
Gestión de la reputación de un sistema de
software de código abierto basado en la

�abilidad de sus dependencias

Cristina García García

13-Mayo-2016

Universidad Técnica de Dinamarca
Departamento de Matemáticas Aplicadas e Informática
Christian Damsgaard Jensen, edificio 322,
2800 Kongens Lyngby, Dinamarca
Teléfono +45 4525 3351
Christian.Jensen@imm.dtu.dk
www.compute.dtu.dk

Escuela Politécnica de Ingeniería de Gijón
Departamento de Informática
Ángel Neira Álvarez, edificio 8,
33203 Gijón, Spain
Teléfono +34 985 18 24 81
neira@uniovi.es
www.di.uniovi.es

i

Índice general

1. Motivación 1

2. Introducción 2

3. Estado actual 3

3.1. Métricas . 3
3.2. CVE . 3
3.3. CVSS . 4

4. Análisis 5

5. Diseño 7

5.1. CVE . 7
5.2. CVSS . 8
5.3. Puntuación . 10

5.3.1. DependencyScore . 10
5.3.2. FinalScore . 10

6. Implementación y

evaluación 11

7. Conclusiones 13

ii

1 Motivación

El uso de componentes externos está muy extendido en la industria del software.
Algunos de ellos han sido desarrollados por proyectos de código abierto, Open Source

Software (OSS), debido a grandes ventajas como los bajos costes. Los programadores
pueden participar en los proyectos que más les interesen, lo que suele resultar en compo-
nentes de mayor calidad.

El principio fundamental de los proyectos de código abierto, la libertad de los desa-
rrolladores, está sin embargo asociado con el riesgo. Aunque la calidad de este tipo de
proyectos suele ser generalmente buena, sucesos como la vulnerabilidad Heartbleed en
Open SSL enfatizan la importancia de asesorar y gestionar los componentes desarrolla-
dos externamente. Estos componentes pueden, a su vez, estar basados en otros proyectos,
lo que resulta en un grado de incertidumbre sobre cuáles son los elementos necesarios.
Las vulnerabilidades que afecten a cualquiera de estas dependencias pueden afectar la
�abilidad del proyecto y por tanto, para evitar brechas de seguridad, la calidad de estos
componentes debe ser considerada.

El objetivo de este Trabajo Fin de Grado es investigar maneras de asesorar sobre
la calidad de un proyecto OSS, considerando aspectos relacionados con la seguridad del
mismo, para así gestionar la reputación de un sistema OSS. Para ello, se examinarán los
componentes y frameworks desarrollados externamente por otros proyectos OSS. Este
trabajo consiste en:

Analizar diferentes perspectivas para asesorar sobre �abilidad.

Investigar formas de identi�car las dependencias entre los componentes de un sis-
tema OSS.

Determinar métricas de seguridad que indiquen la �abilidad de dichas contribucio-
nes.

Desarrollar y evaluar un prototipo de prueba de concepto.

1

2 Introducción

El térmico software se re�ere a la colección de información e instrucciones de un
ordenador. Una librería de software engloba los datos y el código de programación que
pueden ser usados en diferentes programas de software. Su código está organizado de tal
forma que pueda ser reutilizado por diversos programas. Cuando un programa invoca
una librería, gana su funcionalidad sin que sea necesario implementarla.

Las librerías son un ejemplo muy conocido de reutilización de código, aunque no el
único. Otros ejemplos son frameworks, plugins o componentes. Esta reutilización de có-
digo resulta en dependencia. Ryan Berg, jefe de seguridad en Sonatype, a�rma que el
80%-90% del código de una aplicación pertenece a otras librerías o componentes. La
aplicación no es sólo el código escrito por el programador, sino todas las dependencias
que son necesarias, lo cual tiene un gran impacto en la seguridad del proyecto. Histórica-
mente el foco se ha puesto en lo que el desarrollador ha escrito. Sin embargo, ahora esto
es sólo una pequeña parte del resultado �nal. Si el proyecto tiene una dependencia que
a su vez está basado en otro componente que tiene una vulnerabilidad, puede que esta
afecte también al proyecto. Por tanto es fundamental considerar las dependencias y sus
problemas al abordar cuestiones de seguridad.

Una vulnerabilidad �catastró�ca�, debido a su impacto, fue expuesta en 2014: Heart-
bleed [1]. OpenSSL es una librería de criptografía muy conocida y utilizada en otros
proyectos OSS como Apache, uno de los servidores web más usados del mundo, o por
compañías como Facebook o Google. Todos ellos se vieron afectados por este error que
resultó en vulnerabilidades muy serias. Información con�dencial como contraseñas de
usuarios pudo haber sido obtenida de estas web �seguras� debido a Heartbleed. Aconteci-
mientos como este muestran el gran impacto que una vulnerabilidad en una dependencia
puede tener en los proyectos que dependen de ella. Por tanto, en este trabajo, la �abilidad
de los proyectos OSS se abordará en base a sus contribuciones.

2

3 Estado actual

3.1. Métricas

A pesar del gran desarrollo de la industria del software en estas últimas décadas,
no existe ningún estándar para asesorar sobre su calidad. Una métrica proporciona
información sobre alguna propiedad del sistema y por ello existen numerosas métricas
dependiendo de qué propiedad del software se quiere cuanti�car. Complejidad Ciclomáti-
ca, número de líneas de código (SLOC), número de errores por línea de código, cobertura
de código o tiempo medio entre fallos (MTFB) son algunos ejemplos de métricas que
han sido utilizadas. Sin embargo, no resultan adecuadas para este proyecto. Dado el gran
número de dependencias que un proyecto puede tener, se ha considerado como requisito
deseable que las métricas sean fáciles de obtener para todos los proyectos y que un aná-
lisis �able y objetivo pueda hacerse basándose en ellas.

Estudios como el realizado por Neuhaus y otros [2] muestran como vulnerabilidades
pasadas pueden ser utilizadas para predecir qué componentes van a tener nuevos errores.
Sin embargo, los autores centraron su estudio en el proyecto de Mozilla, y por tanto
no es aplicable a otros. La información necesaria para este asesoramiento debe poder
ser consultada en una base de datos general con información sobre cualquier tipo de
proyecto. Para ello se puede usar Common Vulnerabilities and Exposures (CVE).

3.2. CVE

CVE [3] es un sistema para asignar nombres comunes a vulnerabilidades conocidas.
Surge de la necesidad de crear un estándar para facilitar el intercambio de información
sobre los errores encontrados.

Los identi�cadores o números de CVE son únicos y comunes e indican el año en el que
la vulnerabilidad ha ocurrido así como cuatro dígitos, expandibles, que hacen referencia
a la vulnerabilidad.

CVE + AAAA + NNNN

Sin embargo, saber el número de vulnerabilidades no es su�ciente para un análisis
�able, ya que no todas ellas tienen el mismo impacto. Por este motivo surge CVSS:
permite priorizar vulnerabilidades asignando diferentes puntuaciones.

3

3.3. CVSS

3.3. CVSS

CVSS, Common Vulnerability Scoring System , calcula tres tipos diferentes de
métricas para re�ejar la gravedad de una vulnerabilidad.

Métricas Base: representan aquellas características que permanecen invariables.
Está formada a su vez por métricas de explotación e impacto.

Métricas Temporales: re�ejan características que evolucionan con el tiempo.

Métricas de Entorno: permiten adaptar las puntuaciones a la organización del
usuario.

Las puntuaciones varían de 0 a 10, siendo 10 la más severa. El impacto de una vulne-
rabilidad se considera bajo si la puntuación se encuentra entre 0-3.9, medio entre 4-6.9,
alto si varía de 7-8.9 y crítico de 9 a 10.

Tanto las vulnerabilidades pasadas (CVE) como su gravedad (CVSS) proporcionan
información objetiva sobre la �abilidad de un proyecto. Al ser estándares de extenso uso
permiten una comparación �able entre diferentes proyectos. Por ello, dichas métricas han
sido seleccionadas para este trabajo.

4

4 Análisis

Los proyectos de Software de Código Abierto se desarrollan mediante colaboración
pública y el código está disponible para su modi�cación. Este modelo de desarrollo único
puede implicar un mayor riesgo al no tener control sobre los desarrolladores (su expe-
riencia, talento...) al contrario de lo que ocurre en una compañía, lo que puede in�uir en
la seguridad de un componente. Por otro lado, la calidad del software en sí tiene también
gran importancia para determinar su �abilidad: un software mal diseñado tiene muchos
más bugs y vulnerabilidades en el código. Los diferentes enfoques están íntimamente re-
lacionados: en general, buenos programadores construyen software de buena calidad, y
viceversa.

Se puede abordar el asesoramiento de un componente de software externo de diferentes
maneras:

Estudiando el historial de los desarrolladores de ese componente. La ex-
periencia y reputación de los programadores que trabajan en un proyecto puede
resultar muy indicativa sobre su calidad �nal. Además, la organización del equipo
así como la toma de decisiones pueden arrojar información adicional que ayude a
discernir la calidad de los proyectos: si se trata de un equipo cerrado, con progra-
madores con mucha reputación, se puede entrever que el componente �nal será de
buena calidad. Sin embargo, la �reputación� de estos programadores debería estar
basada en previos proyectos que hayan realizado, dependiendo de la calidad de los
mismos. Por tanto, primero es necesaria una fórmula que distinga los proyectos
�ables de aquellos que no lo son.

Examinando el código en busca de indicadores de su calidad. Otra alter-
nativa es analizar el código en busca de errores y vulnerabilidades que indiquen la
calidad de un proyecto. Algunas herramientas, como FindBugs, cumplen con esta
�nalidad analizando el código en busca de errores. Sin embargo, no pueden encon-
trar todas las vulnerabilidades que puedan existir en el proyecto. Normalmente se
utilizan para encontrar errores como inyección SQL o XSS (Cross-Site Scripting),
por lo que pueden no ser muy �ables para predecir futuros comportamientos de los
componentes.

Analizando el historial de los componentes individuales. Este enfoque con-
siste en evaluar el riesgo de un proyecto OSS basándose en su comportamiento
pasado. La evolución del número y gravedad de las vulnerabilidades puede indicar
si un proyecto no se ha diseñado correctamente o si apenas está siendo revisado.
Si el número de vulnerabilidades es muy bajo hay dos teorías plausibles: que el

5

4. Análisis

componente es muy bueno y de ahí las pocas vulnerabilidades encontradas o que el
proyecto no está siendo revisado, lo que sería muy preocupante ya que puede haber
muchos errores que no hayan sido detectados. Para discernir cuál de las dos causas
es más posible, el número de usuarios y colaboradores del proyecto puede resultar
útil. En proyectos muy populares o en los cuales hay muchos programadores traba-
jando se puede asumir que la causa no es una falta de revisión. Black Duck Open
Hub 1 proporciona información como el número de usuarios y de colaboradores,
que puede servir para estimar la opción más probable.

1Black Duck Open Hub: https://www.openhub.net/

6

https://www.openhub.net/

5 Diseño

A la hora de analizar las métricas empleadas, es importante tener en cuenta que:

Es normal que haya vulnerabilidades. Puede ser más problemático que no
haya vulnerabilidades noti�cadas, ya que la razón podría ser una falta de esfuerzo
en la búsqueda y reparación de estos errores.

�Más vulnerabilidades� no siempre signi�ca �menos seguro�. Un aumento
del número de vulnerabilidades puede ser debido a un mayor esfuerzo de búsqueda
de estos errores, por lo que no se puede asumir que la seguridad esté disminuyendo.

Estos principios van a tenerse en cuenta a la hora de analizar los resultados obtenidos
para el número de CVE reportados por proyecto, así como los CVSS asociados.

5.1. CVE

Figura 5.1: Evolución del número de vulnerabilidades para a) Internet Explorer b) Firefox
Mozilla c) Google Chrome.

7

5.2. CVSS

Comparar únicamente el número de CVE asociados al proyecto no sería su�ciente.
Como indica uno de los principios anteriormente mencionados: es normal que haya vul-
nerabilidades. Una librería que fuese muy popular, podría ser muy segura aunque hubiese
tenido muchos CVE noti�cados ya que más personas han analizado el código. Sin em-
bargo, la tendencia del número de vulnerabilidades si puede aportar información más
�able. La �gura 5.1 ejempli�ca esta situación ya que muestra la comparación entre tres
navegadores web muy conocidos: Internet Explorer, Mozilla Firefox y Google Chrome.

Se puede observar que el número de vulnerabilidades encontradas tanto para Mozilla
como para Chrome se incrementa en los primeros años. Esto se debe al aumento de la
popularidad de los navegadores y no a una disminución de su seguridad, como se ha
mencionado anteriormente.

Aunque en este caso Chrome es el que recopila un mayor número de vulnerabilidades
en un año (2011), parece ser el más seguro ya que, cada año desde entonces, el número de
vulnerabilidades ha ido decreciendo, lo que no ocurre en los otros dos casos. La evolución
del número de CVEs para Firefox es más estable, mientras que para Internet Explorer,
está creciendo.

5.2. CVSS

Aunque la evolución del número de vulnerabilidades encontradas resulta útil, la gra-
vedad de las mismas debería ser también comparada. Siguiendo con el ejemplo anterior,
se ha analizado los CVSS para los tres navegadores web.

Figura 5.2: Número de vulnerabilidades por año de Google Chrome clasi�cados por su
puntuación de CVSS.

La �gura 5.2 muestra como no sólo el número de vulnerabilidades de Chrome está
dismiyendo, sino también la gravedad de las mismas. Esto es especialmente llamativo pa-
ra aquellas vulnerabilidades consideradas críticas (en rojo). Sin embargo, para el caso de

8

5.2. CVSS

Firefox (�gura 5.3), esta evolución no es tan clara. Además, aunque haya una tendencia
a la baja de las vulnerabilidades críticas en los últimos años, la proporción entre estas y
el número total es mucho mayor que en el caso anterior.

Figura 5.3: Número de vulnerabilidades por año de Mozilla Firefox clasi�cados por su
puntuación de CVSS.

Aunque el caso de Internet Explorer es el más ilustrativo, �gura 5.4, ya que en este ca-
so la severidad de las vulnerabilidades ha aumentado con el tiempo. Este comportamiento
es el que se debería evitar para una de las dependencias del proyecto.

Figura 5.4: Number of vulnerabilities per year of Internet Explorer classi�ed by their
CVSS score.

9

5.3. Puntuación

5.3. Puntuación

A la hora de asignar una puntuación a los proyectos, se ha tenido en cuenta el aná-
lisis anterior. Por tanto, la puntuación se basará en la evolución durante los últimos
años. Además, aquellas vulnerabilidades consideradas críticas y de alto riesgo recibirán
un mayor peso en el resultado �nal, ya que el objetivo es destacar los problemas que se
encuentren.

5.3.1. DependencyScore

Previamente a calcular la puntuación �nal, las dependencias se analizan individual-
mente, así como el proyecto: el resultado se denominará dependency score y re�eja el
riesgo de un componente en particular. A su vez, esta puntuación se conforma de otras
dos: una asociada a la evolución de los CVE (VulnerabilityScore) y otra asociada a los
CVSS (SeverityScore). El resultado �nal se calcula como:

DependencyScore = 0,2× V ulnerabilityScore+ 0,8× SeverityScore

VulnerabilityScore: tiene en cuenta dos parámetros: el número de CVE noti�ca-
dos cada año, NCVE, y su tendencia, TCVE. Para asignar los diferentes valores,
diferentes proyectos OSS se han analizado. En el caso de que NCVE indique un
número muy bajo de vulnerabilidades (entre 0 y 5 al año), el número de usuarios
también se ha tenido en cuenta. Como se ha mencionado en 4, este valor indica
cual es la causa más probable de este bajo número de vulnerabilidades: un buen
código o una falta de revisión.

SeverityScore: para esta puntuación, se ha tenido en cuenta la evolución de las
vulnerabilidades según su severidad: críticas, de alto, medio o bajo riesgo, así como
la proporción de vulnerabilidades críticas o de alto riesgo en comparación con el
total. Estos valores van acompañados de diferentes pesos para destacar aquellos
componentes con mayor riesgo.

