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Abstract

This paper establishes a theory of decision making
under uncertainty with fuzzy utilities. The exten-
sion of expected utility and stochastic dominance
to the comparison of sets of random variables plays
a crucial role. Their properties as fuzzy rankings
are studied, and their definitions are further gen-
eralized to the comparison of fuzzy random vari-
ables. Also, a connection between expected util-
ity for fuzzy random variables and the compari-
son of the lower/upper probabilities they induce is
proven.

Keywords: Fuzzy rankings, fuzzy random vari-
ables, stochastic orders, imprecise probabilities,
possibility measures, p-boxes.

1. Introduction

Since they were introduced in [23], fuzzy sets have
been widely used as a mathematical model in a
context of incomplete information. Their use was
boosted further by the introduction by Puri and
Ralescu of the notion of fuzzy random variable [17],
a generalization of random variables to situations
where the images are fuzzy sets.
The widespread use of fuzzy sets has lead natu-

rally to the consideration of decision making prob-
lems with fuzzy information. In order to solve them,
it is necessary to use methods that allow to rank
fuzzy sets and fuzzy random variables. The first of
these two cases has been widely investigated (see for
instance [2, 20, 22]) but, to the best of our knowl-
edge no methods have been proposed to rank fuzzy
random variables.

In this paper, we extend the preliminary results
we presented in [15] and we address the problem in
two different ways: on the one hand, we define a
second order possibility on the set of probabilities
and we apply Walley’s approach [19] to derive from
it a lower and upper probability. This allows to
turn the comparison of the fuzzy random variables
to that of their lower/upper expectations. On the
other hand, we extend a number of stochastic or-
ders from random variables towards fuzzy random
variables. With respect to this second approach, in
earlier works [13, 14], we extended stochastic orders
to the comparison of sets of random variables, as
a first step when modeling imprecise information.
Here we use some of the results in those papers by

considering a number of imprecise probability mod-
els that are related to fuzzy random variables, such
as probability boxes and possibility measures. As
a side result, we study the axiomatic properties of
these imprecise stochastic orders as fuzzy rankings.

After giving some preliminary concepts in Sec-
tion 2, Section 3 introduces stochastic orders for
the particular models we have mentioned. Then,
in Section 4 we investigate the properties of impre-
cise stochastic orders as fuzzy rankings, and in Sec-
tion 5 we study how these stochastic orders may be
extended towards the comparison of fuzzy random
variables. The paper concludes in Section 6 with
some additional discussion.

2. Fuzzy sets and fuzzy random variables

A fuzzy setX tells us to which extent the elements of
a possibility space Ω satisfy a property, often corre-
sponding to linguistic information. It is determined
by its membership function µX : Ω→ [0, 1]. The set
of elements with strictly positive membership value
is called the support of X, and denoted by supp X.
We shall denote by F(Ω) the class of all fuzzy sets
over a referential space Ω. The membership func-
tion can be extended to subsets of Ω, so that the
acceptability in which the fuzzy concept is satisfied
by set A is given by

Π(A) = sup
ω∈A

µX(ω).

This function is a possibility measure [7, 24], and the
membership function µX is its associated possibility
distribution.

We will focus in this paper on one prominent fam-
ily of fuzzy sets, that of fuzzy numbers. A fuzzy set
is a fuzzy number if there exists a closed non-empty
interval [a, b] such that:

µ(x) =


1 for x ∈ [a, b];
l(x) for x < a;
r(x) for x > b,

where l : (−∞, a) → [0, 1] is a non-decreasing and
right-continuous function such that l(x) = 0 for x <
ω1, and r : (b,∞) → [0, 1] is a non-increasing and
left-continuous function such that r(x) = 0 for x >
ω2, for some ω1, ω2 ∈ R. From this definition, it
follows that the α-cuts of a fuzzy number are closed
intervals.
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In this paper we focus on fuzzy random variables,
which extend the notion of random variable to the
case where the images are fuzzy sets.
Definition 1 [11] Let (Ω,A, P ) be a probability
space. A fuzzy random variable is a map X̃ : Ω →
F(R) such that the α-cuts X̃α : Ω→ P(R) given by

X̃α(ω) = {t ∈ R : X̃(ω)(t) ≥ α}

are random sets, meaning that

{ω ∈ Ω : X̃α(ω) ∩A 6= ∅} ∈ A ∀A ∈ βR.

