Hindawi

Scientific Programming

Volume 2017, Article ID 3273891, 16 pages
https://doi.org/10.1155/2017/3273891

Research Article

Hindawi

An Efficient Platform for the Automatic Extraction of

Patterns in Native Code

Javier Escalada,’ Francisco Ortin,' and Ted Scully2

'Computer Science Department, University of Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Spain
2Cork Institute of Technology, Computer Science Department, Rossa Avenue, Bishopstown, Cork, Ireland

Correspondence should be addressed to Francisco Ortin; ortin@uniovi.es

Received 30 September 2016; Revised 26 December 2016; Accepted 17 January 2017; Published 28 February 2017

Academic Editor: Raphaél Couturier

Copyright © 2017 Javier Escalada et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Different software tools, such as decompilers, code quality analyzers, recognizers of packed executable files, authorship analyzers,
and malware detectors, search for patterns in binary code. The use of machine learning algorithms, trained with programs taken
from the huge number of applications in the existing open source code repositories, allows finding patterns not detected with
the manual approach. To this end, we have created a versatile platform for the automatic extraction of patterns from native code,
capable of processing big binary files. Its implementation has been parallelized, providing important runtime performance benefits
for multicore architectures. Compared to the single-processor execution, the average performance improvement obtained with the

best configuration is 3.5 factors over the maximum theoretical gain of 4 factors.

1. Introduction

Many software tools analyze programs, looking for specific
patterns defined beforehand. When a pattern is found, an
action is then performed by the tool (e.g., improve the quality,
security, or performance of the input program). Patterns
are defined for both high-level and binary code. Different
examples of tools that analyze high-level patterns are refactor-
ing tools, code quality analyzers, or detectors of common pro-
gramming mistakes. In the case of binary code, examples are
decompilers, packed executable file recognizers, authorship
analyzers, or malware detectors.

In the traditional approach, an expert identifies those
patterns to be found by the software tool. His or her expertise
is used to define the code patterns that should be searched
(e.g., for improving the application). On the contrary, a
machine learning approach can be used to build models,
which can then be applied to large repositories of code
to effectively search for and identify specific patterns. This
second approach allows the analysis of huge amounts of pro-
grams, sometimes detecting patterns not found with the trad-
itional approach. Additionally, this approach could automat-
ically evaluate the accuracy of the patterns obtained.

An emerging research topic called big code has recently
appeared [1]. Big code is based on the idea that open source
code repositories (e.g., GitHub, SourceForge, BitBucket, and
CodePlex) can be used to create new kinds of program-
ming tools and services to improve software reliability and
construction, using machine learning and probabilistic rea-
soning. One of the research lines included in big code is
finding extrapolated patterns, detecting software anomalies,
or computing the cooccurrence of different patterns in the
same program [2].

One example (more real examples can be consulted in
[2]) of detecting patterns in programs is the vulnerability
discovery method proposed by the MLSEC research group
[3]. It assists the security analyst during auditing of source
code, by extracting ASTs from the programs and determining
structural patterns in them. Given a known vulnerability,
their patterns are identified and extrapolated to a code base,
such that functions potentially suffering from the same flaw
can be suggested to the analyst. With that method, they
managed to identify 18 previously unknown vulnerabilities in
the source code of the Linux kernel.

The research context of finding code patterns using
machine learning algorithms is based on 3 ideas. First,

https://doi.org/10.1155/2017/3273891

machine learning techniques can be used to build predictive
models to identify patterns in data; besides, these tech-
niques do not require domain specific knowledge about the
problem domain [4]. Second, the existing open source code
repositories create new opportunities for gathering massive
program repositories to be analyzed. Third, the existing big
data technologies and platforms facilitate the analysis of large
datasets.

When processing native code, a platform to extract binary
patterns should also be able to use the debug information
(if any) generated by the compiler. This information would
be very valuable to extract those binary patterns, which
may later be used by a machine learning algorithm to
create predictive tools. A large number of patterns may be
extracted from a small binary program, since the number
of assembly instructions is much higher than in its source
high-level program. Therefore, the need of processing debug
information, plus the potentially huge number of patterns to
be extracted, makes it critical to use highly parallelized and
efficient tools for extracting those patterns.

A platform capable of extracting patterns from programs
should also be highly parameterized. The individuals (rows
in the dataset generated) to be detected by the platform
must be defined by the user. For instance, we may be
interested in finding patterns for functions, snippets, function
entry points, or specific regions of binary code. The same
parameterization is also required to specify the features of
each individual (columns in the dataset). For example, we
may define the feature <mov> <generic ax>,<any> to
represent the occurrence of any assembly instruction that
moves any value to the accumulator register (ah, al, ax, eax
or rax). If that pattern (feature or column) occurs in one
given region of binary code (individual or row), then the
corresponding value in the dataset (row and column) will be
L.

The traditional method to extract features from binary
code is to identify a syntactically fixed unit of code, such as
functions or basic blocks, and extract the binary code inside
them [5]. However, pattern extraction does not always follow
this scheme. Sometimes, nonsequential patterns such as
subgraphs of control flow and data dependency graphs need
to be extracted. In these cases, a binary pattern extraction
platform should allow the association of patterns to pieces of
code outside their basic blocks, representing subgraph struc-
tures (Section 3.7). Another scenario where the traditional
method is not sufficient is the analysis of binary code between
two memory addresses, where the inconsistency overlapping
problem caused by the variable-length instruction set must be
tackled [6]. This kind of binary code analysis has been used
for different purposes such as function entry points detection
[6], compiler recognition [7], authorship attribution [8], and
malware detection [9, 10]. Therefore, a generic platform for
pattern extraction must be flexible enough to support any
binary pattern extraction method (not just the traditional
one) and reduce development and execution times.

The main contribution of this paper is a platform for
the automatic extraction of patterns in native code. The
platform is highly parameterized so that it could be used
in different scenarios. Its parallel implementation provides

Scientific Programming

important runtime performance benefits when multicore
architectures are used. It also uses the debug information
that may be provided by a compiler. The extracted patterns
may be used by other tools for different purposes. We
present an evaluation of binary pattern extraction, measuring
the execution time of different configurations for a large
number of programs. The parallelization provides significant
performance improvements, and its efficiency is maintained
for big volumes of programs.

The rest of this paper is structured as follows. Section 2
describes a motivating example, and the platform is described
in Section 3. Section 4 presents an evaluation of the platform
and Section 5 discusses the related work. The conclusions and
future work are presented in Section 6.

2. Motivating Example

We use a motivating example to explain our platform. The
example is the extraction of patterns in native code that
can be later used to improve the information inferred by
a decompiler. A decompiler extracts high-level information
from a native program, aimed at obtaining the original source
program used to generate the native code. Existing decompil-
ers are able to infer part of this information. However, some
elements of the original high-level source programs are not
inferred by any decompiler.

Algorithm 1 shows a C function that returns a string
(charx in C). The function returns a substring from the
str parameter, starting in the beginth position of str up
to the endth position. The values of begin and end could
be negative, following the slicing behavior of the Python []
operator.

After compiling the str_slice function with Microsoft’s
c1 compiler, the decompiled function generated by Hex-Ray
1.5 has the following signature:

int __cdecl sub 401780 (int al, int g2, int a3)

We can see how the original return type of the
function (chars) is not the same as the one obtained by the
decompiler (int). This is because, in native machine code,
there is no type difference between integers and pointers.
The difference between both might be obtained by analyzing
how the programmer uses the value returned by the function.
In general, the programmer performs indirections with
pointers, but not with integers. Since this rule is not always
fulfilled, the decompiler does not tell the difference between
these two types.

