spain. It is almost one quarter of the total and therefore, any reductions
that can be performed in this sector, will reduce the dependence on fossil fuels resources to

generate electricity. [4].

2.2.1 Nearly-Zero Energy Buildings.

nZEB are buildings environmental friendly as the energy consumed should come from re-
newable resources in most of the cases installed in the buildings themselves or nearby. The
European Union has already set policies to transform the residential demand making it
more efficient, reliable and with less CO2 emissions. In the Energy Performance of Build-
ings Directive 2002/91/EC and its recast (Directive 2010/31/EU). This recast demands that
"Member States shall ensure that by 31 December 2020 all new buildings are nearly zero-
energy buildings; and after 31 December 2018, new buildings occupied and owned by
public authorities are nearly zero-energy buildings". But also it is possible to transform
existing buildings in nZEB. So the study of the energy demand is very important in order
to implement auto-consumption solutions. In [2], it has been developed a software to asses
professionals and companies in the selection of the best renewable-distributed generation-
mix suitable to be installed in residential buildings considering technical, economic and

reliability aspects. [3]

2.3 Residential Distributed Generation

In the traditional power system, the energy comes from the power plants, and goes through

the transmission system and distribution system to the consumers. The concept of residen-

18

tial distributed generation or auto-consumption means that, the generated energy does not
have to be transmitted somewhere else, because it is almost consumed at the same genera-
tion point. However, due to the unpredictable nature of the renewable resources, consumers
with installed generation that want to guarantee their energy supply must be connected to
the grid. In that case, the control systems and performance of the distribution utility will be
crucial for the system. The main features of the residential distributed generation in words

of [5] and [6] are:

e Demand peaks will be reduced.

Quality of electricity will increase.

e Transmission and distribution losses will be reduced.

Generation flexibility.

e Business opportunity and economical growth.

Number of interruptions will be reduced.

The massive penetration of this new concept into the system will suppose a significant
change in the transmission system and distribution system. As the lines that have been
only unidirectional should be bidirectional to permit power flows from some distributed
generation points. Figure 2-3 illustrates the behaviour of a residential auto-consumption

power profile.

e Region 1: There is only power demanded, basically the base consumption of the
home. And around 07:30 hours the power demand increase due to kitchen appliances

when the inhabitants are preparing breakfast, or water heating during the shower.

e Region 2: The demand decrease when people leave their home to going to work.

Also the PV panels starts to generate cause it is a sunny day.

e Region 3: This is the most critical moment for the system stability and a challenging

endeavour for the utilities. When the people is working is when the PV panels are

19

generating more energy. Then it could be an excess of power. This power must flow
to the grid instead that to the house. Then is many neighbours have installed PV
panels, it could be a problem to the transformer located in the substation.

The good part is of course, that the emissions of CO2 during this period could be
reduce quite a lot and the consumers are paying nothing for the energy cause they are

self-sufficient during this time.

Region 4: People are coming back home and the sun is going down. People after
work like to watch TV, cook, have a shower, charge its electronic devices and many
other electrical energy consumption behaviours that we have available nowadays.

Then the consumption increase and it is covered by the PV panels but not for long.

Region 5: The consumption is at is maximum and the generation is practically zero at
this time. So the home is consuming all the energy from the grid. Also those are the
hours when the energy is more expensive due to the necessity of including expensive

generation technologies based on burning fossil fuels and with high CO2 emissions.

Region 6: During this time the demand used to decrease when people are going to

sleep and falls to the base consumption again.

Power]

Generated
Power

Consumed
Power

Excedent
Energy

>
>

0 3 6 9 12 15 18 21 24 Time(h)

Figure 2-3: Generation power profiles.

20

2.4 Residential Energy Storage

As mentioned before, PV solar generation and wind generation used to occur when the
residential demand is low, basically the base demand. If the installed generation capacity is
higher than the base demand, then it can occur than at some point the generation is higher
than the demand. If this happens, that energy must be injected to the grid. And on the other
hand, when the demand is higher than the generation, it will be necessary to supply it from

the grid.

It is very difficult to maintain the system stability when many PV panels and wind
turbines are injecting power. One of the main problems could be that, as the system is un-
balanced, loads at each phase are different. It could be possible that, at the substation point,
one of the phases has so much power injected that the power is flowing to the high-voltage
side while the other two are flowing to the low-voltage side. This is called reverse power
flow and could cause many problems. To avoid that energy storage is becoming an essential

element in the power system.

In the case of residential energy storage, the purpose is to charge the batteries with the
excess of power during generation hours, so it can be consumed during the demand hours

until they are discharge and starts to demand from the grid.

For the residential energy storage, as is shown in OpenDSS chapter 3 of this document,
there are various control strategies to charge and discharge the batteries. Among them we
can find the case where the battery does not have current control, so it will always charge
and discharge at its rated power. Other where it has current control, so the power will be
adapted to the required demand. Other case could be the economical optimization in case
that some users only have the batteries installed but no generation. In that case, it will be
possible to charge the battery during the low price hours, typically during the night, and

then use this stored energy during the high price hours.

21

Figure 2-4 illustrates the behaviour of a residential consumption having both generation
and storage. The power demand does not vary from the previous case with only generation.
But there is an important difference in this case. In region 3, when there is an excess of
power, it is not a problem any more. All this power can be stored to use it later. In regions
5 and 6, the net power will be the difference between the demanded from the grid and the
given by the battery. Then the maximum power demand is reduced, the bill will the smaller
and the utilities maybe will not have to generate as much from fossil fuel plants as if there

were no storage elements installed.

Power
Generated
Power Discharge
Consumed Charge = | :
0 3 6 12 15 18 21 24 Time (h)

Figure 2-4: Generation and storage power profiles.

22

Chapter 3

Power Flow

This chapter includes a brief description of the grid modelling and the power flow problem.
In the early years, the grid was very small, with few interconnections and with radial dis-
tribution. During the 20th century, electrical network has become more and more complex
and there are a lot of interconnections inside the grid. Power flow consists in finding the
steady-state operating point of an electric power system. It means that, knowing the power
demanded in the buses and the power supply by generators or by a transformer in a micro
grid, we can obtain bus voltages and power flowing through all grid elements. [7]

In the system operation it is used for analyse the voltage level and identify their possible
deviations out of the operation boundaries and also power flowing through the lines and
ensure that they are not overload. This is why it is useful to study future and hypothetical
scenarios with new elements included.

In this chapter is explained the grid modelling, the power flow formulation, the different
methods to solve the power flow problem and finally it is included a description of the
software EPRI OpenDSS. This software developed by EPRI has been used in this work to

solve the power flow of the grid used and its results are visualized with the web tool FloWI.

3.1 Grid Modelling

As this analysis refers to the whole network the representation is more complex. It is

necessary to introduce the admittance matrix concept. Consider a generic bus, connected

23

by series admittances to another buses, as we can see in figure 3-1. Also it has to be
considered the small shunt admittance connected to the neutral or ground. The net current

injected to the bus is shown in equation 3.1.

L= yi;(ViVy) + yaVi 3.1)

jet
V; stands for the complex voltage at bus j. Then we can rearrange the terms in what is

called "from" bus and "to" bus. It is expressed in equation 3.2.

L= i+ yalVi— > uiVs (3.2)

jet jet
And doing that for the whole set of buses we obtain equation 3.3, where Y is the admit-
tance matrix and the column vectors V and I represent the node voltages and net injected

currents [7].

I =YV (3.3)

This is how a three node equation system looks like:
L Yn Y Y| |V
Il =Yy Yo Yas|:|Va

I3 Y31 Y32 Y33 V3

3.2 Formulation

Starting the formulation from the net complex power injected to bus ¢ as is expressed in
equation 3.4, and applying this equation to all the buses and combining with 3.3, it consti-
tute a system of 2n complex equations in terms of the complex unknowns S, V and 1. Then

the complex power can be expressed as in equation 3.5

S; =V, I} (3.4)

24

pud @

Yi1 1
Vi

Yik k
Vk

Li

Yin n
Vn

Ysi

Figure 3-1: Power system components.

S = diag(V)[YV]* (3.5)

Then, expressing the complex power in terms of active and reactive power, as in equa-

tion 3.6:
S=P+jQ (3.6)

And expressing the elements of the admittance matrix using rectangular coordinates as in

3.7:
Y =G+ jB 3.7

We obtain the expressions 3.8 and 3.9 in polar form.

-Pi = V; Z ‘/j(GijCOS@ij + Bwsm@”) (38)

J=1

25

Qi = Vi Y Vj(Gysin®y + BijcosOs) 39

j=1

3.3 Bus types
Each bus provides two nodes and four unknowns depending on the kind of bus.

e Slack bus. It is a bus with generation so it has a voltage regulation that keeps the
voltage magnitude to the specified value. It has the particularity that its active power
is left as an unknown and the phase angle is set to zero. It is a mathematical artefact

so it can be performed a power flow solution to the system.

e Generation or PV buses: At least one generator and a regulator that keeps the voltage
magnitude to an specified value. Also the power injected at these kind of buses is

specified.

e Load or PQ buses: In this case the active power and reactive power values are speci-

fied.

3.4 Methods To Solve Power Flow

We are going to focus on the methods to solve non-linear equation systems. These methods
are based on an iterative process. The two main methods are Gauss-Seidel and Newton-

Raphson.

3.4.1 Gauss-Seidel Method

For a vector with initial conditions 27, the result of the new vector by applying the Jacobian
method would be 2™ = [2¥ 2% ... 2F]. This method will finish when the difference

between two consecutive parameters is smaller than the convergence parameter determined.

26

3.4.2 Newton-Raphson Method

This method is based on first order approximations of the non-linear equations. The general

form of procedure with this method is to find an x value that fits equation 3.10:

flx)=0 (3.10)

By using the Taylor series expansion of this equation around z* and keeping the first

two terms we obtain equation 3.11:

flx) ~ f(2*) + F(a*)(a" — o) (3.11)

Where F is the Jacobian matrix of f(x). The iterative process stop when the method

arrives to two similar consecutive values, as is expressed in equation 3.12.

maz| f;(x¥)] < e (3.12)

3.5 EPRI OpenDSS

Developed by the Electric Power Research Institute (EPRI), OpenDSS is a power system
simulation tool for electric utility power distribution systems. Besides of performing the
common analysis on the utility power distribution systems it also supports new types of
analyses designed to meet future needs. Among them it can be highlighted the smart grid,
grid modernization and renewable energy research. [8].

As this tool offers all of that possibilities, it fits perfectly the requirements for this project.
So is going to be our tool to solve the power flow problem of the system and generate the
result files.

OpenDSS has another important features. One is that is has an important advantage respect
to other similar software to solve power systems and is that its license and its code are
free. Other important feature is that OpenDSS is based in a quasi static model in sequential
mode. This means that the simulation can be customized to users needs. It is possible to

choose if the solution is made for a day, a year... And also it is possible to choose the data

27

interval, each minute or hour... This is a huge advantage because it allows us to introduce
real data obtained from smart meters.

Main features of OpenDSS:

e Evaluation of losses due to unbalanced load.

Develop of distribution generation models for the IEEE feeder test.

THD analysis.

Study of wind farms and PV plants.

Open conductor failure study, for one or three phase transformer connections.

3.5.1 OpenDSS

To proceed with a case in the Opendss we need to execute the main.dss file. It has the main
instructions to do and some declarations of the electrical grid to simulate. For a simple
case, for instance, a system with three buses, the declarations for the whole grid can be
included in this main.dss file, but for a big case, it would be better to make the declarations
in .txt files and make a call from the main.dss to these text files. Then we are going to

explain all the data files needed.

e Line Code: In this file are defined the different types of lines existing in the sys-
tem, considering in they have one or more phases, its material and other physi-
cal parameters. For example, the declaration of a LineCode would be the follow-
ing: New LineCode.2c007 nphases=3 R1=3.97 X1=0.099 R0=3.97 X0=0.099 C1=0
C0=0 Units=km

e Lines: Here we defined the name of the line; generally, it would be named as LINEX,
where X is a number depending on the number of lines that the system has. It is also
specified the starting and end point of the line, Busl or from bus and Bus2 or to

bus. Furthermore every line needs a line code to specified its physical parameters.

28

So it has to make reference to one of the line codes defined in the previous file.
The declaration of a line would be the following: New Line.LINE1 Busl=1 Bus2=2
phases=3 LineCode=4c70 Length=1.098 Units=m

Storage: This file will be only included if we want to perform a case where there are
storage elements installed in the system. The storage elements have several working
modes. In this document we have focused on the default mode and follow mode.
There is more information in [9].

In this mode we need to specified the trigger values for charge and discharge. Fig-
ure 3-2 illustrates the working mode. Inside the trigger values the storage element
remains in standby. Once the net power (demanded power - generated power) curve
overcomes the discharge trigger it starts to discharge. The same happens if the net

power curve goes down the charge trigger.

For declaring a storage element it is necessary to specified the maximum charge

and discharge power with the parameter kwrated.

Also the maximum storage energy is specified in kwrated parameter.

The minimum storage level is set in the parameter % stored

By default, the storage element is programmed to start charging at 2 AM be-
cause of the price of the energy. This is interesting for cases when there are
storage elements in the houses without having generation. This kind of strategy
could save some money buying energy during cheaper hours to use it during the
afternoon peak demand. However, in our case, we suppose that our consumers
will have both generation and storage. Then it is not necessary any more to
start charging our batteries from the grid any more. To clear this parameter
we have to write TimeChargeTrig=-1. However, during the testing period of
Opendss trying to find the better solution by using the storage elements, the

default mode was not a good choice. It is because once the trigger is overcome,

29

and it starts to charge or discharge, it always do that at the maximum power,
which in this case is 5 kW. This behaviour causes huge voltage drop and power
demand when the PV panels start to generate energy during the morning. Then
follow mode was a better option. It consists in calculate the difference between
generation and demand, and the constraints that the maximum energy stored
level is 100% and the minimum 20%. Then we have created net power curves,
and added it to a shape as in the loads and generators, so the storage element
can follow that shape and simulate the real behaviour of a current controller for

charging the battery.

The declaration of a storage element would be: New Storage.Batl phases=1 Bus1=908.1
daily=ShapeBatl kv=0.24 kwrated=5 pf=1.0 kwhrated=8 state=IDLING Dischar-
geTrigger=1 ChargeTrigger=-0.8 TimeChargeTrig=-1 %stored=20

Load Shapes: The load shapes are used to associate a load profile to other elements
like loads, generators or storage. It has 1440 values, each one for each minute of the
day. Through this file we can specified the behaviour of an element during 1440 in-
stants in the day. The specification of a load shape could be: New Loadshape.Shapel

npts=1440 minterval=1 csvfile=Loadprofilel.txt

Generators: This file specifies the generators inside the grid. It is only necessary
when we are going to perform a case with distributed generation. If we do not have
any generator it is not necessary to include it as happens with the storage file. For
declaring a new generator it could be: New Generator.Genl phases=1 bus1=908.1
kv=0.24 kw=1 pf=1.00 conn=wye status=variable model=1 daily=ShapeGen]1.

In the declaration we can find that bus1 is the bus is connected in this case 908, and
the phase to which this bus is connected to the grid. Also, the daily parameter refers
to the load shape attached to the generator to simulate its generation profile during a

day.

Transformers: This file define the transformers existing in the system. It can be

specified as: New Transformer. TR1 windings=2 Buses=[SourceBus 1] Conns=[Delta

30

Wye] kvs=[11 0.416] kvas=[800 800] XHL=4 sub=y
In the case that we have studied in this document there is only one transformer in the

grid, so it has all the needed information to perform a simulation.

Loads: This file defines the loads existing in the system. It has to be defined its name,
the number of phases (three phase or single phase), the bus where it is connected, kV
reference value, kW reference value, power factor, connection (wye or delta), and
we have to specified that the performance will be for a day so we must write daily =
Shape. Where shape will be one of the load shapes defined in the previous file. The
declaration of the loads could be: New Load.LOADI1 Phases=1 Bus1=907.1 kv=0.24
kw=1 PF=0.95 model=1 status=variable conn=wye daily=Shape.

Note that as happens in the declaration of the generator, when the bus in which we
connect the load is specified it is necessary to include the phase. So we have to write

bus1=907.X where X could be 1, 2 or 3 standing for phases a, b or c.

Monitors: This file specifies the measures that we want to do in the elements of
the system. These monitors shows different parameters depending on the configu-
ration we choose. After simulation, the monitors will create a results folder, with
results files in .csv format. Here it is included the specification of a monitor attached
to the element LOAD1 and measuring its active and reactive power: New moni-
tor. LOAD1PQ element=Load.LOADI] terminal=1 mode=1 ppolar=no.

The parameter mode is used to set which kind of variables we want to measure with
the monitor. Mode 0 measures voltage and current, mode 1 measures active and
reactive power and mode 3 is used to monitored the storage elements. It shows the
stored energy, the state of the battery (charging, discharging or standby), input power,

output power, losses, and charging energy.

Then after we know all the data that we need to perform a power flow case, we need to

know how to configure the main.dss. First of all, if we are going to declare the elements in

different .txt files we have to tell Opendss where to find them. So, in order to do that we

have to write: “set datapath/.../.../data” with the address of our data documents. Then we

have to tell Opendss to open them. We can do that by writing “redirect” follow by the name

31

Mult

oo E P

Discharge Zone > 0.92

0.8

0.7

0.6

0.5 \v/

\J_/\/

04 =L A
s 1 N/, v

N/

0.2 - Charge on Time

Charge Zone <0.40

These Days
0.1 +
0
1250 1300 1350

Time, hr

Figure 3-2: Storage default mode.

32

1400

of the file, for instance for the line code file, we must type “Redirect LineCode.txt”. We
have to do that for all the .txt files. It is mandatory to call these files in the order they have
been explained previously. This is because some of them have parameters that depend on

other files, so Opendss needs to read all the data in the correct order.

After finish will the calls, it is necessary to specify a few more things. Is necessary to
specified the control mode as static, the simulation mode as daily, to perform a single day
solution, the step of one minute and 1440 instants. And finally the bus voltages, that in the

case performed in this document are 11 kV and 416 V. These declarations must be like that:

“set controlmode = static”, control mode is specified.
"set mode = daily stepsize = 1m number = 1440”, time mode is specified. Number refers
to number of steps.
“set voltagebases = [11 0.416]”, high voltage base and low voltage base are specified.
“calc voltagebases”

“solve”, with this command the power flow calculation is initialize.