5.3.2. FinalScore

Se han considerado diferentes enfoques para obtener una puntuación �nal a partir
de los datos obtenidos para todos los componentes. Se ha decidido que, para encontrar
aquellos elementos vulnerables que pueden suponer un riesgo para el proyecto, lo más
lógico es que la puntuación �nal sea la mínima de todos los elementos.

10

6 Implementación y
evaluación

Se ha escrito un pequeño programa en Perl que, al indicarle el nombre de un com-
ponente de software, obtiene sus dependencias, los CVE y CVSS asociados a ellas y la
puntuación �nal. La herramienta cve-search, cuyo código fuente se puede consultar en
https://github.com/cve-search/cve-search, se ha utilizado para recabar informa-
ción sobre CVE y CVSS.

Black Duck Open Hub ha sido consultada en caso de duda para considerar a un
proyecto �able o no en función del número de usuarios y de contribudores. La tabla 6.1
muestra los resultados que se obtienen al analizar diferentes proyectos basándose en su
número de vulnerabilidades y su gravedad, sin tener en cuenta las dependencias de cada
uno. En algunos casos como Iceweasel, la puntuación varía enormemente. De ser consi-
derado seguro al tener en cuenta únicamente el bajo número de CVE, a ser considerado
de riesgo al constatar el bajo número de usuarios, ya que este dato parece indicar que no
hay mucha actividad relacionada con el proyecto y por tanto se debería descon�ar de las
pocas vulnerabilidades reportadas.

Proyecto OSS
DependencyScore

(sin usuarios)

DependencyScore

(considerando usuarios)

KeePass 10 0

tar 4.54 10

OpenSSL 3.32 3.32

Firebug 6.92 10

glibc 3.08 10

Apache 1.12 1.12

MySQL 4.48 4.48

Iceweasel 10 0

Firefox 0 0

Chrome 4.20 4.20

Explorer 0 0

Cuadro 6.1: Puntuaciones de Dependency scores obtenidas para diferentes proyectos OSS.

La tabla 6.2 muestra la puntuación �nal de diversos proyectos, esta vez teniendo en

11

https://github.com/cve-search/cve-search

6. Implementación y
evaluación

cuenta sus dependencias. En algunos casos, como OpenSSL, su puntuación �nal se debe
al propio proyecto, ya que sus dependencias se consideran seguras. Sin embargo, otros
como MySQL muestran que existe algún problema con alguna de las dependencias del
proyecto, pues su puntuación es menor a la que obtiene el proyecto por sí mismo.

Proyecto Final ND Media

ND

(sin

punt=0)

Media

(sin

punt=0)

Puntuación

Mínima

Dependencias

Puntuación

Proyecto

tar 10 8 10 0 10 10 10

glibc 10 4 10 0 10 10 10

KeePass 0 79 9.87 1 0 0 0

OpenSSL 3.32 17 10 0 10 10 3.32

MySQL 0 100 9.31 8 1.41 0 4.48

wireshark 5.32 126 10 0 10 10 5.32

Apache 0 131 9.4 9 1.25 0 1.12

Firefox 0 136 9.93 1 0 0 0

Chrome 0 151 9.89 2 1.66 0 4.20

Cuadro 6.2: Puntuaciones obtenidas para diferentes proyectos.

12

7 Conclusiones

El objetivo de este proyecto era investigar maneras de asesorar la �abilidad de un
proyecto open source teniendo en cuenta los componentes que utiliza: sus dependencias.
Para ese asesoramiento, se han analizado diferentes métricas y enfoques y �nalmente el
número de vulnerabilidades, CVE, y su gravedad, CVSS, han sido seleccionadas.

La herramienta diseñada provee una puntuación FinalScore, que varía entre 0 y 10,
basada en las puntuaciones DependencyScore obtenidas para cada dependencia y para el
proyecto en sí.

Los diferentes pesos asignados han sido ajustados tras analizar y comparar diferentes
proyectos OSS. Este trabajo ha demostrado la in�uencia que las dependencias tienen
sobre la �abilidad de un componente que las utiliza. Es posible detectar dependencias
problemáticas antes de que aparezca una vulnerabilidad grave que pueda afectar a otros
proyectos.

Es muy importante destacar la gran importancia que tiene entender cuáles pueden
ser las partes vulnerables de un proyecto de software para evitar brechas de seguridad.
Si las dependencias de un proyecto no se consideran, puede que aparezcan agujeros de
seguridad que no sean detectados.

13

Bibliografía

[1] The heartbleed bug. http://heartbleed.com/.

[2] Neuhaus S and Zimmermann T et al. Predicting vulnerable software components.
Computer and communications security, 2007.

[3] Debian Policy Manual. Declaring relationships between packages. https://www.

debian.org/doc/debian-policy/ch-relationships.html.

14

http://heartbleed.com/
https://www.debian.org/doc/debian-policy/ch-relationships.html
https://www.debian.org/doc/debian-policy/ch-relationships.html

Reputation management of an Open
Source Software system based on the
trustworthiness of its contributions

Cristina Garćıa Garćıa

13-May-2016

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Christian Damsgaard Jensen, building 322,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3351
Christian.Jensen@imm.dtu.dk
www.compute.dtu.dk

Polytechnic School of Engineering of Gijón
Information Techonlogy Department
Ángel Neira Álvarez, building 8,
33203 Gijón, Spain
Phone +34 985 18 24 81
neira@uniovi.es
www.di.uniovi.es

i

Contents

1 Abstract 1
1.1 Acknowledgments . 2

2 Introduction 3
2.1 Background . 3
2.2 Dependencies . 4

2.2.1 Dependency hell . 4
2.3 Trustworthiness . 6
2.4 Purpose . 7
2.5 Proposed solution . 7

2.5.1 Number of dependencies . 8
2.5.2 CVE . 8
2.5.3 CVSS . 8

2.6 Evaluation . 9
2.7 Project plan . 9

3 State of the art 10
3.1 Quality of software . 10

3.1.1 Cyclomatic Complexity . 10
3.1.2 Source Line of Code . 11
3.1.3 Bugs per line code . 11
3.1.4 Code coverage . 11
3.1.5 Mean Time Between Failures and Reliability 12

3.2 Trustworthiness . 12
3.3 CVE . 14

3.3.1 How are the CVE assigned? . 14
3.3.2 CVE-ID Syntax . 15

3.4 What is CVSS? . 15
3.4.1 Base Metrics . 16
3.4.2 Temporal Metrics . 17
3.4.3 Environmental Metrics . 17
3.4.4 How is CVSS calculated? . 18

3.5 Dependency graph . 18
3.6 Summary . 19

ii

Contents

4 Analysis 20
4.1 Trust management . 20

4.1.1 Approaches for trust management 20
4.2 Team . 20

4.2.1 Contribution models . 21
4.2.2 Governance models . 22
4.2.3 Metrics . 23

4.3 Code analysis . 23
4.4 Track record of the dependencies . 24
4.5 Summary . 26

5 Design 28
5.1 Metrics . 28

5.1.1 Security metrics . 28
5.2 Metrics for the assessment . 29
5.3 Number of dependencies . 29

5.3.1 Apt . 30
5.3.1.1 Apt-rdepends . 30
5.3.1.2 Types of dependencies . 30

5.3.2 Assessment . 31
5.4 CVE . 32
5.5 CVSS . 35
5.6 Score . 36

5.6.1 Dependency score . 37
5.6.1.1 Vulnerability sub score 38
5.6.1.2 Severity sub score . 41

5.6.2 Final score . 42

6 Implementation and evaluation 44
6.1 Contributions . 44

6.1.1 cve-search . 44
6.1.2 Black Duck Open Hub . 44
6.1.3 Linear regression . 45
6.1.4 Considerations . 45

6.2 Evaluation . 46
6.2.1 Evaluating the DependencyScore 46
6.2.2 Evaluating the FinalScore . 47

7 Conclusions 50
7.1 Future work . 51

iii

Contents

Appendix A Appendices 52
A.1 CVSS . 52

A.1.1 Base Score . 52
A.1.1.1 Calculations . 52
A.1.1.2 Metrics and Scores . 52

A.1.2 Temporal Metrics . 54
A.1.2.1 Calculations . 54
A.1.2.2 Metrics and Scores . 54

A.1.3 Environmental Metrics . 56
A.1.3.1 Calculations . 56
A.1.3.2 Metrics and Scores . 57

A.2 Source Code . 58
A.2.1 Directions . 58
A.2.2 Code . 59

iv

1 Abstract

Externally developed components and frameworks are used at large in the software in-
dustry. Some of these are developed by Open Source Software (OSS) projects, due to
numerous advantages such as costs savings. Developers can contribute to the projects
they like most and this usually translates into higher quality components.

The most important principle of Open Source, freedom, however, is associated with
risk. While the quality of OSS projects is predominantly high, events such as the Heart-
bleed vulnerability in Open SSL emphasises the importance of quality assurance for
externally developed components. These components and frameworks may themselves
be based on the efforts of other software development projects, so there is a degree of
uncertainty about the components required. Vulnerabilities in any of the dependencies
may affect the trustworthiness of the component, hence the importance of assessing the
quality of these components to avoid security flaws.

The purpose of this thesis is to investigate means to determine the quality, in particu-
lar with respect to security, of OSS projects. It deals with reputation management of an
OSS system with the aim of providing advice on its quality. This is done by examining
the externally developed components and frameworks developed by other OSS projects.
The thesis consists of:

1. Study different approaches for trust management.

2. Investigate ways to identify the dependencies among components in the OSS sys-
tem.

3. Define security metrics to measure the trustworthiness of the contributions.

4. Development and evaluation of a Proof-of-Concept prototype

1

1.1. Acknowledgments

1.1 Acknowledgments

This thesis would not have been possible without my supervisor, Dr. Christian Dams-
gaard Jensen (Technical University of Denmark). I am extremely grateful for all his
always valuable remarks and suggestions.

I would also like to express my gratitude to my home university advisor, professor
Ángel Neira Álvarez (Polytechnic School of Engineering of Gijón, Spain), for all his
support during this year abroad.

2

2 Introduction

2.1 Background

Software is a generic term for the collections of computer data and instructions. A
software library is a collection of data and programming code that may be used in
several software programs. Its code is organized for the purpose of being reused by
multiple programs. When a program invokes a library, it gains the functionality of that
library without having to implement it itself. There are two types of libraries:

• Static library: the code of the library is resolved at compile-time and it is in-
tegrated directly into the code of the program. Originally, there were only static
libraries. The main advantage is that the application can know whether all the
libraries needed are present and that they are the correct version. This avoids
dependency problems, known as dependency hell.

• Shared library: the code is referenced by programs at run-time and the ref-
erence is only made to the code that it uses in the shared library. The library
code is only integrated into the program if any of the library functions are called.
Dynamic-link library, or DLL, is Microsoft’s implementation of this concept.
Shared libraries reduce the amount of code included in the executable and allows
the library files to be shared among many applications.

The operating system also provides several libraries that are used in most applica-
tions: system libraries. One well-known example is the C library that supports indis-
pensable functions for a programmer such as basic input/output or file operations. The
most famous system library in Linux is the GNU C Library (glibc).

Libraries are a well known example of code reuse, but not the only one. Frameworks
are generally used by developers to reuse large pieces of software. Components can also
be reused to save time and resources, which has lead to Component-Based Development
(CBD). In CBD the system is structured as a collection of components. Another ex-
ample of software reuse are high-level programming languages, such as C or Java [1].
They provide a level of abstraction that helps developers to be more efficient than writing
the code with assembly languages. Another type of software are plugins and extensions,
that extends the functionality of another piece of software.

This code reuse results in dependency. Ryan Berg, Chief Security Officer at Son-
atype, states that between 80%-90% of the code of an application belongs to libraries

3

2.2. Dependencies

and other components. The application is not only the code written by the developer,
but all the dependencies that are needed. This has a huge impact when talking about
security. Traditionally, the focus was on what the developer has written. But nowadays,
that is just a small fraction of the overall application. If your project has a dependency,
which in turn depends on another component that has a vulnerability, it may affect also
your project. It is therefore essential to understand this dependencies when addressing
security issues.

2.2 Dependencies

In software engineering, the term “dependency” refers to packages that a program needs
to work, without regard to which type of library it is, static of shared. It might happen
that the project depends also on a specific version of the software. In those cases, the
package will usually also work with any other version more recent than the one specified.

Almost all software projects involve working with dependencies. Often, these will
themselves depend on other libraries or frameworks. This is known as transitive de-
pendency and the recursive pattern of transitive dependencies will result in a tree of
dependencies, as shown in figure 2.1 for the software library OpenSSL. The black lines
represent the depends relations and the blue lines, the pre-depends. The different types
of dependencies are explained in section 5.3.1.2.

This reuse of code is of greater utility in order to save time and expense, and also
contributes to build higher quality projects, as developers do not have to elaborate
everything themselves. For example, if encryption of the messages is required for an
application, instead of doing it herself, the developer will use an existing package that
will do the encryption. However, if not properly managed, lots of problems may arise.

2.2.1 Dependency hell

“Dependency hell” may appear because of incompatible version requirements for some
packages’ dependencies. It can take many forms and occur for many reasons and some
of the most common types of dependency hell are:

• Many dependencies. If a project depends on many libraries, they require not
only large amounts of disk space, but also a way to locate all the dependencies -
this can be avoid by having a repository.

• Long chains of dependencies. This problem arises when a package depends on
another one, and this one, in turn, depends on another package or library, and so
forth. If the dependencies have to be resolved manually, conflicts between versions
or circular dependencies may appear. For this reason, package managers are used.

4

2.2. Dependencies

Figure 2.1: Dependency tree of OpenSSL.

• Conflicting dependencies. This take places when two different versions of the
same package are required, but cannot be simultaneously installed.

• Circular dependencies. Occurs when a package x depends on another package
y, which in turn depends on package z that depends on a previous version of the
original package x. Therefore, the user must install all packages simultaneously.

Several solutions have been provided to deal with “Dependency hell”:

• Smart package management. Many Linux distributions have repository-based

5

2.3. Trustworthiness

package management systems to automatically resolve dependencies searching in
software repositories. This eliminate dependency hell for the packages that are in
those repositories.

• Version numbering. A standardised numbering system is used: packages use
a specific number, or major version, for each version and a subnumber, minor
version, for each revision: 1.2 (version 1, revision 2). The version only changes
when programs using the actual one will not be compatible anymore, while if still
can work with it, the revision is used.

• Private DLLS. It was Microsoft’s answer to DLL (Dynamic-Link Library) hell.
This arises when applications needed different versions of shared libraries, so when
one installed a different version that the existing one, another application would
stop working. Microsoft uses version-specific information or an empty .local file
to enforce the version of the DLL that is used by the application. This allows
shadowing of library versions by specific programs.

• Portable applications. Application that is self-contained. It does not require
any package to be installed: it is coded to have all necessary components included
or to keep them in its own directory.

Dependencies are part of the code of an application and therefore it is highly import-
ant to understand what are they and which are the problems that may arise in order to
assess the trustworthiness of a project.

2.3 Trustworthiness

The concept of trust is not a standard in the software industry. Depending on the
research, different attributes are considered to evaluate it, such as reliability, safety,
maintainability or usability. [2], [3], [4] all consider different scopes of trust and propose
different frameworks.

Many of the studies related to trustworthiness have focused on security as the most
relevant attribute, due to the enormous impact a vulnerability can have, putting very
sensitive data at risk. Nowadays, every sector relies on software, from public health
to banking, defense or telecommunications. Many governments and organizations are
aware of this problem and the trustworthiness of a system is now a main focus on
research.

As mentioned before, software projects often incorporates other components and
frameworks for their own use. Due to the enormous impact of OSS some of these com-
ponents may be open source. While generally this improves the quality and lower the
cost of the projects, it can also lead to many problems if not properly managed. Security
risks may result from this lack of scrutiny of the software dependencies.

