ANÁLISIS DE LA RESILIENCIA DE LAS PROVINCIAS ESPAÑOLAS: UNA APLICACIÓN DE LA ECONOMETRÍA ESPACIAL Y EL ANÁLISIS SHIFT-SHARE

ÁLVARO MUÑIZ

OBJETIVOS

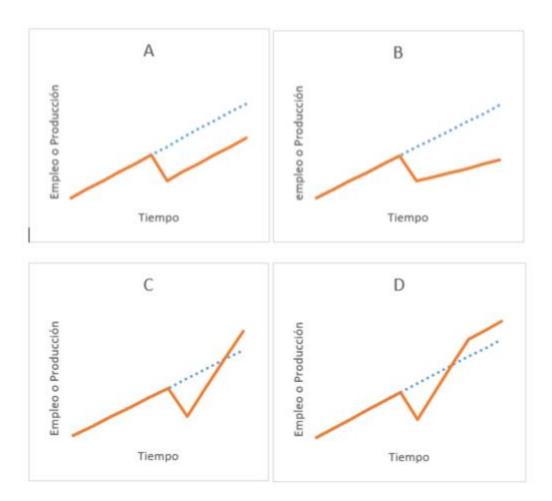
• Realizar una clasificación de las provincias en función de los efectos competitivos.

• Examinar la dependencia espacial de los mismos.

• Especificación y estimación de un modelo empírico

INTRODUCCIÓN

Resiliencia de una región: Habilidad de la misma para anticiparse, prepararse, responder y recuperarse de un shock (Foster, 2007).


Histéresis: El efecto de una perturbación temporal que afecta permanentemente a una economía (Romer, 2001).

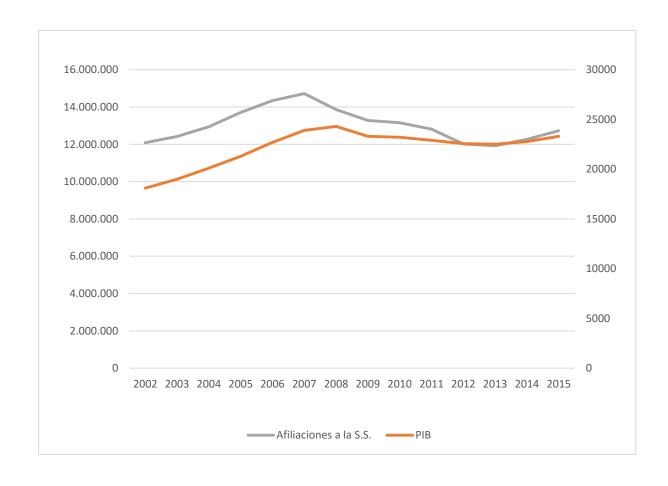
REVISIÓN DE LA LITERATURA

• Resiliencia, un proceso dinámico:

CUATRO fases (Martin, 2012):

- 1. Resistencia
- 2. Recuperación
- 3. Reorientación
- 4. Reanudación

REVISIÓN DE LA LITERATURA (II)


- Se resalta la importancia de una estructura empresarial y económica sólida (Storper, 2013;2015).
- Aquellas economías con una base amplia y diversa son más resilientes (Davies y Tonts, 2010).

EN ESPAÑA:

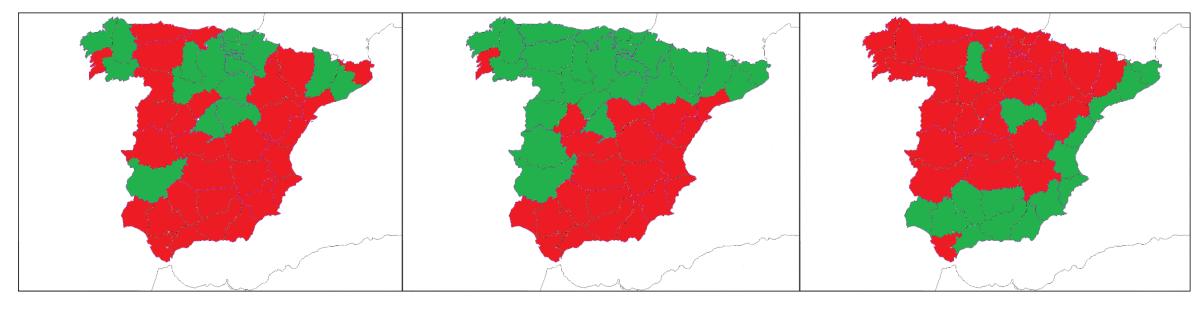
- Cuadrado-Roura y Maroto (2016) encuentran un país dividido en dos partes según resiliencia. Las más fructíferas las situadas cerca del Ebro más la Comunidad de Madrid.
- Además, convergencia en estructuras productivas sectoriales.