At this point Opendss has all it needs to perform a single day power flow solution.
However, we want to know the results so we can work with them. For doing that, we need
to specified a path to a folder where we want to store the simulation results, “set datap-
ath/.../.../results”. Then, we have to tell Opendss which monitors we want to export. So
we have to write “export monitors NAME OF MONITOR?”. In a large system we have to
write many lines for export monitors, more or less two for each line, two for each bus, one

for each generator and one for each storage element.
These are all the files and specifications needed to perform a case in Opendss. Once this

is ready, we have to select all the main.dss lines and click enter (CTRL + A then ENTER).

For make it more understandable, figure 3-3 shows a main.dss file of a simple base case.

33

[ource/ou R <ource]

v]c v P

® | X 3} ||Base Frequency = 50 Hz

I

v|@ & | @ [verson 7.6.5.39 (64-brt buid)

clear

new circuit. LY

Redirect LoadShapes.txt
Redirect Generators.txt
Redirect Transformers.txt
Redirect LineCode.txt
Redirect Lines.txt
Redirect Loads. txt
Redirect Storages. txt
Redirect Monitors. txt

set controlmode=static
Qi e

set ly step 1m b

set voltagebases=[11 0.416]
calcvoltagebases

solve

export monitors Bat_1

export monitors Bat_1_PQ

export monitors Bat_1_VI

export monitors GPV1_PQ

export monitors GPY1_¥I

export monitors Slack_PQ

export monitors Slack_¥I1

export monitors LINE1_PQ_vs_Time
export monitors LINE1_VI_vs_Time
export monitors LOAD1_PQ

export monitors LOAD1_VI

plot profile phases=all

Export loads|

set datapath=C:\Users\Miguel\Desktop\PRUEBA\data
IEdit ¥source.Source Basek¥=11 pu=1 angle=0 frequency=50 phases=3 ISC3=3000 ISC1=1500

set datapath=C:\Users\Miguel\Desktop\PRUEBA\Result

visualize What={voltages} element=line.LINE 33
visualize What={currents} element=line.LINE33

Figure 3-3: Storage default mode.

34

Chapter 4

Web tool: FloWI

FloWI stands for Flow Web Interface. This means that it is a web tool designed for the
visualization and study of the power flow results obtained from Opendss as explained in
chapter 3. This tool is based on data driven documents (from now onwards D3) for the data
representation, advanced visualization systems, and real time events. The tool has been
designed specifically to study the impact of distributed generation and nearly-zero energy
buildings inside the distribution grid. The idea of creating this tool as a web page was that
it is possible to use it from every operation system. As it works in a browser, every device
that can navigate with a browser will be able to use FloWI. In fact, D3 supports every
modern browser except Internet Explorer 9 and below. FloWi has been tested in Chrome
and Safari with successful performance. Its design is modern and minimalist creating an
easy and fast-learning user experience. In figure 4-1 we can see the FloWI main page
before uploading any files for their visualization in Safari.

So, the needed files to make it work are, all the system data which defines the buses,
lines, transformers and loads. Those files are to draw the system network in the map. Then
those files must be complemented by the power flow results in format .csv so the web code
can process it. In this way, FloWI is able to draw the network which has all the power
flow simulation results during one day, every minute, related to each bus or each line so
it is possible to start the visualization of every parameter. In figure 4-2 we can see how
FloWTI has draw the low voltage test European feeder by the IEEE, with an installation of

PV panels and batteries on the 25% of the consumption buses.

35

o0 e [im] filec/iiL

p _with_Aitor_y_Alej il uni &

N Wl =

Ea
Node Line Node Global power
b ° & Power demanded | Powar generated Natpowsr | Voage Power
7 8 W
1 2 3 4 5 \ N
11 12
— b
13
0
Figure 4-1: FloWI Initial Page.
[JON] Em] file:///L p ared_with_Aitor_y_Alejand un & (4] [ui] [u) \T
Node Line Node Global power
h o 5 Q) Phase: A Power demanded Power generated Netpower || Voltage Power
Active Power =
£y ED
= O
B o
&
o nen n A 2
0:00 8:20 16:40
Reactive Power
=
=
1 & 0
[)
) M,,‘\..ﬂ‘ka k’
0 nen _n n (=]
0:00 8:20 16:40 ,.
— Q
fod
=
=
0O
o
E£))
O
0:00 8:20 16:40 o
Voltage Angle
-30
0:00 8:20 16:40 0

Figure 4-2:

FloWI before files were uploaded.

36

Table 4.1: FloWI Elements.

Number | Description

Upload zip files

Play and pause simulation

Node selector

Phase indicator

Line selector

Show power demanded on each bus during simulation
Show power generated on each bus during simulation
Show net power on each bus during simulation

Show voltage level on each bus during simulation
Draw global variables in the graphics area

Graphics area

Map area

Slider: time representation

O| 0| A O\ N[K| W —

,_‘,_‘
—_ o

[S—
[\

[S—
(O]

As can be seen, the screen is divided in two parts. The right part is to represent the
system, and the left part to draw graphics related to the buses or lines that we select. There
are also other elements as the menu on the top-left and a slider representing the time at the

button. All the elements and its description are explained in table 4.1.

4.1 Front-end Development

This section talks about the front-end development or the user experience interface. It
means all the elements and the interactivity that the web offers. So basically it is the visual
part.

FloWI has been designed with the intention of creating a great user experience. The in-
terface is simple, minimalist and intuitive. Once the electrical system data are ready, they
can be uploaded into the web, all included in a zip file and FloWI will process it automat-
ically. The format of the data and results is explained in chapter 3, among all the other

specifications about Opendss.

37

4.1.1 Design and programming

The web has been designed using three programming languages: HTML, CSS and JavaScript.
HTML stands for Hyper Text Mark-up Language. It is the standard language for creating
web pages. It gives the structure to the web. In fact, any web, is composed of many HTML
block elements as titles, paragraphs, lists or boxes.

CSS stands for Cascading Style Sheets. This language describes how HTML elements are
going to be displayed on screen. So basically, CSS defines styles on the web page, includ-
ing the design, layout and variations in display for different devices and screen sizes. With
CSS is possible to modify the position of every element, their colors, sizes and text fonts.
JavaScript was invented by Brendan Eich in 1995, it is used to program the behaviour of
web pages. JavaScript was used from buttons on click events, upload files events, to draw-
ing the data and the graphics related to the system. For this web, three main libraries have
been used in order to achieve a better performance. D3 (Data Driven Documents) is de-
signed for data representation. It has been used to draw all the network (buses and lines),
and include extra symbols for those buses which have PV generation installed or storage
installed. For drawing the graphics it has been used dygraph. This library read the input
data in the format data magnitude over time, so in this case, it represents voltage, current,
power and phase over time. This library also makes possible to make zoom over the graph-
ics on those areas of interest both in axis x and y. The third library used is Jquery. It is a
JavaScript library and its purpose is to make it much easier to use JavaScript. Actually, it is
very helpful to save time and lines of code just by calling a function, where if not, it would
be necessary to write many lines of JavaScript.

In appendix A it is the full HTML code of the web. In appendix B is the CSS code of the

web. In appendix C is the JavaScript code of the web.

4.1.2 Upload files

On the top-left menu we can see a file icon. By clicking on it, an event will generate a new
window to choose the zip file with all the data. Then, if we click on "Accept" FloWI will

automatically plot on the right side of the screen the map of the electrical system.

38

4.1.3 Visualization of results through on click event

In this paragraph is explained the results that is possible to see from the different elements
of the system. This are called on lick events because to see the results you have to click
on the element of the network you are interested in. So it is possible to evaluate the buses,
lines, storage elements and transformer buses. We are going to analyse this more deeper.
See figure 4-3 to know how graphics are draw. Note that in the third graph related to the

voltage, a zoom has been made over 9:00 to 10:00 hours to demonstrate how it works.

Active Power

vl

0:00 8:20 16:40
Reactive Power

0.5

0:00 8:20 16:40
Voltages (all phases)

240

238

9:00 9:20 9:40 10:00
Voltage Angle

-30

-30.2
0:00 8:20 16:40

Figure 4-3: Bus Graphics Layout.

e Buses: Each load in the system is represented as a red circle. To select a bus, we

can click on it or we can select it from the bus selector that is in the menu, as can be

39

seen in figure 4-2. Once the bus is selected, FloWI will draw a blue stroke around
it. This way it will be easy to see where this bus is located. At the same time, four
graphs will appear on the left side of the screen. Those graphs are the active power
both demanded and generated in kW. The reactive power in kW. The voltage level in
the three phases in V. The voltage angle in degrees. And next to the bus selector in
the menu, it will appear to which phase is the load connected.

If the bus has PV panels installed, FloWI will draw a solar symbol under the bus in

the map. If it has storage elements, FloWI will draw a battery symbol over the bus.

Lines: When selecting a line, the property width will duplicate its value so it will
be highlighted and easy to visualize. To select a line we can click on it, or we can
select the line we desired to analyse with the line selector on the menu. Then, it will
appear the four graphics on the left side of the screen. For the lines those graphics
will show the active power through the three phases of the line in kW. The losses in
the three phases in kW. The currents in the three phases in Amps. The total active
power through the line, summarizing the three phases and reordering its values from
the maximum to the minimum. So, this way, will be possible to know how much

time there is a power value flowing through the line.

Batteries: In case of being installed, its symbol will appear in the map. By clicking
on it, the battery will be highlighted and on the graphics will appear the active power
consumed and generated in that bus in kW. The net active power in kW. The battery

charge profile in kWh. The active power in and out in kW.

Global variables: At the top-right side of the screen, there is a bottom that says global
variables. If we click on it, then it will appear four graphics with global variables.
Those graphics are the global demanded and generated active power in kW. The net
active power in kW. The net active power reorganized from the maximum to the

minimum in kW. The global losses in the three phases in kW.

40

4.1.4 Visualization of results through slider event

Slider events are those ones that can be visualized as a time variation simulation during one
day. The slider can be played as a video simulation of the whole day, while we can choose
what variables we want to analyse in real time or we can handle the slider and move it as
we want, just as the slider of a video in a smart phone.

So, in order to select what variables we want to analyse, there are four buttons on the top
of the screen, over the map. Those buttons are for showing, demanded power, generated
power, net power and voltage value in per unit. This is better explained in figure 4-1 and
table 4.1. So for power variables, a color circle will appear around the bus. The radius of
this circle is proportional to the kW value. So the higher the power the bigger the circle.
In the case of the net power, there will be two colors for the circle. This is to differentiate
between positive and negative net power. See figure 4-4 where it is shown how power de-
manded simulation looks like. It can be seen that the simulation is paused at that instant of
the afternoon. The green circles represent the buses where there is power demand and the
bigger the circle the higher the demand. So it looks easy to see where is power demand and
how much is it.

In the case of voltage, there are five ranges of voltage, each of them related to a coloured
circle. So in case that the voltage is not at its nominal value boundaries that are + 2%,
FloWI will draw an orange circle if the voltage is over that boundary or a blue circle if
the voltage is below that boundary. Both colors will become more intense if the voltage
overcome the boundary of + 10%.

Then while simulation is running, it is possible to have a global vision of system’s vari-
ables and where and when power is either demanded or generated and voltage is between
its boundaries or not. All of this makes so simple and easy to analyse the results from a
power flow simulation and compare the same grid among different scenarios. As this tool
has been designed to represent distributed generation and storage, it will be easy to analyse

the effect that will have on the system the fact of including those elements.

41

Node Global power

Power demanded Power generated Net power Voltage Power

B Power demanded

20:08

Figure 4-4: Illustration of how power demanded is represented in the map.

42

4.2 Functionality development

The functionality means the internal work that the web does but the user does not see.
This is all the algorithms, functions or calculations. Every event or process have a code
behind. So in this section is explained how the web works, not as a simulation tool but as a

programming code.

4.2.1 Read Input Data

To start the simulation, first thing to do is click on the file button on the top-left side of
the window. It will be better explained in the user guide. But once the file is selected and
we click on "Accept", this button will call to the function UploadFile(event). To see this
function look appendix C, lines 455-464. This function will start the reading process by
calling all the reading functions and the PapaParse configuration.

Once the zip file has been uploaded by the user, FloWI is going to read all the files and
show the results. To read a ".zip" file it has been used the JavaScript library "PapaParse".
This library obtain all the data included in the file and read them.

The way that it reads the data must be configured. In appendix C, lines 22-40, it is the
configuration of PapaParse to specify to the function how to read the data. It specifies what
is the delimiter between two data, what is the end of the line and if the file has a header or
not, so it must skip the first row.

Then it starts to read each ".csv" file included in the ".zip" file. It is important that the
input files are called as the IEEE European LV Test Feeder have called them. Because this
function is going to seek for that specific file name and read it. This specifications will be
explained in the user guide.

Once the program has finished reading the input data it starts to read the result data in the
same way as the input ones. It is also important to use the same names that OpenDSS gave
to the result data. For the case of the active power generated due to PV panels or the storage
results, it works exactly the same way as the other result data. But there is an exception,
thus it is possible to include or not PV panels and storage, and if included, it can be in some

of the load buses but they does not have to be in all of them, is necessary to first initialize

43

the reading array with zeros. It is because if there is no PV panel or no storage at any bus,
it will consider their curves as zeros when simulating or drawing. And if there is some of
this elements, the function rewrite this array with the data obtained from OpenDSS. To see
the reading functions, see appendix C, lines 62-268.

After that, there are some functions to obtained the data of interest inside the files that have
been read and generate the arrays used for the simulation and for drawing at the graphics

area. To see these functions see appendix C, lines 307-452.

4.2.2 Draw the map

For drawing the map it has been used the JavaScript library D3, that stands for Data Driven
Documents, [10]. This library allow us to represent data variables on the screen and make
it interactive. It is possible to click on it, make zoom on it and draw different elements in
function of different events.

In that case, we want to draw the buses and the lines in the map. As FloWI has already read

the files with all the data, it now process it and works in the following way.

First, it creates and svg element over the map section that has been specified in the
HTML code and its size that has been specified in the CSS code. See appendix A, lines
164-234 and appendix B, lines 14-17.

Then, it creates a x-axis and y-axis scales to make the data fit the available space. Then it
uses this scales to adapt the bus coordinates to the map size and plot the buses with loads
as red dots in the map. After that, it draws the lines connecting the buses. At this point
the map is ready and its result can be see in figure 4-2. To see the code to draw the map,
see appendix C, lines 1587-1664. After that, it is also included the possibility of drawing
the PV panel symbol and the battery symbol related to the buses where they are connected.
The tool will only draw those elements when they are included in those buses. So in the
case of the PV panel, if exists, it will draw a solar icon. For the case of the battery, it will

draw two rectangles, one exterior rectangle with black borders to use it as a frame, and an

44

interior one, which width is variable in function of the battery percentage of charge. And
also the text inside of the rectangle that shows the percentage of charge of the battery, that
actualizes its value in function of the data.

See appendix C, lines 1587-1809 to know the necessary code to draw all the elements in

the map.

4.2.3 Draw the graphics

The graphics that appear on the left side of the screen as can be seen in figure 4-2, are
draw for one of the following reasons: That a bus is selected, a line is selected, a battery is
selected or the global variables button is clicked. In any of this cases, the graphics related
to each elements will be draw. It works in the way that every element in the map mentioned
before works as a button so it can be clicked. In the case of the buses and the lines it can
be also done by selecting from the bus or line selector button, see figure 4-1. Then if an
element is selected, there is a function that process which kind of element we are selecting
and also what is its number. For example, if we click on load number one, the program
will know that we are selecting a load, so it will call the data results related to that load
and then plot it. To draw the graphics it has been used the JavaScript library Dygraph.It
is a fast, flexible open source JavaScript charting library. The graph that is created is in-
teractive: you can mouse over to highlight individual values. You can click and drag to
zoom. Double-clicking will zoom you back out. Shift-drag will pan. The code to draw the

graphics for each element is in appendix C, lines 473-1314.

4.2.4 Perform the visualization simulation in the map

The visualization of the results in the map is related to the slider, which defines the variable
time and the buses power and voltage results. It works in the way that, the slider represents
1440 minutes, which is equal to 24 hours. Then, the result arrays have 1440 elements,

because of the OpenDSS and the IEEE test feeder that defines the case with a minute res-

45

olution. So for each slider position, we can point to that same position in the result arrays
and represent it. Basically that means that if we move the slider to the hour 10:00, which
is equal to minute 600, we access to position 600 of power demanded results and all the
other arrays. Then once we read those values, we create a function to decide which one we
are going to represent. This decision is made by clicking on the buttons placed on the map.
See table 4.1. Then FloWI will represent the variables related to the clicked button in the
instant showed by the slider.

To make the slider move by its own and represent a fast-motion simulation of the whole
day, the code includes a function that increments its value from 0 to 1439 each 200 ms. So
it is going to take 4 minutes and 54 seconds to do a whole day simulation. For making the
play button initialize the simulation, it has been used the function "onclick()" which calls
this function. There is also another function to hide this button and show a pause button

instead. See appendix C, lines 1341-1361.

46

Chapter 5

IEEE European Low Voltage Test

Feeder

IEEE stands for Institute of Electrical and Electronic Engineering. As part of it, there is
also the IEEE PES Distribution System Analysis Subcommittee’s Distribution Test Feeder
Working Group. The working group began as a task force with four radial test feeders
presented in 1991. Since then various test feeders have been added. [11].

This case is the one used to prove both the power flow tool OpenDSS and obtain the power
flow results for this grid. And also to represent this system and its results in the web tool

FloWI.

5.1 Introduction

In 2015, it was published the European Low Voltage Test Feeder. Until now, the test feed-
ers were based on North American systems. However, it is common to see low-voltage
distribution systems both radial and meshed in Europe. The purpose of this test feeder is
to provide a benchmark for researchers who want to study low voltage feeders, which are
common in Europe, and their mid- to long-term dynamic behaviours.

In order to evaluate the system properly and obtain good conclusions about concepts such
as energy storage and photovoltaic generation, it requires an element of time to truly un-

derstand the behaviour.

