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ABSTRACT 

Stability of laminated structural glass is one of the design requirements to be considered 

due to the brittle and slender nature of this kind of glass elements. Since laminated glass 

is mainly manufacture with viscoelastic interlayers, its mechanical properties are 

temperature and time dependent. This implies that, i.e., the critical load of a laminated 

glass beam subject to constant compressive load decreases with time as well as with 

temperature.   

In this paper, the equations of the Euler Theory for buckling of monolithic beams are 

extended to multi-layered laminated glass beams using an effective stiffness. This 

proposal is based on the idea of calculating the thickness (time and temperature 

dependent) of a monolithic element with bending properties equivalent to those of the 

laminated one, that is, the deflections provided by the equivalent monolithic beam are 

equal to those of the layered model with viscoelastic core. 

In this work, the analytical predictions are validated by compressive experimental tests 

carried out on a simply supported beam composed of three glass layers and two 

polyvinyl butiral (PVB) interlayers. Moreover, a finite element model was assembled to 

validate the proposed methodology for any boundary conditions. The results shown that 

a good accuracy can be obtained with the proposed equations being the errors less than 

7% for all the experiments and simulations considered. 

mailto:fernandezpelayo@uniovi.es


2 
 

KEYWORDS 

Laminated glass, structural composites, PVB, bucking, structural stability, 

viscoelasticity. 

  



3 
 

NOMENCLATURE 

𝐴1 = 𝑏𝐻1 Area of glass layer 1 in laminated glass 

𝐴2 = 𝑏𝐻2 Area of glass layer 2 in laminated glass 

𝐴3 = 𝑏𝐻3 Area of glass layer 3 in laminated glass 

𝐸   Glass Young modulus of glass layers 

𝐸𝑡(𝑡)  Viscoelastic relaxation tensile modulus for polymeric interlayer 

𝐺𝑡(𝑡)  Viscoelastic relaxation shear modulus for the polymeric interlayer 

𝐻1  Thickness of glass layer 1 in laminated glass 

𝐻2  Thickness of glass layer 2 in laminated glass 

𝐻3  Thickness of glass layer 3 in laminated glass 

𝐻𝑇𝑂𝑇 = 𝐻1 + 𝐻2 + 𝐻3  

𝐻12 = 𝑡1 + (
𝐻1 + 𝐻2
2

) 

𝐻23 = 𝑡2 + (
𝐻2 + 𝐻3
2

) 

𝐼  Second moment of area 

𝐼1 = 𝑏
𝐻1
3

12
 

𝐼2 = 𝑏
𝐻2
3

12
 

𝐼3 = 𝑏
𝐻3
3

12
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𝐼𝑇2 = 𝐼1 + 𝐼2 = 𝑏
𝐻1
3 + 𝐻2

3

12
 

𝐼𝑇3 = 𝐼1 + 𝐼2 + 𝐼3 = 𝑏
𝐻1
3 + 𝐻2

3 + 𝐻3
3

12
 

𝐼𝑇𝑁 = 𝑁𝑏
𝐻3

12
 

𝐾2(𝑡, 𝑇) Viscoelastic bulk modulus 

L  Length of a glass beam 

T   Temperature 

𝑇0  Reference temperature 

 

LOWERCASE LETTERS 

𝑎𝑇  Shift factor  

𝑏  Width of a glass beam 

𝑡  Time 

𝑡1  Thickness of polymeric layer 1 in laminated glass 

𝑡2  Thickness of polymeric layer 2 in laminated glass 

GREEK LETTERS 

𝜂2  Loss factor of the polymeric interlayer of laminated glass 

𝜈  Poisson ratio of the glass layers  

𝜈2(𝑡, 𝑇) Viscoelastic Poisson ratio of the polymeric interlayer 
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1 INTRODUCTION 

Laminated glass is a sandwich or layered material which consists of two or more plies 

of monolithic glass, whose mechanical behaviour is commonly assumed linear elastic, 

and one or more interlayers of a polymeric material which show a viscoelastic 

behaviour i.e. their mechanical properties are time (or frequency) and temperature 

dependent [1, 2].  

Multi-layered laminated glass panels can be used for many different applications due to 

the added thickness and strength. They are commonly used in accessible glazing, i.e. 

floors, roofs and other horizontal glazing accessible to the public or at least for cleaning 

and maintenance [3]. In these applications, resistance against impact caused by a hard or 

soft body, the post-breakage behavior as well as the slip resistance must be examined 

[3]. Multilayered glass beams are also interested in acoustics and structural dynamics in 

order to reduce the acoustic transmission and amplitude of vibrations.  

If laminated glass elements are subject to compressive loads, the structural stability is 

one of the design requirements because laminated glass elements are brittle and slender. 

Due to the fact that the stiffness of the interlayer is temperature and time dependent, the 

same can be said about the critical load, i.e., the critical load of a laminated glass beam 

subject to constant compressive load decreases with time.    