By analyzing the usage patterns of each variable, a decom-
piler may infer the actual high-level type of the variables
(and functions). Since this is not a deterministic mechanism,
the use of machine learning seems to be appropriate for this
kind of problems [11]. Some recognized limitations of most
decompilers include the following:

(i) Types of variables, including function arguments and
return types (e.g., the example in Algorithm 1) [12].

(ii) Functions: the identification of function entry points
is a complex task, mainly due to indirect function

Scientific Programming

/* Check str */

if (str == NULL)
return NULL;

/* Check ranges */

int s = strlen(str);

|| (end < s * —1))
return NULL;
/* Normalice values */

/* Check begin >= end */

if (n_end <= n_begin)
return NULL;

/* Alloc mem */

if (new_str == NULL)
return NULL;
/* Copy */

new_str [amount] = 0;
return new_str;

char * str_slice(const char * str, int begin, int end) {

if ((!s) || (begin >=s) || (begin < s * —-1) || (end >=s + 1)

size_t n_begin = begin >= 0 ? begin: s + begin;
size_t n.end =end >=0 7 end: s + end;

size_t amount = n_end — n_begin;
char * new_str = malloc((amount + 1) * sizeof (char));

memcpy (new_str, str + n_begin, amount) ;

AvrGoriTHM l: Example high-level C program.

invocations [6]. Similarly, detecting the function body
is an open challenge because its instructions may not
be contiguous, have multiple entry points, be in-line,
or not be reachable [5].

(iii) Control flow structures: its recognition is commonly
based on control flow graph (CFG) analysis [12].
However, CFGs might not be completely recovered
by static analysis if indirect jumps appear, which are
typically generated for switch structures [13].

(iv) Elements of a specific paradigm: when another
paradigm different to the structured one (e.g., object-
orientation or functional) is used, the specific ele-
ments of that paradigm are barely recognized. For
example, C++ decompilers commonly fail in the
reconstruction of polymorphic classes, class hierar-
chies, member functions, and exception handling
constructs [14].

The platform presented in this paper is being used to
extract binary patterns from native code, which are later
used to improve certain high-level information gathered by
existing decompilers. Particularly, we face the problem of
detecting the type returned by a function. An excerpt of the
dataset generated by our platform for this particular case is
shown in Table 2: individuals (rows) are functions in the
module; features (columns) are sequences of binary patterns
found at the end of the function body (return patterns) and
after invoking the function (call post patterns); the target
column is the returned type. Please, notice that the work

of this paper is the platform itself, not in the algorithm for
decompilation improvement.

3. Platform Architecture

This platform generates one dataset table to classify fragments
of binary code (individuals or rows in the dataset) by
considering the occurrence of a finite set of binary patterns
(features or columns in the dataset). All the individuals and
patterns (features) are obtained from a collection of binary
programs, which are processed by the platform.

In our motivating example, the individuals in the dataset
are functions; and the features are the generalized assembly
code patterns extracted by the platform. The classification
variable (the target) is the return type (we consider all the C
built-in types; for compound types (structs, unions, pointers,
and arrays), we only consider the type constructor, e.g.,
int* and char#x* are classified as pointers) of each function
(individual). The generated dataset may be used later to
build a machine learning model that classifies the return type
depending on the patterns found in the binary code.

The platform has two working modes. The most versatile
is the one shown in Figure 1. The system receives the high-
level source program that will be used to generate the binary
application. In this mode, the platform allows instrumenting
the high-level program and uses the debug information
produced by the compiler. When the high-level program is
not available, we provide another configuration to process
binary files, described in Section 3.6.

4 Scientific Programming
P
Individual Pattern detector! Max Size, Pattern
detector Max Offset generalization
rules
1
_I- v
) .
Instrumentator Instrumented Compiler In.strumented Binary pattern
N source code binary code extractor
1|
Source code _I_ J/—,
K . Classified Dataset Occurrences Pattern
R Classifier ? individuals generator table generalizator
Classification
rules
Generalized
Dataset

binary patterns

F1GURE 1: Platform architecture, receiving high-level code.

for all stmt in program do

labels — 1

end if
end for
end if
end for
end

Function return_instrumentation(program)
if stmt 18 type,,y ig(tyPeyy id,,) ")stmty,,,” then

for all stmt in stmt,,,y," do
if stmt is return exp then
stmt « __RETURN_id,, labels__: stmt
labels — label + 1

ALGORITHM 2: Instrumentation rule for return statements.

3.1. Instrumentator. 'This module allows code instrumenta-
tion of the high-level input program. The objective is to
add information to the input program, so that it will be
easier to find the patterns in the corresponding binary code
generated by the compiler. It can also be used to delimitate
those sections of the generated binary code we want to
extract patterns from (Section 3.2), ignoring the rest of the
program. Notice that once the machine learning model has
been trained with the dataset generated by the platform,
the binary files passed to the model will not include that
instrumented code. Therefore, the instrumentation module
should not be used to extract patterns that cannot be later
recognized from stripped binaries.

This module traverses the Abstract Syntax Tree (AST) of
the Source Program and evaluates the Instrumentation Rules
provided by the user. Traversing the AST, if the precondition
of one instrumentation rule is fulfilled, its corresponding
action is executed. The action will modify the AST with

the instrumented code, which will be the new input for the
compiler (next module in Figure 1).

In our motivating example, we have defined the instru-
mentation rule shown in the pseudocode in Algorithm 2
(in Section 4.1 we describe how they are implemented).
For all the return statements in a program, the rule adds
a dummy label before the statement. This label has the
function identifier (id 4,,,.) followed by a consecutive number
(a function body may have different return statements). This
label will be searched later in the binary code (using the debug
information) to know the binary instructions generated by
the compiler for the return high-level statements. These
binary instructions will be used to identify the binary patterns
(Section 3.2).

Algorithm 3 shows another example of one instrumenta-
tion rule. Recall that the previous instrumentation rule was
aimed at finding binary instructions between a __RETURN_
label and a RET assembly instruction. However, C functions

Scientific Programming

labels «— 1

labels « labels + 1
end if
end for
end

Function procedure_instrumentation(program)

for all stmt in program do
if stmt is typereturn idfunc ((typearg idarg) *) Stmtbody*
and type,,,,,, = void then
StMityy,” stmty,,,”; - RETURN id ;.. labels_ : return;

ALGORITHM 3: Instrumentation rule for procedures.

individuals <[]

repeat

end if

return individuals
end

Function individual_detector(program)
instruction «— program[0]

if is_function(instruction) then
individuals — individuals + label(instruction)

instruction « next(instruction)
until not next(instruction)

AvrGoriTHM 4: Individual detector to recognize functions.

returning void usually do not have an ending return
statement. Therefore, the instrumentation rule in Algorithm 3
adds both the expected label and the return statement.

Adding labels is an easy way to instrument code. How-
ever, more sophisticated approaches can be used. For exam-
ple, expressions may be translated into dummy function
invocations that are actually used as marks to be identified
in the pattern extraction phase (Section 3.2). Another typical
approach is adding innocuous sequences of assembly instruc-
tions (e.g., NOPs) to be found in the pattern extraction phase.
The user must be careful when selecting the instrumentation
approach, checking that the instrumented code does not
produce unexpected changes to the generated binaries, or to
the patterns he/she wants to extract.