Fuzzy random variables were introduced by Féron
in [9]. In this work we follow the epistemic inter-
pretation developed by Kruse and Meyer [11], and
regard a fuzzy random variable X̃ as a model for
the imprecise knowledge of a random variable U0,
in the sense that for any ω′ ∈ R, X̃(ω)(ω′) is inter-
preted as the acceptability degree of the proposition
“U0(ω) = ω′”. Following these lines, we can define a
fuzzy set on the class of measurable functions from
Ω to R, µ

X̃
, that associates the value

µ
X̃

(U) = inf{X̃(ω)(U(ω)) : ω ∈ Ω} (1)

with any measurable function U : Ω → R. This
value can then be understood as the acceptability
degree of the proposition “U = U0”. Using this
interpretation, Couso [1] defined the probabilistic
envelope of a fuzzy random variable.
Definition 2 [1, Definition 5.1.1] Let X̃ : Ω →
F(R) be a fuzzy random variable. The probabilistic
envelope of X̃ is the map P

X̃
: A → F([0, 1]) such

that the membership function P
X̃

(A)(p) is given by:

sup{µ
X̃

(U) such that U : Ω→ R r.v., PU (A) = p}

for any A ∈ A and p ∈ [0, 1].
Thus, P

X̃
(A)(p) can be interpreted as the accept-

ability degree of the proposition “PU0(A) = p”.
With this idea, we can also possible to define the
envelope of the cumulative distribution function of
X̃ as the map F

X̃
: R→ F(R) such that

F
X̃

(t)(p) = sup{µ
X̃

(U) : FU (t) = p}. (2)

Then, F
X̃

(t) = P
X̃

((−∞, t]) for any t ∈ R, and
F
X̃

(t)(p) can be interpreted as the acceptability de-
gree of the proposition “FU0(t) = p”.

Following [1], the fuzzy version of any parame-
ter can be defined for fuzzy random variables. For-
mally, if the parameter belongs to the parametric
space Θ, its fuzzy version is defined by:

θ
X̃
∈ F(Θ), θ

X̃
(θ′) = sup{µ

X̃
(U) : θ(PU ) = θ′}.

θ
X̃

(θ′) represents the acceptability degree of the
proposition “θ(PU0) = θ′”. In particular, the ex-
pectation of a fuzzy random variable is given by:

E(X̃)(t) = sup{µ
X̃

(U) : E(U) = t}, (3)

and E(X̃)(t) can be interpreted as the acceptability
degree of the proposition “E(U0) = t”.

3. Imprecise stochastic orders

Stochastic orders are methods that compare ran-
dom variables by means of their probabilistic infor-
mation [16]. The most important one is expected
utility: given two random variables X,Y defined on
a probability space (Ω,A, P ), we define

X �E Y ⇔ E(X) ≥ E(Y ).

In this paper, we also consider stochastic domi-
nance.

Definition 3 Let X and Y be two random vari-
ables and let FX and FY be their respective cumu-
lative distribution functions. X is said to stochas-
tically dominate Y , and we denote it X �SD Y ,
if

FX(t) ≤ FY(t) for any t ∈ R.

It is well known that X �SD Y implies X �E Y .
These two stochastic orders were extended in

[13, 14] towards the comparison of sets of random
variables. The following definitions were considered:

Definition 4 [13, Def. 5] Let X and Y be two sets
of random variables, and let � be a stochastic order.
It is said that:

1. X �1 Y if and only if for any X ∈ X , Y ∈ Y
it holds that X � Y .

2. X �2 Y if and only if there is some X ∈ X
such that X � Y for any Y ∈ Y.

3. X �3 Y if and only if for any Y ∈ Y there is
some X ∈ X such that X � Y .

4. X �4 Y if and only if there are X ∈ X , Y ∈ Y
such that X � Y .

5. X �5 Y if and only if there is some Y ∈ Y such
that X � Y for any X ∈ X .

6. X �6 Y if and only if for any X ∈ X there is
Y ∈ Y such that X � Y .

It follows from this definition that X �1 Y ⇒
X �2 Y ⇒ X �3 Y ⇒ X �4 Y and that X �1
Y ⇒ X �5 Y ⇒ X �6 Y ⇒ X �4 Y; no additional
implication holds in general.

When � is given by expected utility or stochastic
dominance, we shall refer to the extensions �i for
i = 1, . . . , 6 as imprecise expected utility or imprecise
stochastic dominance, and we shall denote them by
�Ei or �SDi , respectively.

