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Summary

ROC curve is a popular graphical method frequently used in order to study the

diagnostic capacity of continuous (bio)markers. When the considered outcome

is a time-dependent variable, the direct generalization is known as cumula-

tive/dynamic ROC curve. For a fixed point of time, t, one subject is allocated

into the positive group if the event happens before t and into the negative group

if the event is not happened at t. The presence of censored subject, which can

not be directly assigned into a group, is the main handicap of this approach.

The proposed cumulative/dynamic ROC curve estimator assigns a probability

to belong to the negative (positive) group to the subjects censored previously to

t. The performance of the resulting estimator is studied from Monte Carlo sim-

ulations. Some real-world applications are reported. Results suggest that the

new estimators provide a good approximation to the real cumulative/dynamic

ROC curve.
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1. Introduction

The receiver operating-characteristic (ROC) curve [1] is a popular graphical

method which, given a diagnostic (bio)marker, displays the false-positive rate

(i.e., the inability of the marker to recognize a normal subject, without the

studied characteristic, as normal) against the true-positive rate (i.e., the ability

of the marker to detect the characteristic of interest, frequently one disease) for

all possible thresholds. In addition, the area under the ROC curve (AUC) is

frequently used as diagnostic accuracy index. Particularly, in models where the

dependent variable is dichotomous, it can be read as a goodness of fit index, for

instance, in logistic regression models. In the last decades, both ROC curve and

the AUC have received great attention in the specialized literature. There exists

a large number of papers which deal with both theoretical and practical aspects

of the ROC curve and related problems (see, for instance, Mart́ınez-Camblor

[2] for a recent review). The general ROC curve comparison (the manuscripts

of Moise, Clement and Raissis [3], Venkatraman and Begg [4], Venkatraman

[5], Bandos, Rockette and Gur [6], Braun and Alonzo [7], Mart́ınez-Camblor,

Carleos and Corral [8], Krzanowski and Hand [9] and Mart́ınez-Camblor, Car-

leos and Corral [10] deal with different aspects of this problem from different

approaches), ROC curve regression (Cai [11] and Rodŕıguez-Álvarez et al. [12]),

ROC curve for time-dependent events (Heagerty and Zheng [13], Wolf, Schmidt

and Ulm [14], among others), meta-analysis of ROC curves (Rutter and Gatso-

nis [15], Mart́ınez-Camblor [16]) or the study and estimation of its associated

cut-off point (Yousef, Kundy and Wagner [17] and Mart́ınez-Camblor [18]) are

among the main focuses of interest. Of course, there also exist a number of

softwares which perform calculus and figures, just as example, the R package:

pROC, ROCR or rocplus, among much others, are freely available in the CRAN

(www.r-project.org).

The case where the studied characteristic (disease) is a time-dependent event

has also been considered from different approaches. The most direct ROC curve

generalization is to reduce the time-dependent event to a dichotomous variable
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for each particular fixed moment t. Hence, assuming, without loss of generality,

that larger values of the marker, X, are associated with higher probabilities of

the event, the (cumulative) sensitivity, or true-positive rate, and the (dynamic)

specificity, or true-negative rate, are respectively defined by:

SC
E(x, t) =P{X > x|T ≤ t}, (1)

SD
P (x, t) =P{X ≤ x|T > t}, (2)

where T denotes the time variable. The resulting ROC curve, based on the above

cumulative sensitivity and dynamic specificity, is known as cumulative/dynamic

(C/D) ROC curve [4], RC/D
t (·). In this approach, all subjects will be used at

any fixed time t. The i-th individual is considered as positive (case) if ti ≤ t,

and as negative (control) if ti > t. The cumulative/dynamic ROC curve is ap-

propriate if the predictive model is built by using markers measured at baseline

and the researcher is interested in the prognostic properties for a particular (or

a small number of) time. With complete information, empirical estimators can

be directly defined by,

ŜC
E(x, t) =#{xi > x ∧ ti ≤ t}/#{ti ≤ t} (3)

ŜD
P (x, t) =#{xi ≤ x ∧ ti > t}/#{ti > t}. (4)

Of course, censored data are the main handicap in order to estimate RC/D
t .

Subjects failing before t or with a follow-up longer than t are directly allocated

into the positive and the negative group, respectively. However, it is not clear

what to do with those subjects censored before t; this is the case of subject D

in Figure 1.