6

2.5. Proposed solution

In 2014, a “catastrophic” vulnerability, due to the impact it had, was disclosed: the
Heartbleed bug [5]. OpenSSL is a very known cyptographic library, used for instance in
the Apache OSS project, one of the web servers most used worldwide, or by companies
like Facebook or Google. All of them were affected by this bug, which resulted in severe
vulnerabilities. Therefore, sensitive data like users’ password could have been obtained
from this “secure” websites due to Heartbleed. This shows the huge effect that a vul-
nerability in one library can have for all the other projects that rely on it. Therefore,
in this project, the trustworthiness of an OSS project will be addressed based on its
contributions.

There are different approaches to asses the quality of an external software:

• By evaluation of the track record of the developers of that component

• Through examination of the provenance of individual components

• Analysing the code looking for indicators of the quality of the software

This approaches are intertwined: usually good developers produce high quality soft-
ware, and vice versa.

A more thorough analysis of different metrics to quantify this quality of the code is
explained in chapter 3.

2.4 Purpose

The goal of this work is to investigate ways to asses the trustworthiness of an open source
project based on its dependencies. The purpose is to take into consideration the track
record of the constituting components to quantify how trustworthy they are considered
to be.

The majority of the research done has focused on the security of the system itself.
This project aims to assess the trustworthiness from another approach.

Prior to the assessment, a research into different quality metrics is done to find the
ones that are more relevant for evaluating the trustworthiness of a dependency. After,
different approaches for trust management are analysed to better understand all the
aspects that influence the security of a project.

2.5 Proposed solution

Several metrics have been analysed to determine the ones that are most relevant for
the assessment. The purpose is to infer the behaviour of the code based on its track
record, in order to be aware of untrustworthy software that may impact the security of

7

2.5. Proposed solution

our system.

There are three metrics that have been selected: the number of dependencies of
the project, the vulnerabilities related to the contributions and how severe they are.
However, there may be special cases in which these metrics do not provide enough
information to infer whether the component is trustworthy or not. In such situations,
the number of users of the project is used to estimate which option is more likely.

2.5.1 Number of dependencies

“A chain is only as strong as its weakest link”.

One main principle when talking about software is that no system can be ever proved
to be absolutely secure. Many vulnerabilities may remain unknown and others may be
introduced in future upgrades. These flaws may sometimes be used against the projects
that depends on that software. Therefore, it is fair to state that the trustworthiness of
a project will decrease with the number of dependencies.

2.5.2 CVE

One way to evaluate the pedigree of a software system is to look at the number of past
vulnerabilities that the project has had.

The CVE (Common Vulnerabilities and Exposures) is a standard for known security
issues. Each vulnerability receives a CVE Identifier. Therefore, if a large number of
CVEs are assigned to a dependency, it could mean that the project is less trustworthy
compared to another with fewer past vulnerabilities.

It may happen that one project has no CVEs reported or that the number is very
low, which could mean that the software is very well design and there are truly no
vulnerabilities or that they remain undiscovered because no one has revised thoroughly
the source code. To estimate which scenario is more likely, the number of users will
be evaluated.

2.5.3 CVSS

However, as not all vulnerabilities have the same impact, the CVSS (Common Vulnerab-
ility Scoring System) standard is commonly used to assign severity scores to vulnerabilit-
ies, based on several metrics. The scores range from 0 to 10, where 10 is the most severe.

A more detailed explanation about these standards, their importance and how they
are going to be used is given in chapter 3.

8

2.7. Project plan

2.6 Evaluation

Metrics aforementioned have been used in a Proof-of-Concept prototype in order to
assess the trustworthiness of a given project. It obtains the dependencies of an open
source project and evaluates the trustworthiness of each of them. Finally, an overall
rating is proposed.

2.7 Project plan

This thesis deals with the reputation management of an OSS system with the aim of
advice of its quality, by examining the externally developed components and frameworks
developed by other OSS projects.

It has been structured as following:

1. Study different approaches for trust management.

2. Investigate ways to identify the dependencies among components in the OSS sys-
tem.

3. Define security metrics to measure the trustworthiness of the contributions.

4. Development and evaluation of a Proof-of-Concept prototype.

Chapter 3 reviews the literature and what metrics have been proposed to evalu-
ate the quality and trustworthiness of a component. Chapter 4 addresses the different
approaches for trust management. Chapter 5 analyses the metrics selected for evaluat-
ing the trustworthiness of a dependency and how they impact the final score. Finally,
chapter 6 evaluates and compares the tool for different OSS projects.

9

3 State of the art

3.1 Quality of software

Although software engineering has experience high growth during the last decades, there
is still no standardized metrics to assess the quality of it. Metrics are of critical import-
ance, as Lord Kelvin stated: “If you can’t measure it you can’t improve it”.

A software metric provides information about some properties of a system. There
are numerous software metrics depending on which property of a software system is ana-
lyzed. Some examples regarding complexity, reliability, availability, security or main-
tainability are:

• Cyclomatic Complexity

• Source Line of Code

• Bugs per line of code

• Code coverage

• Mean Time Between Failures

3.1.1 Cyclomatic Complexity

A lot of research has been done in measuring the complexity of a software. One well-
known metric was developed by McCabe [6] and it is known as Cyclomatic Complexity.
It aims to indicate the complexity of a software based on the number of linearly inde-
pendents paths through the source code. For instance, if there was only one single IF
statement in the code, the complexity would be 2, as there would be two paths through
the program’s source code: one if the statement is True and another one if it is False.
Some of the advantages of this metric are:

• Easy to compute and apply.

• It gives the minimum number of test cases required, which can be useful for the
testing process.

• There are tools available for many different programming languages.

10

3.1. Quality of software

However, a program will be considered complex regarding only the number of de-
cisions to be made, without taking into considerations its size or the program’s data.
Furthermore, all the conditional structures are weighted the same, irrespective of their
complexity. Therefore, the value obtained may be misleading because there are a lot of
simple comparisons and decision structures.

More information about other complexity metrics can be found in [7].

3.1.2 Source Line of Code

Source Line of Code (SLOC) is generally used to estimate the programming productivity
or maintainability of the software. It can be an indicator of the amount of effort that
will be required to develop a program.

The main advantage is that is very easy to compute. However, it also has some
drawbacks:

• It can be ineffective when comparing programs written in different languages, as
some require many more lines of codes to perform the same task.

• It is not a good approach to measure the productivity of a developer. Skilled
developers may be able to write complex functions with few lines whereas an
inexperienced one would require more lengthy functions, but simpler, to perform
the same task. Furthermore, it may also have the adverse effect of increasing the
complexity of the code, as developers will be incentive to expand it.

3.1.3 Bugs per line code

A software bug is a mistake in a program that causes the system to fail or to behave
in unintended ways. The number of bugs per line code may indicate the quality of the
software.

But when considering this option, another question appears: how many bugs are
too many? According to [8], the average is about 15-50 errors per KLOC (1000 lines of
code), depending on the project size. The author states that it is possible to achieve
zero defects, but at a high price, which may not be suitable for commercial software.
For instance, this was achieved by NASA, but most projects cannot afford the cost of
this testing.

3.1.4 Code coverage

The purpose is to measure what percentage of code has been tested by a test suite. If
the program has been tested in more depth, the likelihood of containing bugs is lower.
To measure it, one or several coverage criteria are used:

• Basic coverage criteria: to determine if each function, statement, branch or
condition has been tested.

11

3.2. Trustworthiness

• Modified condition/decision coverage: it requires that each entry and exit
point are invoked and that each decision takes every possible outcome.

• Multiple condition coverage: it is necessary that all combinations of conditions
in each decision are tested.

• Parameter value coverage: if parameters are taken in a method, all the common
values for those parameters should be tested.

This measurement can help developers to look for those parts of the code that are
not usually accessed and confirm that the most important conditions have been tested.

3.1.5 Mean Time Between Failures and Reliability

Software reliability is the probability of the component working properly and it is meas-
ured in terms of Mean Time Between Failures (MTBF). A failure befalls when a
system does not succeed in meeting the desired objectives.

MTBF is the average time between failures of a repairable system. Once the MTBF
is known, it is possible to calculate the probability of a system to be working in normal
conditions. It is commonly used to measure hardware reliability but it may also apply
to software, if the failures considered are ’bugs’. Thus, the time in which the software is
working properly, without any new bug found, can be estimated. Furthermore, the time
required to fix the problems can be measured by the MTTR (Mean Time To Repair).

The reliability of a system is strongly associated with its trustworthiness, since it
increases when the number of bugs found declines. However, it has been argued that
the MTBF is not a good way to measure software mainly because there is no natural
degradation as in hardware [9]. Software fails because of design problems and not be-
cause the system wears out.

3.2 Trustworthiness

In this project, software trustworthiness is the property to be measured. A system is
said to be trustworthy if it performs as intended for a specific purpose without unwanted
side-effects or exploitable vulnerabilities [3]. To be able to improve the trustworthiness
of a system, first a way to measure it is needed.

However, measurement of software quality has been proved to be difficult to achieve.
Different techniques and analysis have been proposed to address different trustworthy
challenges. Based on them, many attributes have been considered to influence software
trustworthiness, as functionality, security, reliability, usability, maintainability... Section
3.1 briefly explained some of these measurements and approaches for evaluating some

12

3.2. Trustworthiness

of these properties, but the lack of a standard makes very difficult to address software
trustworthiness. As each organization has its own objectives, and metrics generally de-
pends on them, this standardization task is difficult to accomplish.

The U.S. National Institute of Standards and Technology (NIST) proposes a frame-
work to provide some quantification of software trustworthiness based on attributes
(safety, security, reliability..) and claims [3]. Yang et al. [2] aim to assess trustworthi-
ness based on different attributes. They have conducted a previous research to determine
which attributes were considered in different works and it can be seen that, in many of
these studies, the main attribute that was considered was security.

Most software have vulnerabilities and the major causes are: complexity and the
lack of motivation to create more secure software. The latter is primarily due to
economic motivations, but also because of what is called the “market for lemons”: a
metaphor [10] for a market with asymmetric information. In this scenario, a car dealer
has good (“plums”) and troublesome (“lemons”) cars on sale. The former ones are worth
$3,000 and the others, $1,000 . The vendors know which is which, but buyers do not.
Therefore, buyers will not pay more than $1,000 since they do not have as much inform-
ation about the quality of the product as to know if they are buying a plum or a lemon.
However, there are not good cars sold at that price, which results on only lemons to be
offered. The same applies in the software market. Buyers have no reason to trust the
vendors’ claims which leads to less investment in security. This effect could be minimized
with a good security metric, as it would provide buyers with the information they need
to distinguish the plums from the lemons.

Numerous efforts to assess security have been done by governments and organiza-
tions, as the Trusted Computer System Evaluation Criteria [11], Common Criteria for
Information Techonology Security Evaluation [12] or the Systems Security Engineering
Capability Maturity Model [13]. Even if the scope has been narrowed from software qual-
ity to only consider security, it has been proved to be a difficult task and there is still no
standard about this topic. For instance, there have been studies about how the software
complexity can indicate the number of vulnerabilities in a project, but this complexity
is also difficult to quantify.

There have been studies about how past vulnerabilities can be used to predict un-
discovered ones. Neuhaus et al. [14] have developed a tool to map past vulnerabilities
to components. The authors conducted a survey of the Mozilla vulnerability history
and the tool was able to predict which components were vulnerable based on past in-
cidents. They looked at correlations between the vulnerabilities and the function calls
or imports, in other words, other software that is needed in order to perform a service.
This approach is similar to the aim of this work. However, the main drawback is that
the study has focused only in the Mozilla project. The incidents were collected from the
database that is maintained for the project. The approach for this project, however, is

13

3.3. CVE

much broader: it is intended for all Open Source Projects. Thus, the metrics should be
collected from a general database that holds information about all projects.

This can be achieved by the use of Common Vulnerabilities and Exposures
(CVE).

3.3 CVE

CVE stands for “Common Vulnerabilities and Exposures” and is a system to provide
common names for publicly known cyber security vulnerabilities [15].

Prior to the creation of this system security tools maintained their own databases
with their own names for the vulnerabilities. Therefore, given two different databases it
was difficult to determine whether the codes referred to the same vulnerability.

CVE was created in 1999 to deal with this problems by providing standardized iden-
tifiers. The MITRE Corporation maintains the CVE identifiers and is sponsored by
US-CERT (United States Computer Emergency Readiness Team). The CVE is also
used as the basis for new services. The NVD (U.S. National Vulnerability Database)
provides enhanced information such as severity scores and impact ratings based on the
CVE list.

Each CVE contains the standard identifier number along with status indicator, a
description of the vulnerability and references.

3.3.1 How are the CVE assigned?

The CVE-ID reservation allows researches to include CVE-IDs in the initial public an-
nouncement of a vulnerability. This way, it is easier to track the vulnerabilities over
time and it is ensured that a CVE-ID number is instantly available to all users. The
process is as following:

1. There is a request for one CVE-ID number.

2. MITRE reserves and provides the CVE-ID to the requester.

3. The requester shares the CVE-ID with all the parties involved.

4. The requester makes the CVE-ID public and notifies MITRE

5. MITRE updates the CVE Web Site to provide the details about the CVE-ID.

14

3.4. What is CVSS?

In case the issue was never made public the CVE-ID will be deleted.

The CNAs or CVE Numbering Authorities are major software vendor, like Apple,
Cisco or IBM. They function as intermediaries between a researcher and the affected
vendor, without directly involving MITRE. For this purpose, MITRE provides a CNA
with a pool of CVE-ID to be distributed to researches and vendors.

The CNAs are responsible for announcing the new CVE-ID, which allows MITRE
to update the information in the Web site.

3.3.2 CVE-ID Syntax

CVE Identifiers (also referred to as “CVE names”, “CVE numbers”, “CVE-IDs” and
“CVEs”) are unique, common identifiers for publicly known cyber security vulnerabilit-
ies.

The original CVE-ID syntax includes:

CVE prefix + Year + 4 Arbitrary Digits

However, this syntax only supports a maximum of 9,999 unique identifiers per year.
With the increase of vulnerability reports, this was not sufficient and a new syntax was
implemented in 2014. The fixed four digits can expand with arbitrary digits only when
needed in a calendar year. Therefore no changes are needed to previously assigned iden-
tifiers. For instance, CVE-YYYY-NNNN and if needed, CVE-YYYY-NNNNN and so
on.

However, knowing the number of vulnerabilities is not enough, as they are not the
same. Some may allow an attacker to execute code on the server, others may expose
very sensitive data whereas in other cases, the vulnerability may only have very limited
effect on the system.

CVSS is used to prioritize vulnerabilities by scoring them using several metrics.

3.4 What is CVSS?

The Common Vulnerability Scoring System (CVSS) is a standard for assessing the sever-
ity of software vulnerabilities. It was the outcome of a research by the National Infra-
structure Advisory Council (NIAC) in 2003 to design an universal standard to prioritize
vulnerability and calculating its severity. It has been entrusted to the Forum of In-
cident Response and Security Teams (FIRST) since 2005. The current version of
CVSS, version 3, was released in June 2015.

15

3.4. What is CVSS?

The CVSS base score has been adopted as a measurement of the severity of vulner-
abilities by many organizations, including the National Vulnerability Database (NVD),
the Open Source Vulnerability Database (OSVDB), the CERT Coordination Center or
companies like Cisco.

The severity scores are calculated based on three types of metrics: base, temporal
and environmental, each consisting of a set of metrics (figure 3.1).

Figure 3.1: Metric Groups (image from [16])

• Base Metrics are intended to represent the characteristics of a vulnerability that
remain unchanged. It is composed of Exploitability metrics, representing the
vulnerable component, and Impact metrics, related to the consequences of the
exploit.

• Temporal Metrics reflect the characteristics that may evolve over time but not
across environments.

• Environmental Metrics provide a context for the vulnerability.

All the different metrics used to calculate the CVSS scores can be consulted in the
appendices: A.1.

3.4.1 Base Metrics

The Base Score is itself composed of two: Exploitability and Impact sub scores. One
important property considered in the third version of CVSS is the Scope of the vulner-
ability.