The concept of effective thickness has been proposed in recent years [4, 5, 6] based on 

the quasi-elastic solution. This method consists of calculating the thickness (time and 

temperature dependent) of a monolithic element with bending properties equivalent to 

those of the laminated one, that is to say, the deflections provided by the equivalent 

monolithic beam are equal to those of the layered model with viscoelastic core.  The 

concepts of effective Young modulus and effective stiffness [7] can be used 

interchangeably with the same accuracy.  

Several analytical models have been proposed for determining the critical load of a 

simply supported laminated glass beam [8, 9, 10, 11]. Aenlle et al. [12] extended the 

Euler Theory to laminated glass beams using an effective stiffness (or effective 

thickness) and the effect of the boundary conditions is considered through the buckling 

ratio . 
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In this paper, equations for predicting the critical load of multi-layered glass beams with 

different boundary conditions are proposed based on the methodology proposed by 

Aenlle et al. [12] which uses the Euler theory [13] of monolithic beams, the quasi-

elastic solution [6] and the effective stiffness concept [7].  In order to validate the 

model, the critical load of a laminated glass beams, made of three annealed glass plies 

and two PVB interlayers, were predicted using the effective stiffness concept and 

validated by experimental tests and numerical models. Moreover, the effect of the 

number of layers in the critical load of multi-layered glass beams are investigated and 

some recommendations are proposed for the design of these elements subject to 

compressive loadings. 

2. THEORY 

The critical load of a simply supported linear-elastic monolithic beam, according to the 

Euler theory is given by [13, 14] 

𝑃𝑐𝑟𝑖𝑡 =
𝜋2𝐸 𝐼

𝐿2
 (1) 

Eq. (1) can be extended to laminated glass beams [8, 9, 10] using an effective 𝐸I(t, T)eff  

, i.e.:  

𝑃𝑐𝑟𝑖𝑡(t, T) =
𝜋2EI(t, T)eff

𝐿2
 (2) 

In the case of a simply supported laminated glass beam composed of 2 glass layers and 

one linear-viscoelastic interlayer (see Figure 1) the following expression for I(t, T)eff : 

EI(t, T)eff = 𝐸𝐼𝑇2  (1 +
𝑌𝐵2

1 +
𝐸 𝐻1 𝐻2𝑡1

𝐺𝑡(𝑡, 𝑇) (𝐻1 + 𝐻2) 
𝜋2

𝐿2

) (3) 

can be derived from the models proposed in [8, 9, 10], where  
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𝑌𝐵2 =
𝑏𝐻12

2 𝐻1𝐻2
𝐼𝑇2(𝐻1+𝐻2)

 (4) 

The critical load of an elastic monolithic beam with different boundary conditions can 

also be calculated with Eq. (1) but using the buckling ratio 𝛽 i.e.: 

𝑃𝑐𝑟𝑖𝑡 =
𝜋2𝐸 𝐼

(𝛽𝐿)2
 (5) 

Aenlle and Pelayo [12] proposed to extend Eq. (5) for laminated glass beams using the 

equation: 

𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑇) =
𝜋2EI(t, T)eff
(𝛽𝐿)2

 (6) 

 

Figure 1. Section of laminated glass beams (a) 2 glass layers (b) 3 glass layers and  (c) 

N glass layers of equal thickness. 

Where EI(t, T)eff is an effective stiffness. In the case of a laminated glass beams with 2 

glass layers and one linear-viscoelastic interlayer (fig. 1) Aenlle and Pelayo [12] derived 

an expression for EI(t, T)eff from the model of Galuppi and Royer Carfagni [6] which is 

given by: 
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EI(t, T)eff = EIT2(1 +
𝑌𝐵2

1 +
𝐸𝐻1𝐻2𝑡1

bGt(𝑡, 𝑇)(𝐻1 + 𝐻2)
𝜓𝐵

) (7) 

Where [12]: 

𝜓𝐵 =
𝜋2

(𝛽𝐿)2 
 (8) 

In Eqs. (7) and (8) the buckling ratio 𝛽 coincide with those of a monolithic beam with 

the same boundary conditions. 

In this paper, an expression for the effective stiffness  EI(t, T)eff  of laminated glass 

beams composed of three glass layers of thicknesses H1 H2 and H3  and 2 polymeric 

interlayers with thickness t1 and t2 (fig. 1) was derived from the Galuppi and Royer 

Carfagni model [15] which  is expressed as : 

EI(t, T)eff = EIT3

(

 
 
 
1 +

𝑌𝐵3

1 +
𝐸 𝐼𝑇3 YB3 

𝑏𝐺𝑡
 (𝜔, 𝑇) (

𝐻12
2

𝑡1
+
𝐻23
2

𝑡2
)

𝜓𝐵

)

 
 
 

 (9) 

Where 𝜓𝐵is given by Eq. (8) and  

𝑌𝐵3 =
(𝐴1𝑑1

2 + 𝐴2𝑑2
2+𝐴3𝑑3

2)