47

So the European low voltage test feeder features are:

e The test feeder is at the voltage level of 416 V (phase-to-phase). It is the typical

voltage value in European low voltage distribution systems.

e Load shapes are given with a one-minute resolution over a 24 hours period. This

allow us to perform a time-series simulation in OpenDSS.

e Time-series simulation results over a one-day period and static power flow calcula-

tion results at some key moments are provided.

5.2 Description

It is a radial distribution feeder with base frequency of 50 Hz. It has one connection point to
medium-voltage through a step-down transformer at substation. It steps the voltage down
from 11 kV to 416 V. Then all the buses below the connection to medium-voltage point are

at 416 V. The coordinates of this buses are specified at "Buscoords.csv" file.

Medium-voltage system is modelled as a voltage source with impedance. All data of
this substation bus is included in the file "Source.csv". The three-phase has a rated MVA

of 0.8 and delta/grounded-wye connection.

The distribution lines are defined by line codes and their length. All needed data about

the lines are included in the files "Lines.csv" and "lineCodes.csv".

For the loads, they have been modelled as a constant PQ loads. Each load is defined
using kW and power factor. Loads shapes are defined for time-series simulation. Each load
shape is linked to a load profile that defines for each minute the multiplier value of the load.
It means that the value of a load at a specific time is determined by its base kW value times
the multiplier of the load profile. All needed data are included in the files "Loads.csv",

"LoadShapes.csv".

48

As aresult of all of that, the test provides the load shape, or the consumption of active
and reactive power of each load for every minute during 24 hours. In this test feeder it is

considered to be 905 buses, 906 lines and 55 loads.

49

50

Chapter 6

Study Cases and Results

Once the tool have been finished, some tests and simulations have been carried on to prove
that it is working in the way it was expected. After the verification that it is well imple-
mented, we can move on to different study cases, from the user point of view, based on the

LV test European feeder.

For the simulation of the generation using PV panels, the data profiles have been ob-
tained from the software GenMix, created by Felix Manuel Lorenzo Bernardo y Edwin
Xavier Dominguez Gavilanes in the research group: LEMUR.

In this chapter, it is exposed the study of the variables in a load bus, in one of the
main feeder lines and the system global variables. All this variables have been studied for

different cases, which are:

e Base case: There are just loads simulating the consumers behaviour.

25% of PV generation: Here, one half of the consumers have PV panels installed.

75% of PV generation: Here, almost all the consumers have PV panels installed.

25% of PV generation and storage: Here, one half of the consumers have PV panels

and batteries installed.

75% of PV generation and storage: Here, almost all the consumers have PV panels

and batteries installed.

51

From the user side, the tool shows information of the nodes, the lines, distributed gen-
eration devices, and storage. This information can be studied in an individual scale and
global scale. As individual, it is possible to analyse just one node or line, in order to know
its active power profile, the generated power, voltage level or storage device variables. Or
in a line, can be analyse the current through the line, the power, and how much time the
power through the line is bigger or smaller than a determinate value. It is also possible to
know in which direction the power is flowing, in case that some nodes were injecting in
the grid. From a global point of view, this tool offers plenty of information for studying
the impact of installing distributed generation a storage in a micro-grid. it is possible to
have a global vision of how much power is consumed or generated at any time during the
whole day. It is also possible to see where are the main consumptions, or the voltage level
with just looking into the map were a real-time simulation is showing the behaviour of the

system.

6.1 Node

The selected node for the simulation is number 36. It is because this node is located far
from the slack bus, so the study of the voltage drop would be interesting. Furthermore, the
decision of what buses will have PV panels and storage installed, has been made randomly
and this node is one of the 25% buses that will have PV panels and storage in the following
cases. This node is connected to phase B.

So, here in that node, could be interesting to see its load active power profile, which has a
typical residential profile. More or less constant low consumption during the first hours of
the day, then it has some increasing during the morning and after that it goes down again
until the afternoon. During the late afternoon it has some peaks that emulates, the typical
behaviour in an average European home. The maximum active power peak as is shown in

figure 6-1 1s 2.53 kW.

Then, at this node (and any), would be interesting to know its power consumption, the

52

Active Power

1252: Active Power Consumed(kW): 2.53 Active
Power Generated(kW): 0

2

0

0:00 8:20 16:40

Figure 6-1: Node 36 load power profile.

generated power that in the base case, see that in figure 6-1 is zero, and its voltage level.

Active Power

9: Active Power Consumed (kW): 0.06 Active Power
Generated (kW): 0

2

0

0:00 8:20 16:40

Figure 6-2: Node 36 consumed and generated power profile.

Figure 6-2 illustrates the generated power profile for the case with PV panels installed.
It can be seen that the PV panels generate energy from 08:00 until 20:00 more or less. So
we have 12 hours of generation. And we can appreciate in figure 6-3, which shows the ac-
tive power through the feeder, the net power in the node. We can see that during the middle
hours of the day, the generation overcomes the consumption and therefore, it injects power
into the grid. This is one of the challenging problems for the stability of the grid that has

been introduced in the chapter 2 of the present document.

However, it is obvious that, from the consumers side, this scenario is quite more inter-
esting in economical terms, due to the reduction of a significant amount of power demanded
from the grid. But, as explained in chapter 2, having only generation can not be that good

as having generation plus storage. The benefits will be both for the utilities (in terms of

53

Active Power (all phases)

0: Power A (kW): 8.67e-13 Power B (kW): 0.06 Power
2 C (kW): -3.49e-12

0:00 8:20 16:40

Figure 6-3: Node 36 net power that flows through the feeder.

system stability) and for the consumers (considerable bill reduction).

Battery Charge

0:00 8:20 16:40
Active Power IN and OUT

0 o — ll

0:00 8:20 16:40

Figure 6-4: Node 36 stored energy profile and I/O power.

Figure 6-4 shows in the first graphic, the stored energy profile. The rated energy of the
storage elements that have been introduced in OpenDSS is 7kWh. Which is the maximum
they can store. The graphic shows how the battery increase its stored value when the gener-
ated power is bigger than the demanded. The second graphic shows the power that flows in
(green) or out (blue) the storage device. It simulates that the battery has a current controller
to adapt the charging power ratio. The battery discharge when the demand is bigger than

the generation, and the stored value is over 20%.

54

For the simulation of the storage elements behaviour it has been simulated this case
for various days, in such form that, the initial storage values are not the minimum, but a
value obtained from many iterations. This was made with the intention of obtain a better
approach to a real scenario, where the values of the batteries at the beginning of the day
will be different, in function of previous days generation and consumption profiles. Then

the battery of this node has a storage value of 24% at the beginning of the day.

Even if this graphic do not illustrate quite well the difference in the power demand
among having or not storage devices installed, figure 6-5 illustrates it quite well. We can
see that this node will only need to obtain energy from the grid during few instants in the

morning, and then it is self sufficient for the rest of the day.

Active Power (all phases)

0: Power A (kW): -7.87e-12 Power B (kW): -1.13e-5
Power C (kW): 3.49e-12
0.2

0:00 8:20 16:40

Figure 6-5: Node 36 power flowing through the feeder.

Figure 6-6 illustrates the monotone curve of power consumption in node 36 with the
use of storage devices. That shows that it has been consuming power from the grid for

around 200 minutes.

Monotone Load Curve
0: Monotone Load (kW): 0.29

0.2

0 500 1000

Figure 6-6: Node 36 power monotone curve.

55

Table 6.1: Conclusions from the node analysis.

Base case | Generation case | Generation and storage
Self-sufficient time (min) 0 400 1200
Max power in feeder (kW) 2.4 2.4 0.3
Power injected in the grid No Yes No

In table 6.1, are compared some variables. How much time the node is self-sufficient,
the maximum power through the feeder that connects the node to the rest of the grid, and

if at any time, some excess energy is injected in the grid.

As conclusions for this case, we have studied one node, that has a single-phase load
in three different scenarios. Just with consumption, with PV panels generation and with
storage devices included. It can be seen that, once there are PV panels installed, and the
generation overcomes the demand, the node will become a generation node. As can be seen
in next study cases, one single node injecting into the grid will not make the difference, but
when the number of nodes that have PV panels installed without storage devices grows, the
problem is huge. It will not be consumption enough inside this micro-grid to consumed
all this generation, therefore it will be injected to the high-voltage side of the transformer,
and that could cause huge damage to this device when the power is not flowing through
the same direction in the three phases. We can not forget that, there will be no problems
only for the utilities but for consumers as well. If the substation transformer is threatened,
it will be more maintenance interventions and bills will grow. Also, all that energy, from
the consumers point of view is money wasted. Unless there is a specific legislation that
make sure that some utilities is going to pay for that energy, it will not come back and later,
that energy will be needed after the sunset. Then, the installation of storage devices, could
be an answer both for utilities and consumers. As can be seen in this node, with this load
profile, and generation, it could be practically self-sufficient during all day in a sunny day
like this scenario. It has positive impacts both in system stability, in reducing maintenance

costs of the grid, in reducing the consumers bill, and in reducing CO2 emissions.

56

6.2 Line

Analysing a line with FloWI will report information about the currents, power and losses
in each of the three phases. It will be useful for the capacity studies and design. Here in
this case it will be analysed one of the main feeders of the system, that will show the power
exchange between the high-voltage side and the low-voltage side, and the effect of having

or not generation and storage devices.

Figure 6-7, illustrates the four graphics that FloWI calculates and shows when the line
is selected. The first one is the active power flowing through the three phases, the second
one are the currents in the three phases, the third are the losses and finally the monotone
curve, summarizing the power through the three phases of the line. With this last curve we
can know how much time the power is bigger than some value, which is useful to under-
stand the dimension of power flowing through it and for how much time. This figure, is

from the base case, without generation or storage.

Then, based on those curves, we can easily understand the magnitude of the power, cur-
rent and losses through the line, and in this case, through the grid, as it is part of the main
feeder. Power and current, are always positive, as expected, thus there is no generation

distributed among the grid and consequently it flows only in one direction.

Figure 6-8 illustrates the curves from the case where the 25% of nodes has PV pan-
els installed. It can be rapidly seen, that, during the hours around 14:00, the power curve
goes down zero. It means that during that instants, the nodes are injecting in the grid, and
globally, they are overcoming the grid power demand, so the only choice is to inject it to
the high-voltage side. This could be specially dangerous for the system stability and for
the transformer, if one of the phases has a positive power flow (from high-voltage to low-

voltage) and if in any other phase is all the way around.

It actually happens in this case, as can be seen in figure 6-9, that is a zoom-in image

57

Active Power (all phases)

0:00 8:20 16:40
Losses (all phases)

0.2

0:00 8:20 16:40
Currents (all phases)

100

0:00 8:20 16:40
Monotone Load Curve

] 0: Monotone Load (kW): 59.3
50 1

0 500 1000

Figure 6-7: Line graphics in base case, active power (kW), Currents (A), Losses (kW) and
monotone curve.

58

Active Power (all phases)

0:00 8:20 16:40
Losses (all phases)

0.1
0
0:00 8:20 16:40
Currents (all phases)
100
0 lhsion - :)
0:00 8:20 16:40
Monotone Load Curve
50

0 500 1000

Figure 6-8: Line curves in the case of 25% of PV panels in the nodes.

59

of the active power in the case of 25% of PV panels installed. Here one of the phases has
negative values, and the other two positive values and from time to time it happens just the

opposite.

Active Power (all phases)

12:40 13:00 13:20 13:40 14:00

Figure 6-9: Active power flow .

Figure 6-10 illustrates the variables through the line for the case when the 75% of the
nodes have PV panels installed. Comparing it to the previous case of 25% of panels in-
stalled and the base case, allows us to see that the power flowing towards the high-voltage
side, has a quite important value, bigger than before. It is because there is no chance to

store the excess power. But it takes only a look to understand what is happening in the line.

Figure 6-11 illustrates the behaviour for the case when there are installed PV panels and
storage devices in 25% of the nodes. Here it can be immediately appreciated the effect of
the storage devices, thus there is no more negative power values flowing to the high-voltage
side. In fact the power flowing through the line, during that hours is smaller because excess

power is now storage where it is produced.

Figure 6-12 illustrates the behaviour for the case when there are installed PV panels
and storage devices in 75% of the nodes. Here, as the scenario is supposed to be a sunny
day, the storage devices could get fully charged during the peak of generation and lower
consumption. As can be seen, in one of the phases (phase C) there is an important power
injection to the high voltage side. This phase is the one with less nodes connected to it and

lower consumption. This information, suggest that maybe, some nodes connected in phases

60

Active Power (all phases)

0:00 8:20 16:40
Losses (all phases)

0.1

0:00 8:20 16:40

100

0:00 8:20 16:40
Monotone Load Curve

—

0 500 1000

50

Figure 6-10: Line curves in the case of 75% of PV panels in the nodes.

61

Active Power (all phases)

0:00 8:20 16:40
Losses (all phases)

0.1

0:00 8:20 16:40
Currents (all phases)

100

0:00 8:20 16:40
Monotone Load Curve

40

20

0 500 1000

Figure 6-11: Line curves in the case of 25% of PV panels and storage in the nodes.

62

A and B should be instead connected to phase C, in order to balance as much as possible
the grid. Also, in this case, the currents are smaller, thus the power flowing from and to the
high-voltage side has been reduced. Therefore, currents through the line get smaller. Due
to that fact, line dimensions could be reconsidered thus there is no need to have a line with

the same characteristics as in the base case.

Active Power (all phases)

0:00 8:20 16:40

0.05

0:00 8:20 16:40

100

50

0:00 8:20 16:40
Monotone Load Curve

20

0 x

0 500 1000

Figure 6-12: Line curves in the case of 75% of PV panels and storage in the nodes.

63

As conclusions from the study of the line, it has been analysed the variations in power
and current through the line for the five cases. It has been clearly seen, that including much
distributed generation without storage devices, could become a challenge for the utilities to
keep the system stability. Furthermore, in a radial distribution like this one, a bad distribu-
tion of the consumers connected to each phase, could make that in some phases consumers
have to consumed power from the utilities and however, in other phase, consumers have
their storage devices 100% charged and they must inject power into the grid. Then, it could

be really interesting to redistribute consumers to make the grid as balanced as possible.

6.3 Global variables

This case illustrates the global vision of the grid that FloWI can offer. Here there are
analysed global variables that appear in the graphics display and also how the real-time
simulation could show and help in monitoring what is happening in the grid, in terms of
power consumption, generation, the voltage level, the amount of energy stored in the bat-

teries and its status.

First, we are going to compare the graphics of the global variables for the base case, the

75% of PV panels case and the 75% of PV panels and storage devices case.

Figure 6-13 illustrates the graphics with the global variables of the base case. As can
be seen, there is only power consumed, and the monotone curve is always positive so there

is no power injection into the high-voltage side.

Figure 6-14 illustrates the graphics of the global variables for the case where 75% of
the nodes have PV panels installed. It can be seen in the first graphic, how the generation
and consumption curves are overpassed. Then, the net power illustrates where the grid is
consuming power from the substation (positive values) and when it is injecting power to

the high-voltage side (negative values). To understand better the magnitudes of time and

64

Active Power Consumed and Generated

50
0

0:00 8:20 16:40

Net Active Power

50

0

0:00 8:20 16:40

Monotone Load Curve

50

0 ~—

0 500 1000
Global Losses(all phases)

2

0 "

0:00

Figure 6-13: Global graphics for the base case.

65

power, is better looking to the monotone curve, where the power is ordered from higher
value to lower value for each minute of the day. Therefore we can easily identified, that
the grid is consuming power from the substation for 1000 minutes a day, and it is injecting

power during the rest of the day.

Active Power Consumed and Generated

50
0

0:00 8:20 16:40

Net Active Power

50

0

0:00 8:20 16:40

Monotone Load Curve

50

\

0 500 1000
Global Losses(all phases)

0:00 8:20 16:40

Figure 6-14: Global graphics for the 75% of nodes with PV panels case.

Figure 6-15 illustrates the graphics of the global variables for the case where 75% of

the nodes have PV panels and storage devices installed. Comparing it to figure 6-14, the

66

net power curve is more flat, and the monotone curve shows that there is no as much power

injection as in the previous case, due to the majority of the excess power is stored and used

along the day.
Active Power Consumed and Generated

50

0

0:00 8:20 16:40

Net Active Power

20

0

0:00 8:20 16:40

Monotone Load Curve

20

0 500 1000
Global Losses(all phases)

0.5

01 el

0:00 8:20 16:40
Figure 6-15: Global graphics for the 75% of nodes with PV panels and storage case.
But if looking this graphics could give a good approach of the power exchange during

one day in this grid, the real-time simulation could add a lot of valuable information and

data. By clicking of the play button, the minute simulation begin. And it can be configured,

67

as explained in chapter 4, how to visualize the different variables.

For example, the maximum peak of consumption occurs at 09:25 hours. In figure 6-16,
can be seen what nodes are consuming (green circle), and the magnitude of its consump-
tion with the circle size. This helps quite a lot to analyse these nodes separately if needed,
and locate where are the biggest consumptions in the grid, and in which phase they are

connected.

Node Global power

Power demanded Power generated Net power Voltage Power

@ Power demanded

9:25

Figure 6-16: Real-time simulation of consumed power.

Then, it could be interesting to analyse the voltage level during this instant, to locate

if there are nodes, with voltage values under its nominal value. Figure 6-17 illustrates, the

68

real time simulation of voltage level in the nodes. In the right-low corner, there is a legend,
specifying the voltage ranges and its associated colors. As can be seen, there are many
nodes with a voltage level below its nominal but inside the boundaries. Noticed that, the
more distance from the substation (yellow node), the more nodes have low voltage levels.
This will help to analyse in what phase that nodes are connected and if there is other phase
with a higher voltage level, to compensate the system. In this particular case, all the marked
nodes but four, are connected to phase B, which can be known by clicking on them. There-

fore, it could be interesting to redistribute some of phase B nodes to other phase.

Node Global power

Power demanded Power generated Net power Power

V=1.1p.u.

V=1.02 p.u.

V < 0.98 p.u.
= @ V=<09p.u.

9:25

Figure 6-17: Real-time simulation of voltage level.

For the case with 75% of nodes with PV panels installed, there are still low voltages at

69

that time ox maximum consumption, but is quite attenuated by the generated power which
elevates the voltage. However, at some point during the middle hours of the day, what hap-
pens is the opposite and some nodes have voltage levels above its nominal value. Figure
6-18 illustrates this scenario. Noticed that it is possible to know in which nodes are PV
panels installed looking to the sun symbol under them. In this figure it is painted in green

because they are generating. When they are not generating they will be painted in black.