Next, we are going to show how the definition
above can be applied in two particular cases: the
comparison of possibility measures and sets of dis-
tribution functions. Since these two models are re-
lated to fuzzy random variables, our results in this
section shall be useful when comparing fuzzy ran-
dom variables in Section 5.

3.1. Sets of distribution functions

One model that we shall relate to fuzzy random vari-
ables in this paper are sets of distribution functions,
or p-boxes.
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Definition 5 Let F , F : R → [0, 1] be two in-
creasing functions satisfying F ≤ F and such that
F (−∞) = F (−∞) = 0 and F (∞) = F (∞) = 1.
Then the p-box (F , F ) is the set of distribution func-
tions bounded between F and F .

Note that F , F may not be distribution functions,
because we are not requiring them to be right-
continuous; they are only the cumulative functions
associated with a finitely additive probability. In
this paper, we shall follow the work in [14] and re-
gard p-boxes as sets of σ-additive distribution func-
tions.
If we want to compare two p-boxes (FX, FX) and

(FY, FY), we can use the extensions of expected
utility and stochastic dominance. With respect to
imprecise expected utility, it is easy to establish
the following when the lower and upper distribu-
tion functions belong to the p-box:

Proposition 1 Consider two p-boxes (FX, FX)
and (FY, FY), with bounded support and including
their respective lower and upper distribution func-
tions.

1. (FX, FX) �E1 (FY, FY) ⇔
∫
id dFX ≥∫

id dFY.

2. (FX, FX) �E2 (FY, FY) ⇔ (FX, FX) �E3

(FY, FY)⇔
∫
id dFX ≥

∫
id dFY.

3. (FX, FX) �E4 (FY, FY) ⇔
∫
id dFX ≥∫

id dFY.

4. (FX, FX) �E5 (FY, FY) ⇔ (FX, FX) �E6

(FY, FY)⇔
∫
id dFX ≥

∫
id dFY.

With respect to imprecise stochastic dominance,
some results were already established in [13,
Thm. 8] and [14, Prop. 3] for the comparison of
arbitrary sets of distribution functions. Using [14,
Cor. 1] it is not difficult to show that the converse
of [14, Prop. 3] holds when the p-boxes include their
lower and upper distribution functions:

Proposition 2 Consider two p-boxes (FX, FX)
and (FY, FY) with bounded support and including
their respective lower and upper distribution func-
tions. If we denote by U the set of increasing func-
tions, it holds that:

1. (FX, FX) �SD1 (FY, FY) ⇔
∫
udFX ≥∫

udFY for any u ∈ U .

2. (FX, FX) �SD2 (FY, FY) ⇔ (FX, FX) �SD3

(FY, FY) ⇔
∫
udFX ≥

∫
udFY for any u ∈

U .

3. (FX, FX) �SD4 (FY, FY) ⇔
∫
udFX ≥∫

udFY for any u ∈ U .

4. (FX, FX) �SD5 (FY, FY) ⇔ (FX, FX) �SD6

(FY, FY) ⇔
∫
udFX ≥

∫
udFY for any u ∈

U .

It follows from these two results that �SDi implies
�Ei for any i = 1, . . . , 6 in this context.

3.2. Possibility measures

As we said, one imprecise probability model closely
related to fuzzy set theory are possibility measures
[24]: the membership function of a fuzzy set can
be interpreted as a possibility distribution, and as
a consequence its associated possibility measure ex-
tends the membership function towards subsets of
the referential space.

Here we shall consider possibility measures on R
induced by fuzzy numbers. For them, we can es-
tablish a simple characterization of expected utility
and stochastic dominance.

Given a possibility measure Π, we can define a
set of probabilities, named credal set, by:

M(Π) = {P prob : P (A) ≤ Π(A) ∀A ∈ βR}.

Consider Π1,Π2 two possibility measures on the
power set of R associated with fuzzy numbers, and
let M(Π1),M(Π2) be their respective credal sets.
We shall also denote by F1,F2 the correspond-
ing sets of cumulative distribution functions. Next
lemma shows that these sets are indeed determined
by the possibility measures and their conjugate ne-
cessity measures, where the necessity measure de-
termined by a possibility measure Π is given by
N(A) = 1−Π(Ac) ∀A ⊆ Ω. The key in the proof is
to consider a random set with this possibility mea-
sure as upper probability, and such that the possi-
bility measure is the maximum of the measurable
selections.