With the Instrumentation Rules, the source code is trans-
lated into instrumented code. The instrumented code is then
compiled, producing the Instrumented Binary Code.

3.2. Binary Pattern Extractor. This module performs 3 tasks.
First, it identifies the binary code fragments representing
the individuals (rows) in the generated dataset. Second, it
extracts the binary patterns (columns) detected for each
individual. These patterns are used as features to later classify
the individuals. The third task is to store the individuals and
patterns in an Occurrence Table, which will be later used to
generate the final dataset. We now detail these 3 tasks.

The Individual Detector initially recognizes each individ-
ual in the binary code. It must implement a function to collect
all the individuals. Algorithm 4 shows the Individual Detector

of our example, recognizing functions as individuals. In the
figure, is_function returns whether the parameter is the
first instruction in a function, using the debug information
generated by the compiler. Once one function is detected, its
label is added to the individuals list, the returned value.

After identifying the individuals, we must extract the
binary patterns we are looking for. To this end, the user
should provide a Pattern Detector, which comprises a col-
lection of predicate functions. These functions receive one
instruction of the instrumented binary program. In case that
instruction is not included in the expected pattern, null
must be returned. If the pattern is identified, a pair containing
the individual and the range of instructions in the pattern
(another pair) is returned.

Algorithm 5 presents a Pattern Detector of our example.
It recognizes the return pattern added by the Instrumentator.
If the instruction label is __RETURN, the Pattern Detector rec-
ognizes the pattern. The corresponding function is returned
as the first element of the pair. The second one is the range
of instructions comprising the pattern: the first one (the one
labeled __RETURN) and the next instruction after the following
RET.

Algorithm 6 shows another Pattern Detector used in our
example. It detects as a pattern the instructions after one CALL
(we callit call post). In this case, the individual associated with
the pattern is not the function the instruction belongs to, but
the function being called. Similarly, we have also specified
a pattern with the instructions before CALL, called call pre,
not shown in the algorithm. The idea of these two patterns

Function RET _pattern_detector(instruction)
if instruction is not - _RETURN id .. n then
return null
end if
begin_instruction « instruction
while not instruction is RET do
instruction < next(instruction)
end while
return (id funcs (begin_instruction, next(instruction)))
end

ALGORITHM 5: Pattern detector rule to recognize RET patterns.

Function CALL_Post_pattern_detector(instruction)
if instruction is CALL id . then
begin_instruction «— instruction
for i = 0 to MaxSize + MaxOffset do
instruction « next(instruction)
end for
return(id ., (begin-instruction, instruction))

Scientific Programming

end if
return null
end

ALGORITHM 6: Pattern detector rule to recognize call post patterns.

is that the usage of the value returned by a function (call
post) and the code to push its parameters (call pre) may be
valuable to infer the types of the function signature (return
and parameter types).

At this point, the module has three types of extracted
patterns: ret patterns, including the assembly code of return
statements, and call pre and call post patterns, representing
the code before and after invoking a function. Each of these
patterns may include a significant number of contiguous
binary instructions. However, we could be interested in a
small portion of contiguous instructions inside the bigger
patterns. For this reason, the Binary Extractor Pattern has
been designed to divide the patterns found into a collection
of subpatterns (different partitions of the original pattern).

The algorithm to obtain the subpatterns is parameterized
by the Max Size and Max Offset parameters shown in Figure 1.
This algorithm starts with one-instruction length subpatterns
(size = 1), increasing this value up to Max Size contiguous
instructions. Additionally, other subpatterns are extracted
leaving offset instructions between the instruction detected
by the Pattern Detector and the subpatterns. The algorithm
described above (the one that increases size) was for offset
= 0. The same algorithm is applied for offset = 1 and offset
= —1 (i.e., the first instruction before and after the detected
instruction, which is not included in the subpattern). The
absolute value of offset is increased up to Max Offset.

Figure 2 shows 4 example subpatterns. From a call pre
pattern the size = 5 and offset = 0 and size = 2 and offset
= -2 are shown. From another call post pattern, Figure 2

displays the size = 3 and offset = 2 and size = 3 and offset
= 1 subpatterns.

The last task to be undertaken by the Pattern Detector
is to associate the individuals with their patterns and make
this association explicit by writing the Occurrences Table. This
process is done generating as many table rows as individuals
found by the Individual Detector (in Algorithm 4), and
associating them with the rows representing each of the
subpatterns found for that individual by the Pattern Detector
functions (Algorithms 5 and 6).

3.3. Pattern Generalizator. Sometimes, the subpatterns
found are too specific. For example, the MOV eax,5 and
MOV ax,1 subpatterns are recognized as two different ones.
However, for detecting whether a function is returning a
value or not, they may be considered as the same pattern,
meaning that a literal has been assigned to the accumulator
register (i.e.,aMOV <generic ax>,<literal> pattern). To
this end, the objective of the Pattern Generalizator module
is to allow the user to reduce the number of subpatterns, by
generalizing them.

This necessity of generalizing (or normalizing) assem-
bly instructions for binary pattern extraction was already
detected in previous works. In [6], the * wildcard matches
any one instruction, and the absence of an operand means
any value. In further works, they also identify the necessity
of eliding memory addresses and literal values [7]. The gen-
eralization proposed by Bao et al. uses regular expressions to
generalize literal values and even instruction mnemonics [5].

Scientific Programming

mov edx, [ebp+var_8]

Size: 5

push edx

Size: 2

Relative offset: =0

mov eax, [ebp+var_C]

Relative offset: =2
Pattern type: call pre

Pattern type: call pre

push eax

call func710

add esp, 8

Size: 3

Size: 3

movzx ecx, [ebp+1b_1]

Relative offset: +1

Relative offset: +2

push ecx

Pattern type: call post

Pattern type: call post

call funcl195

FIGURE 2: Example of 4 subpatterns extracted from 2 patterns.

TaBLE 1: Example generalization of subpatterns.

Example pattern

Generalization

mov 5,eax mov <literal>,<generic ax>

mov [ecx],al mov [ecx],<register>
Operand movsd xmmO,var_0 movsd xmmO, <var>

mov edx, [ebp+var_1] mov edx, [<var>]

call func1493 call <address>

movzx eax,al <mov> <generic ax>,<any>

movss [esp+54h+var_2] ,xmm0 <mov> [esp+b54h+var_2] ,xmmO
Mnemonic movsd xmm0, var_3 <mov> xmm0, <var>

mov edx, [ebp+var_4]
movsx ecx, [ebp+var_5]

<mov> edx, [<var>]
<mov> ecx, [<var>]

pop esi; mov esp,ebp; pop ebp; retn

mov esp,ebp; pop ebp; retn
Instruction group pop ebp; retn
call func123; add esp,8

call func123

<callee epilogue>
<callee epilogue>
<callee epilogue>
<caller epilogue>

R R o R A A A

<caller epilogue>

TaBLE 2: Example dataset generated to predict the returned type of functions.

(Return pattern) (Call post pattern) Return type
<mov> <generic ax>,<any>; <caller epilogue>; (target)
<callee epilogue>; Fld <any>;
func_710 1 0 int
func_1195 0 1 double
func_295 0 0 long long

Another coarser normalization just ignores all the operands
of assembly instructions [15].