The Exploitability Metrics refer to the attributes of the vulnerable component.
They reflect the properties of the vulnerability that lead to a successful attack, such as:

16

3.4. What is CVSS?

• How the vulnerability exploitation is possible: for instance, if he attacker needs to
have physical access to the network or it is possible to exploit it remotely (AV)

• If there are special conditions which requires preparation in advance for the attack
(AC)

• The level of privileges that an attacker must have before the attack (PR)

• If the attack requires a user to participate in order to compromise the vulnerable
component (UI)

The Scope reflects if the exploited vulnerability can affect resources beyond its priv-
ileges. The Base Score is then greater when a scope change has occured.

The Impact Metrics reflect the attributes of the impacted component. Depending
on whether there has been a changed of scope, these metrics show the Confidentiality,
Integrity and Availability impact either to the vulnerable component or the impacted
one.

3.4.2 Temporal Metrics

The Temporal Metrics reflects the current state of the:

• Exploit Code Maturity: the vulnerability score increases with the development
of the exploit code

• Remedation Level: it reflects whether there is a solution available and whter it
is temporary or an official fix

• Report Confidence: it measures the degree of knowledge about the vulnerability.

3.4.3 Environmental Metrics

The Environmental Metrics are designed to customize the CVSS score depending on
the importance of the affected component to the user’s organization.

The Modified Base Impact Metrics modify the score by assigning different
weights to Confidentiality, Integrity and Availability impact metrics. Depending on
the organization, three requirements can be set to High, Medium or Low:

• Confidentiality Requirement (CR)

• Integrity Requirement (IR)

• Availability Requirement (AR)

These three requirements allow to modify the Base Metrics to adjust them to the
user’s environment.

17

3.5. Dependency graph

3.4.4 How is CVSS calculated?

Scores range from 0 to 10, being 10 the most severe. A vulnerability is considered to
have low impact if its base score ranges from 0 to 3.9, medium between 4 and 6.9, high
from 7 to 8.9 and critical if greater than that.

The metrics introduced in the introduction are assigned different scores depending
on the kind of vulnerability and its impact. It is important to highlight that the most
used score and the severity ranges are based only in the Base Metrics. However, all the
three scores can be consulted in the web page of the National Vulnerability Database [17].

The summary of all the different metrics used to calculate the CVSS scores can be
consulted in the appendices: A.1. The formulas to calculate the 3 different scores, Base
Score, Impact and Exploitability Subscores, are also explained.

3.5 Dependency graph

Another approach for vulnerabilities prediction is to use dependency graphs. Two ex-
amples of this approach can be seen at [18] and [19].

Neuhaus et al. [18] present a vulnerability prediction model and conduct an experi-
ment on Firefox. The dependency graphs that they consider are based on the relationship
among software elements, such as classes, functions or variables. A static code analyzer
is used to gather this information and the vulnerability data is obtained from the Vul-
nerability Database for Firefox.

Nguyen and Tran [19] propose a framework and metrics to identify the most critical
elements at early development stages. They based their evaluation on the dependen-
cies and the flow of information among the components. The authors argue that these
indicators can reduce the maintenance cost as they allow developers to make early de-
cisions about the component. Finally the propose a framework for security evaluation
but without an empirical evaluation.

Both studies demonstrate the relation between the track record of the components
and the trustworthiness of the project itself. They also highlight the importance of con-
sidering all the elements that conform the software. In the former, past vulnerabilities
have been used as a metric to successfully predict which components were vulnerable on
a particular case. In the latter, the analysis has been focused on the behaviour of the
internal components. The indicators obtained from the dependencies resulted in early
detection of problems and allowed them to identify the most problematic components.

18

3.6. Summary

3.6 Summary

“Trustworthiness” is a broad concept and there are numerous parameters that can
provide information about it. However, some of them may be misleading: for instance,
the SLOC. In order to be a good indicator, other metrics such as the skill of the pro-
grammer or the language used should be considered along with the SLOC. But then,
the metric is no longer easy to compute, which was its main advantage.

Other properties may be difficult to measure, as the complexity of the code, whereas
some metrics are not publicly available for all the projects, like the number of bugs per
line. Other metrics, such as code coverage, may be very relevant for the developers of
the project but not so important for external assessment.

To be able to assess about any OSS project, the metrics should be easy to compute,
as dozens of dependencies may be analyzed for a single project. The information should
also be publicly available for all OSS projects. For this reasons, the number of vulnerab-
ilities reported (CVE) and their severity (CVSS) have been selected for the assessment.
They are both wide used standards, which makes them especially convenient. They
allow to make fair comparisons between very different projects while providing good
indicators about the quality of the software.

19

4 Analysis

4.1 Trust management

Open Source Software (OSS) refers to software that is developed through public col-
laboration and that its source code is available for use or modification. This unique
development model has some implications that should be discussed.

4.1.1 Approaches for trust management

For the evaluation of the trustworthiness of an OSS project, several approaches can be
taken. For instance, the community-based model differs from other models employed for
companies to develop their software. In the former case, all people may be able to con-
tribute to the source code of the project, which implies more risk than if only people in
the company can develop it. This impacts the trustworthiness of the project and should
be taken into consideration. Yet an analysis of the quality, in terms of trustworthiness,
of the source code of the project as well as all an investigation of the components that
it depends on has a great significance. However, all these approaches are intertwined:
developers’ skills are judge by the quality of software that they produced, and if the
pedigree of a project is good, it is mainly because good developers were involved in the
development. All these approaches lead to a great number of different parameters that
may be adopted for the assessment.

4.2 Team

When assessing about an open source project, the experience and reputation of the de-
velopers working on it is significant. Also, the organization of the team can influence
the trustworthiness of the project: it is not the same that the development is open to
everyone to contribute, than if only few well-known people can work on it.

At an earlier time, an open source project was community managed by definition.
This concept of community-based development has proven to be useful as people can
work on what they are better at and more interested in, and this generally results in
high quality components [20]. However this ’self-organized’ model also has its risks. The
European Project RISCOSS grapples with risk management in OSS adoption, to provide

20

4.2. Team

tools and methods for integrating community-based OSS development in companies.[21]

Under this principle of open development, for each project a different strategy can
be used in order to:

• Explain to contributors how they should work in the project: what is expected
from them as well as which protections are at their disposal.

• Describe the quality control processes.

The different strategies lead to different governance models.

The governance models state whether a project is open to participation. But it is also
important to define the degree of openness for contribution, hence contribution models
are used.

4.2.1 Contribution models

Eric Raymond, in [22], used the metaphor of “The Cathedral and the Bazaar” to
contrast the open and closed source development approach.

• Cathedral: more similar to the traditional model. The source code is published
with each software release, and a group of developers will work on debugging
between these releases.

• Bazaar: Linux’s model. It aims to maximize the number of people debugging the
code by developing the code in view of the public.

Releases are made much more often in the Baazar view than in the Cathedral’s
model, mainly because the code is only available to few developers in the second case.
It usually takes more than six months to release a new version, whereas in the former
model, bugs are found very quickly because of the large amount of co-developers looking
through the code in every release.

One of the main advantages of the Bazaar model is precisely these early releases.
The mean time between finding a bug and fixing it is much lower than in the Cathedral
model, where it may take several months before the new version with the fixes is available.
However, the fact that the code is available for public scrutiny does not imply that this
revision is done. For popular projects, the community is usually very active in reviewing
the code. But for others, maybe not so many people is paying attention to it. This
leads to the problem that this work tries to deal with: reviewing the source code of the
project without considering the security issues of other components that are also used,
may lead to vulnerability risks. Nevertheless, this open source approach allows the user
is to review the code if she is concern about the security issues that may exist.

21

4.2. Team

4.2.2 Governance models

A governance model describes how decisions are taken in the project and the rules for
users to participate in it.

Figure 4.1: Contribution and Governance Models (image from [23]).

Governance models range from benevolent dictatorship to meritocracy, depending on
the openness to participatory governance. The membership structure also depends on
how the decision-making process is. Some examples of real Open Source Projects and
which models they follow can be seen in figure 4.1. The two extremes that can be found
are:

• Benevolent dictatorship. The project founders keep the control of the project
and they are responsible of the final decisions.

• Meritocracy. The community is responsible for all decisions. However, contrib-
utors who have benefited more to the project have greater decision-making power.
This governance model, in which people gain responsibility thought contribution, is
called the meritocratic model and helps new individuals to engage with the project.

When evaluation the trustworthiness of a project, the governance models are closely
related to it. For instance, it can be inferred beforehand that a project is less risky if
it maintains tighter control over decision making process. Having more control of the
people who are involved in decision-making also means that the risk is reduced, since
it is assumed that these members’ track records endorse them to undertake important
decisions. However, as the community grows, they may need to take decisions in areas
in which they are less experts, so this should also be taken into consideration.

22

4.3. Code analysis

4.2.3 Metrics

The evaluation of the trustworthiness of the dependencies could be calculated based
in these models. Therefore, if its contribution model was like the “Bazaar” type, the
trustworthiness of the project should be higher than if it was similar to the “Cathedral”
style. In the former model, the code is available so many more developers can scrutinize
it looking for vulnerabilities. Furthermore, releases are made very ofter, which is also
positive from a trustworthiness point of view. Even if there is one vulnerability in the
component, the probability that it is found and patched in a short period of time is
higher than in the latter case, where new releases may take months to be available.

The governance model may have less impact on trustworthiness than the contribu-
tion one. It would seem that tighter control over the decisions is a bit more reliable,
but in a meritocratic model, only people that have proved to benefit the project are in
charge of the decision-making process, which also guarantees the quality.

But the trustworthiness could also be based on the skill of the programmers that
developed the dependency. This “skill” could be assigned based on the quality of their
previous projects and could be useful to predict how the current component would
behave.

4.3 Code analysis

Analyzing the source code looking for bugs and vulnerabilities has been a major con-
cern since the beginning of software. Chapter 3 reviewed some metrics that have been
used for the evaluation, but many more are available depending on which aspects the
developers want to measure.

Many tools have been developed to find security flaws. They are called Source Code
Analysis Tools or Static Analysis Tools. They review the source code to detect security
vulnerabilities. There is also another type: the dynamic tools, which require the code
to be running. Some Open Source tools are [24]:

• VisualCodeGrepper: this tool scans and describes the issues found for differ-
ent languages: C++, C#, VB, PHP and Java. The disadvantage: the list of
vulnerabilities used for the scan cannot be modified.

• YASCA: it is an aggregated tool from many other popular static analysis tools and
it analyzes, mainly, Java and C/C++. The main drawback is that it was design to
deal mainly with SQL injections and XSS (Cross-Site Scripting), so other severe
issues may not be found.

• OWASP LAPSE+: it is an Eclipse plugin that detects vulnerability in Java
applications.

23

4.4. Track record of the dependencies

• FindBugs: it can be also installed as a plugin for Eclipse and it can find bugs as
SQL injection or XSS, among others.

• Flawfinder: a tool to analyze security issues in C, sorted by risk level. The
disadvantage: the number of false positives.

• PMD: developed for Java, it scan the source code looking for code problems, which
do not need to be directly related to security issues.

• RATS: Rough Auditing Tool for Security. It can scan C, C++, Perl, PHP and Py-
thon languages and it uses text-based pattern matching to look for security issues.
It is a very quick and efficient tool and it can be used for numerous languages.

These tools could be used in the project to find its vulnerabilities and give a score
based on them. However, it is not enough to consider only that component, because vul-
nerabilities in any of the dependencies may affect the trustworthiness of that software
project. A better approach would be to use one of these tools on all the dependencies
and obtain their trustworthiness based on the number of bugs found. The results could
be combined with the number of lines to find out the number of bugs per line code and
compare them to normal values, as explained in section 3.1.3, to estimate the quality of
the different dependencies.

4.4 Track record of the dependencies

The other approach that can be taken to evaluate the risk of an OSS project is based
on the track record of the components of the software, to predict which components are
vulnerable. In contrast with the previous section, there has not been so much research
in this area.

The quality of the dependencies could be based on the problems that it has faced
in the past. The evolution of the past vulnerabilities could give an insight about the
trustworthiness of the software. For instance, if the design of the project was good, the
number of security flaws founded will decrease for the last years. The trend suggests
that the component is improving over time and thus, only few vulnerabilities remain
undiscovered. However, if the project leads to more serious problems each year, one
cannot be sure about how many bugs could be still existing in the code.

Conversely, the lack of errors could be due to a poor revision of the code. The
principle of OSS is to make the code publicly available so that “many eyes” can look
for bugs, but this does not assure that the revision is actually done. So there should
be a way to draw a distinction between those projects that do not have vulnerabilities
because they are very good and those which are not being revised.

24

4.4. Track record of the dependencies

But, is there any way to estimate if the project is being reviewed? One may think
of looking at the number of downloads of the project. It is likely that those which are
very popular among users have drawn the attention of the community, and this number
of downloads could be closely related to it. However, this number is not available for
all the projects and it could also be misleading: for instance, a user may download one
software but never really use it. Or it could obtain the software because someone has
given it to her via USB or CD and hence this would not be reflected in the metric. It
is also a problem for companies, as they can only know how many people have a license
for the software but not how many people are actually using it.

Black Duck Open Hub (formerly Ohloh) 1 could be another source of information.
The purpose of Open HUB is to compare OSS projects based on their popularity and the
activity related to them among the development community. Therefore, some informa-
tion provided by this site may be useful to estimate the activity of the community for
OSS projects. For instance, figure 4.2 shows the information retrieved from OpenHub
for Firefox.

Figure 4.2: Firefox information from OpenHub.

The number of users on Open Hub or the number of current contributors could be
used as metrics of the endorsement of the project. However, in some cases it is possible
that no vulnerabilities have been reported and that the project has not many users, but
this does not mean that the component is risky. It is also possible that the software
project is not even in the Open Hub database. One example of this could be small
libraries that big projects include: it may be possible that there is no vulnerability to be
found, so this should be taken into consideration. For instance, gsfonts is a dependency
of Firefox with no vulnerabilities reported and with zero users on Open Hub (figure 4.3).
However, this does not mean that the library is untrustworthy: it may be, in fact, that
there are no bugs in the code. A correlation between all the metrics could make it clearer
whether a project should be considered trustworthy.

1Black Duck Open Hub: https://www.openhub.net/

25

https://www.openhub.net/

4.5. Summary

Figure 4.3: gsfonts information from OpenHub.

4.5 Summary

Different approaches to assess about the security of an OSS project have been addressed.
Both the contributors and the software components of a project impact in the trustwor-
thiness of it.

It is undeniable that the team that develops a component has a great impact on
its trustworthiness. Furthermore, the way in which the software has been organized
could also influence the final result. However, these aspects are difficult to measure and
need to be based on the quality of the software. A way to decide which projects are
trustworthy and which ones are not has to be defined to be able to “score” the developers.

Analysing the source code looking for vulnerabilities could also serve as an indicator.
However, the main drawback is that the tools used cannot find all the vulnerabilities
in the project. Some of them could find bugs like SQL injections or XSS, but many
others may remain undiscovered. It is a good practice to avoid common and well-known
errors, but it is not so useful to predict how the software is going to behave in the future.
Predictions about future vulnerabilities cannot be made based on the number of bugs
found by these tools.

Finally, how to predict the trustworthiness of the project based on past information
has been addressed. The main advantage of this approach compared to analysing the
source code is that all the vulnerabilities are considered, whereas in the former case,
some type of bugs may not be found. Also, the information that is considered for the
analysis is available for any Open Source Project, which is highly important for a fair
comparison. The past vulnerabilities can be found by using the CVE, as explained in 3.3.

Each vulnerability receives a CVE (Common Vulnerabilities and Exposures) Identi-
fier in order to provide common names for known security issues. As not all vulnerab-
ilities are the same, CVSS (Common Vulnerability Scoring System) standard is used to
assign severity scores to vulnerabilities to assess their impact. The scores range from 0

26

4.5. Summary

to 10, being 10 the most severe.