Lemma 1 Let Π be the possibility measure induced
by a fuzzy number, and let F be the set of cumulative
distribution functions associated withM(Π). Then,
the lower and upper envelopes of F belong to F and
they coincide with the ones determined by N and Π.

Using this lemma, we can establish the following
characterization of stochastic dominance for possi-
bility measures:

Proposition 3 Consider two possibility measures
ΠX and ΠY on R determined by fuzzy numbers, and
denote by FX,FY their associated sets of distribu-
tion functions. The following statements hold:

1. FX �SD1 FY ⇔ ΠX((−∞, t]) ≤ NY((−∞, t])
for any t.

2. FX �SD2 FY ⇔ FX �SD3 FY ⇔
NX((−∞, t]) ≤ NY((−∞, t]) for any t.
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3. FX �SD4 FY ⇔ NX((−∞, t]) ≤ ΠY((−∞, t])
for any t.

4. FX �SD5 FY ⇔ FX �SD6 FY ⇔
ΠX((−∞, t]) ≤ ΠY((−∞, t]) for any t.

Proposition 2 established a connection between the
comparison of p-boxes by imprecise stochastic dom-
inance and the comparison of integrals. Next we
establish an analogous result for particular case of
p-boxes induced by possibility measures.

Corollary 1 Let ΠX and ΠY be two possibility
measures on R determined by fuzzy numbers, and
let FX,FY denote their associated sets of distribu-
tion functions. The following statements hold:

1. FX �SD1 FY ⇔
∫
udFΠX ≥

∫
udFNY for ev-

ery u ∈ U .
2. FX �SD2 FY ⇔ FX �SD3 FY ⇔

∫
udFNX ≥∫

udFNY for every u ∈ U .

3. FX �SD4 FY ⇔
∫
udFNX ≥

∫
udFΠY for ev-

ery u ∈ U .
4. FX �SD5 FY ⇔ FX �SD6 FY ⇔

∫
udFΠX ≥∫

udFΠY for every u ∈ U .

A similar result can be established with respect to
imprecise expected utility.

Corollary 2 Let ΠX and ΠY be two possibility
measures on R associated with fuzzy numbers, and
let FX,FY denote their associated sets of distribu-
tion functions.

1. FX �E1 FY ⇔
∫
id dFΠX ≥

∫
id dFNY .

2. FX �E2 FY ⇔ FX �E3 FY ⇔
∫
id dFNX ≥∫

id dFNY .

3. FX �E4 FY ⇔
∫
id dFNX ≥

∫
id dFΠY .

4. FX �E5 FY ⇔ FX �E6 FY ⇔
∫
id dFΠX ≥∫

id dFΠY .

Taking these results into account, whenever we com-
pare two possibility measures ΠX,ΠY, we shall con-
sider only definitions �1,�2,�4 and �5 if � refers
to stochastic dominance or expected utility, since in
both cases �2 is equivalent to �3 and �5 is equiv-
alent to �6. Moreover, we shall use the notation
ΠX �i ΠY to refer to FX �i FY for simplicity.
In addition, it follows that imprecise stochastic

dominance implies imprecise expected utility also
when applied to the possibility measures that fuzzy
numbers determine. This is consistent with the re-
lation between stochastic dominance and expected
utility explained at the beginning of the section.

4. Imprecise stochastic orders as fuzzy
rankings

A fuzzy ranking is a method that allows to establish
an order between fuzzy sets. Several fuzzy rankings
have been proposed in the literature (see [20, 21, 22]
for critical reviews and [5, 8, 26] for recent works).

Since a fuzzy set is formally equivalent to a possi-
bility measure, we can use the ideas from Section 3.2
and regard the methods we have considered in the
previous section as fuzzy rankings. There is, how-
ever, one fundamental difference with the majority
of the fuzzy rankings: we are allowing for incompa-
rability between the fuzzy sets, which in our view
is natural under the epistemic interpretation we are
giving to fuzziness in this paper. In this sense, our
proposal aligns with the one by Dubois and Prade in
[6]: they propose several indices for the comparison
between two fuzzy sets but in case of contradiction
leave the final choice to the decision maker, under
the light of the information provided. A somewhat
related idea (considering a ranking method whose
output is a fuzzy set) was proposed in [26].