To identify the generalization requirements of a generic
platform, we analyzed the decompiler case scenario described
in Section 2. Some examples of those generalizations are
shown in Table 1. First, the user should be able to generalize
instruction operands, including literals, registers, variables,

and memory addresses. Second, the platform should allow
the generalization of instructions with the same purpose.
Finally, the user may need to generalize variable-instruction-
length subpatterns, such as function caller and callee epi-
logues.

The analysis of the decompiler use case indicates that
a highly expressive generalization mechanism should be

Scientific Programming

end if

end

Function MOVE._generalization(instruction)
if instruction.mnemonic in [mov, movzx, movsd, movss, movsx]
and instruction.operands[1].type = register
and instruction.operands[1].value in [eax, ax, ah, al] then
instruction.mnemonic < <mov>
instruction.operands[1].value « <generic ax>
instruction.operands[2].value « <any>

return (instruction, next(instruction))

ALGORITHM 7: Pattern generalization rule of move instructions.

individuals «— {}

end if
end for
return individuals
end

Function function _classification(program)

for all stmt in program do
if stmt is type oy id e (typeg,, id,,)") then
individuals — individuals[id .. = type e,

arg

ArcoriTHM 8: Classification rule associating each function with its return type.

provided by a generic binary pattern extraction platform.
For instance, it should allow the generalization of variable-
length groups of instructions, not supported by the existing
approaches. Therefore, we propose a programmatic system
that takes advantage of the expressiveness of a full-fledged
programming language to describe those generalizations.

In our platform, generalizations are expressed as Pattern
Generalization Rules. As shown in Algorithm 7, those rules
are implemented as functions receiving one instruction and
returning their generalized pattern (the current instruction if
no generalization is required) and the following instruction
to be analyzed. This second value allows the implementation
of variable-instruction-length generalizations. The rule in
Algorithm 7 generalizes the move instructions that save into
the accumulator register any value.

The generalized patterns and their associations with
the individuals are added to the existing Occurrence Table
produced by the Binary Pattern Extractor.

3.4. Classifier. This module is aimed at computing the value
of the classifier variable (i.e., the target or the dependent
variable) for each individual. The input is a representation
of the high-level program; the output is a mapping between
each individual and the value of the classifier variable. These
associations are described by the user with the Classification
Rules.

Algorithm 8 shows one Classification Rule for our exam-
ple. We iterate along the statements in the program. For each
function, we associate its identifier with the returned type,
which is the classifier variable for our problem (we predict
the return type of functions).

3.5. Dataset Generator. Finally, the Dataset Generator gen-
erates the dataset from the Occurrence Table (Section 3.3)
and the individual classification (Section 3.4): one row per
individual, one column per subpattern (generalized or not),
and another row for the classifier variable. Cells in the
dataset are Boolean values indicating the occurrence of the
subpattern in the individual. Classifier or target cells may
have different values. Table 2 shows an example dataset.

3.6. Processing Binary Files. As mentioned, the platform has
two working modes. Many times, we do not have the high-
level source program used to generate the native code, and
we are interested in finding patterns in binary files. Different
examples of this scenario include authorship, compiler, and
malware detection.

In order to show this second working mode of our
platform, we use the research work done by Rosenblum et al.
[6] as an example. They extract patterns from stripped binary
files to detect function entry points (FEP), which existing
dissemblers do not detect perfectly yet [5]. They analyze
consecutive bytes in binary files, representing them as 3 grams
of assembly instructions. Once the 3 grams are extracted,
they formulate the FEP identification problem as structured
classification using Conditional Random Fields (CRF) [16].
An initial flat model is later enriched with the evidence that a
call instruction indicates the existence of a FEP in the callee
address. The model obtained detects FEPs more accurately
than GCC, ICC, and MSVS compilers [6].

Figure 3 shows the changes to the platform architecture
when we want to process binary files, and the high-level
program is not available. White elements are the same as in

Scientific Programming

S

Tividual . Pattern
bt ey Pattern detector Max Size, generalization
detector Max Offset rules
|
N2
Binary pattern
extractor
Binary patterns
Binary code ‘|~
K . Classified Dataset Occurrences Pattern
Classifier individuals generator table generalizator
9
/- _/—_
Classification
rules
Dataset Generalized
binary patterns
/

FIGURE 3: Platform architecture to process binary code.

the previous architecture. Blue elements are modifications
of the previous working mode. All the modules related to
processing high-level programs are not present.

Although the behavior of the Binary Pattern Extractor is
the same, the rules for detecting individuals and patterns are
different. The main difference is that no instrumented code
is added, since the source code is not available. Depending
on the case, debug information is not available either (i.e.,
stripped binaries are used). Regarding the Classifier module,
the Classification Rules must consider a plain binary file
instead of a high-level program representation.

In the example of FEP detection in binary files, this is how
the platform has been used to generate a dataset valid to create
the CRF model. In the output dataset, individuals (rows) are
instruction offsets in the binary file; one feature (column)
will be created for each 1, 2, and 3 grams in the binary code,
indicating the occurrence of that pattern in each individual;
another call <offset> feature is added, associating that
function invocation with the <offset> individual. Finally,
the classifier variable (target) is 1 if the individual is a FEP
and 0 otherwise (debug information is available).

In order to create the dataset described above, the
Individual Detector creates as many individuals as instruction
offsets in the binary file. The Pattern Detector extracts 1, 2, and
3 grams for each offset and a call feature for each different
function. In this second case, the feature is not associated
with the offset where the pattern is detected, but to the offset
(memory address) being called (as done in Algorithm 6).
Pattern Generalization is done as the normalization process
described in [6]. Finally, the Classification Rules use the debug
information to set 1 to one individual identified as a FEP and
0 otherwise.

This platform configuration (and the previous one) to
extract datasets valid to create the CRF model proposed by
Rosenblum et al. is available for download at [17].

3.7. Representing Nonsequential Patterns. In the analysis of
binary applications, it is common to require the detection of
nonsequential patterns, such as subgraphs of control flow and
data dependency graphs. The detection of these subgraphs
can be used for many different purposes, such as the FEP
detection problem described in the previous subsection.

Although the Binary Pattern Detector module of our
platform (Figures 1 and 3) is aimed at extracting patterns
made up of contiguous binary instructions, the rest of the
modules can be used to represent nonsequential structures
such as graphs. This functionality is provided by the versatile
way our platform considers the sequential patterns (features),
permitting the definition of different criteria to associate
these features to the corresponding individuals.

One example of this functionality is present in the
decompiler scenario. Algorithm 5 shows how RET features
are associated with the function (individual) where the
pattern was detected. In Algorithm 5, this association is
represented by the first element in the tuple returned, which
is the function id the RET instruction belongs to. Thus, the
output dataset will have 1 in the cell corresponding to that
function (row or individual) and pattern (column or feature).
However, CALL patterns are associated with individuals in a
different way. Algorithm 6 shows how this type of feature is
notassociated with the function where the pattern is detected,
but to the function being invoked. Therefore, a machine
learning algorithm trained with the generated dataset may
associate nonsequential patterns (e.g., there must exist a RET
pattern inside the function and, in any part of the program, a
CALL pattern invoking the same function) to identify the type
returned by a function.