If a large number of CVEs are assigned to a dependency, it could mean that the
project is less trustworthy compared to another one with fewer past vulnerabilities.
However, having a large number of them does not always imply that the project is less
secure because more bugs are found [25]. It can also indicate, for instance, that the
library or packet is very popular, and therefore a lot of people look through the code.
This data can be correlated with the one obtained from the Open Hub website to decide
which hypothesis is more probable in general.

27

5 Design

A tool has been developed to assess the trustworthiness of a given project. The aim of
this work is to provide a score, which will range from 0 to 10, being 0 very untrustworthy
and 10 the maximum score, based on information of its contributions. As security metrics
are going to be used, it is important to understand how they work and what do they
reflect.

5.1 Metrics

“Is trustworthiness of software measurable? The determination of trustworthiness of
software is difficult. There may be different quantifiable representations of trustworthi-
ness”.

In this way the paper Toward a Preliminary Framework for Assessing the Trustwor-
thiness of Software [3] starts. A “metric” is a system of related measures (compared
against a standard) enabling quantification of some characteristic. When talking about
security, the purpose is to quantify the degree of safety.

There is no standardized way to measure the security of software, even if many at-
tempts have been done, as explained in chapter 3. For a metric to be considered good,
it is necessary that they satisfy a specific business requirement. This leads to the
different quantifiable representations abovementioned: different metrics are to be con-
sidered depending on the desired outcome, as the requirements for specifying them are
usually drafted from the business needs.

5.1.1 Security metrics

Good metrics should be quantitative, objective, inexpensive, obtainable and repeatable,
among other characteristics, and this applies also to security metrics [26].

When talking about security, it is scarcely possible not to mention vulnerabilities.
A security vulnerability is a “weakness in a product that could allow an attacker to
compromise the integrity, availability, or confidentiality of that product” [27]. A bug is
a mistake that a developer can make when developing the software and that causes the
system to fail, but that is not necessary a vulnerability. A fault is considered to be a
vulnerability when it allows an attacker to abuse the system. However, vulnerabilities

28

5.3. Number of dependencies

are only dangerous when they have one or more exploits. Exploits are pieces of soft-
ware, data or commands that take advantage of a vulnerability to change the normal
behaviour of the system.

When analysing vulnerability data, some principles should be bear in mind [25]:

• Having vulnerabilities is normal.
Therefore, it may be more problematic to not have vulnerabilities reported rather
than the other way, as it could mean that there are no efforts being made in finding
and fixing these bugs.

• “More vulnerabilities” does not always mean “less secure”
An increase of the number of vulnerabilities may simple be due to an increase of
the community for discovering them or that the recording practices have improved.
Therefore it cannot be assumed that the security is declining.

• Design-level flaws are not usually tracked
Most vulnerabilities reported are related to coding mistakes, whereas design vul-
nerabilities are common but not so tracked.

• Security is negatively defined
The security of a system is defined according to what an attacker should not be
able to do regarding Confidentiality, Integrity and Availability.

5.2 Metrics for the assessment

All this principles will be considered when analysing the metrics. The ones that influence
this assessment are:

• The number of dependencies.

• The number of vulnerabilities reported (CVE). This metric could also be correlated
with the number of users, based on the information provided by OpenHub, in those
cases were the number of CVEs is very low.

• The severity of the mentioned vulnerabilities (CVSS)

Therefore, other metrics and approaches that have been discussed previously in
chapter 3 are out of the scope of the project. However, the solution provided here
could be expanded in future works by taking into consideration other relevant metrics.

5.3 Number of dependencies

The first parameter to take into consideration is the number of dependencies that the
project has. First of all, a way to obtain the dependencies of the project is needed. For

29

5.3. Number of dependencies

the developed tool, Ubuntu and Debian distributions have been considered. In both of
them the apt package manager can be used for this purpose.

5.3.1 Apt

The Advanced Package Tool (APT) is a free software that handles the installation of
packages. The user just needs to indicate the name of the software to install and apt
will automatically install it and all its dependencies, which helps to avoid problems as
dependency hell and eases the installation process for users.

Each package has meta-data declaring the file’s dependencies. This meta-data is
different depending on the package type. For deb, there are seven different control fields:
Depends, Pre-Depends, Recommends, Suggests, Enhances, Breaks and Conflicts, while
for rpm there are four: Provides, Requires, Conflicts and Obsoletes.

5.3.1.1 Apt-rdepends

Apt-rdepends is a tool that recursively check dependencies of a package until the entire
dependency tree is spread out. It searches through the APT cache to find what packages
a given one is dependent on, plus what packages these ones are also dependent on. It
can be installed very easily by running the command:

sudo apt-get install apt-rdepends

5.3.1.2 Types of dependencies

Packages can have several relationships to others. In the case of Ubuntu and Debian,
they both use deb packages while other distributions as Fedora or Red Hat works with
rpm files.

The possible values for the dependency fields are, for deb packages: [28]

• Depends: this is an absolute dependency: the package needs it in order to be
configured.

• Pre-Depends: this field is similar to Depends, but forces the installation of the
dependency even before starting the installation of the desired software.

• Recommends: these packages have strong dependency with the one given, but
not absolute: the package can still work without them but it would be unusual.

• Suggests: packages with dependency field as “Suggest” can be more useful and
enhance the performance of the package, but they are not required for the proper
functioning of it.

• Enhances: similar to “Suggest”, but in this case the field is used to indicate
packages that can improve the functionality of the given project.

30

5.3. Number of dependencies

• Conflicts: the packages cannot be installed in the system simultaneously.

• Breaks: the package cannot be unpacked unless the broken one is deconfigured
first. The difference with Conflicts is that, in this case, both packages can be
unpacked at the same time, but not configured.

These control fields, except for Enhances and Breaks, appear in the depending pack-
age’s control file. Enhances is present in the recommending package’s control file, and
Conflicts in the version of depended-on package which causes the named package to
break.

For rpm files: [29]

• Provides: libraries or services that the package provides.

• Requires: the dependencies of the given package (libraries or other packages that
it requires on in order to run correctly). This is a strong dependency, but in addi-
tion there are four weak dependencies. These are used by dependency solvers but
are not requirements for the package to run: Recommends, Supplements, Suggests
and Enhances.

• Conflicts: this package cannot be installed if the other ones are.

• Obsoletes: packages that are superseded by the actual one (it is their update).

For this project, Ubuntu distribution has been used. By default, apt-rdepends only
shows the Depends and Pre-Depends types, which are the required packages for the in-
stallation.

For instance, the dependencies of OpenSSL can be shown by simply running the
command (figure 5.1):

apt-rdepends openssl

5.3.2 Assessment

One main principle when talking about software is that no system can be never proved
to be absolutely secure. Many vulnerabilities may remain unknown and others may be
introduced in future upgrades.

Another aspect to consider is the misuse of these contributions. One project may
work properly but not under the conditions of our project. It may be difficult for the
developers to understand perfectly the behaviour of all the projects they are using for
their code, and therefore some misconfiguration errors can lead to vulnerabilities that
were out of the scope of their dependencies.

31

5.4. CVE

Figure 5.1: Dependencies of OpenSSL

Therefore, it is fair to state that the trustworthiness of a project will decrease with
the number of dependencies. However, this parameter should not be looked at in isola-
tion, as the quality of the contributions is not the same. Thus, more weight should be
given to other parameters more relevant for security issues.

5.4 CVE

CVEs are going to be used to address the trustworthiness of the different contributions.

If only the number of CVE identifiers was considered, this would lead to some unfair
comparisons. A package or library would be considered more trustworthy just because
less vulnerabilities were reported. However, one possible explanation of having less
CVEs could be that the software is less used. A popular library could be more secure
than other even though more CVE numbers were assigned for it, just because more eyes
are scrutinizing the code looking for bugs.

32

5.4. CVE

Therefore, another approach can be taken. CVE syntax allows separating the vul-
nerabilities issues by years. By taking into consideration the year along with the number
of CVEs, the evolution of the project can be seen.

Figure 5.2: Evolution of the number of vulnerabilities reported for a) Internet Explorer
b) Firefox Mozilla c) Google Chrome.

For instance, in figure 5.2 three of the most known web browsers have been com-
pared. Only one of this projects is considered to be Open Source (Mozilla Firefox), 1

but this comparison can be useful to understand better how to analyze the CVEs.

Internet Explorer was started in the year 1994 whereas the CVE standard was cre-
ated in 1999. Therefore, it can only be seen the evolution of the beginning of the project
for Mozilla Firefox and Google Chrome. In those 2 cases, there is a increasing on the
number of vulnerabilities in the first years. This is an example of what was above men-
tioned: the increasing number of vulnerabilities does not seem to be related to a decrease
of the quality of the software but to an increase of its popularity. As more people start
using the new browsers, more effort is put on analyzing the code searching for possible
vulnerabilities.

Other of the premises was that the increase of number of vulnerabilities could be
related to the improvement of the recordings. This may be one of the reasons for the

1Google Chrome is not an Open Source Project. However, it is based in Chromium, which it is.

33

5.4. CVE

increasing number of vulnerabilities in the first years for the Internet Explorer case. Also
for the following browsers, the amount of vulnerabilities discovered per year are much
higher than the ones for Internet Explorer in its beginning.

In this comparison, Google Chrome seems to be more trustworthy as is the only one
that has a lowering tendency, even if it is the one that collect more vulnerabilities in a
year (2011). Firefox has not any high peak like the former browser, but its tendency
remains more constant through the years. The worst case is Internet Explorer since the
number of vulnerabilities has been increasing considerably since 2012.

Figure 5.3: Evolution of the number of vulnerabilities reported for OpenSSL.

It may be a bit striking the huge number of vulnerabilities reported each year for
all these projects, but when studying the graphs we should take into consideration that
they are huge software projects. Therefore it is normal that the number of vulnerabilities
found is large. When analysing it for other projects, as figure 5.3 shows for OpenSSL,
the number of vulnerabilities decreases considerably. This is also interesting from a
trustworthiness point of view. Large projects tend to be more vulnerable:

• Having more lines of code increases the probability of having bugs.

• It may be more tempting for attackers, as more users will be affected because of
it.

This example was meant to illustrate that no fair conclusions can be made only based
in the number of vulnerabilities. A better indicator is the trend.

34

5.5. CVSS

5.5 CVSS

As it has been shown, the CVEs can serve as a basis for calculating the trustworthiness,
but something else is needed. Once the the number of CVEs as well as the trends of
vulnerabilities reported have been analysed, the severity of each of them should be con-
sidered.

Continuing with the same example above, Google Chrome, Mozilla Firefox and In-
ternet Explorer have been analysed.

Figure 5.4: Number of vulnerabilities per year of Google Chrome classified by their
CVSS score.

Figure 5.4 represents the number of vulnerabilities of Google Chrome per year. For
each period of time, the vulnerabilities have been separated depending on their CVSS.
Therefore, scores between 0-3.9 are considered to be of low impact (green); between
4.0-6.9, the impact is medium (yellow), high from 7.0 to 8.9 (orange) and finally critical
in the range 9.0-10 (red).

It can be noticed that the severity of the vulnerabilities also follow the lowering tend-
ency of figure 5.2, notably for the critical ones, which shows that the software is getting
better through the years.

In this case, it does not seem that the decrease is due to less revision of the project,
as a large number of vulnerabilities are still discovered every year. Therefore, it could
be inferred that the reason is that Google Chrome is a good project in terms of security.

35

5.6. Score

Figure 5.5: Number of vulnerabilities per year of Mozilla Firefox classified by their CVSS
score.

When the number of CVE reported was compared in figure 5.2, Mozilla Firefox ap-
peared to have a stabilized pattern. However, in figure 5.5 it is noticeable that the
number of critical vulnerabilities has declined since year 2012. Even if the total number
of CVE per year is roughly constant, the average impact is lower. This can be also a
good sign, as the project is still being constantly inspected but the vulnerabilities found
are not so severe.

Finally, Internet Explorer’s case, figure 5.6. Unlike Chrome and Firefox, the severity
of the vulnerabilities has not diminished, but an increase over the last years can be de-
tected. This is exactly the behaviour to avoid in the dependencies of the project. There
is a high probability that a lot of vulnerabilities can still be exploited and therefore, they
could be used against the project.

5.6 Score

The final stage of this project is to define how the different metrics are combined to
provide a score. As outlined before, several different metrics have to be considered: the
number of dependencies, the number of vulnerabilities and its severity. In some cases,
the number of users is used in deciding whether a project is very good design or it is
not being revised.

Before going into details, it is important to recapitulate some major points:

36

5.6. Score

Figure 5.6: Number of vulnerabilities per year of Internet Explorer classified by their
CVSS score.

• The aim of this study is to asses the trustworthiness of a project based on its con-
tributions. A score is given to the project based on the quality of its dependencies
as well as the quality of the project itself. This rating is based on the CVE and
CVSS reported for all the components.

• As the severity of the vulnerabilities is being considered, those which are critical
and high will have more weight for the final score. The reason for this is to highlight
vulnerabilities that represent a higher risk for the project.

A function to assess the trustworthiness of a particular dependency should be defined.
Before start, it is important to mention that no difference is made between dependencies
and transitive dependencies: all of them are treated the same way. The metric obtained
should also be aggregated with the ones from other dependencies to finally be able to
infer the trustworthiness the whole project. For each dependency, as well as for the
project itself, a score will be given based on the CVE and CVSS related to it. The final
rating of the project will be based on these individual scores.

5.6.1 Dependency score

Prior to calculate a final score for trustworthiness, the dependencies are analysed indi-
vidually as well as the project itself. The dependency score will be calculated for each of
the components and it will reflect the risk of that particular element. It is based only
in the CVEs and CVSS reported for it: whether it has or not dependencies itself will

37

5.6. Score

not be considered here.

This score is composed of other two: the vulnerability and the severity sub scores.

DependencyScore = 0.2× V ulnerabilityScore+ 0.8× SeverityScore

The Vulnerability sub score is based on the CVEs reported and the Severity sub
score, in the CVSS related to them. As the previous analysis on CVE and CVSS, this
last one provides more reliable information, so its weight is bigger.

Note: these scores are not indicating the trustworthiness of the project but its risk.
Opposite to the final score, for these ones a high rating means that the component is
untrustworthy.

5.6.1.1 Vulnerability sub score

This sub score is based on the average number of CVE reported each year, NCVE, and
the trend of the vulnerabilities, TCVE. Prior to define how these parameters are used
to calculate the score, a comparison between real OSS projects has been done and the
results can be consulted in table 5.1.

OSS project NCVE
Users

OpenHUB
Active

Contributors
Lines of

code

KeePass 0,29 230 0 2,28K

tar 4,3 2951 6 23,8K

OpenSSL 11,9 1879 131 438K

Firebug 0,5 5948 9 490K

glibc 5 914 94 1,24M

Apache 48 9452 29 1,8M

MySQL 32 9159 149 2,73M

wireshark 34,9 1269 250 3,35M

Iceweasel 0,1 28 7 13,7M

Firefox 98,6 13215 1057 13,8M

Chrome
(Chromium)

107 2148 2004 14,1M

Table 5.1: Comparison of different OSS projects.

The OSS projects in table 5.1 are ordered by the number of lines of code. It should
be noted that there is no direct relation between this and the number of vulnerabilities.
Of course, larger projects have more probability of having bugs in the code, but it can be
seen that the number of users is more directly relevant to the number of vulnerabilities
reported. It is important to bear in mind that this number only reflects a small fraction
of the real amount of users, but it appears to be a good indicator.

38

5.6. Score

The clearest comparison can be done with the data from the three browsers: Iceweasel,
Firefox and Chromium. They are three different alternatives to perform the same task,
and therefore a fair comparison can be made. It can be clearly seen that the number of
users and contributors is much lower for Iceweasel than for the other two cases, which
impacts undoubtedly the number of CVEs reported. It seems reasonable to assume that
the Iceweasel project is much more insecure than the other two due to the low number
of users that the project has.

However, it may not be necessary to analyse the number of users to estimate the
involvement of the community for all the projects. The amount of vulnerabilities repor-
ted each year for some projects is a good indicator of the revision by itself. This metric
becomes important in those cases where the number of CVEs per year is not so high.
Therefore, a deeper analysis has been done for projects in which the NCVE is lower
than 5 and the results can be seen in table 5.2.