The use of stochastic orders as fuzzy rankings has
already been investigated in [2]. One essential dif-
ference with our approach is that they assume some
knowledge about the dependence between the fuzzy
sets, according to which they express some stochas-
tic orders in terms of the comparison of lower/upper
expectations with respect to adequate functions. In
contrast, our approach does not make any assump-
tions about the dependence between the fuzzy sets.

Next, we shall study the properties of imprecise
stochastic dominance and imprecise expected util-
ity as fuzzy rankings. We shall focus on the appli-
cation of these orders to trapezoidal fuzzy numbers,
for which the orders shall take a simple expression.
Recall that a trapezoidal fuzzy number is a fuzzy
set determined by four parameters (t1, t2, t3, t4):

µ(x) =


0 if x < t1 or x > t4.
x−t1
t2−t1 if t1 ≤ x < t2.

1 if t2 ≤ x ≤ t3.
t4−x
t4−t3 if t3 < x ≤ t4.

4.1. Imprecise expected utility as a fuzzy
ranking

Given a possibility measure induced by a trape-
zoidal fuzzy number, we can establish a simple char-
acterization of imprecise expected utility. To see
how this comes about, note that if Π is determined
by the membership function of a trapezoidal fuzzy
number (t1, t2, t3, t4), then∫

id dFN = t3 + t4
2 and

∫
id dFΠ = t1 + t2

2 .

Applying Corollary 2, we deduce the following:
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Proposition 4 Let (x1, x2, x3, x4) and
(y1, y2, y3, y4) be two trapezoidal fuzzy num-
bers, and denote by ΠX and ΠY the possibility
measures they determine.

1. ΠX �E1 ΠY ⇔ x1+x2
2 ≥ y3+y4

2 .
2. ΠX �E2 ΠY ⇔ x3+x4

2 ≥ y3+y4
2 .

3. ΠX �E4 ΠY ⇔ x3+x4
2 ≥ y1+y2

2 .
4. ΠX �E5 ΠY ⇔ x1+x2

2 ≥ y1+y2
2 .

In [20, 21], Wang and Kerre discuss a number of
desirable properties for fuzzy rankings �. Here we
shall consider the following:

(A0) For any pair of fuzzy numbers A,B, either A �
B or B � A. [Completeness]

(A1) A � A for any fuzzy number A. [Reflexivity]
(A2) A � B,B � A⇒ A = B. [Antisymmetry]
(A3) A � B and B � C ⇒ A � C. [Transitivity]
(A4) inf supp(A) > sup supp(B)⇒ A � B.
(A5) A � B ⇒ A+C � B+C for any fuzzy number

C.
(A6) supp(C) ⊆ [0,+∞), A � B ⇒ AC � BC.

Using Proposition 4, we establish the following:

Proposition 5 Let �Ei denote the extension of ex-
pected utility to the imprecise case by means of Def-
inition 4. They satisfy the following properties as
fuzzy rankings of trapezoidal fuzzy numbers:

(A0) (A1) (A2) (A3) (A4) (A5) (A6)

�E1 • • •
�E2 • • • • •
�E4 • • • • •
�E5 • • • • •

C

B A

0 1 2 3 4

Figure 1: Graphical representation of the trape-
zoidal fuzzy sets.

It is also interesting to discuss the behavior of these
orders in the controversial case discussed in [20, Sec-
tion 1.2], that we depict in Figure 1: we consider the
trapezoidal fuzzy sets A = (2, 3, 3, 4), B = (1, 3, 3, 4)
and C = (0, 1, 3, 4). We deduce from Proposition 4
that

A �E5 B �E5 C, A ≡E2 B ≡E2 C,

A ≡E4 B ≡E4 C,

and that they are incomparable with respect to�E1 .
This is because the order �E5 is looking at the lower
limits of the fuzzy sets, for which we can establish
a strict order, while �E2 is looking at the upper
limits, where the three fuzzy sets coincide.

4.2. Imprecise stochastic dominance as a
fuzzy ranking

When the possibility measures to be compared are
induced by trapezoidal fuzzy numbers, imprecise
stochastic dominance also takes a simple expression:

Proposition 6 Let (x1, x2, x3, x4) and
(y1, y2, y3, y4) be two trapezoidal fuzzy num-
bers, and let ΠX and ΠY be the possibility measures
they determine.