IT3
 (10) 

being: 

𝑑1 =
𝐻2𝐻12 + 𝐻3(𝐻12 + 𝐻23)

𝐻1 + 𝐻2 + 𝐻3
 

𝑑2 = −
𝐻1𝐻12 − 𝐻3𝐻23
𝐻1 + 𝐻2 + 𝐻3

 

(11) 
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𝑑3 = −
𝐻2𝐻12 + 𝐻3(𝐻12 + 𝐻23)

𝐻1 + 𝐻2 + 𝐻3
 

The concept of dynamic effective Young modulus is defined as the Young modulus of a 

monolithic glass beam with constant thickness, which provides the same stiffness as the 

beam at hand. This technique is more attractive when finite element models are used to 

calculate laminated glass beams because a  monolithic model with constant thickness is 

assembled whereas the Young modulus is defined as  time and temperature dependent 

[7]. If the monolithic model has inertia 𝐼𝑀𝑂𝑁 from Eq. (9) the following expression for 

the effective Young modulus is derived: 

𝐸𝑒𝑓𝑓(𝑡, 𝑇) = 𝐸
𝐼𝑇3
𝐼𝑀𝑂𝑁

 

(

 
 
 
1 +

𝑌𝐵3

1 +
𝐸 𝐼𝑇3 YB3 

𝑏𝐺𝑡
 (𝜔, 𝑇) (

𝐻12
2

𝑡1
+
𝐻23
2

𝑡2
)

𝜓𝐵

)

 
 
 

 (12) 

Using Eq. (12) the critical load is calculated by means of the equation: 

𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑇) =
𝜋2𝐸𝑒𝑓𝑓(𝑡, 𝑇)𝐼𝑀𝑂𝑁

(𝛽𝐿)2
 (13) 

In the case of a laminated glass beam composed of N glass layers (multilayered, see 

Figure 1) with thickness H and N-1 polymeric interlayers with thickness t, the effective 

stiffness is given by [15]: 

EI(t, T)eff = EITN(1 +
𝑌𝐵𝑁

1 +
𝐸𝑁(𝑁 + 1)𝐻𝑡
12Gt(𝑡, 𝑇)

𝜓𝐵

) (14) 

where: 

𝑌𝐵𝑁 =
(𝑡 + 𝐻)2(𝑁 − 1)(𝑁 + 1)

𝐻2
 (15) 
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 The effective Young modulus is given by: 

𝐸𝑒𝑓𝑓(𝑡, 𝑇) = 𝐸
𝐼𝑇𝑁
𝐼𝑀𝑂𝑁

 (1 +
𝑌𝐵𝑁

1 +
𝐸𝑁(𝑁 + 1)𝐻𝑡
12Gt(𝑡, 𝑇)

𝜓𝐵

) (16) 

 

3 BUCKLING DESIGN OF MULTILAYERED GLASS BEAMS  

Norville [16] and Galuppi and Royer-Carfagni [5, 6] pointed out that the response of 

laminated glass beams presents two borderlines: 1) The layered limit corresponding to 

the case when the beam consists of free-sliding glass plies and 2) the monolithic limit, 

when the Euler–Bernoulli assumptions hold for the entire section of the laminate glass 

element. Hereafter we will denote the  monolithic critical load as Pcrit
0  and the layered 

limit as Pcrit
∞ . 

When PVB is used as interlayer, the shear modulus of the interlayer  Gt(𝑡, 𝑇) can take 

small values but no zero and the layered limit is never reached. Thus a new limit Pcrit
𝑚𝑖𝑛, 

associated with the minimum value of Gt(𝑡, 𝑇), must also be considered. We can be 

very close to the layered limit with short beams, boundary conditions related to high 

values of 𝜓𝐵 and low values of Gt(𝑡, 𝑇), i.e., at long term. 

With respect to the monolithic limit, it is reached when the Gt(𝑡, 𝑇) tends to infinity. 

Again, this limit is never reached but due to the relative high magnitude of Gt(𝑡, 𝑇) at 

short term, the monolithic limit is always very close to maximum critical load 

Pcrit
𝑚𝑎𝑥associated to maximum of  Gt(𝑡, 𝑇). 

In figure 2, it is shown the critical load of a laminated glass beam with 𝐻1 = 𝐻2 =

6 𝑚𝑚  and one PVB interlayer with thickness 𝑡1 = 0.76 𝑚𝑚 at different temperatures 

which were predicted with Eq. (6). It can be observed that the critical load decreases 

rapidly with time mainly at temperatures over 20ºC. For a laminated glass beam 

permanently compressed, the load acting on the beam must be less than Pcrit
𝑚𝑖𝑛. Buckling 

loads over Pcrit
𝑚𝑖𝑛 could only be considered when the compressive load acts on the beam 

for a short period of time. Thus, in practical applications the compressive load a must be 

less than Pcrit
𝑚𝑖𝑛 in order to prevent buckling failures. To consider the layered limit Pcrit

∞   
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will be obviously conservative. On the other hand, the critical loading of a laminated 

glass beam is always less than the critical loading of monolithic beam with the same 

total thickness.  