Perhaps, in this case, the first temptation is to define an estimator based

on the traditional Kaplan-Meier survivor function. However, this estimator,

proposed by Heagerty, Lumley and Pepe [19], has serious drawbacks; i) it can

take values greater than 1, ii) it can drive to non-monotone sensitivity or speci-

ficity functions. Alternatively, in the same paper, the authors also proposed a

RC/D
t estimator based on the nearest neighbor estimator (KNN) for bivariate
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distributions under random censoring proposed by Akritas [20]; main handi-

cap of this estimator is that the researcher must define a smoothing parameter.

Most recently, Wolf, Schmidt and Ulm [14] proposed an estimator based on the

Nelson-Aalen cumulative incidence curve (CIC). The use of the Nelson-Aalen es-

timator avoids the point i) but, as the authors recognize, additional procedures,

such as isotonic regression, must be used in order to avoid the point ii).

Other possible time-dependent generalizations for the sensitivity, SE , and

the specificity, SP , have been proposed (see Cai et al. [21] for a recent approach).

Particularly, Heagerty and Zheng [13] considered the incident sensitivity defined

by Etzioni et al. [22] as

SI
E(x, t) = P{X > x|T = t}

to introduce the incident/dynamic (I/D) ROC curve,RI/D
t (p) = SI

E

(
[1− SD

P ]−1(t, p), t
)

(0 ≤ p ≤ 1) where [1− SD
P ]−1(t, p) = inf{x : [1− SD

P ](x, t) ≤ p}. From this ap-

proach the i-th subject is considered as control for ti > t and plays the role of

Follow−up

 

t
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Figure 1: Schematic situation; A and B are allocated in the negative group, C in the positive

group while D is not directly assigned.
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case when ti = t. The I/D ROC curve approach has clear links with the risk

functions and, therefore, also with survival hazard models. In addition, the in-

cident sensitivity allows a direct generalization to the case where the considered

marker, X, is also a time-dependent variable (= X(t)). However, it is difficult

to interpret without the proportional hazard assumption.

In this paper, the authors are concerned with the C/D ROC curve esti-

mation. With this goal, the undefined subjects (those censored before t) are

treated as mixed subjects. They are not completely assigned to a group; but

the probability of to be or not be in the group is considered. Rest of the pa-

per is organized as following; in section 2 the proposed estimator is described

and its performance is evaluated, via Monte Carlo simulations, in section 3.

Section 4 is devoted to real application; particularly, the relationship between

the forced ventilatory volume 1 sec. (FEV1) and mortality in chronic obstruc-

tive pulmonary disease (COPD) patients is studied by using the COllaborative

COhorts to assess Multicomponents Indices of COPD in Spain (COCOMICS)

dataset (see [23]). In section 5 we present our conclusions. Finally, as appendix,

we provide a set of R functions which are useful in order to handle, in practice,

the proposed methodology.

2. Cumulative/dynamic ROC curve estimation

Conventionally, let {yi}1≤i≤N = {zi, δi, xi}1≤i≤N be an independent random

sample (with size N) where for 1 ≤ i ≤ N , zi stands for the observed time;

zi = min{ti, ci}, with ti the time to event and ci the censoring time, δi is the

status (δi takes the value 1 if zi = ti and 0 if zi = ci) and xi stands for the

(bio)marker value. From the Bayes theorem, the definition of sensitivity and

specificity given in (1) and (2) are equivalent to

SC
E(x, t) =

P{X > x ∧ T ≤ t}
P{T ≤ t}

=

∫
P{X > x ∧ T ≤ t|y}dF Y∫
P{T ≤ t|y}dF Y

, (5)

SD
P (x, t) =

P{X ≤ x ∧ T > t}
P{T > t}

=

∫
P{X ≤ x ∧ T > t|y}dF Y∫
P{T > t|y}dF Y

, (6)
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where y is the observed value ({z, δ, x}) and F Y its cumulative distribution

function (CDF). Note that, in the sampling context, for i ∈ {1, . . . N}, P{X >

x ∧ T ≤ t|yi} = P{T ≤ t|yi} · I(x,∞)(xi) (IA(x) is the indicator function; takes

the value 1 if x ∈ A and 0 otherwise). Then, if P̂i (= P̂i(N)) is an adequate

estimator for P{T > t|yi}, the empirical estimators for the sensitivity and the

specificity can be written as,

ŜC
E(x, t) =

∑N
i=1(1− P̂i) · I(x,∞)(xi)∑N

i=1(1− P̂i)
, (7)

ŜD
P (x, t) =

∑N
i=1 P̂i · I(−∞,x](xi)∑N

i=1 P̂i

. (8)

Obviously, zi > t implies P̂i = 1 and an event previous to t implies P̂i = 0;

therefore, for complete information, these estimators are the usual empirical

ones. In addition, the consistency of the above estimators is direct if the es-

timator of P{T > t|yi} (1 ≤ i ≤ N) has appealing conditions, particularly,

that |P̂i − P{T > t|yi}| →N 0 in probability. On the other hand, it is obvious

that the resulting C/D ROC curve overcomes the drawbacks reported by the

Kaplan-Meier based C/D ROC curve: for a fixed point t, it is monotone and

always takes values below or equal to 1.