Another example of this functionality is the FEP iden-
tification problem described in Section 3.6. The dataset
generated by out platform can be used to create the proposed
CRF model, which uses graphs for structural prediction and

Scientific Programming

Task parallelization

Extract binary ! |
1
|

I
,,,,,,,,, R

pattern I IGeneralize pattern

10
P T T T [T B =
Initialization i Instrument 1 Compile I
1 1 1
P T R e R Fr-—
! —_ | [
| | 1
[I
2
(=S I
A i
| E | 1
=R I
o 171
R
N, N
| |
52
=5 !
=) |
S | |
o= |
s \
g
D ——

Module 3

Task 7
(generate
dataset)

Worker 1

Worker 2

FIGURE 4: Parallelization of the platform implementation.

classification [16]. Those graphs are obtained from the dataset
by using the versatile association of features to individuals
already discussed. Its implementation and a sample dataset
can be consulted in [17].

4. Evaluation

4.1. Platform Implementation. We have implemented the
proposed platform and it is freely available at http://www
.reflection.uniovi.es/decompilation/download/2016/sp/. The
Instrumentator and Classifier modules have been imple-
mented in C++, since they use clang [18] to process the high-
level representation of C programs. The rest of the platform
has been implemented in Python. For the disassembly ser-
vices we have used IDAPython [19].

The implementation is highly parallelized, providing
important performance benefits when multicore architec-
tures are used. The parallelization follows a pipeline scheme,
where both data and task parallelism are used. Figure 4 shows
the concrete approach followed. These have been the issues
tackled to parallelize the platform implementation.

(1) Data Parallelization. We identify each module in a pro-
gram (obj files in the compiler used) as a different portion
of data to work in parallel. This obj files can be combined in
1ib or exe files to produce bigger modules. In the example
in Figure 4, three different modules are processed in parallel.

(2) Task Identification. The tasks to be parallelized are those
identified as modules in the platform architecture (Section 3).
As shown in Figure 4, an additional initialization task was
defined to initialize the database and create a temporary
folder where the input files are copied.

(3) Task Dependency. After identifying the tasks, we defined
the dependencies among them with a Directed Acyclic Graph

(DAG). These dependencies define when two tasks can run
in parallel, and when a task has to wait for others to end. As
shown in Figure 4, the instrumentation, compilation, binary
pattern extraction, generalization, and classification tasks can
run in parallel. For the same piece of data, one has to wait
for the previous one to complete. The initialization (at the
beginning) and dataset generation (at the end) tasks cannot
be parallelized. The last one waits for all the classification
tasks to process all the data.

(4) Task Implementation. Tasks should be mapped to threads
or processes. The current implementation uses the Python
programming language to combine all the different mod-
ules of the architecture (implemented in Python itself or
C++). Since most implementations of Python use the Global
Interpreter Lock (GIL) to synchronize the execution of
threads [20], we implemented tasks as processes to obtain
a better runtime performance improvement with multicore
architectures [21].

(5) Concurrent Workers. To parameterize the level of paral-
lelization of the platform, we configured its implementation
to run with a different number of worker processes (Sec-
tion 4.2). A scheduler analyzes the task DAG and tells each
worker which is the following task to be executed. In Figure 4,
two workers are running in parallel. Tasks 1, 2.1, and 2.2 have
already been executed; Tasks 3.1 and 3.2 are run by Workers
1 and 2, respectively; and Task 2.3 is the following one to be
executed, once one worker is free.

(6) Communication between Tasks. Since we implemented
tasks as processes, communication between them is costly.
However, the dependency between tasks shown in Figure 4
indicates that the output of one task is taken as the input of
the following one. Therefore, this data communication was

http://www.reflection.uniovi.es/decompilation/download/2016/sp/
http://www.reflection.uniovi.es/decompilation/download/2016/sp/

Scientific Programming

implemented through a database, appropriately configured to
obtain the expected runtime performance.

(7) Task Synchronization. Workers should indicate when they
terminate executing one task, and the scheduler should tell
them which task should be executed next. To synchronize this
process, we used a Queue object in the multiprocessing
module.

(8) Tool Parameterization. We configured the IDA disassem-
bler to allow the concurrent processing of the same input
file. The compilation task is represented with a Python class
that can be parameterized to use different compilers, package
managers, compiler options, and automating software. The
external tools used write information in the standard output
(e.g., the C compiler). We captured those messages and sent
them to a concurrent logger, adding additional information
of the processes.

4.2. Methodology. The runtime performance of our platform
depends on the following variables:

(i) Number or independent modules of compilation (or
programs). We may process different programs in
parallel, or different modules of the same program, to
create a dataset.

(ii) Number of workers: as mentioned, the platform may
run different tasks at the same time. A task is run by a
worker. Depending on the number of real processors,
the number of workers may produce an important
benefit on runtime performance.

(iii) The number of cores: we have run our platform with
different multicore computers.

(iv) The size of each program (or module), according to
the number of individuals it may contain.

(v) Subpattern extraction: as described in Section 3.2,
different subpatterns are automatically extracted from
the patterns found. The Max Size and Max Offset
parameters have influence on the execution time.

(vi) The number of patterns: the proposed platform rec-
ognizes patterns by means of the Pattern Detector
functions specified by the user. We analyze runtime
performance depending on the number of patterns
defined.

We evaluate the influence of these variables on the
runtime performance of the platform, and how they are
related to the parallelization level. In order to evaluate that,
we fix all the variables except one and measure the runtime
performance for different values of the free variable [22]. This
process is repeated for all the variables.

We evaluate the platform with the real example of
predicting the return type in binary programs, using their
C source code (the first working scheme of our system,
shown in Figure 1). We extract return, call pre, and call post
patterns, divide them into different subpatterns, and perform
a generalization of the subpatterns found.

1

2,500
2,000
1,500
1,000

500

Execution time (seconds)

1 2 3 4 5 6 7 8

Number of modules

FIGURE 5: Execution time for an increasing number of modules.

The programs used for the experiments were synthetically
generated by a C program generator. It was very helpful to
generate a rich battery of programs. Besides, we were able
to generate different configurations of the same program,
changing the number of individuals (functions in our exam-
ple) per module. In this way, we do not introduce the bias of
measuring different programs.

In order to be able to change the number of cores, all
the tests were carried out on a Hyper-V virtual machine
with 4 processors and 8 GB of RAM, running an updated
64-bit version of Windows 8.1. The host computer was a
3.60 GHz Intel Core i7-4790 system with 16 GB of RAM,
running an updated 64-bit version of Windows 10. The tests
were executed after system reboot, removing the extraneous
load, and waiting for the operating system to be loaded [23].

4.3. Increasing Number of Modules. In this first experiment,
we increase the modules in a program from 1 to 8, fixing the
number of cores and workers to 4. For this experiment and
the following ones, the value of Max Size is 4 and Max Offset
is 0. We also extract return, call pre, and call post patterns.

The program to be analyzed has 10,000 functions (indi-
viduals), so we have 1 module with 10,000 functions, 2
modules with 5,000 functions, and so on, up to 8 modules
with 1,250 functions. Therefore, all the configurations have
the same dataset with 10,000 functions, and the processed
program is the same.