 

Figure 2. Critical load of a simple supported laminated glass beam at different 

temperatures. 

The ratio 
Pcrit
0

Pcrit
∞  depends on the geometry of the beam. Parameters 𝑌𝐵2, 𝑌𝐵3 𝑎𝑛𝑑 𝑌𝐵𝑁 are 

constant coefficients that relates the monolithic and the layered limits of the effective 

stiffness 𝐸𝐼(𝑡, 𝑇)𝑒𝑓𝑓 by means of the expression   

1 + 𝑌 =
𝑚𝑜𝑛𝑜𝑙𝑖𝑡ℎ𝑖𝑐 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝐸𝐼(𝑡, 𝑇)𝑒𝑓𝑓 

𝑙𝑎𝑦𝑒𝑟𝑒𝑑 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝐸𝐼(𝑡, 𝑇)𝑒𝑓𝑓
=
𝐸𝐼(0, 𝑇)𝑒𝑓𝑓

𝐸𝐼(∞, 𝑇)𝑒𝑓𝑓
=
Pcrit
0

Pcrit
∞         (17) 

In order to study the effect of the number of layers, we are going to consider a 

multilayered glass beam with 𝑁 glass layers of equal thickness H and 𝑁 − 1 interlayers 

of equal thickness t. In this particular case, Eq. (17) is given by: 

1 + 𝑌 = 𝑁2 (1 + (
𝑁 − 1

𝑁
)
𝑡

𝐻
)
3

        (18) 

Combining Eqs. (17) and (18) it is inferred that: 
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Pcrit
0

Pcrit
∞ = 𝑁2 (1 + (

𝑁 − 1

𝑁
)
𝑡

𝐻
)
3

 (19) 

 

Two laminated beams with the same total thickness but different number of layers show 

the same monolithic limit Pcrit
0  but From Eq. (19) it is easily inferred that the layered 

limit Pcrit
∞  diminishes with increasing number of layers. Thus, in the design of laminated 

glass beams subject to buckling we must try to maximize the layered limit Pcrit
∞  which 

means that the number of layers must be minimized. This effect is shown in figure 3 

where it is presented the critical load of a simply supported laminated glass beam 1 m 

long and 0. 1 𝑚 wide and composed of two glass layers with thickness 𝐻1 = 𝐻2 =

6𝑚𝑚 and one PVB interlayer with thickness 𝑡1 = 0.76 𝑚𝑚. The critical load of a 

laminated glass beam with the same geometry but composed of  three glass layers with 

thicknesses 𝐻1 = 𝐻2 = 𝐻3 = 4𝑚𝑚  and two PVB interlayers with thicknesses 𝑡1 =

𝑡2 = 0.76 𝑚𝑚 is also shown in the same figure for comparison. Both beams have the 

same total thickness and consequently the same monolithic limit Pcrit
0 , but the beam with 

two glass layers present the highest layered limit Pcrit
∞  being  2.25 times larger than that 

of the beam with  three glass layers. Moreover, Pcrit
𝑚𝑖𝑛 of the beam with two layers is 1.28 

times largest than that corresponding to the beam with three layers. 
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Figure 3. Comparison of the critical load for same total thickness between 3 layered and 

2 layered (sandwich) laminated glass beams. 

 

With respect to the limit Pcrit
𝑚𝑖𝑛, it depends on Gt(∞, 𝑇) and on the geometry of the beam 

(thicknesses, length and boundary conditions) . In figure 4, it  is presented the parameter 

𝛾𝑚𝑖𝑛 which relates the minimum critical load a beam with two glass layers with that of a 

beam with N layers, both beams having the same total thickness 𝐻𝑇𝑂𝑇, i.e. : 

𝛾𝑚𝑖𝑛=
Pcrit
𝑚𝑖𝑛(𝑁 𝑔𝑙𝑎𝑠𝑠 𝑙𝑎𝑦𝑒𝑟𝑠)

Pcrit
𝑚𝑖𝑛(2 𝑔𝑙𝑎𝑠𝑠 𝑙𝑎𝑦𝑒𝑟𝑠)

 (20) 

 

The curves in figure 4 corresponds to a simply supported beam 1m long and 0.10 m 

wide. Three different glass thicknesses (𝐻1 = 𝐻2 = 4, 6 and 8 𝑚𝑚) have been 

considered for the reference beam (two glass layers and one PVB interlayer) whereas 

the thickness of the PVB interlayer has always been  𝑡1 = 0.76 𝑚𝑚 .  

From the figure 4 is inferred that 𝛾𝑚𝑖𝑛 is always less than 1 which means that the beam 

with two glass layers always presents the highest value Pcrit
𝑚𝑖𝑛.  However  𝛾𝑚𝑖𝑛 increases 

as the total thickness 𝐻𝑇𝑂𝑇 decreases. 
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Figure 4. Influence of the number of layers on the minimum critical load Pcrit
𝑚𝑖𝑛.  