Different procedures can be used in order to estimate the above probabil-

ity in those subjects which are not absolutely defined. We proposed a semi-

parametric one; by using a proportional hazard Cox regression model; and a

non-parametric proposal; by using directly the Kaplan-Meier estimator. From

the proportional hazard Cox regression model we can estimate the hazard func-

tion λ(t) = λ0(t) exp{β · X}, this quantity allows to compute P̂i = Ŝ(t|X =

xi)/Ŝ(zi|X = xi), where Ŝ is the survival function estimated from the Cox re-

gression model. Unfortunately, due to X is usually a continuous variable, for

the Kaplan-Meier method we can not directly estimate the probability for one

particular value X = xi and this condition is replaced by X ≤ xi; then we

select values satisfying X ≤ xi and compute the Kaplan-Meier estimator to

obtain P̂i = ŜKM (t)/ŜKM (zi), where ŜKM is the survival function estimated

by the Kaplan-Meier method referred to those subjects satisfying X ≤ xi.
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Indeterminate or mixed subjecs play a fundamental role. Note that an ab-

solute uncertainty about the situation of the ith subject at time t (P̂i = 1/2)

implies that, when this subject is allocated into a group, we will commit an

error with a probability of 1/2, with independence of the group in which it will

be allocated; in these cases, the capacity diagnostic of the studied biomarker

will be limited.

In order to illustrate the problem, we have considered a real problem. Par-

ticularly, we have considered a dataset which contains information about 863 (=

N) kidney transplant patients. This data, free available within the R package

KMsurv, has been previously used with the same goal by Wolf, Schmidt and Ulm

[14]. Information about time to death and age of patients (in this case used as

a mortality marker) were collected. Interested reader is referred to Klein and

Moeschberger [24] for more details about the data. Figure 2 depicts the situa-

tion for the first five subjects when the considered time is 9 years: the patient

with ID=3 died the seventh year, hence it is within the positive group; patients

4 and 5 were still alive at ninth year, therefore, they are within the negative

group. However, the real situation for patients 1 and 2 are unknown. The

probability that those patients are still alive nine years after the follow-up can

be estimated by using the Kaplan-Meier estimator. Particularly, for the first

subject, we must make the estimation considering only the subjects with age

smaller than 46 resulting the estimation P̂1 = 0.88/0.95 (= 0.86). Similarly, for

the second subject, considering only the subjects with age smaller than 51, it

is obtained the value P̂2 = 0.91; in the proposed model, both are considered as

mixed subjects.

Figure 3 depicts different ROC curve estimations. At left, in order to make

the usual ROC curve (DI); the unclassified subjects, called mixed, were removed

and a total of 140 positives and 17 negatives were finally considered. Both the

Kaplan-Meier (KM ) and the KNN (AK) based estimations for RC/D
t (t = 9 yrs.)

are also depicted (computed by using the R package: survivalROC). Observed

differences between the AK and the CIC estimations were negligible when the
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span parameter (related with the KNN method) is close to zero. At right,

the same usual ROC curve (plotted as references); and the C/D ROC curve

estimations by using the method proposed above based on both the proportional

hazard Cox regression (NC) and the non-parametric Kaplan-Meier estimator

(NK).

3. Simulation study

In order to study the practical behaviour of the proposed methodology, a

Monte Carlo simulation study was carried out. Similarly to Heatherty and

Zheng [13], the joint distribution of {log(Time), Marker} is a standard bi-

variate normal distribution with correlation coefficient ρ (cases -1/4 and -3/4

were studied). In addition, two different sample sizes (N = 100, 200) were ex-

plored. The considered distribution for the censoring time, log(C), was also

normal with standard deviation 1 and mean 0 (P{C < T} = 1/2) and 1.19

(P{C < T} = 1/5). The censoring time was drawn independently of the time

Follow−up
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Figure 2: Schematic situation for IDs 1 to 5 of the kidney transplantation data.
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to event, but not of (bio)marker values, which are related in such a way that

E[log(C) ·M ] = τ (cases τ = 0, 1/4 were considered). C/D ROC curve esti-

mations for log(Time) = −1, 0, 1 were computed based on the Kaplan-Meier

estimator (KM ), the KNN method with span= 0.01 · N−1/5 (AK), the direct

method, which removes the subjects with incomplete information, called mixed

subjects in this paper (DI), and by using the proposed estimator based on both

Cox regression (NC) and Kaplan-Meier estimator (NK). Figure 4 depicts the

theoretical ROC curves from where the samples were drawn.