Node Global power
Power demanded Power generated Net power Power
() ®
® ®
o ()
)
®
(0
)
(2 ()

)
O ()
(2
s o
Q 0
o

@ Vz=1.1p.u
Lo V=1.02 p.u.
a Lo V <0.98 p.u.

e ® V<09pu.

12:20

Figure 6-18: Real-time simulation of voltage level with PV panels installed.

It can be also possible to see which nodes are generating, with the coloured sun symbols
and by clicking in the button generated power. It will show, like in the case of the consumed

power, the nodes that are generating with a green circle around them, and changing its size

70

to represent the power magnitude. And so happens with the net power if we want to analyse

if the node is consuming or injecting power in the grid.

Figure 6-19 illustrates the real-time generated power analysis.

Node

Power demanded Power generated Net power Voltage

12:54

Global power

Power

B Power generated

Figure 6-19: Real-time simulation of generated power with PV panels installed.

Figure 6-20 illustrates the real-time net power analysis.

Finally, in the cases where there are storage devices, it will appear a battery symbol

over the node, indicating its percentage of energy stored, and its status (idling, charging

and discharging). Figure 6-21 illustrates one area of the map, that it was zoomed-in. It is

71

Node Global power

Power demanded Power generated Voltage Power

L) L]
® .
°)
)
®
0
°
o -
O,
°
LJ
®
()
()
' : .
) ()
o .
L)
- (0
()
L)
=)
LJ
.
°
o o B Pdemanded > Pgenerated
e B Pdemanded < Pgenerated
)
9:25

Figure 6-20: Real-time simulation of net power with PV panels installed.

72

possible to see the nodes, with sun symbols, representing that there are PV panels installed
and with battery symbols. The batteries are either green (charging), red (discharging) and
blue (idling). And as the power demanded button is clicked, the green circles around the
nodes, represent that there is consumption in this precisely instant. This shows the poten-
tial of this tool. As can be monitored the data of every single element in the grid, and its

behaviour.

Node Global power

Power demanded Power generated Net power Voltage Power

v -

—_
.)

B Power demanded

18:07

Figure 6-21: Real-time simulation of demanded power with PV panels installed and storage
devices.

Table 6.2 shows a recompilation of the main concepts studied in this case and the results

obtained with FloWI.

73

Table 6.2: Conclusions from the global variables analysis.

Base case | Generation case | Generation and storage
Power injected into the grid No Yes Yes
Time injecting to the HV-side(min) 0 430 140
Transformer threatened No Yes Yes
Voltage over nominal value No Yes No
Voltage below nominal value Yes Yes Yes
Voltage out of boundaries No No No
Global losses reduction(%) - 15% 50%
Efficiency increase - Yes Yes

To conclude this study, we have demonstrated the potential of the tool in measuring the
impact of including distributed generation and storage in the distribution system. FloWI
provides data about the power consumption, power generation, voltage level, power injec-
tion into the grid and storage percentage of the batteries. These features, make possible to
reconsider the connections of the nodes to the three phases, to balance the system as much

as possible, and to re-dimension the lines through the grid in the scenario of storage devices.

74

Chapter 7

Conclusions

In this thesis we have exposed a brief introduction into the residential power consumption
and generation, and its importance in the electrical system and for the environment. The
trend on create buildings that are almost self-sufficient (nearly-zero energy buildings), is
growing fast. As the consumers that are interested in installing PV panels in their homes
and storage devices. Some companies have already launch their products covering that de-
mand. Therefore, governments and utilities, should create policies to regulate its use and
move the electrical system into an industry as free of CO2 emissions as possible.

In terms of technical aspects we have defined the load flow problem formulation and two
different iterative methods to solve it, Gauss-Seidel and Newton-Raphson. Then we have
presented the software used to solve the power flow for a micro grid using Epri OpenDSS,
which with using the input data we are given, it makes all the mathematical resolution and
generates .csv files with the results. But, as the main purpose of this thesis is to represent
real-time simulations of power flow solutions, a new web tool has been created to accom-
plished the desire outcome. It is called FloWI, and it read all the grid parameters, input
data and results data, and creates an interactive visualization of the system, that enables the
final user to measure the impact that distributed generation and storage could have in the
system.

FloWI was created to be as simple and interactive as possible, creating a modern environ-
ment. his features, along with the possibility of using it in any operative system where

crucial to determine that FloWI must be created as a web tool, so it can be used in any

75

browser. That allow us to work with this tool, as we do with modern web sites, clicking on
any system element, and visualize its main parameters. Also, it can carried out real-time
simulations, where the user can see the behaviour of the system in terms of power con-
sumption, generation, voltage level or energy stored.

Finally we have study different scenarios, proving the many possibilities that FloWI has.
As can be seen this kind of data representation enhance quite a lot the analysis of electri-
cal distribution systems, and make it easier to have a modern, global vision of the grid, to
control it in a better and more effective way. It allows to simulate possible scenarios, by

modifying the input data, or study existent cases in order to improve them.

76

Chapter 8
Bibliography

- [1]: William H. Kersting. "Distribution system, modelling and analysis".

- [2]: Felix Manuel Lorenzo Bernardo, Edwin Xavier Dominguez Gavilanes. "Computer
Tool for assessing the power generation-mix in residential Nearly Zero-Energy Buildings".
- [3]: Pablo Arboleya, Miguel Huerta, Bassam Mohamed, Cristina Gonzalez-Moran, Dept.
of Electrical Engineering, University of Oviedo, Gijon, Spain, Xavier Dominguez, Dept. of
Automation and Control, national poly-technical school of Quito, Ecuador "Assessing the
Effect of nearly-Zero Energy Buildings on Distribution Systems by Means of Quasi-Static
Time Series Power Flow Simulations".

- [4]: "Red Electrica de Espafia annual report".

- [5]: C.S. Antonio y col. GENERACION DISTRIBUIDA, AUTOCONSUMO Y REDES
INTELIGENTES: UNED - Universidad Nacional de Educacion a Distancia, 201.

- [6]: Rasmus Luthander y col. “Photovoltaic self-consumption in buildings: A review”.

- [7]: Antonio Gomez-Exposito, Antonio J. Conejo, Claudio Cafiizares. "Electric Energy
Systems Analysis and Operation".

- [8]: R. C. Dugan, “Reference guide: The open distribution system simulator (opendss),”
Electric Power Research Institute, Inc, vol. 7, 2012.

- [9]: R. Dugan, “Opendss storage element and storage controller element,” 2010.

- [10]: Scott Murray. "Interactive Data Visualization for the web".

- [11]: IEEE, "The IEEE European Low Voltage Test Feeder".

77

78

N O L AW

oo

10

11
12
13

14
15

Appendix A

HTML Source Code

<!DOCTYPE html>

<html >

<head >

<meta charset="utf —8">

<meta name="viewport" content="width=device—width, initial —

scale=1">

<!—— Latest compiled and minified CSS —>
<link rel="stylesheet" href="https ://maxcdn.bootstrapcdn.com

/bootstrap/3.3.7/css/bootstrap.min.css">

<!—— jQuery library —>
<script src="https ://ajax.googleapis.com/ajax/libs/jquery

/3.1.1/jquery .min.js"></script>

<!—— Latest compiled JavaScript —>

79

16

17
18

19
20
21
22
23
24
25
26
27
28
29
30

31

32
33
34
35
36
37
38
39
40
41

<script src="https ://maxcdn.bootstrapcdn.com/bootstrap
/3.3.7/js/bootstrap.min. js"></script >

<script src="https ://use.fontawesome.com/b4f3cf1867.js"></
script >

<script src="./js/papaparse.min. js"></script>

<script src="./js/jszip.min.js"></script>

<script src="./js/async.min.js"></script>

<script src="./js/d3.v3.js"></script>

<script src="./js/underscore—min.js"></script>

<script src="./js/jquery —3.2.0.js"></script>

<script src="./js/jquery—ui.js"></script>

<script src="./js/dygraph.min.js"></script>

<link rel="stylesheet" href="./js/jquery—ui.css">

<link rel="stylesheet" href="./js/dygraph.css">

<!—— <link rel="stylesheet" href="./js/jquery—ui.
structure .css"></link >

<link rel="stylesheet" href="./js/jquery—ui.theme.css"></
link> —>

<!—— Libreria para cambiar a formato minutal —>

<script src="./js/numeral.min.js"></script >

<!——Libreria de estilos para los botones del mapeado—>

<script src="./js/code.js"></script>

<link rel="stylesheet" href="estilos.css">

<!—— Prueba para botones del mapa——>

<script>

$(function () {

80

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

$("input[type="radio *]").checkboxradio ({
icon: false

P

P

</script>

<title >FloWI</title >

</head>

<!—— programa de prueba para la web con bootstrap —>
<body>

<div class="row full —height">

<div class="col—-sm—5 full —height">

<div class="cabecera">

<!—— Boton para zip —>

<div class="menu" id="upload">

<input type="file" name="" id="file" onchange="uploadZip (

event)">

81

71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

92
93
94
95
96
97
98

<label for="file"><i class="fa fa—folder—open fa—2x" aria—
hidden="true "></i></label >

</div>

<!—— boton para empezar simulacion —>

<div class="menu" id="simulate">

<button class="button button3" onclick="startSimulation ()">

<i class="fa fa—play—circle fa—2x" aria—hidden="true"></i>

</button >

<div i1d="pause">

<button class="button button4" onclick="stopSimulation ()">

<i class="fa fa—pause—circle fa—2x" aria—hidden="true"></i>

</button >

</div>

</div>

<div class="menu" id="node">

<form>

<div class="form—group">

<label for="usr">Node</label >

<input type="number" class="form—control" id="load_index"
min="1" max="56" onchange="SelectNodeFromButton ()">

</div>

</form>

</div>

<div class="menu" id="phase">

<form>

<div class="form—group">

82

99 <!—— Selector de fase —>

100 <label for="sell"></label>

101 <input class="form—control" 1d="sell" onchange="SelectLoad ()
">

102 <!——<option>Phase: </option >

103 <option>Phase :A</option >

104 <option>Phase :B</option>

105 <option>Phase:C</option>——>

106 </div>

107 </form>

108 </div>

109

110 <div class="menu" id="line">

111 <form>

112 <div class="form—group">

113 <label for="usr">Line </label >

114 <input type="number" class="form—control" id="line_index"
onchange="SelectLineFromButton () ">

115 </div>

116 </form>

117 </div>
118
119 </div>
120

121 <div class="graficas">

122 <div class="graph" id="P">
123 </div>

124

125 <div class="graph" 1d="Q">
126 </div>

83

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

146
147

148
149

150
151

152

<div class="graph" id="V">

</div >

<div class="graph" id="delta">
</div>

</div >

</div>

<div class="col—sm—7 full —height" i1d="columnaizda">

<div class="botonesmapa">

<div class="widgetl">

<fieldset >

<legend >Node</legend >

<label for="radio —1">Power demanded </label >

<input type="radio" name="radio —1" id="radio —1" onclick="
DibujaP () ">

<label for="radio —2">Power generated </label >

<input type="radio" name="radio —1" id="radio —2" onclick="
DibujaPgen () ">

<label for="radio —3">Net power</label >

<input type="radio" name="radio —1" id="radio —3" onclick="
DibujaPneta () ">

<label for="radio —4">Voltage </label >

<input type="radio" name="radio —1" id="radio —4" onclick="
DibujaV () ">

</fieldset >

84

153
154
155
156
157
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172

173
174
175

176
177
178

</div>

<div class="widget2">
<fieldset >

<legend >Global power</legend>

<label for="radio —5">Power</label >

<input type="radio" name="radio —1" id="radio —5"

DibujaPotenciasGlobales () ">

<!l——<label for="radio —6">Current </label >

<input type="radio" name="radio —1" id="radio —6">

<label for="radio —7">Losses </label >
<input type="radio" name="radio —1"
</fieldset >

</div>

</div>

<div id="map">

<div id="legend—voltage">

<div class="legend—color">

<svg class="circulo" height="8" width="8">

onclick="

id="radio —-7">——>

<circle cx="4" cy="4" r="5" stroke="" stroke—width="" fill="

hsla (26, 100%, 54%, 1)" />
</svg>

<svg class="circulo" height="8" width="8">

_nn

<circle cx="4" cy="4" r="5" stroke= stroke —width="" fill="

hsla (28, 50%, 70%, 1)" />
</svg>

<svg class="circulo" height="8" width="8">

<circle cx="4" cy="4" r="5" stroke="" stroke—width="" fill="

hsla (200, 50%, 70%, 1)" />

85

179
180
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

198
199
200

201
202
203
204
205

</svg>

<svg class="circulo" height="8" width="8">

<circle cx="4" cy="4" r="5" stroke="" stroke —width=""
hsla (249, 100%, 19%, 1)" />

</svg>

</div>

<div class="legend—text">

V ≥ 1.1 p.u.
V ≥ 1.02 p.u.
V ≤ 0.98 p.u.
V ≤ 0.9 p.u.

</div>

</div>

<div i1d="legend —netpower">
<div class="legend—color">

<svg class="circulo" height="8" width="8">

<circle cx="4" cy="4" r="5" stroke="" stroke—-width=""
green" />

</svg>

<svg class="circulo" height="8" width="8">

<circle cx="4" cy="4" r="5" stroke="" stroke—width=""
blue" />

</svg>

</div>

<div class="legend—text">

Pdemanded > Pgenerated

86

fill="

fill="

fill="

206
207
208
209
210
211
212
213
214

215
216
217
218
219
220
221
222
223
224
225
226
227

228
229
230
231
232
233

Pdemanded &I1t; Pgenerated
</l1>
</div>

</div>

<div 1d="legend—genpower">

<div class="legend—color">

<svg class="circulo" height="8" width=

<circle cx="4" cy="4" r="5" stroke=
green" />

</svg>

</div>

<div class="legend—text">

Power generated

</div>

</div>

<div 1d="legend—conpower">

<div class="legend—color">

<svg class="circulo" height="8" width=

<circle cx="4" cy="4" r="5" stroke=
green" />

</svg>

</div>

<div class="legend—text">

Power demanded

</11>

87

H8H>

stroke —width=""

H8H>

stroke —width=""

fill="

fill="

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

251
252
253
254
255
256
257
258
259
260
261
262

</div>

</div>

</div>

<!l—— Introduccion del boton de slider —>
<div id="slider">
<div 1d="custom—handle" class="ui—slider —handle"></div>

</div>

</div>

</div>

<script>

var w = $("body").width () ;

$("#pause").hide () ;

$(document) .ready (function () { /1l Script
para el boton pause del slider

$(".button3").click (function () {

$(".button3") . hide () ;

$("#pause").show () ;

1D

1)

$(document) .ready (function () {

$("#pause").click (function () {

$("#pause").hide () ;

$(".button3 ") .show();

1D

P

</script>

88

263 </body>
264
265 </html>

89

90

O o0 N N Bk~ WD =

e e e e T Y S S S Y
O o0 N O B B~ WD = O

Appendix B

CSS Source Code

html , body {

height: 100%;

margin: Opx Opx Opx Opx;
padding: Opx Opx Opx Opx;
}

. full —height{

height: 100%;
background—color: #FI1F1FI1;
}

#columnaizda {

margin—left: —15px;
background—color: #FI1F1FI1;
}

#map {

text—align: center;
height:88%;

}

#legend—voltage ,

#legend —netpower ,

91

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

#legend —conpower,
#legend —genpower {
display: none;
position: absolute;
right: 2%;

bottom: 5%:;
font—size: 11px;
line —height: 4px;

}

.legend—color{
position: relative;
right: —30px;
bottom: 2px;

}

.circulo{
display: block;
margin—bottom: 6px;

}

.legend—color ,
.legend —text{
display: inline;
text—align: left;
float: left;

}

1i {

list —style : none;

92

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

.menu {
text—align: center;
margin:2%;
margin—left: 15px;
padding—top: 5px;
height:30px;
float:left;
max—width: 100px;
}

#simulate {
margin—top :22px;
}

#node ,

#line {
margin—top: Opx;
color: black;

}

#phase {
margin—top: 4.5px;
color: black;

}

.nodecolor {

color: white;
font—size: 14px;

}

.graficas{

border —bottom—width :

93

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

border—bottom—style: solid;
border—bottom—color: #545454;
border—left —width: 3px;
border—left —style: solid;
border—left —color: #545454;

}

.graph{

text—align: center;
border—right —width: 3px;
border—right—style: solid;
border—right —color: #545454;
height: 25%;

display: block;
position: relative;
top: Opx;

margin—left: —20px;

}

#file {

opacity: 0;

overflow: hidden;

}

#upload {

width: 50px;

margin—top: 7px;

color: white;

}

#upload : hover {

color: deepskyblue;

}

.button {

94

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

border: none;

color: white;

text—align: center;
text—decoration: none;
display: inline —block;
font—size: 16px;
—webkit—transition —duration: 0.4s; /x
transition —duration: 0.4s;
cursor: pointer;

}

.button3 ,

.button4 {

color: white;
background—color: #545454;
}

.button3 :hover {

color: limegreen;

}

.button4 :hover {

color: yellow;

}

.cabecera{

height: 10%;
background—color: #545454;
margin—bottom: Opx;

}

.graficas{

height: 90%;

95

Safari

*/

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

/x Slider =/
#custom—handle {
width: 3em;

height: 1.6em;

top: 50%;
margin—top: —.8em;
text—align: center;

line —height: 1.6em;
}

#slider {

width: 95%;
position: relative;
top: Opx;

height: 1%;

}

/* Botones del mapasx/
.botonesmapa {
height: 9%;
position: relative;
top: 10px;

}

.botonesmapa legend {
font—size: 12px;

}

.botonesmapa label {
font—size: 10px;
margin—top: —20px;
}

.widgetl {

margin—left:5px;

96

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

float: left;
height: 100%:;

}
.widget2 {

margin—right:

float: right;
height: 100%;

}

/+ Estilos
#P,

#V,

#Q,
#delta {

5px;

graficas x/

background—color: #F4F5F6

}

/+« Estilos

para las

.dygraph—legend {

display: in—line;

}

.dygraph—title {

font—family :

font—size :

margin—left:

13px;

color: #113641;

}

Tpx;

sans—serif ;

/+ text —shadow :

.dygraph—axis—label —y{

font—family :

font—size:

10px

2

sans—serif ;

97

graficas de Potencia Activa x/

gray 2px 2px 2px

2

*/

200 }

201 .dygraph—axis—y{

202 margin—left: 2px;

203 }

204 .dygraph—axis—label —x{
205 font—family: sans—serif;
206 font—size: 10px ;

207 '}

NoliNe I e WY e

Appendix C

JavaScript Source Code

// Variables iniciales
var reader = new FileReader(); // reader class (no

la usamos)

var zip = new JSZip(); /1 zip class
var selected_load = null;
var position = null;

var sliderP = [];

var sliderPgen = [];
var sliderPneta = [];
var sliderV = [];

var sliderBat = [];

var sliderBatState = [];
var botonP;

var botonPgen;

var botonPneta;

var botonV ;

var valorslider = 0;
var stop;
var selected_line = null;

99

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

var selected_bat = null;

// Parametros de configuracion de lectura de datos

var config = {
delimiter: ",", // auto—detect
newline: "", // auto—detect
quoteChar: "7,

header: true,
dynamicTyping: true ,
preview: 0,
encoding: "",
worker: false ,
comments: "#",

step: undefined ,
complete: undefined,
error: undefined ,
download: false ,
skipEmptyLines: true,
chunk: undefined ,

fastMode: undefined ,

beforeFirstChunk: undefined ,

withCredentials: undefined

}s

var config_2 = {

delimiter: ",", // auto—detect
newline: "\n",

quoteChar: "7,

header: true ,
dynamicTyping: true ,

preview: 0,

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69
70
71
72
73
74
75
76
77

nn

encoding : ,

worker: false ,

comments: "#",

step: undefined ,

complete: undefined,

error: undefined ,

download: false ,
skipEmptyLines: true,

chunk: undefined ,

fastMode: undefined ,
beforeFirstChunk: undefined,
withCredentials: undefined

}i

/1 LECTURA DE DATOS

var zip_files , data_obj;

// Coordenadas

function read_Buscoords(cb) {
var data;

var filename = "Buscoords.csv";
zip_files[filename].async (" string")

{

data = Papa.parse(csv_data, config)
cb(null , data);
1)

}
// Codigos de linea

function read_LineCodes(cb) {
var data;
var filename = "LinesCodes.csv";

zip_files[filename].async (" string")

101

.then (function (csv_data)

.data;

.then(function (csv_data)

78
79
80
81
82
83
84
85
86

87
88
89
90
91
92
93
94
95
96

97
98
99
100
101
102
103
104

{

data = Papa.parse(csv_data, config).data;
cb(null, data);

1)

}

// Lineas

function read_Lines(cb) {

var data;
var filename = "Lines.csv";
zip_files[filename].async (" string ") .then(function

{

data = Papa.parse(csv_data, config).data;
cb(null, data);

1)

}

/] Cargas

function read_Loads(cb) {

var data;

var filename = "Loads.csv";
zip_files[filename].async (" string ") .then(function

{

data = Papa.parse(csv_data, config).data;
cb(null, data);

1D

}

// Shapes de las cargas (minutales)

function read_LoadShapes(cb) {

var data;

102

(csv_data)

(csv_data)

105
106

107
108
109
110
111
112
113
114
115
116

117
118
119
120
121
122
123
124
125
126

127
128
129
130
131

var filename = "LoadShapes.csv";

zip_files[filename].async (" string").then(function (csv_data)
{

data = Papa.parse(csv_data, config).data;

cb(null, data);

1)

}

// Fuente de tension

function read_Source(cb) {

var data;
var filename = "Source.csv";
zip_files[filename].async (" string").then(function (csv_data)

{

data = Papa.parse(csv_data, config).data;

cb(null, data);
1)

}

// Transformador

function read_Transformer(cb) {

var data;
var filename = "Transformer.csv";
zip_files[filename].async (" string").then(function (csv_data)

{

data = Papa.parse(csv_data, config).data[O0];
cb(null, data);

1)

103

132
133
134
135
136

137
138
139
140
141
142
143
144

145
146
147

148

149
150
151
152
153
154
155

// Perfiles de las cargas

function read_LoadProfiles(cb) {

var data;
var filename = "LoadProfiles.csv";
zip_files [filename].async (" string").then(function (csv_data)

{

data = Papa.parse(csv_data, config).data;
cb(null, data);
1)

}
//NUDO SLACK

// Potencia

function read_slack_pq(cb) { // Esta
funcion lee los datos de cada uno de los archivos con Py
Q para el nudo slack

var data;

var filename = "LV_Mon_slack_pq.csv";

zip_files[filename].async (" string").then(function (csv_data)
{

var new_csv_data = "hour,sec ,P1,Q1,P2,Q2,P3,Q3," + csv_data.

slice(csv_data.indexOf("\n")) // Creamos una nueva

variable para cambiar las cabeceras del archivo

data = Papa.parse(new_csv_data, config_2).data;
cb(null, data);

1)

}

// Tension(tres fases)

function read_slack_vi(cb) {

var data;

104

156
157

158

159
160
161
162
163
164
165

166
167
168

169

170
171
172
173
174
175

var filename = "LV_Mon_slack_vi.csv";

zip_files[filename].async (" string").then(function (csv_data)
{

var new_csv_data = "hour,sec,Vl,VAnglel ,V2,VAngle2,V3,
VAngle3 , 11 ,IAnglel ,12 ,TAngle2 ,13 ,IAngle3 ," + csv_data.
slice (csv_data.indexOf ("\n")) // Creamos una nueva
variable para cambiar las cabeceras del archivo

data = Papa.parse(new_csv_data, config_2).data;

cb(null , data);

1)

}

/1 CARGAS

// Potencia

function read_LV_Mon_load_pq(index, cb) {

/1 Esta funcion lee los datos de cada
uno de los archivos con Py Q en funcion del tiempo de
las 55 cargas

var data;

var filename = "LV_Mon_load" + index + "_pq.csv";

zip_files[filename].async (" string").then(function (csv_data)
{

var new_csv_data = "hour,sec ,P1,Q1,P2,Q2," + csv_data.slice (
csv_data.indexOf("\n")) // Creamos una nueva variable

para cambiar las cabeceras del archivo

data = Papa.parse(new_csv_data, config_2).data;
cb(data);
1)

}

// Tension

function read_LV_Mon_load_vi_1(index, cb) {

105

176
177
178

179

180
181
182
183
184
185
186
187

188

189
190
191
192
193
194
195
196

var data;

var filename = "LV_Mon_load" + index + " _vi_1.csv";

zip_files[filename].async (" string ") .then(function (csv_data)
{
var new_csv_data = "hour,sec,VI1_1,VAnglel_1,V2_1,VAngle2_1,
I1_1,IAnglel_1,12_1,TAngle2_1," + csv_data.slice(csv_data
.indexOf ("\n")) // Creamos una nueva variable para

cambiar las cabeceras del archivo

data = Papa.parse(new_csv_data, config_2).data;
cb(data);
1)

}
function read_LV_Mon_load_vi_2(index, cb) {
var data;

var filename = "LV_Mon load" + index + " _vi_2.csv";

zip_files[filename].async (" string").then(function (csv_data)
{

var new_csv_data = "hour,sec,V1_2,VAnglel_2,V2_2,VAngle2_2,
I1_2,TAnglel_2,12_2 ,TAngle2_2," + csv_data.slice(csv_data
.indexOf ("\n")) // Creamos una nueva variable para

cambiar las cabeceras del archivo

data = Papa.parse(new_csv_data, config_2).data;
cb(data);
1)

}
function read_LV_Mon_load_vi_3(index, cb) {
var data;

"

var filename = "LV_Mon_load" + index + " _vi_3.csv";

zip_files [filename].async (" string").then(function (csv_data)

{

106

197

198
199
200
201
202
203
204
205
206
207

208

209
210
211
212
213
214
215
216

217

218
219

var new_csv_data = "hour,sec,V1_3,VAnglel_3,V2_3,VAngle2_3,
I1_3 ,IAnglel_3,12_3 ,IAngle2_3," + csv_data.slice(csv_data
.indexOf ("\n")) // Creamos una nueva variable para
cambiar las cabeceras del archivo

data = Papa.parse(new_csv_data, config_2).data;

cb(data);

1)

}

/1 LINEAS

// Potencias

function read_LV_Mon_lines_pq_12(index, cb) {

var data;

var filename = "LV_Mon_line" + index + "_pq_vs_time_12.csv";

zip_files[filename].async (" string ") .then(function (csv_data)
{

var new_csv_data = "hour,sec ,P1,Q1,P2,Q2,P3,Q3," + csv_data.

slice (csv_data.indexOf("\n"))

data = Papa.parse(new_csv_data, config_2).data;
cb(data);

1)

}

function read_LV_Mon_lines_pq_21(index, cb) {

var data;

var filename = "LV_Mon_line" + index + "_pq_vs_time_21.csv";

zip_files[filename].async (" string").then(function (csv_data)
{

var new_csv_data = "hour,sec ,P1,Q1,P2,Q2,P3,Q3," + csv_data.

slice (csv_data.indexOf("\n"))
data = Papa.parse(new_csv_data, config_2).data;

cb(data);

107

220
221
222
223
224
225
226

227

228
229
230
231
232
233
234
235
236
237
238
239
240
241

242

243
244

1)
}
// Tensiones

function read_LV_Mon_lines_vi(index, cb) {

var data;

var filename = "LV_Mon_line" + index + " _vi_vs_time.csv";

zip_files[filename].async (" string ") .then(function (csv_data)
{

var new_csv_data = "hour,sec,Vl,VAnglel ,V2,VAngle2,V3,

VAngle3 , 11 ,IAnglel ,12 ,TAngle2 ,13 ,IAngle3 ," + csv_data.

slice(csv_data.indexOf("\n"))

data = Papa.parse(new_csv_data, config_2).data;
cb(data);

1)

}

// Generacion PV

function read_LV_Mon_gpv_pq(index, cb) {
var data = new Array(1440);

for (var i = 0; 1 < 1440; i++) {
data[i] = { P1: O, P2: 1 };

4

var filename = "LV_Mon_gpv" + index + "_pq.csv";

if (zip_files[filename]) {

zip_files[filename].async (" string ") .then(function (csv_data)
{

var new_csv_data = "hour,sec ,P1,Q1,P2,Q2," + csv_data.slice (
csv_data.indexOf ("\n"))

data = Papa.parse(new_csv_data, config_2).data;

cb(data);

108

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

261

262
263
264
265
266
267
268
269
270
271
272

1)

} else {
cb(data);
}

}
// BATERIAS

// Perfiles de baterias
function read_LV_Mon_bat_p(index, cb) {
var data = new Array(1440);

for (var 1 = 0; 1 < 1440; 1++) {
data[i] = { kWh: 0, kWOut: 0, kWIn: 0, State: 2 };

)
var filename = "LV_Mon_bat_" + index + ".csv";
if (zip_files[filename]) {

zip_files[filename].async (" string").then(function (csv_data)

{

var new_csv_data = "hour,sec ,kWh, State ,kWOut,kWIn, Losses ,
Idling ,kWhChg," + csv_data.slice(csv_data.indexOf("\n"))

data = Papa.parse(new_csv_data, config_2).data;

cb(data);

1)

} else {

cb(data);

}

}

// En principio no la vamos a utilizar

// function read_LV_Mon_bat_vi(index, cb) {
/1 var data = new Array(1440).fill (0);

// var filename = "LV_Mon bat " + index + " _vi.csv'";

109

273 /1 if (zip_files[filename]) {
274 11 zip_files[filename].async (" string").then(function
(csv_data) {

275 1/ var new_csv_data = "hour,sec,Vl,VAnglel V2,
VAngle2,11 ,IAnglel ,12 ,TAngle2 ," + csv_data.slice (csv_data
.indexOf ("\n"))

276 [/ data = Papa.parse(new_csv_data, config_2).
data ;

277 1/ cb(data);

278 /1 1)

279 /] } else {

280 // cb(data);

281 /1 }

282 /1 1}

283

284 var read_fcns = {

285 "Buscoords": read_Buscoords ,

286 //" LineCodes": read_LineCodes,

287 "Lines": read_Lines ,

288 "Loads": read _Loads,

289 //" LoadShapes": read_LoadShapes,

290 //" Source": read_Source,

291 "Transformer": read_Transformer ,

292 //" LoadProfiles": read_LoadProfiles

293 "pq": read_pq,

294 "vi_1": read_vi_1,

295 "vi_2": read_vi_2,

206 "vi_3": read_vi_3,

297 "slack_pq": read_slack_pq,

298 "slack_vi": read_slack_vi,

110

299 "lines_pq_12": read_lines_pq_12,

300 "lines_pq_21": read_lines_pq_21,

301 "lines_vi": read_lines_vi ,

302 "gpv_pq": read_gpv_pq,

303 "bat_p": read_bat_p,

304 //" bat_vi": read_bat_vi,

305 };

306

307 //Funcion de lectura de los datos con indice, es decir,
casos repetitivos (55 cargas ,905 lineas)

308 function read_pq(cb) {

309 var loads_data = {};

310 async.each(

311 _.range(55),

312 function (index, cb_in) {

313 read_LV_Mon_load_pq(index + 1, function (pq_data) {

314 loads_data[index + 1] = pq_data;

315 cb_in();

316 })

317 1},

318 function finish(err) {

319 cb(null, loads_data);

320 })

321 }

322 //Lectura de perfiles de generacion

323 function read_gpv_pq(cb) {

324 var loads_data = {};

325 async.each(

326 _.range(55),

327 function (index, cb_in) {

111

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

read_LV_Mon_gpv_pq(index + 1, function (pq_data) {

loads_data[index + 1] = pq_data;
cb_in () ;

P

},

function finish(err) {

cb(null, loads_data);

1))
}

/' Lectura perfiles de las baterias
function read_bat_p(cb) {
var loads_data = {};

async .each (

_.range (55),

function (index, cb_in) {

read_LV_Mon_bat_p(index + 1, function (pq_data) {

loads_data[index + 1] = pq_data;
cb_in () ;

P

}

function finish(err) {

cb(null, loads_data);

)
}

// function read_bat_vi(cb) {

// var loads_data = {};

/1 async .each (

// _.range (55),

/1 function (index, cb_in) {

// read_LV_Mon_bat_vi(index + 1,

112

function (

vi_data) {

358 // loads_data[index + 1] = vi_data;
359 // cb_in () ;

360 // 1)

361 // b,

362 // function finish(err) {

363 // cb(null, loads_data);

364 // 1)

365 /1 }

366 // Lectura de las tensiones de cada fase
367 function read_vi_1(cb) {

368 var loads_data = {};

369 async.each(

370 _.range(55),

371 function (index, cb_in) {

372 read_LV_Mon_load_vi_1(index + 1, function (vi_data) {
373 loads_data[index + 1] = vi_data;

374 cb_in () ;

375 })

376 1},

377 function finish(err) {

378 cb(null, loads_data);

379 })

380 }

381 function read_vi_2(cb) {

382 var loads_data = {};

383 async.each(

384 _.range(55),

385 function (index, cb_in) {

386 read_LV_Mon_load_vi_2(index + 1, function (vi_data) {

113

387 loads_data[index + 1] = vi_data;

388 cb_in();

380 })

390 1},

391 function finish(err) {

392 cb(null, loads_data);

393 })

394 }

395 function read_vi_3(cb) {

396 var loads_data = {};

397 async.each(

398 _.range(55),

399 function (index, cb_in) {

400 read_LV_Mon_load_vi_3(index + 1, function (vi_data) {
401 loads_data[index + 1] = vi_data;

402 cb_in () ;

403 })

404 1},

405 function finish(err) {

406 cb(null, loads_data);

407 })

408 }

409 // Lectura de las potencias de las lineas
410 function read_lines_pq_12(cb) {

411 var lines_data = {};

412 async.each(

413 _.range(905),

414 function (index, cb_in) {

415 read_LV_Mon_lines_pq_12(index + 1, function (pq_data) {
416 lines_data[index + 1] = pq_data;

114

417 cb_in () ;

418 })

419 1},

420 function finish (err) {

421 cb(null, lines_data);

422 })

423 |}

424 function read_lines_pq_21(cb) {

425 var lines_data = {};

426 async.each(

427 _.range(905),

428 function (index, cb_in) {

429 read_LV_Mon_lines_pq_21(index + 1, function (pq_data) {
430 lines_data[index + 1] = pq_data;

431 c¢b_in () ;

432 })

433},

434 function finish (err) {

435 c¢b(null, lines_data);

436 })

437 '}

438 // Lectura de las tensiones y corrientes de las lineas
439 function read_lines_vi(cb) {

440 var lines_data = {};

441 async.each(

442 _.range(905),

443 function (index, cb_in) {

444 read_LV_Mon_lines_vi(index + 1, function (vi_data) {
445 lines_data[index + 1] = vi_data;

446 cb_in () ;

115

447
4438
449
450
451
452
453
454
455
456
457

458

459

460
461
462
463
464
465
466
467
468
469
470
471
472
473

1))

i

function finish(err) {
cb(null, lines_data);
1))

}

/! function of upload text file

function uploadFile(event) {

var file = event.target. files [0];

reader .readAsText(file);

file

reader.onload = function (event) {
function after reading file data

var data_txt = event.target.result;
text 1n data_txt

/!l Parse CSV string

var data = Papa.parse(data_txt,

/!l console.log(data.data);

}s
}

function readFile (entry,

filename) {

// file uploaded

/!l start reading the

// run this

// obtain data as

config);

entry.async (" string").then(function (csv_data) {

data[filename] = Papa.parse(csv_data,

/!l console.log(data);
/!l console.log(1l);

1)

}

// SELECCION DE LA LINEA

116

config).data;

474
475
476
477
478
479
480
481
482
483

484

485
486
487

488
489

490
491
492
493
494
495
496
497

// Desde el boton

function SelectLineFromButton () {
line_index = +$("#line_index ") .val()
// console.log(load_index+1)

selectLine (line_index);

}

/1l Funcion select line

function selectLine (line_index) {

if (selected_line != null) {

/! Permite quitar

el stroke de una carga ya seleccionada

d3.select("#line_" + selected_line). attr (" stroke—width",
1.5).attr ("stroke", "darkcyan") // haciendo click
en una nueva