 

4 EXPERIMENTAL AND NUMERICAL VALIDATION  

4.1 Experimental program 

A simply supported beam with the following geometrical data: 𝐻1 = 𝐻2 = 𝐻3 = 4 mm, 

𝑡1 = 𝑡2 = 0.76 mm, 𝐿 = 0.7 m and 𝑏 = 0.1 m was tested at temperature 𝑇 = 25𝑜𝐶  in 

a standard axial machine MTS810 - 250kN (see figure 5). Three tests were carried out 

where the axial displacement of the beam was increased with a constant rate of: 0.1 

mm/min, 0.2 mm/min and 1 mm/min, respectively. The relation between the axial force 

recorded by the machine and the bending deflection at the mid-span measured with a 

laser sensor is presented in figure 6 for the three cases. The tests were stopped when the 

bending deflection reached a magnitude of approximately 4-7 mm. 
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Figure 5. Buckling of a 3-glass layer simply supported beam (L=700 mm, 𝐻1 = 𝐻2 =

𝐻3 = 4 𝑚𝑚, 𝑡1 = 𝑡2 = 0.76 𝑚𝑚). Details of the test setup and of the buckling failure 

of the beam. 

In the analytical predictions, a Young modulus 𝐸 = 70 GPa and Poisson ratio 𝜈 = 0.22 

were considered for the glass layers. With respect to the PVB, its mechanical properties 

were obtained in a previous work [17] using a DMA RSA3 (TA Instruments). For the 

PVB the WLF (Williams-Landel-Ferry) model [18] was used to take into account the 

temperature dependence whereas the master curve of the shear modulus 𝐺(𝑡) is 

represented by a generalized viscoelastic Maxwell model by means of a Prony series fit 

[19]: 

𝐺𝑡(𝑡) = 𝐺0 [1 −∑ 𝑒𝑖
𝑛𝑡

𝑖=1
(1 − exp (−

𝑡

 𝜏𝑖
))] (21) 

 

where 𝐺𝑡(𝑡)is the shear relaxation modulus, 𝐺0 the shear instantaneous modulus, 𝑛𝑡 the 

number of terms considered in the Prony series and (𝑒𝑖, 𝜏𝑖 ) are the Prony coefficients. 
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The bulk modulus of PVB was assumed constant [20]. The material properties of  PVB 

are presented in tables 1 and 2, respectively. 

The critical load predicted with Eq. (6) is presented in figure 6 where it can be observed 

that, as expected, the critical load 𝑃𝑐𝑟𝑖𝑡 decreases with time. The monolithic (Pcrit
0 ) and 

layered (Pcrit
∞ ) limits as well as the maximum (Pcrit

𝑚𝑎𝑥) and minimum (Pcrit
𝑚𝑖𝑛) limits are 

also presented in the figure. 

 

Figure 6. Predicted critical load for the 3 glass-layer laminated glass beam (L=700 mm, 

𝐻1 = 𝐻2 = 𝐻3 = 4 𝑚𝑚, 𝑡1 = 𝑡2 = 0.76 𝑚𝑚) at 𝑇 = 25𝑜𝐶. 

In figure 7 is presented the experimental axial load acting on the beam for the three 

axial displacement ratios used in the experiments together with the predicted critical 

loading. The experiments confirm that the critical loading decreases with time which is 

in good agreement with the relaxation trend of the predicted critical load. The 

experimental critical loadings together with those predicted with eq. (6) are presented in 

Table 3. 
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Buckling is expected at the intersection of the buckling curve 𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑇) and the load 

curve 𝑃(𝑡) . It can be observed in figure 7 that the experimental loadings 𝑃(𝑡) are 

slightly larger than the predicted critical loadings the larger error being less than 7% for 

1 mm/min axial displacement rate. This is in agreement with [9] where it is 

demonstrated that thanks to the delay in the stress relaxation, a beam for which the 

viscoelasticity of the interlayer is fully considered appears to be stiffer than when the 

response is evaluated by means of the quasi-elastic approximation. On the other hand, 

the ideal simply-supported boundary condition is difficult to reproduce experimentally 

and the experimental critical load is expected to be higher than that predicted with eq. 

(6).    

 The same was tested applying a constant compressive load of 4700 N. The target load 

was reached with a constant loading rate of 100 N/s (figure 8). As the axial load 

intersects the buckling critical load at short times, buckling was observed almost from 

the beginning of the test as it is confirmed by the displacement recorded with the laser 

sensor at the mid-point of the beam (figure 8).    