LOS DATOS Y EL PERIODO ANALIZADO

Afiliaciones a la seguridad social en régimen general en los últimos días de los años 2007,2012 y 2015.

METODOLOGÍA

- SHIFT-SHARE
 - Si denotamos como X_{ij} el valor inicial de la variable económica (afiliaciones en nuestro caso) correspondiente al sector i en la provincia j, X'_{ij} será el valor final de la misma variable.
 - Distingue TRES componentes:
 - Efecto Nacional
 - $NE_{ij} = X_{ij}r$
 - Efecto Sectorial
 - $SE_{ij} = X_{ij}(r_i r)$
 - Efecto Competitivo
 - $CE_{ij} = X_{ij}(r_{ij} r_i)$


METODOLOGÍA (II)

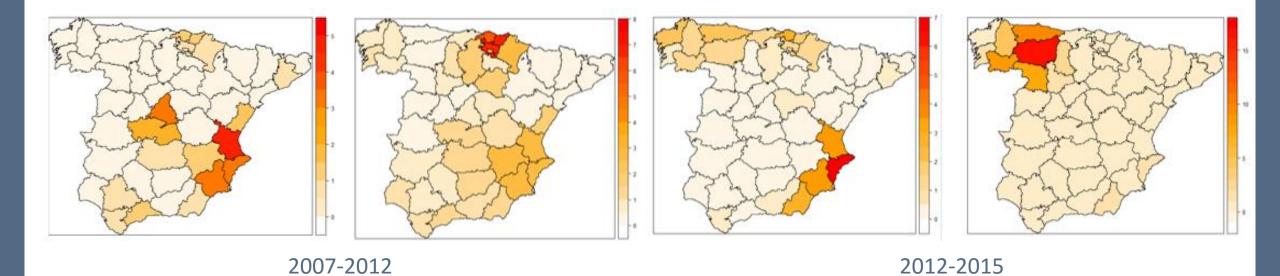
- ANÁLISIS ESPACIAL DEL EFECTO COMPETITIVO
 - Identificar posibles clústeres, patrones de comportamiento, efecto spillover mediante test de Moran locales y globales (Cliff y Ord, 1981).
 - Mide en qué medida los valores elevados (bajos) de una variable se encuentran localizados generalmente cerca de otros valores elevados (bajos).

GLOBAL	LOCAL
$I = \frac{n}{S_0} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i,j} z_i z_j}{\sum_{i=1}^{n} z_i^2}$	$I_i = \frac{z_i}{\sum z_i^2/n} \sum_j w_{ij} z_j$

RESULTADOS

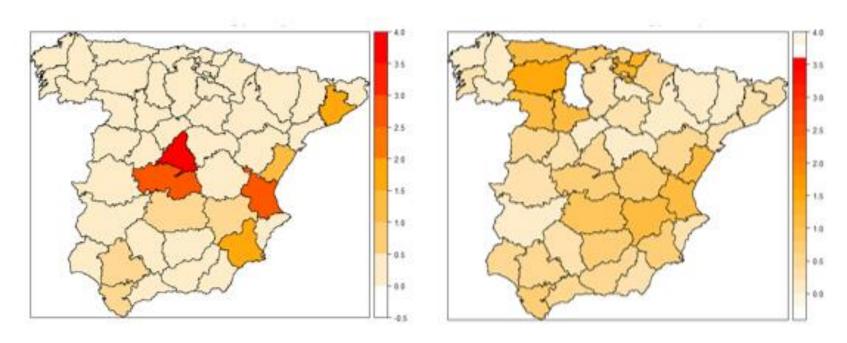
• CLASIFICACIÓN DE LAS PROVINCIAS

2007-2015 2007-2012 2012-2015


RESULTADOS (II)

- LA AUTOCORRELACIÓN ESPACIAL
 - Resultados Globales

	PERIODO	I- Moran	Esperado	Varianza	Desviación standard stadístico I	P- Valor
	2007/2012	0,9414	-0,02173	0,0036	1,9253	0,0271
EFECTOS COMPETITIVOS SIMPLES	2012/2015	0,2662	-0,02173	0,00496	4,0883	0,000021
	2007/2015	0,0223	-2,1739	0,00034	0,3709	0,3554
	2007/2012	0.4600	0.02172	0.00542	6 6522	0.000003
	2007/2012	0,4688	-0,02173	0,00543	6,6523	0,000002
EFECTOS COMPETITIVOS PONDERADOS	2012/2015	0,3546	-0,02173	0,00342	6,4316	0,000001
	2007/2015	0,0293	-0,02173	0,00186	1,1816	0,1187


RESULTADOS (III)