Table 1 shows the mean ± standard deviation for 0.01 ·
√
N ·

∫ 1

0
|R̂(p) −

R(p)|dp, whereR is the real C/D ROC curve and R̂ is its estimation when τ = 0

(censoring time and (bio)marker values are drawn independently). Five studied

methods performed similarly. Proposed NC statistics obtained better results

than NK (note that in the simulated scenario it is satisfied the proportional

hazard assumption) and it was the best of all in most cases. As expected,

the observed differences between the proposed method and the other ones were
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Figure 3: At left, direct ROC curve estimation (DI ; removing the mixed subjects), Kaplan-

Meier (KM ) and KNN (AK ; with span= 0.01 · N−1/5) based cumulative/dynamic ROC

curve estimations. At right, DI (as references) and proposed estimations based on both Cox

regression (NC) and Kaplan-Meier (NK).
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clearer when the censored percentages were larger, particularly, for % C= 50

and log(t) = 1, the proposed methodology achieved the best results.

Table 2 is the same as table 1 but considering that τ = 1/4. Observed

results were similar to the previous obtained ones. It seems that five consid-

ered estimators are robust respect to this correlation configuration between the

(bio)marker and censoring time.

4. Real-data application: the COCOMICS study

The proposed methodology is applied to study the capacity of forced ventila-

tory volume 1 sec. (FEV1) to predict mortality in chronic obstructive pulmonary

disease (COPD) patients. With this goal, we consider the data of the COllabora-

tive COhorts to assess Multicomponent Indices of COPD in Spain (COCOMICS

study). This dataset included 11 Spanish cohorts with a total of 3,633 patients

out of a total of 15,878.17 people per year. The interested reader is referred

to Soriano et al. [25] and to Marin et al. [23] for complete information about

the data. Figure 5 (up-left) depicts the Kaplan-Meier estimation with a 95%

confidence interval for the COCOMICS data and the number of patients at risk

at 1, 4, 7, 10 and 13 years.
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Table 1: Mean ± standard deviation of 0.01 ·
√
N ·

∫ 1
0 |R̂(p) − R(p)|dp, where R is the real

C/D ROC curve and R̂ is its estimation, computed from 5,000 Monte Carlo iterations for

τ = 0.

N ρ %C log(t) KM AK DI NC NK

100 -1/4 20% -1 0.834 ± 0.376 0.833 ± 0.399 0.827 ± 0.365 0.828 ± 0.373 0.830 ± 0.375

0 0.613 ± 0.271 0.614 ± 0.289 0.625 ± 0.294 0.587 ± 0.266 0.591 ± 0.267

1 0.934 ± 0.463 0.920 ± 0.460 0.887 ± 0.443 0.767 ± 0.392 0.767 ± 0.415

100 -3/4 20% -1 0.476 ± 0.214 0.474 ± 0.248 0.471 ± 0.214 0.468 ± 0.214 0.471 ± 0.214

0 0.424 ± 0.182 0.429 ± 0.212 0.410 ± 0.179 0.390 ± 0.173 0.399 ± 0.181

1 0.591 ± 0.320 0.623 ± 0.362 0.486 ± 0.283 0.411 ± 0.182 0.476 ± 0.176

100 -1/4 50% -1 0.868 ± 0.391 0.866 ± 0.420 0.853 ± 0.374 0.801 ± 0.368 0.835 ± 0.385

0 0.744 ± 0.338 0.745 ± 0.358 0.750 ± 0.350 0.585 ± 0.299 0.614 ± 0.310

1 1.519 ± 0.866 1.092 ± 0.542 1.123 ± 0.453 0.813 ± 0.483 0.956 ± 0.646

100 -3/4 50% -1 0.532 ± 0.231 0.492 ± 0.250 0.489 ± 0.216 0.448 ± 0.211 0.481 ± 0.221