As a final experiment, the beam was tested again up to breakage at a constant axial 

displacement rate of 1 mm/min. The experimental axial load and the bending deflection 

at the mid-point of the beam is shown in figure 9. It can be observed that the failure has 

not occurred at the mid-point of the beam (see figure 5) as it would be expected for a 

simply-supported beam, which indicates that the real boundary conditions were slightly 

different to those corresponding to a simply-supported beam. This fact (the beam is 

stiffer than the simply-supported one) also explains why the axial loadings needed for 

the buckling of the beam have been slightly higher than the predicted critical loading   

(see figure 7). 
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Figure 7. Buckling of a 3 glass-layer laminated glass beam (L=700 mm, 𝐻1 = 𝐻2 =

𝐻3 = 4 𝑚𝑚, 𝑡1 = 𝑡2 = 0.76 𝑚𝑚) under simply-supported conditions. Temperature 𝑇 =

25º𝐶. 

 

Figure 8. Buckling of a 3 glass-layer laminated glass beam (L=700 mm, 𝐻1 = 𝐻2 =

𝐻3 = 4 𝑚𝑚, 𝑡1 = 𝑡2 = 0.76 𝑚𝑚) under simply-supported conditions (compressive 

constant force: 4700 N). Temperature 𝑇 = 25º𝐶. 
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Figure 9. Buckling of a 3 glass-layer laminated glass beam up to breakage (L=700 mm, 

𝐻1 = 𝐻2 = 𝐻3 = 4 𝑚𝑚, 𝑡1 = 𝑡2 = 0.76 𝑚𝑚) under simply-supported conditions (axial 

displacement rate 1mm/min). Temperature 𝑇 = 25º𝐶 

In order to take into account the effect of the glass rupture stress dispersion, an 

additional specimen was tested at 20ºC using the same axial displacement rates i.e. 0.1 

mm/min, 0.2 mm/min and 1 mm/min, respectively. The relation between the axial force 

recorded by the machine and the bending deflection at the mid-span measured with a 

laser sensor is presented in figure 10 for the three cases. The experimental and the 

predicted critical loads are presented in figure 11 and in Table 3. 
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Figure 10. Critical load-bending displacement for the 3 glass-layer laminated glass 

beam (L=700 mm, 𝐻1 = 𝐻2 = 𝐻3 = 4 𝑚𝑚, 𝑡1 = 𝑡2 = 0.76 𝑚𝑚) at 𝑇 = 20𝑜𝐶. 

 

Figure 11. Buckling of a 3 glass-layer laminated glass beam (L=700 mm, 𝐻1 = 𝐻2 =

𝐻3 = 4 𝑚𝑚, 𝑡1 = 𝑡2 = 0.76 𝑚𝑚) under simply-supported conditions. Temperature 𝑇 =

20º𝐶.  
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4.2 Numerical simulations 

Due to the brittle nature of the glass, fixed boundary conditions are difficult to 

reproduce experimentally. In order to validate the analytical equation (Eq. 6) proposed 

in this paper for the buckling of multilayered glass beams under any other boundary 

conditions, a finite element model was assembled in ABAQUS. Two classical boundary 

conditions were simulated for the beam: Pinned-Fixed (𝛽 = 0.7) and Fixed-Fixed (𝛽 =

0.5). A linear elastic 3D model was assembled using quadratic hexaedric elements 

(reduced integration). The beam was meshed with five finite elements along the 

thickness (one  element for each layer) and the same dimensions as those of the 

experimental  beam were considered in the simulations (L=700 mm, 𝐻1 = 𝐻2 = 𝐻3 =

4 𝑚𝑚, 𝑡1 = 𝑡2 = 0.76 𝑚𝑚). The finite element model of the beam as well as a detail of 

the mesh are shown in figure 12.  

The material properties considered in the simulations were the same as those used in the 

analytical predictions but modelling the PVB interlayer as a linear elastic material. The 

buckling load was calculated iteratively for each time 𝑡 = 𝑡𝑖 considering for the 

interlayer a shear modulus 𝐺𝑡 = 𝐺𝑡(𝑡𝑖, 𝑇)) and a constant Poisson ratio 𝜈𝑡 = 0.49 . A 

constant uniformly distributed axial loading with total magnitude P was applied on the 

top of the model. Then, a standard linear elastic analysis was carried out to obtain the 

stresses needed to form the geometric stiffness matrix 𝐾𝐺. Finally, an eigenvalue 

buckling analysis was run to predict the critical load 𝑃𝑐𝑟𝑖𝑡(𝑡𝑖, 𝑇) corresponding to each 

time 𝑡 = 𝑡𝑖 [12], which is obtained by: 
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𝑃𝑐𝑟𝑖𝑡(𝑡𝑖, 𝑇) = 𝜆1 ∙ 𝑃 (43) 

Where 𝜆1 is the first eigenvalue or multiplier of the reference load P. The eigenvalue 

problem was solved using the Lanczos method [21]. The same temperature 𝑇 = 20𝑜𝐶 

was considered for both the numerical simulations and the analytical predictions. 

 

Figure 12. Finite element model and detail of the mesh used in the numerical 

simulations. 