}

selected_line = line_index;

d3.select("#1line_" + selected_line).attr ("stroke—width", 4).
attr ("stroke", "darkcyan") // en una nueva carga

$("#line_index ").val(line_index);

$("#load_index").val(null); // resetear el boton de nodos y
la fase

$("#sell").val(null); // Resetear boton de la fase

var dataP1l_line_12 = [];

var dataP2_line_12 = [];
var dataP3_line_12 = [];
var dataP1_line_21 = [];
var dataP2_line_21 = [];
var dataP3_line_21 = [];

117

498 var datalLosses_ 1 =
499 var datalLosses_2

500 var datalLosses_3
501 var datall_line
502 var datal2_line

1]
— — L — — —

Il
— — —

503 var datal3 line =

504 var dataP_acumulada = [];

505

506 _.map(data_obj.lines_pq_12[line_index], function (data,
minute_index) {

507 dataP1_line_12[minute_index] = data.Pl;

508 dataP2_line_12[minute_index] = data.P2;

509 dataP3_line_12[minute_index] = data.P3;

510 })

511 _.map(data_obj.lines_pq_21[line_index], function (data,
minute_index) {

512 dataP1_line_21 [minute_index] = data.Pl;

513 dataP2_line_21 [minute_index] = data.P2;

514 dataP3_line_21[minute_index] = data.P3;

515 })

516 _.map(data_obj.lines_vi[line_index], function (data,
minute_index) {

517 datall_line[minute_index] = data.Il;

518 datal2_line[minute_index] = data.I2;

519 datal3_line[minute_index] = data.I3;

520 })

521

522 for (var i = 0; 1 < dataPl_line_12.length; i++) {

523 dataLosses_1.push(dataP1_line_12[i] + dataP1_line_21[1]);
524 datalLosses_2.push(dataP2_line_12[i] + dataP2_line_21[i]);

118

525
526
527
528
529
530
531

532
533
534

535
536
537
538

539
540
541

542
543

544
545
546
547
548

datalLosses_3 .push(dataP3_line_12[i] + dataP3_line_21[1]);

}
console.log(dataLosses_1[0])

// bucle para hacer el acumulado de potencias

for (var 1 = 0; 1 < dataPl_line_12.length; 1++) {

dataP_acumulada.push(dataPl1_line_12[1] + dataP2_line_12[1] +
dataP3_line_12[i]);

}

// console .log(dataP_acumulada)

dataP_acumulada.sort(function (a, b) { return b — a }); /1
la funcion sort() sirve para ordenar arrays, en este caso
de mayor a menor

var t_line = _.range(1440);

// Graficas de potencia de cada una de las lineas (tomadas en

terminal 1)
var P_lines = new Dygraph(
document. getElementById ("P") ,

_.zip(t_line , dataPl_line_12, dataP2_line_12, dataP3_line_12
)

{

labels: [’Minute’, ’Power AkW)’, 'Power B(kW)’, ’Power C(kW
)1,

animatedZooms: true ,

strokeWidth: 1.2,

title: *Active Power (all phases)’,
gridLineColor: ’rgba(0,0,0,0) ",
highlightCircleSize: 2,

119

549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

565
566
567
568
569

570
571
572

573
574
575

axes: {

x: |

axisLabelFormatter: function (t_line) {

return numeral(t_line x 60).format("00:00:00").slice (0, —3);
}

}

],
// strokeWidth: 0.5,

// strokeBorderWidth: isStacked ? null : 1,
highlightSeriesOpts: {

strokeWidth: 2,

strokeBorderWidth: 1,
highlightCircleSize: 3

}

1)

// Con esta funcion al seleccionar una fase, la grafica sale
destacada

var onclick_P_lines = function (ev) {

if (P_lines.isSeriesLocked()) {

P_lines.clearSelection () ;

} else {

P_lines.setSelection (P_lines. getSelection(), P_lines.
getHighlightSeries (), true);

}

4

P_lines .updateOptions ({ clickCallback: onclick_P_lines },
true) ;

P_lines.setSelection(false, ’'s010°);

/!l Graficas de perdidas en las lineas

var P_losses = new Dygraph(

120

576 document. getElementById ("Q") ,

577 _.zip(t_line , datalLosses_1, datalLosses_2 , datalLosses_3),

578 |

579 1labels: [’Minute’, ’Losses A(kW)’, ’Losses B(kW)’, ’Losses C
(kW) "1,

580 animatedZooms: true ,

581 strokeWidth: 1.2,

582 title: ’Losses (all phases)’,

583 // gridLineColor: ’rgba(0,0,0,0) ",

584

585 highlightCircleSize: 2,
586 axes: {

587 x: |

588 axisLabelFormatter: function (t_line) {

589 return numeral(t_line % 60).format("00:00:00").slice (0, —3);
590 }

591 }

592 1},

593 //strokeWidth: 0.5,

594 //strokeBorderWidth: isStacked ? null : 1,

595

596 highlightSeriesOpts: {

597 strokeWidth: 2,

598 strokeBorderWidth: 1,

599 highlightCircleSize: 3

600 }

601 }

602);

603 // Con esta funcion al seleccionar una fase, la grafica sale

destacada

121

604
605
606
607
608

609
610
611

612
613
614
615
616
617
618
619

620
621
622
623
624
625
626
627
628
629
630

var onclick_P_losses = function (ev) {

if (P_losses.isSeriesLocked ()) {
P_losses.clearSelection () ;

} else {

P_losses.setSelection (P_losses. getSelection (), P_losses.

getHighlightSeries (), true);

}

4

P_losses.updateOptions ({ clickCallback: onclick_P_losses },
true) ;

P_losses.setSelection (false , ’s001) ;

// grafica de la corriente de las lineas
var I_line = new Dygraph(
document. getElementById ("V"),

_.zip(t_line , datall_line , datal2_line, datal3_line),

{

labels: [’Minute’, ’Current A(A)’, *Current B(A)’, ’Current
CA)],

animatedZooms: true ,

strokeWidth: 1.2,

title: >Currents (all phases)’,
// gridLineColor: ’rgba(0,0,0,0) ",
highlightCircleSize: 2,

axes: {
x: |
axisLabelFormatter: function (t_line) {

return numeral(t_line % 60).format("00:00:00").slice (0, —3);

}
}

122

631
632
633
634
635
636
637
638
639
640
641
642

643
644
645
646
647

648
649
650

651
652
653
654
655
656
657

’s
// strokeWidth: 0.5,
// strokeBorderWidth: isStacked ? null : 1,

highlightSeriesOpts: {
strokeWidth: 2,

strokeBorderWidth: 1,
highlightCircleSize: 3

}

}

)

/" Con esta funcion al seleccionar una fase, la grafica sale
destacada

var onclick_I_line = function (ev) {

if (I_line.isSeriesLocked()) {

I_line.clearSelection () ;

} else {

I_line.setSelection(I_line.getSelection (), I_line.
getHighlightSeries (), true);

}

}s

I_line .updateOptions({ clickCallback: onclick_I_line }, true
)

I_line .setSelection (false , ’s001°’);

// grafica de potencia acumulada
new Dygraph (
document. getElementByld (" delta "),

_.zip(t_line , dataP_acumulada),

{

123

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676

677

678

679

680
681

labels: [’Minute’, *Active Power Consumed (kW) '],
animatedZooms: true ,

strokeWidth: 1.5,

title: >Cumulative Power’,

// gridLineColor: ’rgba(0,0,0,0)’

}

)3

} //end of select line

// SELECCION DE NODO

// Desde el boton

function SelectNodeFromButton () {
load_index = +$("#load_index").val()
// console.log(load_index)

selectLoad (load_index);

}

// Funcion selectNode: muestra stroke al seleccionar
cualquier carga y tambien muestra las graficas de cada
uno de los nudos

function selectLoad (load_index) {

if (selected_load != null) {
// Permite quitar
el stroke de una carga ya seleccionada
d3.select("#load_" + selected_load).attr ("stroke", "none")
/!l haciendo click en una nueva
}
selected_load = load_index;

124

682

683

684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707

// Permite mostrar un nuevo stroke al hacer click

d3.select("#load_" + selected_load).attr ("stroke", "hsla
(221, 66%, 33%, 0.59)").attr ("stroke—width", 2.5) /1
en una nueva carga

$("#load_index ") .val(load_index); // Al hacer click en un
nodo muestra su numero en el boton del panel

$("#line_index ") .val(null); //resetear el boton de lineas

// console.log(data_obj.Loads[load_index]. phases);

if (load_index != 56) {

if (data_obj.Loads[load_index — 1].phases == "A") {
$("#sell").val("Phase: A");

}

else if (data_obj.Loads[load_index — 1].phases == "B") {
$("#sell").val("Phase: B");

}

else if (data_obj.Loads[load_index — 1].phases == "C") {
$("#sell").val("Phase: C");

4

}

if (load_index == 56) {

$("#sell").val(" Transformer") ;

}

console.log(load_index) ;

//DATOS DE LAS CARGAS

var dataP = [];
var dataQ = [];

var dataP_gpv = [];
[1;
[1;
[1;

var dataQ_gpv

var dataV_1

var dataV_?2

125

708 var dataV_3 = [];

709 var dataAngle_1 [1;:
710 var dataAngle_2 []:
711 var dataAngle_3 = [];
712 //DATOS DEL NODO SLACK

713 // Potencias de las tres fases

714 var dataP_1_slack =

715 var dataP_2_slack = ;
716 var dataP_3 slack =
717 var dataQ_1_slack =
718 var dataQ_2_slack =

719 var dataQ_3_slack =

9

9

2

b

[]
[
[
[]
[
[

9

720 // Tensiones de las tres fases

721 var dataV_1_slack = [];

722 var dataV_2_slack = [];

723 var dataV_3_slack = [];

724 // Corrientes de las tres fases

725 var datal_1_slack = [];

726 var datal_2_slack = [];

727 var datal_3_slack = [];

728 //DATOS DE LAS LINEAS

729

730 //Con la funcion _.map se recorre los datos importados y se
guardan en las variables antes declaradas

731 _.map(data_obj.pq[load_index], function (data, minute_index)

{

732 dataP[minute_index] data .P1;

data .Ql;

733 dataQ[minute_index]
734 1)

735 _.map(data_obj.gpv_pq[load_index], function (data,

126

minute_index) {

736 dataP_gpv[minute_index] —1 x (data.Pl);

—1 % (data.Ql);

737 dataQ_gpv[minute_index]

738 })

739

740 _ .map(data_obj.vi_Il[load_index], function (data,
minute_index) {

741 dataV_1[minute_index] = data.V1_1;

742 dataAngle_1[minute_index] = data.VAnglel_1;

743 })

744 _ .map(data_obj.vi_2[load_index], function (data,
minute_index) |{

745 dataV_2 [minute_index] = data.VI1_2;

746 dataAngle_2[minute_index] = data.VAnglel_2;

747 })

748 _ .map(data_obj.vi_3[load_index], function (data,
minute_index) {

749 dataV_3[minute_index] = data.V1_3;

750 dataAngle_3 [minute_index] = data.VAnglel_3;

751 })

752 _.map(data_obj.slack_pq, function (data, minute_index) {

753 dataP_1_slack[minute_index] = data.Pl;

754 dataP_2_slack[minute_index] = data.P2;

755 dataP_3_slack[minute_index] = data.P3;

756 dataQ_1_slack[minute_index] = data.Ql;

757 dataQ_2_slack[minute_index] = data.Q2;

758 dataQ_3_slack[minute_index] = data.Q3;

759 })

760 _ .map(data_obj.slack_vi, function (data, minute_index) {

761 dataV_1_slack[minute_index] = data.Vl;

127

762
763
764
765
766
767
768
769
770
771
772
773
774
775
776

777
778
779
780
781
782
783
784
785
786
787
788
789
790

dataV_2 slack
dataV_3_slack

minute_index] = data.V2;

minute_index] = data.V3;

datal_2_ slack
datal_3 _slack

1))
/ GRAFICAS PARA LAS CARGAS

[

[
datal_1_slack [minute_index] = data.Il;

[minute_index] = data.I2;

[

minute_index] = data.I3;

var t = _.range(1440);

if (load_index != 56) {

// Grafica de la potenca Activa (consumida y generada)

new Dygraph (

document. getElementById ("P") ,

_.zip(t, dataP, dataP_gpv),

{

labels: [’Minute’, ’Active Power Consumed (kW) ’, ’Active
Power Generated (kW) °],

animatedZooms: true ,

strokeWidth: 1.5,

title: *Active Power’,

axes: {

x: {

axisLabelFormatter: function (t) {

return numeral(t x 60).format("00:00:00").slice (0, —3);

}

}

i

// gridLineColor: ’rgba(0,0,0,0)’

}

)

// Potencia Reactiva

128

791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814

815
816
817
818
819

new Dygraph (

document. getElementById ("Q") ,
_.zip(t, dataQ),

{

labels: [’Minute’, ’Reactive Power(kvar) '],
animatedZooms: true ,

strokeWidth: 1.5,

title: ’Reactive Power’,

axes: {

x: {

axisLabelFormatter: function (t) {

return numeral(t x 60).format("00:00:00").slice (0, —3);

}

}

b

// gridLineColor: ’rgba(0,0,0,0)’
}

)

// Tensiones de las tres fases
var g = new Dygraph(

document. getElementById ("V") ,

_.zip(t, dataV_1, dataV_2, dataV_3),

{

labels: [’Minute’, *Voltages A(V)’, ’Voltages B(V)’, ~’
Voltages C(V)],

animatedZooms: true ,

strokeWidth: 1.2,

title: ’Voltages (all phases)’,

/!l gridLineColor: ’rgba(0,0,0,0) ",
highlightCircleSize: 2,

129

820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836

837
838
839
840
841

842
843
844
845
846
847

// strokeWidth: 0.5,
// strokeBorderWidth: isStacked ? null : 1,

axes: {
x: |
axisLabelFormatter: function (t) {

return numeral(t x 60).format("00:00:00").slice (0, —3);

}

}

i

highlightSeriesOpts: {
strokeWidth: 2,
strokeBorderWidth: 1,
highlightCircleSize: 3

}

}

)

// Con esta funcion al seleccionar una fase, la grafica
destacada

var onclick_g = function (ev) {

if (g.isSeriesLocked()) {

g.clearSelection () ;

} else {

g.setSelection(g. getSelection (), g.getHighlightSeries (),

true) ;
}
}s
g.updateOptions ({ clickCallback: onclick_g }, true);

g.setSelection (false, “s0057);

// Angulo de desfase de la fase conectada a la carga

130

sale

848

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876

// Condiciones para que aparezca en el grafico

carga que esta conectada

if (data_obj.Loads[load_index — 1].phases == "A") {

new Dygraph (

document. getElementBylId (" delta "),

_.zip(t, dataAngle_1),

{

labels: [’ Minute’,

animatedZooms: true ,

strokeWidth: 1.5,

title: *Voltage Angle’,

axes: {

x: |

axisLabelFormatter: function (t) {

return numeral(t x 60).format("00:00:00").slice (0, —3);
}

}

},

// gridLineColor: ’rgba(0,0,0,0)’

}

)3

}

else if (data_obj.Loads[load_index — 1].phases == "B") {
new Dygraph (

“Angle A’],

document. getElementBylId (" delta "),

_.zip(t, dataAngle_2),

{

labels: [’ Minute’,

animatedZooms: true ,

strokeWidth :

1.5,

“Angle B’],

131

la fase de

la

877 title: ’Voltage Angle’,

878 axes: {

879 x: {

880 axisLabelFormatter: function (t) {

881 return numeral(t *x 60).format("00:00:00").slice (0, —3);
882 }

883 }

884 1},

885 // gridLineColor: ’rgba(0,0,0,0)’

886 }

887)

888 }

889 else if (data_obj.Loads[load_index — 1].phases == "C") {
890 new Dygraph (

891 document. getElementByld (" delta"),

892 _.zip(t, dataAngle_3),

893 {

894 labels: [’Minute’, “Angle C’],

895 animatedZooms: true ,

896 strokeWidth: 1.5,

897 title: ’*Voltage Angle’,

898 axes: {

899 x: {

900 axisLabelFormatter: function (t) {

901 return numeral(t x 60).format("00:00:00").slice (0, —3);
902 }

903 }

904 1},

905 // gridLineColor: ’rgba(0,0,0,0)’

906 }

132

907);

908 }

909 }

910

911 //GRAFICAS DEL NUDO SLACK

912 else if (load_index == 56) {

913 var t_1 = _.range(1440);

914 // Graficas de potencia activa

915 var P_slack = new Dygraph(

916 document. getElementById("P"),

917 _.zip(t_1, dataP_1_slack, dataP_2_slack, dataP_3_slack),

918 {

919 labels: [’Minute’, ’Active Power A(kW)’, *Active Power B(kW)
>, "Active Power C(kW) '],

920 animatedZooms: true,

921 strokeWidth: 1.2,

922 title: *Active Power (all phases)’,

923 // gridLineColor: ’rgba(0,0,0,0) ",

924 highlightCircleSize: 2,

925 axes: {

926 x: {

927 axisLabelFormatter: function (t) {

928 return numeral(t x 60).format("00:00:00").slice (0, —3);

929 }

930 }

931 1},

932 //strokeWidth: 0.5,

933 //strokeBorderWidth: isStacked ? null : 1,

934

935 highlightSeriesOpts: {

133

936
937
938
939
940
941
942

943
944
945
946
947

948
949
950

951
952
953
954
955
956
957

958
959
960
961

strokeWidth: 2,
strokeBorderWidth: 1,
highlightCircleSize: 3

}

}

)

// Con esta funcion al seleccionar una fase, la grafica sale
destacada

var onclick_P_slack = function (ev) {

if (P_slack.isSeriesLocked()) {

P_slack.clearSelection () ;

} else {

P_slack.setSelection (P_slack. getSelection (), P_slack.
getHighlightSeries (), true);

}

}s

P_slack .updateOptions ({ clickCallback: onclick_P_slack },
true) ;

P_slack.setSelection (false , ’s005°’);