1. ΠX �SD1 ΠY ⇔ y3 ≤ x1 and y4 ≤ x2.
2. ΠX �SD2 ΠY ⇔ y3 ≤ x3 and y4 ≤ x4.
3. ΠX �SD4 ΠY ⇔ y1 ≤ x3 and y2 ≤ x4.
4. ΠX �SD5 ΠY ⇔ y1 ≤ x1 and y2 ≤ x2.

We can use this result to determine the properties of
imprecise stochastic dominance as a fuzzy ranking.

Proposition 7 Let �SDi denote the extension of
stochastic dominance to the imprecise case by means
of Definition 4. They satisfy the following proper-
ties as fuzzy rankings of trapezoidal fuzzy numbers:

(A0) (A1) (A2) (A3) (A4) (A5) (A6)

�SD1 • • • •
�SD2 • • • • •
�SD4 • • • • •
�SD5 • • • • •

It is also interesting to discuss the behavior of these
orders in the case discussed in Figure 1: from Propo-
sition 6, we immediately see that

A �SD5 B �SD5 C, A ≡SD2 B ≡SD2 C,

A ≡SD4 B ≡SD4 C,

and that they are incomparable with respect to
�SD1 .

5. Comparison of fuzzy random variables

Next, we shall apply the previous results to the com-
parison of fuzzy random variables. Throughout this
section we shall assume that the images of the fuzzy
random variables are fuzzy numbers, and also that
they are uniformly bounded, meaning that for each
fuzzy random variable X̃ there is a compact inter-
val [a, b] such that the support X̃(ω) is included in
[a, b] for every ω.

5.1. An imprecise probabilistic approach

The fuzzy set µ
X̃

(U) defined in Eq. (1) measures
how compatible is the random variable U with the
unknown random variable that X̃ is modeling. In a
similar manner we can define a fuzzy set on the set
of probabilities:

µ′
X̃

(P ) = sup{µ
X̃

(U) : PU = P}.

Following the same interpretation, µ′
X̃

(P ) measures
how compatible is P with the probability induced
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by the unknown random variable that X̃ is model-
ing; as such, µ′

X̃
is a second order possibility over

a set of probabilities. In [19], Walley introduced a
method to reduce µ′

X̃
to a first order model. Next,

we show how the resulting model can be used for
the comparison of fuzzy random variables.
Walley defines the functions Pα and Pα by:

Pα(A) = inf{P (A) : µ′
X̃

(P ) ≥ α} and
Pα(A) = sup{P (A) : µ′

X̃
(P ) ≥ α};

by representing these functions as conditional infor-
mation and using the notion of natural extension,
which models the implications of a number of as-
sessments within the behavioural theory of impre-
cise probabilities, he then derives the (first order)
lower and upper probabilities by:

P (A) =
∫ 1

0
Pα(A)dα and P (A) =

∫ 1

0
Pα(A)dα

for every A ⊆ Ω. When we consider fuzzy random
variables whose images are fuzzy numbers, it holds
that µ′

X̃
(P ) ≥ α if and only if there exists a random

variable U such that PU = P and µ
X̃

(U) ≥ α. On
the other hand,

µ′
X̃

(PU ) ≥ α⇔ U ∈ S(X̃α).

Thus, {P | µ′
X̃

(P ) ≥ α} = {PU | U ∈ S(X̃α)}. In
other words, Pα and Pα are the lower and upper
expectations of the α-cuts. If we use the notation
X̃α(ω) = [lα(ω), rα(ω)], we can define the lower and
upper expectation associated with µ′

X̃
by:

EW =
∫ 1

0
E(lα) dα and E

W =
∫ 1

0
E(rα) dα.

(4)
Using the notions of interval dominance [25], mini-
max [18], maximax [10] and E-admissibility [12] of
Imprecise Probability Theory, we can compare fuzzy
random variables in the following manner:

Definition 6 Let X̃ and Ỹ be two fuzzy random
variables whose images are fuzzy numbers. Denote
by EW

X̃
, E

W

X̃ and EW
Ỹ
, E

W

Ỹ the lower and upper ex-
pectations obtained by Eq. (4). We say that X̃ is
preferred to Ỹ with respect to:

Interval dominance when EW
X̃
≥ EWỸ ;

Maximin when EW
X̃
≥ EW

Ỹ
;

Maximax when EWX̃ ≥ E
W

Ỹ ;

E-admissibility when EWX̃ ≥ E
W

Ỹ
.