In figure 13 it is presented the critical load predicted with Eq. (6) using the buckling 

ratio 𝛽 = 0.7 (Pinned-Fixed), together with the critical load obtained with the FE 

model. From figure 13 it is inferred that a good correlation between the numerical 

simulations and the analytical predictions has been achieved, the error being less than 

2%. The corresponding buckling mode is shown in figure 15. 
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Figure 13. Analytical and numerical critical loadings predicted for the Fixed-Pinned 

boundary conditions. 

Figure 14 shows the analytical and the numerical critical loads predicted for the beam 

under Fixed-Fixed configuration (buckling ratio 𝛽 = 0.5). The discrepancies between 

both models are less than 5% and the corresponding buckling mode is also presented in 

figure 13. 
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Figure 14. Analytical and numerical critical loadings predicted for the Fixed-Fixed 

boundary conditions. 

The results shown in figures 13 to 14 prove that the proposed buckling equation (Eq. 

(6)) predicts with a good accuracy (errors less than a 5%) the buckling load of a 

multilayered laminated glass beam with all the boundary conditions considered in this 

investigation.  

 

Figure 15. Numerical buckling modes of the beam for the two considered boundary 

conditions: Pinned-Fixed and Fixed-Fixed. 

5 CONCLUSIONS 

Structural stability is a design criterion to be considered in laminated glass elements 

subject to compressive loads. Due to the viscoelastic behavior of the interlayer 

materials, the critical load of a laminated glass beam decreases with time and, moreover, 

it is temperature dependent. This means that a safe procedure is needed in order to avoid 

failures due to buckling. 

The layered critical load 𝑃𝑐𝑟𝑖𝑡
∞  given by the long-term limit of the interlayer shear 

modulus 𝐺𝑡
∞, as suggested by several authors, can be used to obtain safe critical loads in 

laminated glass beams. However, depending on the geometry of the beam and on the 
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boundary conditions, the minimum critical load 𝑃𝑐𝑟𝑖𝑡
𝑚𝑖𝑛 can be significantly higher than 

𝑃𝑐𝑟𝑖𝑡
∞ . Design with the limit 𝑃𝑐𝑟𝑖𝑡

𝑚𝑖𝑛 conducts to a thinner laminated glass beam and, 

moreover, it can be also considered a safe critical load.  

In this paper, the classical Euler theory for buckling of isotropic monolithic beams have 

been extended to multilayered laminated glass beams using the effective stiffness 

concept. The buckling ratios of the classical Euler Theory for isotropic monolithic 

beams can also be used in multilayered laminated glass beams. 

The accuracy provided by Eq. (6) has been validated by experimental compressive tests 

carried out on a simply supported beam 0.7 m long and 0.1 m wide and composed of 

three glass layers of thicknesses 𝐻1 = 𝐻2 = 𝐻3 = 4 mm and two PVB interlayers of 

thicknesses 𝑡1 = 𝑡2 = 0.76 mm. The tests were performed at temperatures 𝑇 =

20 º𝐶 𝑎𝑛𝑑 𝑇 = 25𝑜𝐶. The error between the experimental critical load and those 

predicted with Eq. (6) are always less than 7%. 

In order to validate Eq. (6) for  fixed boundary conditions (difficult to reproduce in 

monolithic and laminated glass panels), a finite element model was assembled in 

ABAQUS using quadratic hexaedric 3D elements and the critical load at temperature 

𝑇 = 20𝑜𝐶 was calculated. Fixed-Pinned and Fixed-Fixed boundary conditions were 

considered in the simulations using the same geometrical data as those of the beam used 

in the experiments. The discrepancies between the numerical and the analytical results 

(Eq. (6)) are less than 5 % which demonstrates that Eq. (6) predicts with a good 

accuracy the buckling load of a multilayered laminated glass beam with all the 

boundary conditions considered in the investigation. 

Finally, it has also been demonstrated that the limits 𝑃𝑐𝑟𝑖𝑡
∞  and 𝑃𝑐𝑟𝑖𝑡

𝑚𝑖𝑛 decrease as the 

number of layers increase, i.e. the maximum values of 𝑃𝑐𝑟𝑖𝑡
∞  and 𝑃𝑐𝑟𝑖𝑡

𝑚𝑖𝑛 correspond to a 

laminated glass beam with two glass layers and one interlayer.  
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Figure captions: 

Figure 1. Section of laminated glass beams (a) 2 glass layers (b) 3 glass layers and  (c) 

N glass layers of equal thickness. 

 Figure 2. Critical load of a simple supported laminated glass beam at different 

temperatures. 

Figure 3. Comparison of the critical load for same total thickness between a 3 layered 

and 2 layered (sandwich) laminated glass beams. 

Figure 4. Influence of the number of layers on the minimum critical load Pcrit
𝑚𝑖𝑛.  