// Graficas de potencia reactiva

var Q_slack = new Dygraph (

document. getElementById ("Q") ,

_.zip(t_1, dataQ_1_slack, dataQ_2_slack, dataQ_3_slack),

{

labels: [’Minute’, ’Reactive Power A(kvar)’, ’Reactive Power
B(kvar)’, ’Reactive Power C(kvar) '],

animatedZooms: true ,

strokeWidth: 1.2,
title: ’Reactive Power (all phases)’,

// gridLineColor: ’rgba(0,0,0,0) ",

134

962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981

982
983
984
985
986

987
988
989

highlightCircleSize: 2,

axes: {

x: |

axisLabelFormatter: function (t) {

return numeral(t x 60).format("00:00:00").slice (0, —3);

}
}

),
// strokeWidth: 0.5,

// strokeBorderWidth: isStacked ? null

highlightSeriesOpts: {
strokeWidth: 2,

strokeBorderWidth: 1,
highlightCircleSize: 3

L,

}

}

)

// Con esta funcion al seleccionar una fase, la grafica sale
destacada

var onclick_Q_slack = function (ev) {

if (Q_slack.isSeriesLocked()) {

Q_slack.clearSelection () ;

} else {

Q_slack.setSelection (Q_slack. getSelection (), Q_slack.

getHighlightSeries (),
}
4
Q_slack.updateOptions ({

true) ;

clickCallback:

135

onclick_Q_slack },

990
991
992
993
994
995
996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017

true) ;
Q_slack.setSelection (false , ’s005°’);
// Graficas de tensiones (modulo)
var V_slack = new Dygraph(
document. getElementById ("V") ,

_.zip(t_1, dataV_1_slack, dataV_2_slack, dataV_3_slack),

{

labels: [’Minute’, *Voltage A(V)’, ’Voltage B(V)’, ’Voltage
C(V) 1,

animatedZooms: true ,

strokeWidth: 1.2,

title: >Slack Voltages (all phases)’,
// gridLineColor: ’rgba(0,0,0,0) ",
highlightCircleSize: 2,

axes: {
x: |
axisLabelFormatter: function (t) {

return numeral(t x 60).format("00:00:00").slice (0, —3);

}
}

],
// strokeWidth: 0.5,

// strokeBorderWidth: isStacked ? null : 1,

highlightSeriesOpts: {
strokeWidth: 2,
strokeBorderWidth: 1,
highlightCircleSize: 3
}

}

136

1018
1019

1020
1021
1022
1023
1024

1025
1026
1027

1028
1029
1030
1031
1032
1033
1034

1035
1036
1037
1038
1039
1040
1041
1042
1043

)
// Con esta funcion
destacada

var onclick V _slack

al seleccionar una fase, la grafica sale

= function (ev) {

if (V_slack.isSeriesLocked()) {

V_slack.clearSelection () ;

} else {

V_slack.setSelection (V_slack. getSelection (), V_slack.

getHighlightSeries (), true);

}
}s

V_slack.updateOptions ({ clickCallback:

true) ;

V_slack.setSelection (false , ’s005°’);

// Graficas de corrientes (modulo)

var I_slack = new Dygraph(

document. getElementByld (" delta "),

strokeWidth: 1.2,

title: ’Slack Currents (all phases)’,
// gridLineColor: ’rgba(0,0,0,0) ",

highlightCircleSize:

axes: {
x: |

axisLabelFormatter:

2,

function (t) {

137

onclick_V_slack 1},

>Current

_.zip(t_1, datal_1_slack, datal_2_slack , datal_3_slack),
{
labels: [’Minute’, ’Current A(A)’, *Current B(A)’,
CA) 1,
animatedZooms: true ,

1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

1059
1060
1061
1062
1063

1064
1065
1066

1067
1068
1069
1070

return numeral(t x 60).format("00:00:00").slice (0, —3);

}
}
i

// strokeWidth: 0.5,

// strokeBorderWidth :

highlightSeriesOpts: {
strokeWidth: 2,
strokeBorderWidth: 1,
highlightCircleSize: 3

}
}
)
/1
destacada
var onclick_I_slack = function (ev) {
if (I_slack.isSeriesLocked()) {

isStacked ? null

1,

Con esta funcion al seleccionar una fase, la grafica sale

I_slack.clearSelection () ;

} else {

I_slack.setSelection (I_slack.getSelection (), I_slack.

}
}s

I_slack .updateOptions ({ clickCallback:

getHighlightSeries (),

true) ;

true) ;

I_slack.setSelection(false, ’s005°);

}s

}s

// Fin de SelectNode ()

138

onclick_I_slack },

1071
1072
1073
1074

1075

1076
1077

1078

1079

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

// SELECCION DE LA BATERIA

function SelectBat(bat_index) {

if (selected_bat != null) {
/!l Permite quitar
el stroke de una bateria ya seleccionada
d3.select("#battery_" + selected_bat).attr ("stroke", "black
"y.attr ("stroke—width", 0.5) // haciendo click en una
nueva
}
selected_bat = bat_index;
/! Permite
mostrar un nuevo stroke al hacer click
d3.select("#battery_" + selected_bat).attr ("stroke", "hsla
(221, 66%, 33%, 0.59)").attr ("stroke—width", 2) // en una
nueva bateria
$("#load_index ") .val(bat_index); // Al hacer click en un
nodo muestra su numero en el boton del panel
$("#line_index ").val(null); //resetear el boton de lineas

$("#sell").val(null); // resetear el boton de la fase

/1l Datos de las baterias
var datakWh [1:
[1;
var dataPOut = [];

var dataPlIn

var dataP = [];
var dataP_gpv = [];
var dataPneta = [];

_.map(data_obj.pq[bat_index], function (data, minute_index)

139

{
1092 dataP[minute_index] = data.Pl;

1093 })

1094 _ .map(data_obj.gpv_pq[bat_index], function (data,
minute_index) |{

1095 dataP_gpv[minute_index] = —1 x (data.Pl);

1096 })

1097 for (var i = 0; i < dataP.length; i++) {

1098 dataPneta.push(dataP[i] — dataP_gpv[i]);

1099 }

1100 _.map(data_obj.bat_p[bat_index], function (data,
minute_index) {

1101 datakWh|[minute_index] = data .kWh;

1102 })

1103 _.map(data_obj.bat_p[bat_index], function (data,
minute_index) {

1104 dataPIn[minute_index] = data.kWIn;

1105 })

1106 _.map(data_obj.bat_p[bat_index], function (data,
minute_index) {

1107 dataPOut[minute_index]| = data.kWOut;

1108 })

1109 var t = _.range(1440);

1110 // Potencia consumida y generada

1111 new Dygraph(

1112 document. getElementById ("P"),

1113 _.zip(t, dataP, dataP_gpv),

1114 {

1115 labels: [’Minute’, *Active Power Consumed (kW) ’, ’Active
Power Generated (kW) °],

140

1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145

animatedZooms : true ,

strokeWidth: 1.5,

title: *Active Power Consumed and Generated ’,
axes: {

x: |

axisLabelFormatter: function (t) {

return numeral(t x 60).format("00:00:00").slice (0,

}

}

},

// gridLineColor: ’rgba(0,0,0,0)’
}

)

/!l Potencia global neta

new Dygraph (

document. getElementById ("Q") ,
_.zip(t, dataPneta),

{

labels: [’Minute’, ’Net Active Power(kW) '],
animatedZooms: true ,

strokeWidth: 1.5,

title: ’Net Active Power’,

axes: {

x: {

axisLabelFormatter: function (t) {

return numeral(t x 60).format("00:00:00").slice (0,

}

}

},

// gridLineColor: ’rgba(0,0,0,0)’

141

-3);

=3);

1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172

1173
1174

}
)

/l Carga de la bateria

new Dygraph (

document. getElementById ("V") ,

_.zip(t, datakWh),

{

labels: [’ Minute’,

animatedZooms: true ,

strokeWidth :

1.5,

title: *Battery Charge’,

axes: {

x: |

axisLabelFormatter:

Battery Charge (kWh) ’],

function (t) {

return numeral(t x 60).format("00:00:00").slice (0, —3);

}
}
i

// gridLineColor:

}
)

"rgba(0,0,0,0)"

/!l Potencia cedida y consumida por la bateria

new Dygraph (

document. getElementByld (" delta "),

_.zip(t, dataPIn, dataPOut),

{

labels: [’ Minute’,

kW) "],

animatedZooms: true ,

strokeWidth :

1.5,

>Active Power IN(kKW) ’,

142

>Active Power OUT(

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204

title: *Active Power IN and OUT’,

axes: {
x: |
axisLabelFormatter: function (t) {

return numeral(t x 60).format("00:00:00").slice (0,

}

}

}

// gridLineColor: ’rgba(0,0,0,0)’

}

)

};//Fin de SelectBat ()
/1 POTENCIAS GLOBALES

function DibujaPotenciasGlobales () {
var dataPglo = new Array(1440).fill (0);
var dataPgenglo = new Array(1440).fill (0);

var dataPnetaglo = [];
var dataPacumuladaglo = [];
var dataP1_line_12 = new Array(1440). fill (0);

var dataP2_line_12 = new Array(1440). fill (0);
var dataP3_line_12 = new Array(1440). fill (0);
var dataP1_line_21 = new Array(1440). fill (0);
var dataP2_line_21 = new Array(1440). fill (0);
var dataP3_line_21 = new Array(1440). fill (0);
var datalLosses_1 = [];

var datalLosses_ 2

Il I
— —
[— [—
.. ..

var datalLosses_3

143

=3);

1205
1206
1207
1208

1209

1210

1211

1212

1213

1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228

A

for (var 1 = 0; 1 1440;

A\

for (var j = 1; j
dataP1_line_127[1]
dataP1_line_12[1];
dataP2_line_12[1] =
dataP2_line_12[i];
dataP3_line_12[1] =
dataP3_line_12[1];
dataP1_line_21[1] =
dataP1_line_21[1];
dataP2_line_21[i] =
dataP2_line_21[1];
dataP3_line_21[1] =
dataP3_line_21[1];

data_obj

data_obj

data_obj

data_obj

data_obj

i++) {

906; j++) {
data_obj.lines_pq_12[j][1]

.lines_pq_12[j][i]

Jlines_pq_12[j1[1i]

.lines_pq_21[j]1[i]

1++) |

.lines_pq_21[j][1].

.lines_pq_21[j][i].

.P1

.P2

.P3

P1

P2

.P3

}

}

for (var 1 = 0; 1 < 1440;
datalLosses_1[i] =

datalLosses_2[

datalLosses_3 [

}

for (var i
for (var j =
dataPglo[1] =
}

}

dataP1_line_12[1]
dataP2_line_12[1]
dataP3_line_12[1]

1]
1]

0; 1 < 1440; i++) {

1; j < 56; j++) {

+ dataP1_line_211[1];
+ dataP2_line_21[1i];
+ dataP3_line_21[1];

data_obj.pq[j]l[1].P1 + dataPglo[1];

144

1229
1230
1231

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
1248
1249

1250
1251
1252
1253
1254

for (var 1 = 0; 1 < 1440; i++) {
for (var j = 1; j < 56; j++) {

dataPgenglo[i] = —1 % (data_obj.gpv_pqlj][i].P1l) +
dataPgenglo[i];

}

}

// bucle para hacer el acumulado de potencias

for (var i = 0; i < dataPglo.length; i++) {
dataPacumuladaglo.push(dataPglo[i] — dataPgenglo[i]);
dataPnetaglo.push(dataPglo[i] — dataPgenglo[i]);

}

// console.log(dataP_acumulada)

dataPacumuladaglo.sort(function (a, b) { return b — a });
//1a funcion sort() sirve para ordenar arrays, en este
caso de mayor a menor

var t = _.range(1440);

// Potencia global consumida y generada

new Dygraph (

document. getElementById ("P") ,

_.zip(t, dataPglo, dataPgenglo),

{

labels: [’Minute’, ’Active Power Consumed(kW)’, ’Active
Power Generated (kW) ’],

animatedZooms: true ,

strokeWidth: 1.5,

title: *Active Power Consumed and Generated ’,

axes: {

x: |

145

1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284

axisLabelFormatter: function (t) {

return numeral(t x 60).format("00:00:00").slice (0,

}
}

b

// gridLineColor: ’rgba(0,0,0,0)’
}

)

// Potencia global neta

new Dygraph (

document. getElementById ("Q") ,

_.zip(t, dataPnetaglo),

{

labels: [’Minute’, ’Net Active Power(kW) '],
animatedZooms: true ,

strokeWidth: 1.5,

title: *Net Active Power’,

axes: {

x: |

axisLabelFormatter: function (t) {

return numeral(t x 60).format("00:00:00").slice (0,

}
}

8

// gridLineColor: ’rgba(0,0,0,0)’
}

)

/! Potencia global neta acumulada

new Dygraph (
document. getElementById ("V"),

146

=3);

-3);

1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299

1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313

_.zip(t, dataPacumuladaglo),

{
labels: [’Minute’

, ~Cumulative Net Active Power (kW) '],

animatedZooms: true ,

strokeWidth: 1.5,

title: Cumulative Net Active Power’,

// gridLineColor:

}
)

"rgba (0,0,0,0)°

/!l Perdidas globales

new Dygraph (

document. getElementBylId (" delta "),

_.zip(t, dataLosses_1, dataLosses_2 , dataLosses_3),

{
labels: [’Minuto’

, "Global Losses A(kW)’,

kW) ’, >Global Losses C(kW) '],

animatedZooms: true ,

strokeWidth: 1.5,

title: *Global Losses(all phases)’,

axes: {

x: {

axisLabelFormatter: function (t) {

return numeral(t x 60).format("00:00:00").slice (0, —3);

}

}

I

// gridLineColor:
}

)

"rgba(0,0,0,0)”"

147

>Global Losses B(

1314 '} //Fin de dibujar potencias globales

1315

1316 // SLIDER

1317 $(function () {

1318 var handle = $("#custom—handle");

1319 $("#slider").slider ({

1320 create: function () {

1321 handle.text($(this).slider (" value"));

1322},

1323 slide: function (event, ui) {

1324 handle . text (numeral (ui.value * 60).format("00:00:00").slice
(0, =3));

1325 position = Math.round(ui.value);

1326 valorslider = ui.value;

1327 actualizeSlider () ;

1328 //console.log(position);

1329 1},

1330 min: O,

1331 max: 1439

1332 });

1333 });

1334

1335 // Funcion para hacer que el slider se mueva automaticamente

1336 var simulation_interval;

1337 function startSimulation () {

1338 minute_index = valorslider;
1339 simulation_interval = setlInterval (Simulate, 200);
1340 }

1341 function Simulate () {

148

1342

1343 $("#slider").slider ("value", valorslider);

1344

1345 position = minute_index ;//Math.round(valorslider / 100 x
1440);

1346 actualizeSlider () ;

1347 // valorslider = valorslider + 1;

1348 valorslider = minute_index;

1349 //Introducir reset cuando valorslider es 1440

1350 if (minute_index >= 1439) {

1351 $("#slider").slider ("value", 0);

1352 valorslider = 0;

1353 minute_index = O;

1354 stopSimulation () ;

1355 $("#pause").hide () ;

1356 $(".button3").show () ;

1357 }

1358 var handle = $("#custom—handle");

1359 handle.text(numeral(valorslider * 60).format("00:00:00").
slice (0, —3));

1360 minute_index ++;

1361 }

1362

1363 function stopSimulation () {

1364

1365 clearInterval (simulation_interval);

1366 }

1367

1368 //ACTULIZESLIDER () Variables para asociar el slider

1369

149

1370

1371
1372
1373
1374
1375
1376
1377
1378
1379

1380

1381
1382
1383

1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395

function actualizeSlider () { // leer para cada
instante del slider los valores Pl de todas las cargas
/! //Para resetear los simbolos de carga de la bateria

// for (var j = 1; j < 56; j++) {

// d3.select("#bat_" + j)

[/ .text(null)

/1 }

for (var j = 1; j < 565 j++) {

sliderP[j — 1] = data_obj.pq[j][position].Pl;

// console.log(data_obj.pq[0]); /! Para escoger el
archivo pq el primer indice debe ser el 1

// console.log(data_obj.Loads[0]) // Para escoger el
archivo Loads el primer indice debe ser 0

// console.log(sliderP [0]);

sliderPgen[j — 1] = —1 x (data_obj.gpv_pqlj][position].Pl);

sliderPneta[j — 1] = sliderP[j — 1] — sliderPgen[j — 1]; //
potencia neta Pc—Pgen

// Arrays para las baterias

sliderBat[j — 1] = (data_obj.bat_p[j][position].kWh);

sliderBatState[j — 1] = (data_obj.bat_p[j][position]. State);

if (data_obj.Loads[j — 1].phases == "A") {
sliderV[j — 1] = data_obj.vi_I[j][position].VI1_1;
}

else if (data_obj.Loads[j — 1].phases == "B") {
sliderV[j — 1] = data_obj.vi_2[j][position].V1_2;
}

else if (data_obj.Loads[] I1].phases == "C") {
sliderV[j — 1] = data_obj.vi_3[j][position].V1_3;

150

1396
1397
1398
1399
1400
1401

1402
1403
1404
1405
1406
1407

1408
1409
1410
1411
1412
1413
1414

1415
1416
1417
1418

1419
1420
1421

if (botonP == 1) {
d3.select("#load_" + j)

.attr ("stroke", "green")

.attr ("stroke—width", (sliderP[j — 1]) = 2.5) //Dibujar
stroke en la carga j con width en funcion a Pl

}

if (botonPgen == 1) {

d3.select("#load_" + j)

.attr ("stroke", "green")

.attr ("stroke—width", (sliderPgen[j — 1]) * 4) //Dibujar
stroke en la carga j con width en funcion a Pl generada

}

if (botonPneta == 1) {

if (sliderPneta[j — 1] > 0) {

d3.select("#load_" + j)

.attr ("stroke", "green")

.attr ("stroke—width", (sliderPneta[j — 1]) x 2.5) //Dibujar
stroke en la carga j con width en funcion a Pl neta

} else {

d3.select("#load_" + j)

.attr ("stroke", "blue")

.attr ("stroke—width", (=4 x (sliderPneta[j — 1]))) //Dibujar
stroke en la carga j con width en funcion a Pl neta