5.2. Fuzzy expected utility

When we want to compare fuzzy random variables
by means of expected utility, their expectations are
given by fuzzy sets (see Eq. (3)), and as a conse-
quence we must consider a fuzzy ranking on them.
It is not difficult to show that

(E(X̃))α =
[∫

id dP∗X̃α
,

∫
id dP ∗

X̃α

]
,

and therefore that E(X̃) is also a fuzzy number.
From the point of view of imprecise probabilities,

we can also consider the possibility measures asso-
ciated with these fuzzy sets, and one of imprecise
stochastic orders we have discussed in Section 3.2.
The following example illustrates both these possi-
bilities.

Example 1 We model two unknown random vari-
ables defined in ([0, 1], β[0,1], λ[0,1]) by means of the
fuzzy random variables X̃, Ỹ : [0, 1] → F([0, 1])
given by:

X̃(ω)(r) =
{

2r if r ≤ 1
2 .

2− 2r if r > 1
2 .

Ỹ (ω)(r) =


0 if ω ∈ [0, 1

2 ] and r 6= 0.
1 if ω ∈ [0, 1

2 ] and r = 0.
1 if ω ∈ ( 1

2 , 1] and r ≥ 1
2 .

0 if ω ∈ ( 1
2 , 1] and r < 1

2 .

Their expectations are given by:

E(X̃)(r) =
{

2r if r ∈ [0, 1
2 ).

2− 2r if r ∈ [ 1
2 , 1].

E(Ỹ )(r) =
{

1 if r ∈ [ 1
4 ,

1
2 ].

0 otherwise.

Let us compare these two sets by means of the
fuzzy ranking defined by de Campos and González
Muñoz [4] with an optimism-pessimism index of 0.5,
given by A �CM B if and only if

CM(A) :=
∫ 1

0

a−α + a+
α

2 dα ≥∫ 1

0

b−α + b+α
2 dα := CM(B), (5)

where a−α , a+
α (resp., b−α , b+α ) denote the infimum and

the supremum of the α-cut of A (resp., B). We ob-
tain that

CM(E(X̃)) = 1
2 >

3
8 = CM(E(Ỹ )),

and we conclude that X̃ is preferred to Ỹ .
On the other hand, we can also interpret these

expectations as possibility distributions, and we can
thus compare them by means of imprecise expected
utility. Denote by ΠX and NX the possibility and
necessity measures associated with E(X̃) and by ΠY
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and NY the possibility and necessity measures asso-
ciated with E(Ỹ ). We have that∫

iddFΠX = 1
4 ,

∫
iddFNX = 3

4 ,∫
iddFΠY = 1

4 ,
∫
iddFNY = 1

2 .

Applying Corollary 2, we conclude that X̃ �E2 Ỹ ,
X̃ ≡Ei Ỹ , for i = 4, 5 and that they are incompara-
ble with respect to the first definition. �

Our next result establishes a connection between
fuzzy expected utility, when the fuzzy rank-
ing between the expectations is given by impre-
cise expected utility, and the comparison of the
lower/upper expectations given by Walley’s proce-
dure. A somewhat similar result can be found in [3,
Section 7]. Our proof is based on the properties of
complete monotonicity that these functionals sat-
isfy.

Theorem 1 Let X̃ be a fuzzy random variable
whose images are fuzzy numbers, and let EW , EW

be given by Eq. (4). Let Π be the possibility mea-
sure associated with E(X̃) and denote by EΠ, EΠ
the lower and upper expectations associated with Π.
Then, EW = EΠ and EW = EΠ.

This allows us to show that the comparison of fuzzy
random variables using Walley’s approach is related
to the comparison of the fuzzy expectations using
imprecise expected utility. Using Proposition 4 and
Theorem 1, we deduce that:

Theorem 2 Let X̃ and Ỹ be two fuzzy random
variables whose images are fuzzy numbers, and let
EW
X̃
, E

X̃
, EW

Ỹ
, E

W

Ỹ be given by Eq. (4). Then:

1. E(X̃) �E1 E(Ỹ )⇔ EW
X̃
≥ EWỸ .

2. E(X̃) �E2 E(Ỹ )⇔ EW
X̃
≥ EW

Ỹ
.

3. E(X̃) �E4 E(Ỹ )⇔ E
W

X̃ ≥ E
W

Ỹ
.

4. E(X̃) �E5 E(Ỹ )⇔ E
W

X̃ ≥ E
W

Ỹ .