0 0.570 ± 0.243 0.533 ± 0.264 0.487 ± 0.215 0.365 ± 0.171 0.466 ± 0.243

1 1.511 ± 1.065 1.051 ± 0.667 1.118 ± 1.009 0.391 ± 0.181 0.761 ± 0.490

200 -1/4 20% -1 0.821 ± 0.356 0.807 ± 0.381 0.831 ± 0.387 0.816 ± 0.354 0.818 ± 0.356

0 0.618 ± 0.267 0.612 ± 0.286 0.630 ± 0.297 0.591 ± 0.260 0.595 ± 0.261

1 0.950 ± 0.442 0.952 ± 0.472 0.997 ± 0.496 0.784 ± 0.371 0.784 ± 0.398

200 -3/4 20% -1 0.484 ± 0.201 0.499 ± 0.247 0.481 ± 0.201 0.478 ± 0.201 0.481 ± 0.201

0 0.435 ± 0.181 0.435 ± 0.208 0.424 ± 0.177 0.400 ± 0.171 0.412 ± 0.179

1 0.596 ± 0.258 0.618 ± 0.328 0.539 ± 0.245 0.428 ± 0.181 0.532 ± 0.285

200 -1/4 50% -1 0.866 ± 0.380 0.856 ± 0.407 0.879 ± 0.412 0.801 ± 0.358 0.835 ± 0.374

0 0.749 ± 0.334 0.750 ± 0.359 0.784 ± 0.379 0.589 ± 0.300 0.621 ± 0.313

1 1.599 ± 0.882 1.284 ± 0.638 1.453 ± 0.703 0.859 ± 0.509 0.995 ± 0.671

200 -3/4 50% -1 0.535 ± 0.224 0.525 ± 0.264 0.498 ± 0.209 0.456 ± 0.213 0.494 ± 0.219

0 0.581 ± 0.238 0.529 ± 0.247 0.536 ± 0.223 0.375 ± 0.170 0.412 ± 0.263

1 1.278 ± 0.755 1.177 ± 0.689 1.173 ± 0.642 0.457 ± 0.220 1.042 ± 0.517
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Table 2: Mean ± standard deviation of 0.01 ·
√
N ·

∫ 1
0 |R̂(p)−R(p)|dt, where R is the real C/D

ROC curve and R̂ is its estimation, computed from 5,000 Monte Carlo iterations for τ = 1/4.

N ρ %C log(t) KM AK DI NC NK

100 -1/4 20% -1 0.828 ± 0.375 0.829 ± 0.402 0.829 ± 0.370 0.825 ± 0.375 0.830 ± 0.376

0 0.601 ± 0.270 0.614 ± 0.294 0.614 ± 0.301 0.588 ± 0.269 0.604 ± 0.277

1 0.867 ± 0.421 0.913 ± 0.446 0.914 ± 0.407 0.754 ± 0.384 0.823 ± 0.424

100 -3/4 20% -1 0.468 ± 0.207 0.465 ± 0.238 0.470 ± 0.207 0.466 ± 0.205 0.468 ± 0.205

0 0.411 ± 0.179 0.421 ± 0.196 0.415 ± 0.182 0.389 ± 0.167 0.399 ± 0.169

1 0.532 ± 0.291 0.536 ± 0.281 0.522 ± 0.334 0.398 ± 0.169 0.412 ± 0.208

100 -1/4 50% -1 0.830 ± 0.382 0.872 ± 0.420 0.845 ± 0.364 0.803 ± 0.372 0.855 ± 0.396

0 0.657 ± 0.394 0.748 ± 0.354 0.741 ± 0.339 0.582 ± 0.299 0.672 ± 0.345

1 1.253 ± 0.698 1.054 ± 0.495 1.078 ± 0.409 0.779 ± 0.462 1.123 ± 0.657

100 -3/4 50% -1 0.509 ± 0.235 0.484 ± 0.239 0.494 ± 0.225 0.450 ± 0.206 0.482 ± 0.205

0 0.563 ± 0.257 0.499 ± 0.223 0.493 ± 0.235 0.368 ± 0.168 0.421 ± 0.189

1 1.271 ± 0.909 0.698 ± 0.388 1.240 ± 1.041 0.343 ± 0.162 0.539 ± 0.369

200 -1/4 20% -1 0.822 ± 0.359 0.818 ± 0.384 0.832 ± 0.381 0.820 ± 0.359 0.824 ± 0.361