Figure 5 shows the benefits of parallelization. The execu-
tion time of processing the same program drops when the
number of modules is increased until 4 modules (the number
of cores and workers). In that point, the platform processes
the program 3.33 times faster than the same program with one
module (i.e., the sequential implementation). According to
Amdahl’s law, the maximum theoretical performance benefit
for that configuration is 4 factors [24].

For more than 4 modules, there is no significant benefit,
since there are only 4 cores in this configuration. Besides,
there is no penalty for 8 programs, showing that a number
of programs higher that the number of cores do not cause
a significant penalty. The slight worsening for 5, 6, and 7
programs is caused by the selection of 4 workers and cores.
After processing 4 programs in parallel, the processing of the
fifth one makes the rest of the workers wait for completion,
causing a slight performance drop.

—
\S]

2,500
2,000
1,500
1,000

500

Execution time (seconds)

1 2 3 4 5 6 7 8

Number of workers

FIGURE 6: Execution time for an increasing number of workers.

2,500
2,000
1,500
1,000
500

0

Execution time (seconds)

1 2 3 4
Number of cores

FIGURE 7: Execution time for an increasing number of cores.

4.4. Increasing Number of Workers. In this case, the number
of workers goes from 1 to 8, fixing the number of cores and
modules to 4. Each module has 2,500 functions (10,000 for
the whole program).

Figure 6 shows how execution time is reduced as the
number of workers increases. With 4 workers, the platform
reaches the lowest value, 3.5 times faster than the sequential
execution. For 5 workers or more, there is no benefit because
those extra workers keep waiting for tasks to end.

4.5. Increasing Number of Cores. In this case we change the
number of cores of the virtual machine configuration. Fixing
the configuration to 4 workers and modules, we increase
the number of cores from 1 to 4. We have not used more
cores because, in the computer used (see Section 4.2), the
virtualization software drops its performance with 5 cores or
more. The number of individuals per module is 2,500.

We can see in Figure 7 how our platform takes advantage
of multicore architectures. The computer with 4 cores runs
3.7 times faster than the one with one single core. The benefit
is close to the maximum theoretical one [24].

4.6. Increasing Number of Modules and Workers. This exper-
iment increases two variables at the same time. It is intended
to represent a typical use case scenario. Assuming we have a
multicore computer (4 cores in our case), we set the number
of workers equal to the number of modules (or programs) to
be processed. The idea is to try to obtain the higher level of
parallelization with a given computer. Therefore, we increase
the number of modules and workers from 1 to 16. The number
of functions is always 10,000, equally distributed over the
different modules of the program.

Figure 8 shows how execution time keeps reducing until
4 modules and workers (3.5 factors of benefit). From 4 to 7,

Scientific Programming

2,500
2,000
1,500
1,000

500 . DaERg

Execution time (seconds)

5 6 7 8 9 10 11 12 13 14 15 16

Number of modules and workers

FIGURE 8: Execution time for an increasing number of modules and
workers.

900
800
700
600
500
400
300
200
100

Execution time (seconds)

1,000 3,000 5,000 7,000 9,000 11,000 13,000 15,000

Number of functions

FIGURE 9: Execution time for an increasing number of functions.

0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00

Execution time relative
to functions

1,000 3,000 5,000 7,000 9,000 11,000 13,000 15,000

Number of functions

FIGURE 10: Execution time per function, increasing the number of
functions.

differences among the values are lower than 1% (practically
the same values). With 8 and beyond, the figure displays a
slight increase of execution time due to the cost of context
switching. Therefore, the results of the experiments seem to
indicate that the optimal value for workers and modules range
from the number of cores to twice this value.

4.7. Increasing Number of Functions. In order to see how
the platform behaves for increasing sizes of programs, this
experiment increases the number of functions in the program
from 1,000 to 15,000. We selected this maximum value
because it was the biggest program supported by the IDA
disassembler. The number of cores and workers is 4.

Figure 9 shows the linear increase of runtime perfor-
mance depending on the number of functions (i.e., the size
of the programs). Besides, it supports the analysis of really
big modules with 15,000 functions.

Figure 10 presents another view of the same data. That
figure displays the execution time performance per function,
increasing the number of functions in the program. For small
programs, there is an initialization penalty causing a higher

Scientific Programming

1,200

1,000

800

600

400

Execution time (seconds)

200

13

3

4 5

Max Offset/Max Size

—e— Max Offset
51.062(Max Offset) +
188.55

——

Max Size
7.19(Max Size)” +
26.63(Max Size) + 135.25

FIGURE 11: Execution time for an increasing number of Max Offset and Max Size parameters.

execution time to process a low number of functions. When
the program size grows, this initialization cost becomes
negligible. From 5,000 functions on, the execution time per
function converges (the standard deviation is lower than
3.4%), showing that the performance of the platform is not
decreased for big input programs.

4.8. Increasing Max Offset and Max Size. We now modify the
values of the Max Offset and Max Size parameters used to
obtain the binary subpatterns. We used 4 modules, each one
implemented with 750. Max Offset is incremented from 0 to
8, fixing Max Size in 4. We apply the same method to analyze
the influence of Max Size in runtime performance, increasing
its value from 1 to 8 and fixing Max Offset to 4.

Figure 11 shows both variables. We can see how Max Offset
has a linear influence on execution time. The regression line
shown in Figure 11 has a slope of 51, representing the cost
in seconds of increasing one unit in Max Offset. For Max
Size, the best regression obtained is quadratic (Figure 11). The
user should be aware of that, meaning that choosing high
values for Max Size may involve much greater increases of the
execution times.

4.9. Increasing Types of Patterns. The last variable to be
measured is the number of patterns to be recognized. The
patterns are specified with Pattern Detection functions pro-
vided by the user. In our decompiler example, we identified 3
patterns: return, call pre, and call post. We measure runtime
performance of the 7 different combinations of these 3
patterns. Modules, workers, cores, Max Size, and Max Offset
are fixed to 4, and each module contains 750 functions (3,000
in total).

800
700
3 600
=]
3
2 500
)
i
£ 400
¢=}
=]
£ 300
=3
g 200
"
s3]
100
0
“— I - v L = = e -
L St w _ = w » wv v w »
o o O o O o O
~ = o ooy o A o A oA
= = =l = = == ==
@] < 0 O < < < < < <
U F oo (S} (S INS) (S IENS)
2 2 + + g + g
~ T~ L a L a
~ o= o=
= s = s
59 T
o5
+O)
=7
L5}
[~

Types of the processed patterns

FIGURE 12: Execution time when extracting different types of
patterns.

Figure 12 shows the results. The 3 first bars show the
execution time consumed to extract each pattern individ-
ually. The 3 next bars display the execution time for two
patterns in parallel, compared to the costs of extracting them
individually. We can see how the platform obtains an average
benefit of 1.65 factors due to the parallelization. When the
platform extracts 3 patterns at the same time, this benefit
increases to 2.1 factors.

14

4.10. Execution Time for a Real Case Scenario. We have
also measured execution time for the particular scenario of
inferring the return type of a function. As mentioned, this is
an existing problem of existing decompilers. The purpose of
this section is not to present how this problem may be solved
with machine learning, but to measure the execution time
required to extract the binary patterns and to build the model.