Example 2 Consider again the fuzzy random vari-
ables X̃, Ỹ from Example 1, for which E(X̃) �E2

E(Ỹ ) and E(X̃) ∼Ei E(Ỹ ) for i = 4, 5, while they
are incomparable for �E1 . Applying Theorem 2, X̃
is preferred to Ỹ with respect to the maximin crite-
rion, while they are equivalent with respect to maxi-
max and E-admissibility, and they are incomparable
with respect to interval dominance. �

5.3. Fuzzy stochastic dominance

Next we consider the extension of stochastic dom-
inance. For fuzzy random variables X̃, Ỹ , it fol-
lows from Eq. (2) that for any real number t,
F
X̃

(t), F
Ỹ

(t) are fuzzy sets on [0, 1]. Hence, we
should compare them by means of a fuzzy ranking,
and this gives rise to the following definition:

Definition 7 Let % be a fuzzy ranking, and con-
sider two fuzzy random variables X̃, Ỹ . We say
that X̃ %-stochastically dominates Ỹ when F

Ỹ
(t) %

F
X̃

(t) for any real number t.

Stochastic dominance is quite a strong relationship,
and gives rise to many instances of incomparable
random variables. This phenomenon is exacerbated
when the fuzzy ranking % we consider does not pro-
duce a complete order, as is for instance the case
with some versions of imprecise stochastic domi-
nance or imprecise expected utility. Because of this,
we think it makes more sense to use fuzzy stochastic
dominance with respect to a complete fuzzy rank-
ing. The following example illustrates the proce-
dure:

Example 3 Consider again the fuzzy random vari-
ables X̃, Ỹ from Example 1. Their (fuzzy) distribu-
tion functions are:

F
X̃

(ω)(r) =


2ω if r ∈ (0, 1], ω ∈ [0, 0.5).
1 if r = 0, ω ∈ [0, 0.5).
2− 2ω if r ∈ [0, 1), ω ∈ [0.5, 1].
1 if r = 1, ω ∈ [0.5, 1].

while

F
Ỹ

(ω) =


I{0.5} if ω ∈ [0, 0.5).
I[0.5,1] if ω ∈ [0.5, 1).
I{1} if ω = 1.

If we compare them by means of the fuzzy ranking
in Eq. (5), CM(F

X̃
(ω)) = ω for any ω ∈ [0, 1] while

CM(F
Ỹ

(ω)) =


0.5 if ω ∈ [0, 0.5)
0.75 if ω ∈ [0.5, 1)
1 if ω = 1.

As a consequence, X̃ and Ỹ are incomparable with
respect to %CM -stochastic dominance. �

6. Conclusions

In this paper we have established a theory of fuzzy
decision making under uncertainty by generalizing
the notion of stochastic order. We have provided
a number of extensions of two of the most promi-
nent stochastic orders in the literature: expected
utility and stochastic dominance. The choice of one
particular extension over the others can be made
according to a number of criteria: on the one hand,
for those based on the imprecise stochastic orders in
Definition 4, it should be remarked that the differ-
ent notions take into account different underlying
criteria, as discussed in [13]. On the other hand,
some of the possibilities we have discussed require
the use of an underlying fuzzy ranking. This second
choice is a problem that has been widely analyzed
in [20]. In this respect, one possibility is to make
the choice by means of desirable axiomatic proper-
ties of the fuzzy ranking, such as the ones we have
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investigated in Section 4. We should also take into
account the interpretation of the fuzzy information
we have in the particular problem under considera-
tion. Finally, it should also be considered that some
of the new fuzzy rankings we have introduced in this
paper do not produce a complete order.
In addition, we have also followed a different ap-

proach, by defining a second order possibility mea-
sure on the set of probabilities, which can be re-
duced to a lower and an upper probability model
by means of Walley’s approach. We have used this
first order model to compare fuzzy random variables
in a manner similar to standard techniques within
Imprecise Probability Theory, and have proven that
this procedure is related to the use of fuzzy ex-
pected utility where the expectations are compared
by means of the imprecise expected utility.

In the future, we would like to deepen in the com-
parison between the different fuzzy stochastic or-
derings, by studying their behaviour in a number
of real-life examples; from a more theoretical point
of view, it would be interesting to generalize some
of the results in this paper to fuzzy random vari-
ables whose images are not necessarily fuzzy num-
bers. Finally, it would be useful to obtain an ax-
iomatic characterization of some of these orders, in
the vein of some of the existing ones for the precise
case.
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