0 0.605 ± 0.266 0.614 ± 0.289 0.638 ± 0.305 0.595 ± 0.266 0.612 ± 0.275

1 0.870 ± 0.402 0.938 ± 0.452 1.029 ± 0.510 0.758 ± 0.374 0.836 ± 0.422

200 -3/4 20% -1 0.474 ± 0.203 0.493 ± 0.246 0.476 ± 0.204 0.472 ± 0.202 0.474 ± 0.201

0 0.430 ± 0.188 0.430 ± 0.202 0.433 ± 0.189 0.406 ± 0.173 0.418 ± 0.176

1 0.561 ± 0.264 0.547 ± 0.258 0.559 ± 0.288 0.423 ± 0.174 0.433 ± 0.202

200 -1/4 50% -1 0.831 ± 0.371 0.859 ± 0.405 0.881 ± 0.410 0.803 ± 0.364 0.855 ± 0.392

0 0.674 ± 0.307 0.753 ± 0.364 0.822 ± 0.406 0.593 ± 0.305 0.692 ± 0.356

1 1.294 ± 0.691 1.222 ± 0.570 1.360 ± 0.619 0.818 ± 0.493 1.217 ± 0.721

200 -3/4 50% -1 0.535 ± 0.230 0.497 ± 0.228 0.499 ± 0.206 0.451 ± 0.188 0.488 ± 0.192

0 0.633 ± 0.274 0.515 ± 0.213 0.518 ± 0.221 0.385 ± 0.172 0.444 ± 0.193

1 1.129 ± 0.678 0.786 ± 0.414 0.931 ± 0.797 0.391 ± 0.186 0.625 ± 0.442
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In this dataset, differences between the five considered C/D ROC curve

estimations at 10 years were really small (see Figure 5, top-right). The proposed

estimator based on Kaplan-Meier showed itself more conservative than the other

ones. At this point, 1,212 subjects were classified as positives and 198 were

allocated into the negative group.

The prediction capacity of the (bio)marker (measured from the area under the

ROC curve, AUC) was high along the follow-up time. It was about 0.73 at

six months to decrease until 0.68 at two years (lowest value); after that, the

diagnostic capacity increases until 0.76 at fourteen years. The integrated AUC

along the follow-up time was 0.72. Figure 5 (down) depicts the AUC evolution

with a 95% confidence interval (based on bootstrap replications).
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Figure 5: Kaplan-Meier survival curve estimation, top-left; C/D ROC curve estimation at ten

years by using the five considered methods, top-right; AUC evolution with a 95% confidence

interval, down.
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5. Conclusions

In this paper the authors deal with the cumulative/dynamic ROC curve

estimation in the presence of right-censored data. The proposed methodology

assigns a probability of belonging to the negative group (respectively to the

positive group) to those patients whose real status at considered point remains

unknown (those censored before the considered point). This probability can be

estimated from different methods; in this paper a semi-parametric (based on Cox

regression) and a non-parametric (based on Kaplan-Meier) ones are considered.

However, other methods can be used with this goal, even methods adapted

to particular situations, ranging from competing-risk or multi-state contexts,

to the non-monotone relationship ROC curve generalization [26]. The proposed

estimator avoids the drawbacks of the previously existing ones; i) it is monotone

and always ranges between 0 and 1, ii) it does not depend on smooth parameters.

In the real-data example, the five considered estimators performed similarly, but

simulation suggests that both NC and NK perform well and they are always

better than the previous ones when the observed percentage of censorship is

high. When some correlation between the (bio)marker and the censoring time

is added, obtained results do not change substantially.

It should be noted that the direct method, removing the undefined subjects,

usually obtains good results. However, do not use these individuals is not a

good methodological practice; we are removing a particular subset of individuals

which can have some interesting properties. For instance, if there exists some

kind of relationship between the considered marker and the censoring time, the

results will be strongly biased.

Perhaps, the main flaws in the presented methodology is the lack of a rigorous

study of its theoretical properties. However, the proposed estimator has two

different parts; the first one is the traditional ROC curve for complete data,

and the second one is to assign, to each mixed subject, the probability that

the event has not happened before the fixed point t. This probability depends
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on several factors which are not previously clear. At this point, it is good to

remark again the good results provided by the simulation study.