To predict the type returned by a function, we extract
binary code patterns before ret instructions and before and
after function invocations. We found out that the number
of functions required to build an accurate model for this
problem is very high, so a huge program database would
be needed. Instead, we implemented a code generation tool
that writes synthetic C functions considering the language
grammar and its type system. This way, we can generate
any number of random functions (and invocations to them)
for all the different types in the language (C built-in types
plus type constructors for compound types (structs, unions,
pointers, and arrays)). These functions are then passed to our
platform to generate the output dataset. Then, the dataset is
used to build a J48 classifier using Weka.

As mentioned, we can generate any number of C func-
tions to be passed to our platform. Therefore, we must work
out the number of functions necessary to build an accurate
model. For this purpose, we used the following method: we
create 1000 functions for each C type; we extract the binary
patterns in that functions with our platform; and we use Weka
with the generated dataset to compute the accuracy rate using
10-fold stratified cross validation. These steps are repeated
in a loop, incrementing the number of functions in 1000 for
each type. We stop when the Coefficient of Variation of the
last 5 accuracy values is lower than 2%, representing that
the increase of functions (individuals) does not represent a
significant improvement of the accuracy. Finally, we build the
J48 model with the dataset generated in the last iteration.

Following the method described above, we created a
dataset with 160,000 functions and 3,321 binary patterns (the
dataset file was 998 MB). The platform generated the dataset
in 2 hours, 11 minutes, and 56 seconds (4 workers and CPUs).
We also measured the sequential version, taking 7 hours 41
minutes and 46 seconds to generate the same dataset. For
comparison purposes, we also evaluated the execution time to
build a J48 model with the 160,000-function dataset, taking 11
hours, 55 minutes, and 15 seconds to build the model. Notice
that Weka builds the model sequentially, not taking advantage
of all the cores in the system.

5. Related Work

There exist different works aimed at extracting assembly
patterns from existing applications. To the knowledge of the
authors, none of them have built a platform to extract those
patterns automatically. They define custom processes and,
some of them, even manual procedures.

Rosenblum et al. extract every combination of 1, 2, and 3
consecutive assembly instructions from a big set of executable
files [6]. Then, they use forward feature selection to filter
the most significant patterns and later train a Conditional
Random Fields to detect the function entry points. The same

Scientific Programming

authors use this methodology to detect the compiler used
to generate the executables [7]. This research work was later
extended to consider the compiler options and programming
language used in the source application [8], to identify the
programmer that coded the application [25], and to identify
the functions belonging to the operating system [26].

BYTEWEIGHT provides another approach to find function
entry points [5]. They apply machine learning to recognize
the patterns, so that different compilers and optimization
options may be used. Analyzing the training binaries, an
extraction process generates prefix trees from sequences of
bytes or normalized instructions. The prefix tree represents
possible function start sequences. Then, they assign a weight
representing the likelihood that the path from the root to
the node is a function start in the training set. Finally, the
weighted prefix tree is used to classify the input binary file.

Apart from assembly patterns extraction, there are sit-
uations where other parts of the binary files need to be
processed. One example is the detection of packed executable
files [27]. To this end, it is necessary to recognize not
only assembly patterns, but also other types of information
existing in the binaries, such as header patterns, entropy
values, and characteristics of the file sections. Ugarte-Pedrero
et al. propose a custom collective-learning-based process
to solve this problem, detecting packed executables upon
structural features, and heuristics [28].

Regarding decompilation, Cifuentes et al. identified the
existing limitations on recognizing high-level control struc-
tures [29]. They later define a technique to recover jump
tables and their target addresses and incorporated it in
the DCC decompiler [30]. The Phoenix decompiler uses
a structuring algorithm to detect control flow structures,
being able to decompile more structures than Hex-Rays
[13]. Regarding decompilation of high-level types, Mycroft
proposes a constraint-based algorithm to infer types from
binary code [31]. Another type recovery approach is the VSA
algorithm based on value propagation [32]. Laika is a system
that uses Bayesian unsupervised learning to detect high-level
data structures, analyzing the process memory images [33].

6. Conclusions

We propose a platform for the automatic extraction of
patterns in binary files, capable of analyzing big executable
files. The platform is highly parameterized to be used in
different scenarios. The extracted patterns can be used to
predict features in native code, when the high-level source
code and the debug information are not available.

The platform implementation has been parallelized to
increase its runtime performance on multicore architectures.
Both data and task parallelization schemes have been fol-
lowed. We have evaluated its performance, obtaining a per-
formance benefit of 3.5 factors over the maximum theoretical
value of 4 factors. The evaluation presented also documents
how the different parameters of the platform should be used
to obtain the best performance.

We are currently using the proposed platform to extract
patterns that are later used to improve the information
inferred by existing decompilers. We generate patterns of

Scientific Programming

high-level type information to train a classifier using different
machine learning algorithms. We are currently focused on
the return types of functions, but we hope to apply it to
parameters and local and global variables.

We plan to use clustering algorithms to the dataset gen-
erated for a big battery of programs taken from open source
code repositories. The objective is to obtain classifications of
(sections of) applications depending on the patterns found
inside them. The classes obtained may be helpful to identify
the code that performs common input/output, network, and
computing intensive or multithreaded operations.

The platform implementation, its source code, the 3
different configurations used in this article (return type,
function or procedure identification, and FEPs extraction in
binary files), and all the examples used in the evaluation
are available for download at http://www.reflection.uniovi.es/
decompilation/download/2016/sp/.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work has been funded by the European Union, through
the European Regional Development Funds (ERDF), and the
Principality of Asturias, through its Science, Technology and
Innovation Plan (Grant GRUPIN14-100). The authors have
also received funds from the Banco Santander through its
support to the Campus of International Excellence.

References

[1] Defense Advanced Research Projects Agency, MUSE envisions
mining “big code” to improve software reliability and construc-
tion, 2014, http://www.darpa.mil/news-events/2014-03-06a.

E Ortin, J. Escalada, and O. Rodriguez-Prieto, “Big code: new

opportunities for improving software construction,” Journal of

Software, vol. 11, no. 11, pp. 1083-1008, 2016.

[3] E Yamaguchi, M. Lottmann, and K. Rieck, “Generalized vulner-
ability extrapolation using abstract syntax trees,” in Proceedings
of the 28th Annual Computer Security Applications Conference
(ACSAC ’12), pp. 359-368, ACM, Los Angeles, Calif, USA,
December 2012.

[4] E. Alpaydin, Introduction to Machine Learning, The MIT Press,
2nd edition, 2010.

[5] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “Byte-
weight: learning to recognize functions in binary code,” in Pro-
ceedings of the 23rd USENIX Conference on Security Symposium
(SEC ’14), pp. 845-860, USENIX Association, San Diego, Calif,
USA, August 2014.

[6] N. Rosenblum, X. Zhu, B. Miller, and K. Hunt, “Learning
to analyze binary computer code;” in Proceedings of the 23rd
National Conference on Artificial Intelligence— Volume 2 (AAAI
’08), pp. 798-804, AAAI Press, 2008.

[7] N. E. Rosenblum, B. P. Miller, and X. Zhu, “Extracting compiler

provenance from program binaries,” in Proceedings of the 9th
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering (PASTE ’10), pp. 21-28, ACM,

Toronto, Canada, June 2010.

S

15

[8] N. Rosenblum, B. P. Miller, and X. Zhu, “Recovering the
toolchain provenance of binary code,” in Proceedings of the
20th International Symposium on Software Testing and Analysis

(ISSTA ’11), pp. 100-110, ACM, Ontario, Canada, July 2011.