OSS project NCVE
Users

OpenHUB
Active

Contributors

Iceweasel 0,1 28 7

KeePass 0,29 230 0

Firebug 0,5 5948 9

tar 4,3 2951 6

glibc 5 914 94

tcpdump 1,89 575 17

snort 1,29 86 20

iptables 1,13 331 20

dpkg 1,15 412 25

Table 5.2: Comparison of different OSS projects with NCVE lower than 5.

There are only three projects in which the average vulnerabilities reported is not
even 1.0 per year: Iceweasel, KeePass and Firebug. However, the number of users of
Firebug in OpenHub is very high, almost 6000 users, so it seems fair to consider it an
indicator that the project is in fact very trustworthy, and hence the low number of CVEs
reported. In the other two scenarios, this does not apply. The previous comparison of
Iceweasel with Firefox and Chromium leaded to the conclusion that this project is not
trustworthy. But what about KeePass? The number of users is higher than for Iceweasel,
but there are no active contributors for the project. Therefore, the safest estimation is
to consider the project untrustworthy. When talking about software security, it is more
desirable to have false positives than false negatives, and in this case the information is
not conclusive enough to make a clear decision.

Continuing with table 5.2, projects that have more than 500 users are also being
reviewed. Even if the number of active contributors is not so high for some of them, this
may be because the project is already very well-known and that it has been conscien-

39

5.6. Score

tiously revised before, so they can be considered trustworthy.

Finally, there are some other projects like Snort, iptables or dpkg with less number of
users than in the previous case, but they all have more than one vulnerability reported
each year. In these cases, it may also be useful to consult the number of contributors:
the average for them is 20 or more. It seems reasonable to think that this amount of
developers working on improving the code is a good indicator of the code being reviewed.
It seems fair to assume that, if the range of developers varies from 15 to 20, or if it is
greater than that, the code is being revised. Therefore, this would be the criteria for
those projects with less than 500 users.

The previous analysis has been performed for projects with few vulnerabilities per
year. In those cases, the trend of the CVEs does not provide useful information, as the
fluctuation in the number of vulnerabilities is almost indiscernible. However, for other
scenarios it should be studied.

There are 3 possibilities considering the trend: that it is stable, lowering or increas-
ing. An increasing trend is not desirable in any case. Therefore the maximum score, 10,
is given to the TCVE parameter. However, this is not so straightforward for the other
two cases. The TCVE scores should be weighted differently depending on the amount
of vulnerabilities that are being considered. A stable trend of glibc is less risky than a
lowering one of Chrome simply because the number of vulnerabilities in the latter case
is much greater, and this should be taken into consideration. However, stable trends are
also risky no matter the situation, because they mean that the project is not improving,
so a score of 7 is assigned. The NCVE will be used after to weight this value. A lowering
trend is desirable, but if the project has a very large number of vulnerabilities, it should
still be considered a bit risky. Therefore, not a 0 is given, but a 4. The NCVE can be
used to weight differently the trends. If a project with not so many vulnerabilities has a
lowering trend, the final score will reflect it, so the TCVE=4 does not impact so much.
However, if the project has a large number, it will still receive a vulnerability score of 4,
reflecting the NCVE. If the score for lowering trends was lower, untrustworthy projects
might be underrated.

By looking at the data from table 5.1, the NCVE can be categorised into four groups:

• 0 - 5: this special scenario has been explained before. In order to make fair
decisions, the number of users should be consulted.

• 5 - 20: two projects fall in this category: OpenSSL and glibc. Even if the number
of vulnerabilities is not so low to consider them completely trustworthy, their score
should not be high neither. The weight should be higher than 0.1, since the trend
of the vulnerabilities should be reflected in the score, but lower than 0.5, as the
low number of CVEs indicates that the project is not so risky, even if the trend is
increasing. However, it also depends on the severity of the vulnerabilities: if also

40

5.6. Score

this trend is increasing, the project may not be so trustworthy. A score of 0.3 as
been given: therefore, if the tendency is lowering, the vulnerability score will be
also low (0.12) but not zero, as there are still some vulnerabilities reported. If the
tendency is increasing, the score will be 3, which indicates that the project is not
completely untrustworthy yet but it also depends on the severity.

• 20 - 70: some examples are MySQL or Apache. The amount of vulnerabilities
is significant in this case, but not so high as Firefox or Chrome. However, the
important information to consider which of these projects is trustworthy is the
trend. Hence, the weights in these cases should be similar: 0.9.

• Greater than 70: any project that has this amount of vulnerabilities is likely
untrustworthy. Even if the score should be based in the trend of its vulnerabilities,
the maximum weight, 1, should be given based on the NCVE. Therefore, if the
trend is increasing, the final score will be the maximum, 10, indicating the high
risk of the component.

Table 5.3 summarizes the different scores and weights.

Number CVE/year
(NCVE)

0 <NCVE <5 (users)
5 <NCVE <20 0.3
20 <NCVE <70 0.9

NCVE >70 1

Trend
(TCVE)

Lowering 4
Stable 7

Increasing 10

Table 5.3: Scores based on CVE

The equation used to calculate this sub score is:

V ulnerabilityScore = NCV E × TCV E

5.6.1.2 Severity sub score

The severity sub score will be calculated based on the CVSS and it is very useful to
evaluate the evolution of the project. CVSS numbers are calculated based on different
parameters, such the exploitability or the impact of the vulnerability. Depending on
their score, the CVSS are ranked in four categories: low, medium, high and critical.

As for CVE, the increasing trend is assigned the maximum score, 10, and the stable
with 7. It has been mentioned that a stable trend is still untrustworthy, and therefore
its score should not be lower. However, in this case the lowering one is associated with
0. The important aspect in this case is to highlight which CVSS are increasing: the
critical and the high ones, or the low and medium. Low and medium vulnerabilities

41

5.6. Score

may indicate that the attacker cannot obtain very useful information by exploiting the
vulnerability, or that it is very complicated to attack. Therefore, their trend is not
so relevant for this analysis, and their weight is very low: 0.05 and 0.1. The import-
ant aspect is to notice if the critical and high vulnerabilities are declining or not, and
the different scores have been assigned to reflect this. Table 5.4 shows the possible values.

Critical trend
(TC)

Lowering 0
Stable 7

Increasing 10

High trend
(TH)

Lowering 0
Stable 7

Increasing 10

Medium trend
(TM)

Lowering 0
Stable 7

Increasing 10

Low trend
(TL)

Lowering 0
Stable 7

Increasing 10

N critical/N total
(NCT)

NCT >0.25 1
NCT <0.25 0

N high/N total
(NHT)

NHT >0.25 1
NHT <0.25 0

Table 5.4: Scores based on CVSS

Two other parameters are also considered: NCT and NHT. They reflect whether the
majority of the vulnerabilities reported are severe (critical or high) or not (medium and
low). This is also related to the number of CVE that were considered in the previous
section: if few vulnerabilities were reported, but most of them corresponded to critical
or high CVSS, the score should be higher. This can influence up to 1 point in the sub
score. It has not been assigned a bigger weight because the trend is considered to provide
more information.

The equation is:

SeverityScore = (0.6×NCT+0.4×NHT)+0.45×TC+0.3×TH+0.1×TM+0.05×TL

Note: there are some exceptions for obtaining the score by applying this formula.
Section 6.2.2 explain the motivation in details.

5.6.2 Final score

The FinalScore is based on the scores obtained for the dependencies as well as for the
project itself. Different approaches have been considered:

42

5.6. Score

• To calculate the final score as the mean of all the dependencies: the trustworthiness
score obtained in this case is very high, due to the large amount of small libraries
considered trustworthy.

• To calculate the mean of the scores different than 0: even if the score is lower in
this case, the trustworthiness of the project itself is not being considered. Also, if
one of the dependencies is very risky, the average may hide this risk.

• The minimum score of the dependencies: this approach is based on the principle
“A chain is only as strong as its weakest link”. Therefore, the trustworthiness of
the dependencies should be the lowest one, as this is the component with higher
probability of introducing vulnerabilities into the project. However, the previous
result may be useful to notice if the rest of the dependencies are trustworthy or
not. If the minimum score is similar to the mean, the trustworthiness of all the
dependencies may be considered the same. On the other hand, if the difference is
significant, it means that the quality of one of the components is much lower than
the quality of the rest.

• The minimum score considering the project: this tool is designed to provide in-
formation about a project to decide if it is trustworthy enough to include it in
a new software. Therefore, not only the quality of its dependencies should be
analysed but also the project itself.

For all of them, the score is calculated as:

Score = 10−DependencyScore

Since the value of DependencyScore reflects the risk of the project and not its trust-
worthiness.

The comparison of these different approaches can be seen in section 6.2.2. The final
score for trustworthiness will be the minimum score of the dependencies as well as
the project. Otherwise, the value would not reflect the real risk of considering that
project. However, as the other values may be useful to analyse more in deep where is
the problem, all the results and the different scores for the project would be stored in a
file named Trustworthiness.txt. Therefore, it can be seen if the problem is due to one of
the dependencies, several of them or the project itself.

43

6 Implementation and
evaluation

This tool has been written in Perl language. It uses apt-rdepends to find the dependen-
cies of a project and a tool named cve-search, section 6.1, to find the CVE and CVSS
of the abovementioned dependency.

CVEs have been explained in section 3.3 whereas CVSS explanation can be found
in 3.4. However, it is important to state that this last explanation has been made for
CVSSv3, which was release in June 2015. Therefore, it is possible that some of the
CVSS numbers obtained correspond to the previous version in which other equations
and parameters were considered.

6.1 Contributions

6.1.1 cve-search

cve-search tool has been utilized in this project to collect information about the vul-
nerabilities related to a package or library. The main authors are Alexandre Dulaunoy
and Pieter-Jan Moreels. The source code is available on GitHub and can be accessed
through the following link: https://github.com/cve-search/cve-search

This tool facilitate the search and processing of CVEs. It has been decided to use
it inasmuch as there is no API available from the official CVE MITRE website. This
project is also supported by organizations such as CIRCL (Computer Incident Response
Center Luxembourg): https://www.circl.lu/services/cve-search/

Two scripts have been used to search through the databases:

• search fulltext.py : to find the CVE related to a given package.

• search.py : to find the CVSS associated with a CVE

6.1.2 Black Duck Open Hub

Black Duck Open Hub is used to gathered information about the endorsement of the
community in a particular OSS project. In those cases where the CVE numbers do not

44

https://github.com/cve-search/cve-search
https://www.circl.lu/services/cve-search/

6.1. Contributions

provide enough data to consider a project trustworthy or not, the number of users, and
even the number of contributors in some special situations, will be taken into consider-
ation.

OpenHub is a website which provides information to compare OSS projects based
on their popularity as well as the activity of the contributors. It was founded by Jason
Allen and Scott Collison in 2004 and the site lists 672,372 open source projects from
688,219 source control repositories source control repositories (May 2016).

6.1.3 Linear regression

Linear regression has been the approach used to find trends the CVE and the CVSS
numbers follow. The idea is to fit the data to the following equation:

y = ax+m

And to use the slope, a, to find the trends.

The Perl module Statistics::Regression by Ivan Tubert-Brohman allows to fit data
to an equation of the form:

y = θ1x1 + θ2x2 + ...+ θ3x3

As the desire output is an equation of the form:

y = ax+m

The appropriate use of this module is:

reg->include(y, [1.0, x]);

Where y represents the number of CVEs or CVSS that year

6.1.4 Considerations

For a fair analysis of the evolution of the number of vulnerabilities, the tool does not
consider the first years after the implementation of the CVE standard. It has been no-
ticed that most of the projects have very few CVEs reported the first years, so if they
are consider, they trends obtained will be misleading. This low number of vulnerabilities
may not be related to the security of the project but that it was not so known or that
scrutinizing the code was not considered to be so important and therefore developers
did not put that much effort on it. A declining trend of the last years would possibly be
unnoticed because the number of CVEs reported in the last years is higher than at the
beginning. The current year should also be ignored as the information is still incomplete
and could also be misleading.

45

6.2. Evaluation

The author believes that the best approach is to consider only the last years of the
component for obtaining the trends. To be precise, only the CVEs reported the nine
past years have been considered, based on the trends of some of the projects analysed.

6.2 Evaluation

6.2.1 Evaluating the DependencyScore

First of all, the weights and parameters used to obtain the dependency score have been
tested. The script has been modified to consider only the given project and not its
dependencies. This way, it is possible to obtain the score based on its CVE, CVSS and
number of users where necessary, and to contrast it for different well known projects
(table 6.1). This has been used to adjust the different weights in case some of the pro-
jects receive a score that did not seem to fit the reality.

OSS project
DependencyScore

(no users considered)
DependencyScore
(considering users)

KeePass 10 0

tar 4.54 10

OpenSSL 3.32 3.32

Firebug 6.92 10

glibc 3.08 10

Apache 1.12 1.12

MySQL 4.48 4.48

Iceweasel 10 0

Firefox 0 0

Chrome 4.20 4.20

Explorer 0 0

Table 6.1: Dependency scores obtained for different OSS projects.

For instance, Iceweasel obtained a score of 10 in the first tests as the number of CVEs
reported was very low. However, when taking into consideration the number of users, it
seems unrealistic to consider it trustworthy. Whereas other web browsers have thousand
of users and numerous CVEs reported, the lack of them in this case appears to reflect
a lack of revision of the code. The scores considering the number of users seem more
accurate than the ones obtained in the first function. This also applies for those projects
which received a higher score in the second case. For instance, glibc and Firebug. The
reason for this is that a lot of importance was given to the trends of the vulnerabilities
without highlighting the few number of CVEs that were reported each year. When con-
sulting the number of users of each of them, it was shown that they are mature projects
with a lot of control from the community, and still, the number of vulnerabilities found

46

6.2. Evaluation

was very little. Therefore, it is fair that they are considered trustworthy.

Some other consideration have been done:

• If the VulnerabilityScore is 10 and the SeverityScore is greater than 9, the final
score of the dependency is 10 (maximum risk). The VulnerabilityScore reflects that
there is a high number of vulnerabilities reported and that the trend is increasing,
whereas the value of the SeverityScore is obtained only if the trends for critical
and high vulnerabilities are increasing. Therefore, the project should be considered
completely untrustworthy.

• If the VulnerabilityScore is 10, NCT is 1 and TC is increasing, the final score is also
10. The NCT reflects that a high number of the total amount of vulnerabilities
are critical (more than a quarter) and the TC is given based on the trend of the
critical vulnerabilities. This situation is also completely untrustworthy.

In these two cases, a warning will also be printed so that the user can be aware if
some of the dependencies are troublesome. If a project was to be built depending on it,
it is very likely that attackers could find a way to attack the new project through this
component. This was the scenario for both Firefox (the first condition) and Internet
Explorer (the second).

The severity score for Google Chrome may seem lower than expected. However, when
its parameters and trends are compared with other projects similar to it, like Firefox and
Internet Explorer (table 6.2), this score is justified. In the other two cases the amount
of critical vulnerabilities is significant and also their trend are increasing, which should
be considered very untrustworthy.

Vulnerability
Score

Severity
Score

Web Browser NCVE TCVE Score NCT NHT TC TH TM TL Score

Firefox 98.6 I 10 1 0 I I I I 10

Chrome 107 I 10 0 1 D I I S 4.75

Explorer 97.1 I 10 1 0 I D D S 10

Table 6.2: Comparison of the parameters obtained for three well-known web browsers.

6.2.2 Evaluating the FinalScore

Four approaches have been considered to calculate the FinalScore:

• As the mean of all the dependencies.

• As the mean of the dependencies with scores different than 0.

47

6.2. Evaluation

• The minimum score of the dependencies.

• The minimum score considering the project.

The results obtained for the projects analysed beforehand can be seen in table 6.3.
ND is the Number of Dependencies.