}

}

151

1422

1423
1424
1425
1426
1427

1428
1429
1430

1431
1432
1433
1434
1435
1436
1437

1438
1439
1440
1441
1442
1443
1444

1445

if (botonV == 1) { // rangos para
representar los valores de tension

if (sliderV[j — 1] > 240 x 1.1) {

d3.select("#load_" + j)

//.transition ()

//.duration (100)

.attr ("stroke", "hsla(26, 100%, 54%, 1)") // El primer %
indica la intensidad del color, el segundo % la
transparencia

.attr ("stroke—width", 8)

}

if (sliderV[j — 1] > 240 % 1.02 && sliderV[j — 1] < 240 x
1.1) {

d3.select("#load_" + j)

//.transition ()

//.duration (100)

.attr ("stroke", "hsla(28, 50%, 70%, 1)")

.attr ("stroke—width", 8)

}

if (sliderV[j — 1] < 240 % 1.02 && sliderV[j — 1] > 240 x
0.98) {

d3.select("#load_" + j)

//.transition ()

//. duration (100)

.attr ("stroke", "white")

.attr ("stroke—width", 0)

}

if (sliderV[j — 1] < 240 % 0.98 && sliderV[j — 1] > 240 x
0.9) {

d3.select("#load_" + j)

152

1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475

//.transition ()

//.duration (100)

.attr ("stroke", "hsla(200, 50%, 70%, 1)")
.attr ("stroke—width", 8)

}

if (sliderV[j — 1] < 240 % 0.90) {
d3.select("#load_" + j)

//.transition ()

//.duration (100)

.attr ("stroke", "hsla(249, 100%, 19%, 1)")
.attr ("stroke—width", 8)

}

}

if (sliderPgen[j — 1] > 0) {
d3.select("#gen_" + j)

attr (" fill", "green")

.attr ("stroke—width", 1.5)

.attr ("stroke " ,"hsla (73, 66%, 33%, 0.61)")
}

if (sliderPgen[)] — 1] == 0) {
d3.select("#gen_" + j)

cattr (" fill", "black™")

.attr ("stroke —width", 0)

.attr ("stroke " ," black")

}

// Baterias: eleccion del simbolo segun el estado de carga
/1 if (sliderBat[j — 1] >= 13) {

// d3.select("#bat_" + j)

/1 Jtext ("\uf240")

// } else if (sliderBat[j — 1] > 7.5 && sliderBat][]j

153

— 1] = 10) {

1476 /1 d3.select("#bat_" + j)

1477 1/ text ("\uf241")

1478 1/ } else if (sliderBat[j — 1] > 5.5 && sliderBat[j] —

1] == 10) {

1479 // d3.select("#bat_" + j)

1480 // text ("\uf242")

1481 // } else if (sliderBat[j — 1] <= 5.5 && sliderBat|[]j
— 1] = 10) {

1482 // d3.select("#bat_" + j)

1483 // Ltext ("\uf243")

1484 // }

1485

1486 // Modificar el ancho del rectangulo con la carga.

1487 var axis_charge = d3.scale.linear ().domain([0,13]).range
([0.,12]);

1488 d3.select("#bat_" + j)

1489 . attr ("width",axis_charge(sliderBat[j — 1]))

1490

1491 if(sliderBat[j — 1] == 0){

1492 d3.select("#batterytext_" + j)

1493 . text(null)

1494 }else{

1495 d3.select("#batterytext_" + j)

1496 .text(Math.round (sliderBat[j — 1] / 13 x 100) + %)

1497 }

1498

1499

1500

1501

154

1502 // Baterias: estado de la bateria; descargando = 1, cargando
= —1

1503 if (sliderBatState[j — 1] == 1) {

1504 d3.select("#bat_" + j)

1505 .attr (" fill", "red")

1506 } else if (sliderBatState[j — 1] == —1) {

1507 d3.select("#bat_" + j)

1508 .attr (" fill", "green")

1509 } else if (sliderBatState[j — 1] == 0) {

1510 d3.select("#bat_" + j)

1511 .attr (" fill", "deepskyblue")

1512 }

1513

1514 }

1515 }

1516

1517 function DibujaP () { // funcion para dibujar P al
pulsar el boton Power

1518 botonV = 0;

1519 botonPgen = O0;

1520 botonPneta = O0;

1521 botonP = 1;

1522 $("#legend—voltage").hide();

1523 $("#legend—netpower ") . hide () ;

1524 $("#legend—conpower") .show () ;

1525 $("#legend—genpower") . hide () ;

1526 d3.selectAll (".node")

1527 .attr (" stroke", "white")

1528 .attr (" stroke—width", 0)

1529 }

155

1530
1531

1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545

1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557

function DibujaPgen () {

al pulsar el boton Power
botonV = 0;
botonPgen = 1;
botonPneta = 0;
botonP = 0;
$("#legend—voltage ") .hide () ;
$("#legend —netpower") . hide () ;
$("#legend —conpower") . hide () ;
$("#legend—genpower") .show () ;
d3.selectAll (".node")
.attr ("stroke", "white")

.attr ("stroke—width", 0)

function DibujaPneta () {
P al pulsar el boton Power
botonV = 0;

botonPgen = 0;

botonPneta = 1;
botonP = 0;
$("#legend—voltage").hide () ;

$("#legend —conpower") . hide () ;
$("#legend—genpower") . hide () ;
$("#legend —netpower") .show () ;
d3.selectAll (".node")

.attr ("stroke", "white")

.attr ("stroke—width", 0)
}

156

// funcion para dibujar P

// funcion para dibujar

1558

1559 function DibujaV () { // funcion para dibujar V al
pulsar el boton Voltage

1560 botonV = 1;

1561 botonPgen = O0;

1562 botonPneta = O;

1563 botonP = 0;

1564 $("#legend—voltage").show () ;

1565 $("#legend—netpower") . hide () ;

1566 $("#legend—conpower") . hide () ;

1567 $("#legend—genpower") . hide () ;

1568 d3.selectAll (".node")

1569 .attr ("stroke", "white")
1570 . attr (" stroke—width", 0)
1571 }

1572

1573

1574 function uploadZip(event) {

1575 var file = event.target.files [0]; // file uploaded
1576 zip .loadAsync(file).then(function (zip) ({

1577

1578 console.log(zip. files);

1579 zip_files = zip. files;

1580 async.parallel (read_fcns, function (err, data) {
1581 data_obj = data;

1582 // Aqui tenemos los datos

1583 console.log(data_obj);

1584 console.log(data_obj.slack_pq[O0].P1);

1585 //console.log(data_obj)

1586 /- Creacion del mapa

157

1587
1588

1589
1590
1591
1592
1593
1594
1595
1596
1597
1598

1599
1600
1601

1602
1603
1604
1605
1606
1607
1608

1609
1610

// drawNodes ()

var w = $("#map").width () ;
dimensiones del mapa

var h = $("#map") . height () ;

var padding = 15;

// Creacion de svg

var svg = d3.select("#map")

.append ("svg")

cattr ("width", w)

.attr ("height", h)

.call(d3.behavior.zoom ()
zoom

.scaleExtent ([1, 6])

.on("zoom", function () {

// estas

son las

// Creacion del

svg.attr ("transform", "translate (" + d3.event.translate + ")

+

1))
.append ("g")

// Creacion de las escalas

var xScale = d3.scale.linear ()

.domain ([d3.min(data_obj.Buscoords,

X; }), d3.max(data_obj.Buscoords,

X5 D1
.range ([padding , w — padding]);

158

scale (" + d3.event.scale +

)

function (d) {

function (d) {

return d.

return d

1611 var yScale = d3.scale.linear ()

1612 .domain ([d3.min(data_obj.Buscoords, function (d) { return d.
y; }), d3.max(data_obj.Buscoords, function (d) { return d
2y D

1613 .range ([h — padding, padding]);

1614

1615 var layer_lines

svg.append ("g");

1616 var layer_nodes

svg.append("g");
1617 var layer_battery = svg.append("g");
1618 var layer_legend = svg.append("g");
1619

1620 // Draw the line

1621

1622 layer_lines.selectAll (".line")

1623 .data(data_obj.Lines)

1624 .enter ()

1625 .append("line")

1626 .attr("class", "line")

1627 .attr("id", function (line, line_index) { return ("line_

(line_index + 1)); })

+

1628 .attr ("x1", function (line) { return xScale(_.findWhere(
data_obj.Buscoords, { Busname: line.Busl }).x); }) /!
el findWhere se utiliza para sacar los datos de
coodenadas de

1629 .attr ("yl", function (line) { return yScale(_.findWhere/(
data_obj.Buscoords, { Busname: line.Busl }).y); }) /1
del archivo Buscoords, ya que en Lines solo tenemos el
origen vy

1630 .attr ("x2", function (line) { return xScale(_.findWhere/(

data_obj.Buscoords, { Busname: line.Bus2 }).x); }) //

159

destino de las lineas

1631 .attr("y2", function (line) { return yScale(_.findWhere/(
data_obj.Buscoords, { Busname: line.Bus2 }).y); })

1632 . attr ("stroke—width", 1.5)

1633 . attr ("stroke", "darkcyan")

1634 .on("click", function (line, line_index) { selectLine(
line_index + 1) })

1635

1636 // Definir y destacar los puntos con carga y el trafo

1637

1638

1639 //var loads_points;

1640

1641 layer_nodes.selectAll (".node")

1642 .data(data_obj.Loads)

1643 .enter ()

1644 . append (" circle ")

1645 .attr("class", "node")

1646 .attr("id", function (load, load_index) { return ("load_" +
(load_index + 1)); }) // El load index empieza en 0

1647 .attr("cx", function (load) { return xScale(_.findWhere(
data_obj.Buscoords, { Busname: load.Bus }).x); })

1648 .attr("cy", function (load) { return yScale(_.findWhere/(
data_obj.Buscoords, { Busname: load.Bus }).y); })

1649 . attr (" fill", "rgba(220,20,60,0.7)")

1650 .attr("r", 4)

1651 //.on("click", function (bus_name, index) { selectNode(
bus_name.Bus, index) }) // con la funcion selectNode al
hacer click en cualquier carga

1652 .on("click", function (load, load_index) { selectLoad(

160

1653
1654
1655

1656
1657
1658
1659
1660
1661
1662
1663

1664

1665
1666
1667
1668
1669
1670
1671
1672
1673

1674

load_index + 1) }) // con la funcion selectNode al hacer
click en cualquier carga

// te devolveria el bus seleccionado y un contador

var bus_trafo = _.findWhere(data_obj.Buscoords, { Busname:
P

layer_nodes.append (" circle ")

cattr ("class", "node")

.attr ("id", "load_56")

.attr ("cx", xScale(bus_trafo.x))

.attr ("cy", yScale(bus_trafo.y))

cattr (" fill ", "yellow")

cattr ("r", 4)

//.on("click", function () { selectNode(bus_trafo.Busname,
55) }) /!l Asociamos la carga 55 al trafo

.on("click", function () { selectLoad(56) }) /1

Asociamos la carga 56 al trafo

/!l Incluir imagen de un GENERADOR si existe en ese nodo.
// Sera un simbolo de fontawesome.

layer_nodes.selectAll (".nodesymbol")
.data(data_obj.Loads)

.enter ()

.append (" text")

.attr ("class", "nodesymbol")

.attr ("id", function (gen, index) { return ("gen_" + (index
+ 1)); }) // Atribuir a cada figura de panel un id, para
luego wutilizarlo en la funcion actualizerSlider ()

cattr ("x", function (load) { return xScale(_.findWhere (

data_obj.Buscoords, { Busname: load.Bus }).x — 1); })

161

1

1675

1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692

1693

1694

1695
1696

cattr ("y",

function (load) {

data_obj.Buscoords, { Busname: load.Bus })

.attr ("text—anchor", "start") //horizontal

.attr ("aligment—baseline ",

.text(function (gen, index) {

if (data_obj.gpv_pql[index + 1][0].P2 == 0) {

return

}
9]

"\ufl85";

.attr (" font—family °, ’FontAwesome)

.attr (" font—size

2

"11px)

// Incluir imagen de una BATERIA si existe en

/1
/1
/1
/1
/1
/1

/1

/1

/1
/1

return ("bat_

figura de bateria un id,

return yScale(_.findWhere (
Ly — 3.5)

"central") //vertical

el nodo

layer_nodes.selectAll (".batsymbol")

.data(data_obj.Loads)
.enter ()
.append (" text")

.attr ("class", "batsymbol")

.attr ("id", function (battery , index) {
+ (index + 1)); }) // Atribuir a cada

funcion actualizerSlider ()

cattr ("x", function (load)

(_.findWhere(data_obj.Buscoords, { Busname

- DD

.attr ("y", function (load)

(_.findWhere(data_obj.Buscoords, { Busname

+ 1.5);

1))

.attr ("text—anchor", "start

.attr ("aligment—baseline ",

162

para luego utilizarlo en la

{ return xScale

: load.Bus }).x

{ return yScale

: load.Bus }).y

") //horizontal

"central") //

1697
1698

1699
1700
1701
1702
1703
1704

1705
1706
1707

1708
1709

1710
1711
1712
1713
1714
1715
1716

1717
1718
1719
1720

vertical

/1 .text(function (bat, index) {

/! if (data_obj.bat_p[index + 1][0]. State
== 12) {

/1 return "\uf242";

/1 }

/1 P

/1 .attr (" font—family °, ’FontAwesome)

/1 .attr (’ font—size >, 10px’)

/! .on("click", function (bat, bat_index) {
SelectBat(bat_index + 1) });

// prueba de dibujar rectangulo y moverlo con la carga de la

bateria

/! var axis_charge = d3.scaleLinear ().domain

([0,13]).range ([0,4]);

const dx = 2;
const dy = —10;
const bat_width = 12;

const bat_height = 6;

layer_nodes.selectAll (".nodecharge") // Dibujar rectangulo
interior de carga

.data(data_obj.Loads)

.enter ()

.append("rect")

.attr("class", "nodecharge")

163

1721 .attr ("id", function (battery , index) { return ("bat_" + (
index + 1)); }) // Atribuir a cada figura de bateria un
id, para luego utilizarlo en la funcion actualizerSlider
0

1722 .attr ("x", function (load) { return xScale(_.findWhere/(
data_obj.Buscoords, { Busname: load.Bus }).x) + dx; })

1723 . attr ("y", function (load) { return yScale(_.findWhere
data_obj.Buscoords, { Busname: load.Bus }).y) + dy; })

1724 //. attr ("width", 2) //20% inicial

1725 .attr ("width",function (bat, index) {

1726 if (data_obj.bat_p[index + 1][0]. State != 2) {

1727 console.log(data_obj.bat_p[index + 1][0].kWh);

1728 return data_obj.bat_p[index + 1][0].kWh;

1729

1730 }

1731 })

1732 . attr ("height", bat_height)

1733 . attr ("stroke", "none")

1734 . attr (" stroke—width", 0.5)

1735 //. attr (" fill", "green")

1736 . attr (" fill ", function (bat, index) {

1737 if (data_obj.bat_p[index + 1][0]. State != 2) {

1738 return "deepskyblue";

1739 }

1740 })

1741 .on("click", function (bat, bat_index) { SelectBat(bat_index
+ 1) 1)

1742

1743 layer_nodes.selectAll (".nodebattery ") // Dibujar

rectangulo exterior de marco

164

1744
1745
1746
1747
1748

1749

1750

1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762

1763
1764
1765
1766

1767
1768

.data(data_obj.Loads)
.enter ()
.append("rect")

.attr ("class", "nodebattery")

.attr ("id", function (battery , index) { return ("battery_" +
(index + 1)); })

attr ("x", function (load) { return xScale(_.findWhere/(
data_obj.Buscoords, { Busname: load.Bus }).x) + dx; })

.attr ("y", function (load) { return yScale(_.findWhere/(
data_obj.Buscoords, { Busname: load.Bus }).y) + dy; })

.attr ("width", bat_width)

.attr ("height", bat_height)

//.attr ("stroke", "black")

.attr ("stroke",function (bat, index) {

if (data_obj.bat_p[index + 1][0]. State != 2) {

return "black";

}

P

attr ("stroke—width", 0.5)

cattr (" fill", "none"

/] .attr (" fill",function (bat, index) {

// if (data_obj.bat_p[index + 1][0]. State
== 12) {

// return "rgba(0,0,0,0)";

/1 }

/1 1))

.on("click", function (bat, bat_index) { SelectBat(bat_index
+ 1) })s

layer_nodes.selectAll (".nodebatteryline ") /1

165

1769
1770
1771
1772
1773

1774

1775

1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787

1788
1789
1790
1791

Dibujar linea exterior de marco
.data(data_obj.Loads)
.enter ()
.append("rect")
.attr ("class", "nodebatteryline")
.attr ("id", function (battery, index) { return ("battery_" +
(index + 1)); })
cattr ("x", function (load) { return xScale(_.findWhere (
data_obj.Buscoords, { Busname: load.Bus }).x) + dx +
bat_width; })
.attr ("y", function (load) { return yScale(_.findWhere/(
data_obj.Buscoords, { Busname: load.Bus }).y) + dy + 1.5;
D)
.attr ("width", 0.6)
.attr ("height", 3)
//.attr ("stroke", "black")
.attr ("stroke",function (bat, index) {
if (data_obj.bat_p[index + 1][0]. State != 2) {

return "black";

}

P

.attr ("stroke—width", 0.6)

cattr (" fill1", "none"

layer_nodes.selectAll (".nodetext") // Escribir el
valor en kWh de la bateria

.data(data_obj.Loads)

.enter ()

.append (" text")

.attr("class", "nodetext")

166

1792
1793
1794

1795

1796

1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807

.attr ("text—anchor", "middle")

.attr ("alignment—baseline "," central ")

.attr ("id", function (battery , index) { return ("
batterytext_" + (index + 1)); })

cattr ("x", function (load) { return xScale(_.findWhere (
data_obj.Buscoords, { Busname: load.Bus }).x) + dx +
bat_width/2; })

.attr ("y", function (load) { return yScale(_.findWhere/(
data_obj.Buscoords, { Busname: load.Bus }).y) + dy +
bat_height/2; })

cattr (" fill " ,"black")

.text(function (bat, index) {

if (data_obj.bat_p[index + 1][0]. State != 2) {

var a = data_obj.bat_p[index + 1][0].kWh/13x100

return a.toFixed (0)+"%"

}

9]

attr (’ font—size >, ’0.3em’)

1)
1)

}

167