[9] I Santos, Y. K. Penya, J. Devesa, and P. G. Bringas, “N-grams-
based file signatures for malware detection,” in Proceedings
of the 11th International Conference on Enterprise Information
Systems (ICEIS 09), pp. 317-320, AIDSS, 2009.

[10] C.Liangboonprakong and O. Sornil, “Classification of malware
families based on N-grams sequential pattern features,” in
Proceedings of the 8th IEEE Conference on Industrial Electronics
and Applications (ICIEA ’13), pp. 777-782, June 2013.

[11] V. Raychev, M. Vechev, and A. Krause, “Predicting program
properties from ‘big code}” in Proceedings of the 42nd Annual
ACM SIGPLANSIGACT Symposium on Principles of Program-
ming Languages (POPL ’15), pp. 111-124, 2015.

[12] K. Troshina, A. Chernov, and Y. Derevenets, “C decompilation:
is it possible?” in Proceedings of the International Workshop on
Program Understanding (PSI °09), pp. 18-27, Altai Mountains,
Russia, 2009.

[13] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley, “Native x86
decompilation using semantics-preserving structural analysis
and iterative control-flow structuring,” in Proceedings of the
22nd USENIX Security Symposium, USENIX, pp. 353-368,
Washington, DC, USA, 2013.

[14] A. Fokin, E. Derevenetc, A. Chernov, and K. Troshina, “Smart-
Dec: approaching C** decompilation,” in Proceedings of the 18th
Working Conference on Reverse Engineering (WCRE ’11), pp.
347-356, IEEE, October 2011.

[15] Y. Fan, Y. Ye, and L. Chen, “Malicious sequential pattern
mining for automatic malware detection,” Expert Systems with
Applications, vol. 52, pp. 16-25, 2016.

[16] J. D. Lafferty, A. McCallum, and E C. N. Pereira, “Conditional
random fields: probabilistic models for segmenting and labeling
sequence data,” in Proceedings of the 18th International Con-
ference on Machine Learning (ICML °01), pp. 282-289, Morgan
Kaufmann, 2001.

[17] J. Escalada and E. Ortin, Source code for the article: An efficient
platform for the automatic extraction of patterns in native code,
2016, http://www.reflection.uniovi.es/decompilation/download/
2016/sp.

[18] LLVM, clang: a C language family frontend for LLVM, 2016,

http://clang llvm.org.

E. Bachaalany, GitHub: IDAPython, 2016, https://github.com/

idapython.

[20] D. Beazley, “Understanding the python GIL, in Proceedings
of the PyCON Python Conference, Atlanta, Ga, USA, February
2010.

[21] D. Phillips, Python 3 Object-Oriented Programming, Packt
Publishing Ltd, Livery Place, Birmingham, UK, 2nd edition,
2015.

[22] J. M. Redondo, E. Ortin, and J. M. C. Lovelle, “Optimizing reflec-
tive primitives of dynamic languages,” International Journal of
Software Engineering and Knowledge Engineering, vol. 18, no. 6,
pp- 759-783, 2008.

[23] E Ortin, L. Vinuesa, and J. M. Felix, “The DSAW aspect-
oriented software development platform,” International Journal
of Software Engineering and Knowledge Engineering, vol. 21, no.
7, pp. 891-929, 2011.

[24] G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” in Proceedings of

[19

http://www.reflection.uniovi.es/decompilation/download/2016/sp/
http://www.reflection.uniovi.es/decompilation/download/2016/sp/
http://www.darpa.mil/news-events/2014-03-06a
http://www.reflection.uniovi.es/decompilation/download/2016/sp
http://www.reflection.uniovi.es/decompilation/download/2016/sp
http://clang.llvm.org
https://github.com/idapython
https://github.com/idapython

16

[25

(26

[27

(29

[30

[31

]

]

]

]

]

the Spring Joint Computer Conference, pp. 483-485, Atlantic
City, NJ, USA, April 1967.

N. Rosenblum, X. Zhu, and B. P. Miller, “Who wrote this
code? Identifying the authors of program binaries,” in Computer
Security—ESORICS 2011: 16th European Symposium on Research
in Computer Security, Leuven, Belgium, September 12-14,2011.
Proceedings, vol. 6879 of Lecture Notes in Computer Science, pp.
172-189, Springer, Berlin, Germany, 2011.

E.R.Jacobson, N. Rosenblum, and B. P. Miller, “Labeling library
functions in stripped binaries,” in Proceedings of the 10th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools (PASTE ’I1), pp. 1-8, ACM, Szeged, Hungary, September
2011.

I. Santos, X. Ugarte-Pedrero, B. Sanz, C. Laorden, and P. G.
Bringas, “Collective classification for packed executable identi-
fication,” in Proceedings of the 8th Annual Collaboration, Elec-
tronic Messaging, Anti-Abuse and Spam Conference (CEAS ’11),
pp- 23-30, Perth, Australia, September 2011.

X. Ugarte-Pedrero, I. Santos, and P. G. Bringas, “Structural
feature based anomaly detection for packed executable iden-
tification,” in Computational Intelligence in Security for Infor-
mation Systems: 4th International Conference, CISIS 2011, Held
at IWANN 2011, Torremolinos-Malaga, Spain, June 8-10, 2011.
Proceedings, vol. 6694 of Lecture Notes in Computer Science, pp.
230-237, Springer, Berlin, Germany, 2011.

C. Cifuentes, D. Simon, and A. Fraboulet, “Assembly to high-
level language translation,” in Proceedings of the IEEE Interna-
tional Conference on Software Maintenance (ICSM *98), pp. 228-
237, IEEE, Bethesda, Md, USA, November 1998.

C. Cifuentes and M. Van Emmerik, “Recovery of jump table case
statements from binary code,” Science of Computer Program-
ming, vol. 40, no. 2-3, pp. 171-188, 2001.

A. Mycroft, “Type-based decompilation,” in Proceedings of the
European Symposium on Programming (ESOP *99), pp. 208-223,
1999.

G. Balakrishnan and T. Reps, “Divine: discovering variables
in executables,” in Verification, Model Checking, and Abstract
Interpretation: 8th International Conference, VMCAI 2007, Nice,
France, January 14-16, 2007. Proceedings, vol. 4349 of Lecture
Notes in Computer Science, pp. 1-28, Springer, Berlin, Germany,
2007.

A. Cozzie, F. Stratton, H. Xue, and S. T. King, “Digging for data
structures,” in Proceedings of the 8th Conference on Operating
Systems Design and Implementation (OSDI '08), pp. 255-266,
San Diego, Calif, USA, December 2008.

Scientific Programming

= _'A'. ' N - -
Advances in b ,“ . e industal Engineering
iR, ARINE - -
L& s S . Applied
. - o Computational

Intelligence and Soft
Ep/mputing—'

The Scientific ISR —
World Journal Sensor Networks

Advances in

Fuzzy

Modelling &
Simulation
in Engineering

o

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Computer Networks
and Communications P eEsl

Artificial
Intelligence

Advances in
jomedical Imaging. M Artificial
‘ol Neural Systems

s

International Journal of
Computer Games 5 in
Technology oy re Engineering

Reconfigurable
Computing

Computational o
Journal of ¢ Hu;jja[)TCOrjj|3L|tey‘ \ntengence and 2 Electrical and Computer
Robotics Interaction Neuroscience Engineering

SN