Project Final ND Average
ND

(without
score=0)

Average
(without
score=0)

Minimum
Score

Dependencies

Score
Project

tar 10 8 10 0 10 10 10

glibc 10 4 10 0 10 10 10

KeePass 0 79 9.87 1 0 0 0

OpenSSL 3.32 17 10 0 10 10 3.32

MySQL 0 100 9.31 8 1.41 0 4.48

wireshark 5.32 126 10 0 10 10 5.32

Apache 0 131 9.4 9 1.25 0 1.12

Firefox 0 136 9.93 1 0 0 0

Chrome 0 151 9.89 2 1.66 0 4.20

Table 6.3: Scores obtained for different projects.

It can be seen that the average of the dependencies of KeePass is 0, as well as for
Firefox. The components with that score are the library libgdiplus and passwd. The
reason of the low score is that the number of users and contributors in OpenHub is very
low. They seem like false positives when consulting the characteristics of the project:
there were many commits at the beginning of the projects, so it is likely that the librar-
ies are now mature enough to not need major changes or revision. However, these false
positives are very difficult to detect without the risk of not noticing real untrustworthy
projects, like Iceweasel.

The advantage of choosing the minimum value to assess about the trustworthiness
can be seen in the analysis of Chrome. Even if the minimum score of the dependencies
is 0, this is due again to the library passwd, the same that for firefox. However, if this
one is not considered, the minimum score would be 3.32. The dependency ca-certificates
depends on OpenSSL and the trustworthiness of this last one is 3.32. It may be possible
that the vulnerabilities of OpenSSL affect ca-certificates and thus, Chrome may be also
vulnerable to them: therefore, its trustworthiness should not be higher than OpenSSL.
This is exactly what happened with Heartbleed, so the tool is able to find these weak
points through the dependencies.

MySQL also obtains a low score due to its dependencies. In this case, not only the
minimum score is 0, but also the average of them is very low: 1.41. This score is mainly
because there are several libraries with few users, as explained for KeePass or Firefox.

48

6.2. Evaluation

In order to be sure that they do not represent a threat for the project, they should be
studied to decide whether they are really false positives or really untrustworthy.

Even if there are some false positives, the criteria that has been used to identify
which components are trustworthy appears to be suitable. This is evidenced by the
dependencies of wireshark : of 136 elements, none of them was considered risky. The
majority of the libraries do not appear in OpenHub, and those which are in its database
have a big number of users or contributors associated to them. Therefore, it is assumed
that they are secure, which seems appropriate in this case.

49

7 Conclusions

The goal of this project was to investigate ways to assess the trustworthiness of an open
source looking at other software projects reused by it: its dependencies. For assessing
about their trustworthiness, different metrics have been studied and the number of vul-
nerabilities, CVE, and its severity, CVSS, have been selected.

The designed tool provides with a FinalScore, which ranges from 0 to 10, based on
the DependencyScores collected from all the dependencies and the project. This one is
based on:

• Vulnerability sub score: based on the average number of CVE per year and the
trend of these vulnerabilities. For some dependencies, the number of vulnerabilities
found was very low. To decide whether this was a sign of good design or a lack of
revision of the code, the number of users of the project in OpenHub was considered.

• Severity sub score: based on the CVSS and their trend. Different weights were
assigned depending on the risk associated with the vulnerabilities: it is not the
same to have one critical security flaw than one which is considered to have low
severity.

These different weights have been adjusted after analysing the results for real OSS
projects which have been shown in 6.2.

This project has proved how the trustworthiness of the dependencies have a direct
relation with the security of the component that uses them. It is possible to detect
troublesome dependencies before a severe vulnerability in one of them affects the pro-
ject. It has also shown how the track record of a software component can be used to
infer its functioning in the future.

However, many different considerations have to be addressed to obtain a fair score
and, even so, in some occasions it is not possible to discern which elements are trust-
worthy. The amount of small libraries that are used is one of the main reasons of this
problem. Nevertheless, if there is not enough evidence to prove that an element is secure,
the sensible decision to take is to consider it untrustworthy.

Finally, it is very important to highlight that a clear understanding of the vulnerable
parts of a software project is essential to avoid security holes. If dependencies are not
considered as part of this project, many security flaws may not be detected.

50

7.1. Future work

7.1 Future work

There are some aspects that could be improved for this tool in future works.

First, some other metrics could also be taken into consideration for a fairer com-
parison. The idea is to consider different thresholds depending on other parameters, as
the ones that were analysed in chapter 3. These additional metrics could also reduce
the number of false positives since the the parameters that are being used may not be
accurate in some cases.

Consider scalability problems: every year the amount of vulnerabilities reported rises
significantly and this should be addressed. This is also an issue for the CVE and CVSS
standards: in fact, the CVE syntax has been modified because there were not enough
identifiers for all the vulnerabilities reported each year.

Finally, it is possible that one library has many of its vulnerabilities related to only
one project. This could happen if the library is not intended to work under the conditions
of that project. This would impact its score in an unfair way, because the problem is
not the software itself, but how it is used.

51

APPENDIX A Appendices

A.1 CVSS

A.1.1 Base Score

A.1.1.1 Calculations

Exploitability sub score:

Exploitability = 8.22×AttackV ector×AttackComplexity×PrivilegeRequired×UserInteraction

Impact sub score (ISC):

ISCbase = 1− [(1− ImpactConf)× (1− ImpactInteg)× (1− ImpactAvail)]

Depending on the Scope:

Unchanged→ ISC = 6.42× ISCBase

Changed→ ISC = 7.52× [ISCBase − 0.029]− 3.25× [ISCBase − 0.02]15

Base Score:

ISC <= 0→ BaseScore = 0

Else,

ScopeUnchanged→ BaseScore = Roundup(Minimum[(Impact+ Exploitability), 10])

ScopeChanged→ BaseScore = Roundup(Minumum[1.08× (Impact+ Exploitability), 10])

A.1.1.2 Metrics and Scores

52

A.1. CVSS

Base Metrics

Exploitability Metrics

Attack Vector
(AV)

Physical
(P)

The attacker must have physical
access to the vulnerable system

0.2

Local
(L)

The The attacker must have
physical access to the vulnerable system

0.55

Adjacent
Network
(A)

The vulnerable component is bound
to the network stack but is limited to
the same shared physical or logical
network

0.62

Network
(N)

The attacker’s path is through OSI
layer 3 (network layer). These types
of vulnerabilities are often described
as remotely exploitable

0.85

Attack Complexity
(AC)

Low
(L)

There are no special conditions for
access to the vulnerability, so the
attacker can expect repeatable
success against the component

0,77

High
(H)

Specialised access conditions exist,
which requires the attacker to prepare
against the vulnerable component.

0.44

Privileges Required
(PR)

None
(N)

The attacker is unauthorized prior
to attack

0.85

Low
(L)

The attacker is authorized with
privileges that provide basic user
capabilities

0.62 / 0.68

High
(L)

The attacker is authorized with
privileges that provide control
over the vulnerable component

0.27 / 0.50

User Interaction
(UI)

None
(N)

The system can be exploit without
interaction

0.85

Required
(R)

For the exploitation an action has to
been taken before the vulnerability
can be exploited

0.62

Scope

Scope

(S)

Unchanged
(U)

A exploited vulnerability can only
affect resources managed by the
same authority

-

Changed
(C)

The explotation can affect resources
beyond the privileges intended by the
vulnerable component. In this case, the
vulnerable component and the impact
are different

-

Table A.1: CVSS Base Metrics and scores - Exploitability Metrics and Score
53

A.1. CVSS

Impact Metrics

Confidentiality Impact
(C)

High
(H)

There is total information disclosure,
providing all resources within the
impacted component being divulged
to the attacker

0.56

Low
(L)

Access to some restricted
information is obtained but how
much/what information is of the
control of the
attacker

0.22

None
(N)

There is no loss of confidentiality 0

Integrity Impact
(I)

High
(H)

Total loss of integrity, the attacker
can modify any files or information

0.56

Low
(L)

Modification of data is possible
but the scope is limited

0.22

None
(N)

There is no loss of integrity 0

Availability
Impact
(A)

High
(H)

Total loss of availability, The attacker
is able to deny access to resources in
the impacted component.

0.56

Low
(L)

There is reduced performance or
loss of some functionality

0.22

None
(N)

There is no impact to availability 0

Table A.2: CVSS Base Metrics and scores - Impact Metrics

A.1.2 Temporal Metrics

A.1.2.1 Calculations

Temporal Score:

Temporal = Roundup(BaseScore×ExploitCodeMaturity×RemediationLevel×ReportConfidence)

A.1.2.2 Metrics and Scores

54

A.1. CVSS

Temporal Metrics

Exploit Code Maturity
(E)

Not Defined
(X)

This metric will be skipped in the
scoring equation

1

High
(H)

The vulnerability can be exploit
in all situations

1

Functional
(F)

Functional exploit code is available
and works in most situations

0.97

Proof of

Concept
(P)

Proof-of-concept exploit code is
available, not practical for most
systems.

0.94

Unproven
(U)

No exploit code is available 0.91

Remediation Level
(RL)

Not Defined
(X)

This metric will be skipped in the
scoring equation

1

Unavailable
(U)

No solution can be applied or is
not available

1

Workaround
(W)

Unofficial solution available to
mitigate the vulnerability

0.97

Temporary fix
(T)

Official but temporary fix available 0.96

Official Fix
(O)

A complete solution is available,
by a patch or an upgrade

0.95

Report
Confidence
(RC)

Not Defined
(X)

This metric will be skipped in the
scoring equation

1

Confirmed
(C)

Detail reports exist about the
vulnerability

1

Reasonable
(R)

Significant details are published,
but either no complete knowledge
about the root cause or no access to
source code prevent to confirm all
the interactions

0.96

Unknown
(U)

There are reports that indicate a
vulnerability present but the nature
and the cause of the vulnerability is
unknown

0.92

Table A.3: CVSS Temporal Metrics and scores

55

A.1. CVSS

A.1.3 Environmental Metrics

Environmental Metrics

Security Requirements
(CR, IR, AR)

Not Defined
(X)

This metric will be skipped in the
scoring equation

1

High
(H)

Loss of Condientiality, Integrity
or Availability is likely to have a
capastrophic effect.

1.5

Medium
(M)

Loss of Condientiality, Integrity
or Availability is likely to have a
serious effect.

1

Low
(L)

Loss of Condientiality, Integrity
or Availability is likely to have
only a limited effect.

0.5

Table A.4: CVSS Environmental Metrics and scores

A.1.3.1 Calculations

Modified Exploitability sub score:

M.Exploitability =8.22×M.AttackV ector ×M.AttackComplexity

×M.PrivilegeRequired×M.UserInteraction

Modified Impact sub score (ISC):

ISCModified = Minimum[[1−(1−M.IConf×CR)×(1−M.IInteg×IR)×(1−M.IAvail×AR)], 0.915]

Depending on the Scope:

Unchanged→M.Impact = 6.42× ISCModified

Changed→M.Impact = 7.52× [ISCModified − 0.029]− 3.25× [ISCModified − 0.02]15

56

A.1. CVSS

Environmental Score:

IfM.Impact <= 0→ BaseScore = 0

Else,

ScopeUnchanged→ BaseScore =

Roundup(Roundup(Minimum[(M.Impact+M.Exploitability), 10])

× ExploitCodeMaturity

×RemediationLevel
×ReportConfidence)

ScopeChanged→ BaseScore =

Roundup(Roundup(Minimum[1.08× (M.Impact+M.Exploitability), 10])

× ExploitCodeMaturity

×RemediationLevel
×ReportConfidence))

A.1.3.2 Metrics and Scores

Modified Base Metrics

Modified Attack Vector (MAV)

Modified Attack Complexity (MAC)

Modified Privileges Required (MPR)

Modified User Interaction (MUI)

Modified Scope (MS)

Modified Confidentiality (MC)

Modified Integrity (MI)

Modified Availability (MA)

Table A.5: Modified Base Metrics

57

A.2. Source Code

A.2 Source Code

A.2.1 Directions

Given a software project located in the repository, the script returns a score based on
the trustworthiness of its dependencies and of the project itself.

Requirements:

• apt-rdepends

• cve-search: https://github.com/cve-search/cve-search. The fulltext index is
necessary. For more details consult the git hubpage.

• Perl modules:

– List::Util

– List::MoreUtils

– Statistics::Regression

– WWW::Mechanize

Use:
To be able to get the dependencies of a project, it has to be possible to install it with

the apt tool. For instance, Google Chrome has to first be added to the repository.
Once that it is accessible via apt :
./GetTrustworthiness.pl firefox
./GetTrustworthiness.pl chrome google-chrome-stable

This tool creates a folder with the name of the project and in that one, two files are
stored:

• In the first one, Dependencies.txt, the different dependencies, with their CVEs and
scores, are stored.

• In the second one, Trustworthiness.txt, the different parameters to obtain the final
score are indicated.

The name of the project in the repository may be different than the usual name of
the package: for instance, chrome and google-chrome-stable or apache and apache2. In
this case, both should be included:

• First parameter: the normal name - it’ll be used to find the CVEs/CVSS related
to it.

• Second parameter: the name of the package in the repository.

58

https://github.com/cve-search/cve-search

A.2. Source Code

A.2.2 Code

#!/usr/bin/perl

use strict;

use warnings;

use List::Util qw/ max/;

use List::MoreUtils qw/ uniq/;

use Statistics::Regression;

use WWW::Mechanize;

#Given a software project located in the repository, this script returns a

score

#based on the trustworthiness of its dependencies and of the project itself

#Requirements:

#apt-rdepends

#cve-search and its requirements: https://github.com/cve-search/cve-search

#The Perl modules:

#List::Util

#List::MoreUtils

#Statistics::Regression

#WWW::Mechanize

#Note: the name of the project in the repository may be different than the

#usual name of the package. In this case, both should be included:

the first parameter: the normal name - it’ll be used to find the CVEs/CVSS

related to it

the second parameter: the name of the package in the repository

###

#Subroutines:

sub mean{

#This subroutine obtains the mean of an array

my @data = @_;

my $sum = 0;

foreach my $value (@data) {$sum+=$value}

if ($sum==0) {return 0;}

return $sum/@data;

}#sub mean

sub trend{

59

A.2. Source Code

#This subroutine calculates the trend of an array and it returns a score

#based on the results

#The first parameter: the score to assign when the trend is lowering (4 for

CVEs’ trend, 0 for CVSSs’)

my $reg=Statistics::Regression -> new ("regression",["intercept","slope"]);

my ($weight_low, $number_years, @array)= @_;

my @array_backwards= reverse(@array);#Array backwards: the data is analysed

starting from the last years

shift(@array_backwards); #delete current year: incomplete information

for (my $counter=0; $counter<$number_years-2 && $counter<9; $counter++){

#Without considering current year, the data is obtained from the last 9 ones

$reg->include($array_backwards[$counter],[1.0,$counter]);

}

#Obtain the slope:

my @theta = $reg->theta();

my $slope = $theta[1];

#Thresholds for slope:

if ($slope < -0.2){ return 10; }#Increasing trend (it is backwards)

elsif ($slope == 0){ return 0; }#If there are no values, or only 1, there

is no trend to calculate - otherwise it will be consider stable

elsif ($slope >= -0.2 && $slope <= 0.2){ return 7; }#Stable

elsif ($slope > 0.2){ return $weight_low;}#Declining

}#sub trend

###

#Parameters: it can be only one or two

#If two: the first one corresponds to the name of the project and the second to

#how to look for it in the repository (i.e. chrome and google-chrome-stable)

#Only one parameter is needed if the name is the same for both cases (i.e

OpenSSL)

my $size=@ARGV;

if ($size!=1 && $size!=2)

{

die "Illegal number of parameters.\nPlease introduce the correct name/s of

the package.\n";

}

my $package=$ARGV[0];

my $name_package=$package;

#If there are 2 arguments, the last one corresponds to the name of the package

in the repository

60

A.2. Source Code

if ($size==2)

{

$name_package=$ARGV[1];