Finally, as appendix, we provide some R functions which compute the pro-

posed methodology. The authors expect that a suitable R package will be soon

available on the CRAN.
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Appendix: R functions

The following R functions make the computes and display plots for the

proposed C/D ROC curve estimator. The used notation is direct.

assignProbability <- function(stime, status, marker, predict.time, method=c(’Cox’, ’KM’),

undefinedIndices) {

A function which assigns the probability of belonging to the negative group

to those patients censored before the considered point

- stime: observed time of each subject

- status: status of each subject (takes the value 0 if the

subject is censored and 1 otherwise)

- marker : (bio)marker values

- predict.time: considered time point

- method : procedure used in order to estimate the probability;

‘Cox’ stands for proposed method based on Cox regression

‘KM’ stands for proposed method based on Kaplan-Meier estimator

- undefinedIndices: indices of mixed subjects

method <- match.arg(method)

results <- 1:length(undefinedIndices) vector results will contain the probabilities

of mixed subjects

Proposed method based on Cox regression

if (method == ’Cox’) {

fit <- coxph(Surv(stime, status) ∼ marker)
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fits a Cox proportional hazard regression model whose

covariate is marker, i.e., h(t) = h0(t) · eβX

md <- survfit(fit, newdata=data.frame(cbind(stime,status,marker)))

survival curves from the previously fitted Cox model

for (j in 1:length(undefinedIndices)) for each mixed subject

{

f <- approxfun(c(min(md$time)-1, md$time, max(md$time)+1),

c(1, md$surv[, undefinedIndices[j]], 0))

f constains a list of points which linearly interpolate given data points,

so it is an approximation of the survival function estimated from the

Cox regression model

results[j] <- f(predict.time) / f(stime[undefinedIndices[j]])

probability considered in mixed subjects based on

Cox regression model

if (is.na(results[j])) {

results[j] <- 1 if results[j] is a missing value, it takes the value 1, so the

j -th mixed subject is assigned to the negative group

}

}

Proposed method based on Kaplan-Meier estimator

} else if (method == ’KM’) {

for (j in 1:length(undefinedIndices)) for each mixed subject

{

idx <- which(marker <= marker[undefinedIndices[j]])

idx constains the indices of those subjects whose marker is smaller than

or equal to the marker of the considered mixed subject

fit <- survfit(Surv(stime[idx], status[idx]) ∼ 1)

survival curve from Kaplan-Meier estimator using only the

previous subjects

f <- stepfun(fit$time, c(1, fit$surv))

interpolating step function from survival curve above

results[j] <- f(predict.time) / f(stime[undefinedIndices[j]])

probability considered in mixed subjects based on

Kaplan-Meier estimator

if (is.na(results[j])) {

results[j] <- 1 if results[j] is a missing value, it takes the value 1, so the

j -th mixed subject is assigned to the negative group
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}

}

return(results) return probabilities of mixed subjects

}

singleCdroc <- function(stime, status, marker, predict.time, method=c(’Cox’, ’KM’)) {

A function which returns the estimated sensitivity, specificity, AUC and other aspects

of cumulative/dynamic ROC curve estimation based on the proposed methodology

method <- match.arg(method)

positiveIndices <- which(stime <= predict.time & status == 1)

indices of those subjects whose event ocurrs before the considered

time point (predict.time)

negativeIndices <- which(stime > predict.time)

indices of those subjects whose observed time is longer than predict.time

undefinedIndices <- which(stime <= predict.time & status == 0)

indices of those subjects censored before predict.time (mixed subjects)

undefinedProb <- NULL

if (length(undefinedIndices) > 0) { if there exists some mixed subjects

undefinedProb <- assignProbability(stime, status, marker, predict.time, method,

undefinedIndices)

undefinedProb is a vector containing the probability of belonging to

the negative group of mixed subjects

}

cutPoints <- c(min(marker) - 1, unique(sort(marker)), max(marker) + 1)

different thresholds considered will be the different values of marker on the data;

it will be also considered min(marker)-1 and max(marker)+1

nSens <- length(positiveIndices) + sum(1 - undefinedProb)

denominator of the estimator for the sensitivity considered in page 6, taking into

account that “positive patients” have a probability of belonging to the negative

group equals zero

nSpec <- length(negativeIndices) + sum(undefinedProb)

denominator of the estimator for the specificity considered in page 6, taking into

account that “negative patients” have a probability of belonging to the negative

group equals one

sensitivity <- cutPoints
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specificity <- cutPoints

both sensitivity and specificity vectors will have

the same length than cutPoints vector

for (i in 1:length(cutPoints)) for each considered threshold for the (bio)marker

{

sensitivity[i] <- (sum(marker[positiveIndices] > cutPoints[i]) +

sum(1 - undefinedProb[marker[undefinedIndices]> cutPoints[i]])) / nSens

sensitivity estimation from expression in page 6

specificity[i] <- (sum(marker[negativeIndices] <= cutPoints[i]) +

sum(undefinedProb[marker[undefinedIndices]<= cutPoints[i]])) / nSpec

specificity estimation from expression in page 6

}

rocFunction <- approxfun(1 - specificity, sensitivity)

rocFunction contains a list of points which linearly interpolate given data

points of the cumulative/dynamic ROC curve estimation

auc <- integrate(rocFunction,0,1)