- LA AUTOCORRELACIÓN ESPACIAL
 - Resultados Locales

RESULTADOS (IV)

- LA AUTOCORRELACIÓN ESPACIAL
 - Resultados Locales

RESULTADOS (V)

- LA AUTOCORRELACIÓN ESPACIAL
 - Sectores más Relevantes

SECTOR	PERIODO	l- Moran	Esperado	Varianza	Desviación	P- Valor
					standard estadístico I	
MANUFACTURAS	2007/2012	0,395914	-0,021739	0,004485	6,2362	0.00001
	2012/2015	0,3153	-0,02173	0,005364	4,602	0.00051
	2007/2015	-0,127901	-0,02173	0,00343	-1,8127	0,9651
CONSTRUCCIÓN	2007/2012	0,390023	-0,02173	0,0052	5,7073	0.00007
	2012/2015	-0,001406	-0,2173	0,003	0,371	0,3553
	2007/2015	0,24829	-0,2173	0,0052	3,7138	0,00010
VEHÍCULOS Y	2007/2012	-0,001578	-0,02173	0,00343	0,03478	0,3666
TRANSPORTES	2012/2015	-3,02	0,02173	0.0000063	-1,0665	0,8569
	2007/2015	-0,102	-0,02173	0,003649	-1,338	0,9096
FINANCIERO	2007/2012	-0,05878	-0,02173	0,004802	-0,5345	0,7035
	2012/2015	0,0625	-0,02173	0,004042	1,3249	0,0926
	2007/2015	-0,01624	-0,02173	0,00041	0,26948	0,3938

FUNCIÓN DE EFECTOS COMPETITIVOS

$$EC = \beta_0 + \beta_1 CP + \beta_2 KH + \beta_3 L$$

Estimación por MCO

	МСО	
Variable	Coeficiente	P- Valor
Constante	-156.043	0.0408
СР	-0.263	0.0677
Kh	209.559	0.0274
L	11.851	0.0001
Estadístico F	20.12	
P-valor	0.00008	

FUNCIÓN DE EFECTOS COMPETITIVOS (II)

• Estimación por Spatial Error Model

	Spatial Error Model		
Variable	Coeficiente	P- Valor	
Constante	-70.488	0.793	
СР	-0.422	0.002	
Kh	234.269	0.485	
L	16.073	0.003	
Lambda	0.499		
LR- test	4.985		
P-valor (LR)	0.025		
P-valor	0.0008		

FUNCIÓN DE EFECTOS COMPETITIVOS (III)

• Estimación por Spatial Lag Model

	Spatial Lag Model		
Variable	Coeficiente	P- Valor	
Constante	-141.136	0.044	
СР	-0.272	0.042	
Kh	189.22	0.028	
L	12.36	0.013	
Rho	0.206		
LR- test	1.63		
P-valor (LR)	0.201		
P-valor	0.197		

FUNCIÓN DE EFECTOS COMPETITIVOS (IV)

• Estimación por Spatial Durbin Model

	Spatial Durbin Model		
Variable	Coeficiente	P- Valor	
Constante	-329.336	0.035	
СР	-0.354	0.007	
Kh	152.874	0.692	
L	15.181	0.001	
Lag.CP	0.395	0.121	
Lag.KH	344.318	0.055	
Lag.L	-12.824	0.021	
Rho	0.248		
LR- test	1.006		
P-valor (LR)	0.315		
P-valor	0.260		

CONCLUSIONES (I)

- 1. Las provincias situadas por encima de la diagonal que une la Comunidad de Madrid con Cataluña han mostrado una resistencia mucho mayor que las que se sitúan por debajo.
- 2. Las provincias bañadas por el Mar Mediterráneo han mostrado una capacidad mucho mayor de reorientación de su economía.
- 3. La zona española que mejor ha sobrellevado la crisis económica ha sido la zona central de la parte norte, es decir, las provincias cercanas a la autopista A-1 que une la Comunidad de Madrid con el País Vasco.
- 4. Los resultados de los test globales de Moran ponen de manifiesto que en nuestro país existen indicios que nos invitan a pensar que existe dependencia espacial positiva en términos globales.
- 5. Clara significatividad de las variables explicativas.

CONCLUSIONES (II)

- 6. Efectos competitivos simples: la autocorrelación espacial cobra una importancia significativa sólo en la zona del levante valenciano y en la Comunidad de Madrid y Toledo.
- 7. Efectos competitivos ponderados: La zona norte cobra gran importancia.
- 8. Autocorrelación espacial positiva en aquellos sectores que dedican sus recursos en las manufacturas y construcciones.
- 9. No se puede concluir con exactitud la significatividad de los mismos ya que en el caso del SEM el componente espacial es significativo mientras que en SLM y SDM no ocurre lo mismo.

GRACIAS