Figure 5. Buckling of a 3-glass layer simply supported beam (L=700 mm, 𝐻1 = 𝐻2 =

𝐻3 = 4 𝑚𝑚, 𝑡1 = 𝑡2 = 0.76 𝑚𝑚). Details of the test setup and of the buckling failure 

of the beam. 

Figure 6. Predicted critical load for the 3 glass-layer laminated glass beam (L=700 mm, 

𝐻1 = 𝐻2 = 𝐻3 = 4 𝑚𝑚, 𝑡1 = 𝑡2 = 0.76 𝑚𝑚) at 𝑇 = 25𝑜𝐶. 

Figure 7. Buckling of a 3 glass-layer laminated glass beam (L=700 mm, 𝐻1 = 𝐻2 =

𝐻3 = 4 𝑚𝑚, 𝑡1 = 𝑡2 = 0.76 𝑚𝑚) under simply-supported conditions. 

Figure 8. Buckling of a 3 glass-layer laminated glass beam (L=700 mm, 𝐻1 = 𝐻2 =

𝐻3 = 4 𝑚𝑚, 𝑡1 = 𝑡2 = 0.76 𝑚𝑚) under simply-supported conditions (compressive 

constant force: 4700 N). 

Figure 9. Buckling of a 3 glass-layer laminated glass beam up to breakage (L=700 mm, 

𝐻1 = 𝐻2 = 𝐻3 = 4 𝑚𝑚, 𝑡1 = 𝑡2 = 0.76 𝑚𝑚) under simply-supported conditions (axial 

displacement rate 1mm/min). 

Figure 10. Critical load-bending displacement for the 3 glass-layer laminated glass 

beam (L=700 mm, 𝐻1 = 𝐻2 = 𝐻3 = 4 𝑚𝑚, 𝑡1 = 𝑡2 = 0.76 𝑚𝑚) at 𝑇 = 20𝑜𝐶. 
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Figure 11. Buckling of a 3 glass-layer laminated glass beam (L=700 mm, 𝐻1 = 𝐻2 =

𝐻3 = 4 𝑚𝑚, 𝑡1 = 𝑡2 = 0.76 𝑚𝑚) under simply-supported conditions. Temperature 𝑇 =

20º𝐶.  

 

Figure 12. Finite element model and detail of the mesh used in the numerical 

simulations. 

Figure 13. Analytical and numerical critical loadings predicted for the Fixed-Pinned 

boundary conditions. 

Figure 14. Analytical and numerical critical loadings predicted for the Fixed-Fixed 

boundary conditions. 

Figure 15. Numerical buckling modes of the beam for the two considered boundary 

conditions: Pinned-Fixed and Fixed-Fixed. 
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Table 1 Material properties for glass and PVB 

Glass PVB 

E 

(Young’s 

Modulus) 

ν 

(Poisson’s 

ratio) 

ρ 

(Density) 

G0 

(Instantaneous shear 

modulus) 

K 

(Bulk 

Modulus) 

ν 

(Poisson’s 

ratio) 

𝜌 

(Density) 

𝐶1        𝐶2 

(WLF: Tref=200 C) 

[GPa]  [kg/m3] [GPa] [GPa]  [kg/m3]   

70 0.22 2500 0.39 2 0.49 1030 12.60 74.46 
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Table 2 Prony series coefficients for PVB 

𝜏𝑖 [s] 𝑒𝑖 

2.36600000000000E-07 2.342151953E-01 

2.26430000000000E-06 2.137793134E-01 

2.16668000000000E-05 1.745500419E-01 

2.07327300000000E-04 1.195345045E-01 

1.98389580000000E-03 1.362133454E-01 

1.89837195000000E-02 6.840656310E-02 

1.81653498300000E-01 4.143944180E-02 

1.73822593210000E+00 7.251952800E-03 

1.66329270788000E+01 2.825459600E-03 

1.59158978189400E+02 2.712854000E-04 

1.52297789909670E+03 4.293523000E-04 

1.45732380763177E+04 9.804730000E-05 

1.39449999999999E+05 5.274937000E-04 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

Table 3. Experimental and analytical critical loadings for the 3 glass-layer laminated 

glass beam (L=700 mm, 𝐻1 = 𝐻2 = 𝐻3 = 4 𝑚𝑚, 𝑡1 = 𝑡2 = 0.76 𝑚𝑚). 

 

Tª 

[ºC] 

Experimental 

Analytical 

𝑃𝑐𝑟𝑖𝑡 at 𝑡𝑐𝑟𝑖𝑡 
[𝑁] 

Error          

[%] 
Axial 

displacement 

rate 

[mm/min] 

𝑡𝑐𝑟𝑖𝑡 

[𝑠] 

𝑃𝑐𝑟𝑖𝑡 

[N] 

25ºC 

0.1 960 4370 4095 6.29 

0.2 564 4468 4185 6.33 

1 240 4793 4465 6.84 

20ºC 

0.1 1280 6421 6310 1.78 

0.2 615 6802 6550 3.70 

1 140 7585 7100 6.40 

 

 

 

 