AUC estimation by adaptive quadrature of rocFunction over the unit interval

results <- list(TP=sensitivity, TN=specificity, undefinedProb=undefinedProb,

cutPoints=cutPoints, auc=auc$value, aucAbsError=auc$abs.error,

predict.time=predict.time, method=method)

output:

- TP : sensitivity estimation, true positive rate

- TN : specificity estimation, true negative rate

- undefinedProb: probability of belonging to the

negative group to those mixed subjects

- cutPoints: thresholds considered

- auc: AUC, the final estimate of the integral above

- aucAbsError : estimation of the modulus of

the absolute error from integral

estimation above

- predict.time: considered time point

- method : procedure used in order to estimate

the probability considered; it can takes

the value “Cox” or “KM”

attr(results, ‘class’) <- ‘cdroc’

return(results) return outputs above

}
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cdroc <- function(stime, status, marker, predict.time, method=c(’Cox’, ’KM’), ci=FALSE,

boot.n=100, conf.level=0.95, seed=2032) {

A function which returns outputs of singleCdroc function above, including some aspects

about a conf.level confidence interval (if ci is TRUE) for the area under the

cumulative/dynamic ROC curve

- boot.n: number of bootstrap replications considered

- seed : seed considered (for reproducibility)

method <- match.arg(method)

if (ci) { if the user is interested in calculating confidence interval

set.seed(seed) specify the seed

sampledIndices <- sapply(1:boot.n, function(xx) sample(length(stime), length(stime),

replace=TRUE))

sampledIndices is a matrix containing the indices of each bootstrap replication

allResults <- lapply(1:boot.n, function(index, sampledIndices) {

currentIndices <- sampledIndices[, index]

singleCdroc(stime[currentIndices], status[currentIndices],

marker[currentIndices], predict.time, method) },

sampledIndices=sampledIndices)

apply the function singleCdroc to each bootstrap sample

result <- singleCdroc(stime, status, marker, predict.time, method)

apply the function singleCdroc to the main sample

allAucs <- sapply(allResults, function(xx) xx$auc)

vector allAucs contains AUC estimations of each bootstrap sample

result$meanAuc <- mean(allAucs) mean of AUC estimations

result$ciAuc <- quantile(allAucs, c(1 - conf.level, conf.level))

conf.level confidence interval for AUC

result$ci <- TRUE

result$boot.n <- boot.n

result$conf.level <- conf.level

result$seed <- seed

result$aucs <- allAucs

return(result) return outputs above

} else { if the user is not interested in calculating confidence interval

return(singleCdroc(stime, status, marker, predict.time, method))

only return outputs of singleCdroc function

}

}
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summary.cdroc <- function(obj) {

A function which returns some aspects about obj (class ‘cdroc’)

cat(‘cdroc object: \n’)

cat(‘Number of cut points:’, length(obj$cutPoints), ‘\n’)

cat(‘Method:’, obj$method, ‘\n’)

cat(’‘predict.time:’, obj$predict.time, ‘\n’)

cat(‘AUC:’, obj$auc, ‘\n’)

if (!is.null(ci)) {

cat(‘Bootstrap number of replicates:’, obj$boot.n, ‘\n’)

cat(‘Bootstrap AUC:’, obj$meanAuc, ’\n’)

cat(‘Bootstrap AUC Confidence Interval:’, obj$ciAuc, ‘\n’)

cat(‘Bootstrap AUC Confidence Level:’, obj$conf.level, ‘\n’)

cat(‘Bootstrap seed:’, obj$seed, ‘\n’)

}

}

print.cdroc <- function(obj) {

A function which returns a summary of obj (class ‘cdroc’)

summary(obj)

}

plot.cdroc <- function(obj, ...) {

A function which plots obj (class ‘cdroc’) and the worst ROC curve possible (the diagonal

from (0,0) to (1,1), whose AUC is 0.5)

...: arguments to be passed to methods, such as graphical parameters

plot(1 - obj$TN, obj$TP, type=‘l’, lwd=3, xlab=‘1 - specificity’, ylab=‘sensitivity’, xaxs=‘i’,

yaxs=‘i’, ...)

abline(0, 1, lty=2)

}
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