}

#We create a directory where all the necessary files will be stored

my $newdirectory = "./$package";

mkdir $newdirectory;

my $DependencyFile = "$newdirectory/DependencyTree.txt";

my $TrustworthinessFile = "$newdirectory/Trustworthiness.txt";

my $CVEFile="$newdirectory/CVE.txt";

my $CVSSFile="$newdirectory/CVSS.txt";

#To obtain the dependency tree:

my $query = "apt-rdepends $name_package >> $DependencyFile";

#All the information of the dependency tree will be stored in a file

my $results = ‘$query‘;

#To just leave the dependencies: what is after the expression ’Depends:’ or

’PreDepends:’

open my $fileHandle_Reading, "<", $DependencyFile or die "Can’t access

’$DependencyFile’";

my @dependencies;

my $counter=0;

while (<$fileHandle_Reading>){

chomp;

my @words = split(’ ’);

my $words = @words;

for (my $i=0; $i<$words; $i++){

if ($words[$i] eq ’Depends:’ || $words[$i] eq ’PreDepends:’){

$dependencies[$counter]=$words[($i+1)];

$counter++;

}#if

}#for

}#while

close $fileHandle_Reading;

#Remove the file:

unlink $DependencyFile || print "Not possible to delete file

DependencyTree.txt";;

#First: check if there are dependencies. If not, the final score is 10

my $dependencies_size = @dependencies;

if ($dependencies_size==0)

{

print "The software project $package has no dependencies.\nThe score is:

10.";

die;

61

A.2. Source Code

}

#As some dependencies may appear more than one time: sort and uniq

my @dependencies_sorted=sort @dependencies;

my @dependencies_uniq= uniq @dependencies;

#Some parameters and sub scores have to be obtained to calculate the

FinalScore:

my @DependencyScore; #The score given to a dependency

my $ND=@dependencies_uniq; #Number of dependencies of the project

my $NRisk=0; #Number of dependencies with DependencyScore=10

#For each project, we will get the CVEs related as well as the CVSS, and

calculate the subscores

#The results will be stored in a file: Trustworthiness.txt

open my $fileHandle_writing, ">>", "$newdirectory/Dependencies.txt" or die

"Can’t access Dependencies.txt";

my $name_consult;

for (my $i=0; $i<=$ND;$i++){

#The last element to consult will not be a dependency, but the project

itself

if ($i==$ND){

$name_consult=$package;

}

else{

$name_consult=$dependencies_uniq[$i];

}

#First: print the name of the dependency in the file

print $fileHandle_writing "---\n";

print $fileHandle_writing $name_consult . "\n";

#After: get all the CVE into an array

my $CVE_query = "./cve-search-master/bin/search_fulltext.py -q

$name_consult | sort > $CVEFile";

my $query2 =‘$CVE_query‘;

open my $CVE_Reading, "<", $CVEFile or die "Can’t access ’$CVEFile’";

chomp (my @CVE_list = <$CVE_Reading>);

close $CVE_Reading;

my $CVE_size= @CVE_list; #Number of CVE

#In case the libary has no CVEs associated

if ($CVE_size==0){

$DependencyScore[$i]=0;

62

A.2. Source Code

print $fileHandle_writing "DependencyScore: " . $DependencyScore[$i] .

"\n";

}

else{

#To obtain the Vulnerability sub score, we need:

my $VulnerabilityScore; #Subscore based on the CVE

my $NCVE; #The average of CVEs reported per year

my $TCVE; #The tendency: it can be L (Lowering), S (Stable) or I

(Increasing)

#The years that will be considered will start with the first CVE

reported: we assume that the year where the project was release

corresponds to the first year in which CVEs were reported for it

my @years;

my $First_CVE=$CVE_list[0];

my @CVE_split=split("-",$First_CVE); #The syntax is: CVE-YYYY-XXXX

my $year=$CVE_split[1];

my @CVE_year; #How many CVEs were reported each year: to obtain the

average

#We create a vector of years, starting in the former one and

#finishing in 2016 (this year)

my $counter_CVE=0;

for (my $y=$year; $y<=2016; $y++){

push @years, $y; #Add year to the vector

#We also want to know how many CVEs were reported that year:

$CVE_year[$counter_CVE]=grep /$y/, @CVE_list; #Count how many times does

the year appear

#$reg->include($CVE_year[$counter_CVE],[1.0,$counter_CVE]);

$counter_CVE++;

}

#The mean:

$NCVE = mean(@CVE_year);

#Ranges:

if ($NCVE <= 5){ #We have to consult the number of users:

my $NumberUsers=0;

my $NumberContributors=0;

my $name_lc=lc($name_consult);

#NOTE: to search in OpenHub, the name of the package has to be lowercase

#Build the request url: to get number of users

my $url= ’https://www.openhub.net/p?query=’ . $name_lc;

#Request the url from the server and get the content inside the tags:

#

63

A.2. Source Code

my $page = WWW::Mechanize->new();

$page->get ($url) or die "OpenHub server did not reply";

my @links = $page->links();

my $found=0;

for my $link (@links){

if ($link->url eq "/p/$name_lc/users"){

$NumberUsers=$link->text; #The content inside the tags

$found=1;

}

}

if ($found==1){ #If there is a project in OpenHub

$NumberUsers=~s/,//g; #Delete the comma (for thousand)

$NumberUsers=$NumberUsers+0; #This is needed because otherwise the variable

is considered as text

}

printf $fileHandle_writing "Number of users: " . $NumberUsers . " \n";

#Note: $NumberUsers is considered text

if ($NumberUsers >= 500){ #Very well known project with few vulnerabilities

$DependencyScore[$i]=0;

}

elsif ($NumberUsers == 0){

#If the project does not exist in OpenHub or there are no users at all:

most likely the project is a small library or package: we can consider

it secure

$DependencyScore[$i]=0;

}

else { #Number users> 1-499

#Depends on number of contributors:

#Get the content inside the tags:

#

$found=0;

for my $link (@links){

if ($link->url eq "/p/$name_lc/contributors/summary"){

$NumberContributors=$link->text; #The content inside the tags

$found=1;

}

}

if ($found==1){ #If there is a project in OpenHub

$NumberContributors=~s/,//g; #Delete the comma (for thousand)

$NumberContributors=$NumberContributors+0; #This is needed because

otherwise the variable is considered as text

}

64

A.2. Source Code

printf $fileHandle_writing "Number of contributors: " . $NumberContributors

. " \n";

if ($NumberContributors >= 15){

#We assume that there are people revising the code

$DependencyScore[$i]=0;

}

else{

#If not: we assume that there may be vulnerabilities undiscovered because a

lack of revision

$DependencyScore[$i]=10;

}

}#else

}#if NCVE>5

#If NCVE>5, we should calculate the trend as well as the CVSS associated in

order to provide a score for the dependency

else{

if ($NCVE > 5 && $NCVE <= 20){$NCVE=0.7;}

elsif ($NCVE > 20 && $NCVE <= 70){$NCVE=0.9;}

elsif ($NCVE > 70){$NCVE=1;}

#For trend:

my $length_years=@years;

$TCVE = trend (4, $length_years,@CVE_year);

#Vulnerability sub score:

$VulnerabilityScore=$NCVE * $TCVE;

##

#Now: for each CVE, obtain the CVSS

my @CVSS_list;

#Depending on severity:

my @CVSS_critical;

my @CVSS_high;

my @CVSS_medium;

my @CVSS_low;

#To obtain the average proportion of critical/high vulnerabilities

#compared to the total number: (to obtain NCT, NHT)

my @N_critical_total;

my @N_high_total;

for (my $f=0; $f<$CVE_size; $f++){

#Get the CVSS

#my $CVSS_query = "./cve-search-master/bin/search.py -c $CVE_list[$f] |

grep -oP ’(?<="cvss":)[^,]+’ > ${newdirectory}/CVSS.txt";

65

A.2. Source Code

my $CVSS_query = "./cve-search-master/bin/search.py -c $CVE_list[$f] >

$CVSSFile";

my $query3 =‘$CVSS_query‘;

open my $CVSS_Reading, "<", $CVSSFile or die "Can’t access ’$CVSSFile’";

while (my $lineCVSS = <$CVSS_Reading>){

chomp $lineCVSS;

my @fields=split ",", $lineCVSS;

my ($CVSS_field)=grep {/"cvss":/} @fields; #pattern: "cvss": x.x

if ($CVSS_field){ #There is a small possibility that there is no CVSS

associated with the CVE

my @CVSS_fields=split(" ",$CVSS_field);

my ($CVSS) = $CVSS_fields[1] =~ /"([^"]*)"/; "#Remove double quotes in

case they exist

if ($CVSS) {$CVSS_list[$f]=$CVSS;}

else {$CVSS_list[$f]=$CVSS_fields[1];}

}

else {#If there is no CVSS associated: 0.0

$CVSS_list[$f]=0.0;

}

}#while

close $CVSS_Reading;

#Print: CVE + CVSS

print $fileHandle_writing $CVE_list[$f] . ": " . $CVSS_list[$f] . "\n";

}#for (CVE)

#When we have all the CVSS, obtain the scores

my $index_CVSS=0; #Index to go through the @CVSS_list array

my $index_severity=0; #Index to go through the 4 arrays assinged for

severity

for (my $c=0; $c<@CVE_year; $c++){

#The arrray @CVE_year contains how many CVEs were reported each year

my $n_times=$CVE_year[$c]; #The number of CVEs that year

$CVSS_critical[$index_severity]=0;

$CVSS_high[$index_severity]=0;

$CVSS_medium[$index_severity]=0;

$CVSS_low[$index_severity]=0;

while ($n_times>0){ #While at least one CVE reported in that year

#hasn’t been assigned a severity: we consult the associted CVSS

my $CVSS_value=$CVSS_list[$index_CVSS];

#How many vulnerabilities of each kind occurred:

if ($CVSS_value){ #If there is a value

if ($CVSS_value > 0.0 && $CVSS_value <= 3.9){

$CVSS_low[$index_severity]+=1;}

elsif ($CVSS_value >= 4.0 && $CVSS_value <= 6.9){

66

A.2. Source Code

$CVSS_medium[$index_severity]+=1;}

elsif ($CVSS_value >= 7.0 && $CVSS_value <= 8.9){

$CVSS_high[$index_severity]+=1;}

elsif ($CVSS_value >= 9.0 && $CVSS_value <= 10){

$CVSS_critical[$index_severity]+=1;}

}

$n_times--;

$index_CVSS++;

}#while (n_times)

if ($CVE_year[$c]>0){

$N_critical_total[$index_severity]=$CVSS_critical[$index_severity]/$CVE_year[$c];

$N_high_total[$index_severity]=$CVSS_high[$index_severity]/$CVE_year[$c];

}

else {

$N_critical_total[$index_severity]=0;

$N_high_total[$index_severity]=0;

}

$index_severity++;

}#for (CVE_year)

#Trend: same as CVE

#Only recent years (from 2006), without considering 2016

#Backwards

my $TC = trend(0, $length_years, @CVSS_critical); #Trend critical

my $TH = trend(0, $length_years, @CVSS_high); #Trend high

my $TM = trend(0, $length_years, @CVSS_medium); #Trend medium

my $TL = trend(0, $length_years, @CVSS_low); #Trend low

#Proportion of critical/high vulnerabilities

my $NCT = mean (@N_critical_total);

if ($NCT>0.25) {$NCT=1;}

else {$NCT=0;}

my $NHT = mean (@N_high_total);

if ($NHT>0.25) {$NHT=1;}

else {$NHT=0;}

#Now that we have all data, we can calculate the Severity sub score:

my $SeverityScore = (0.6*$NCT+0.4*$NHT)+0.45*$TC+0.3*$TH+0.1*$TM+0.05*$TL;

#Subscore based on the CVSS

#With the vulnerability and the severity score, we can obtain the

dependency score

$DependencyScore[$i]=0.2*$VulnerabilityScore+0.8*$SeverityScore;

if ($VulnerabilityScore==10 && $SeverityScore>=9.0 ||

$VulnerabilityScore==10 && $NCT==1 && $TC==10){

67

A.2. Source Code

$DependencyScore[$i]=10;

print "WARNING: considered very risky.\n";

printf $fileHandle_writing "WARNING: considered very risky.\n";

}

print $fileHandle_writing "VulnerabilityScore: " . $VulnerabilityScore . "\n";

print $fileHandle_writing "SeverityScore: " . $SeverityScore . "\n";

}#else: NC>5

print $fileHandle_writing "DependencyScore: " . $DependencyScore[$i] . "\n";

}#else

}#for (dependencies)

#remove the CVE.txt and CVSS.txt files:

unlink $CVEFile || print "Not possible to delete file CVE.txt";

unlink $CVSSFile || print "Not possible to delete file CVSS.txt";;

#Close the Dependencies.txt file:

close $fileHandle_writing;

#Write the results in the new file:

open $fileHandle_writing, ">>", $TrustworthinessFile or die "Can’t access

Trustworthiness.txt";

###

#The final score can be calculated:

#Different aggregation functions are considered:

1) the average of all the dependencies

2) the average of the dependencies with score != 0

3) the minimum score of the dependencies

4) the minimum score considering also the project -> the one selected for

the final score

#The last value of the DependencyScore corresponds to the project:

my $ProjectRisk=pop(@DependencyScore);

my $ProjectScore=10.0 - $ProjectRisk;

#Now we have only the dependency scores:

#We obtain the minimum score for the dependencies (the one that corresponds to

the maximum risk)

my $maximum = max @DependencyScore;

my $min_score = 10 - $maximum;

#The average: considering all the libraries

68

A.2. Source Code

my $average_all=mean(@DependencyScore);

#To obtain the average of those with score !=0

my @Scores_notzero;

my $not_zero=0;

for (my $IndexScore=0; $IndexScore<@DependencyScore; $IndexScore++){

if ($DependencyScore[$IndexScore] != 0) {

$Scores_notzero[$not_zero]=$DependencyScore[$IndexScore];

$not_zero++;

}

}

#We store the results in the file Trustworthiness.txt

my $average_all_score=10.0 - $average_all;

printf $fileHandle_writing "Average score considering all libraries (" . $ND .

" dependencies): %.2f\n", $average_all_score;

my $average_notzero = mean(@Scores_notzero);

my $average_notzero_score=10.0 - $average_notzero;

printf $fileHandle_writing "Average score considering only scores different

than 0 (" . $not_zero . " dependencies): %.2f\n", $average_notzero_score;

printf $fileHandle_writing "Minimum score of the dependencies: %.2f\n",

$min_score;

printf $fileHandle_writing "Score of the project itself: %.2f\n",

$ProjectScore;

#To calculate the final score: we select the minimum value

my $Score;

if ($min_score < $ProjectScore){$Score=$min_score;}

else {$Score=$ProjectScore;}

if ($Score == 0) {

print "WARNING: very untrustworthy.\n";

print $fileHandle_writing "WARNING: very untrustworthy.\n";

}

printf "The trustworthiness is: %.2f\n", $Score;

printf $fileHandle_writing "\n\nThe trustworthiness is: %.2f\n", $Score;

close $fileHandle_writing;

69

Bibliography

[1] Charles W. Krueger. Software reuse. ACM Computing Surveys, 1992.

[2] Ye Yang, Qing Wang, and Mingshu Li. Process trustworthiness as a capability
indicator for measuring and improving software trustworthiness. Lab for Internet
Software Technology, Institute of Software Chinese Academy of Sciences.

[3] Tim Boland, Charline Cleraux, and Elizabeth Fong. Toward a preliminary frame-
work for assessing the trustworthiness of software. National Institute of Standards
and Technology U.S. Department of Commerce, November 2010.

[4] Edward Amoroso and Carol Taylor. A process-oriented methodology for assessing
and improving software trustworthiness. Proceedings of the 2nd ACM Conference
on Computer and communications security, Virginia, USA, pp. 39-50, 1994.

[5] The heartbleed bug. http://heartbleed.com/.

[6] Thomas J. McCabe. A complexity measure. IEE Transactions of Software En-
genieering, Vol. SE-2, NO. 4, 1976.

[7] Hassan Raza Bhatti. Automatic measurement of source code complexity. Master’s
thesis, Lulea University of Technology.

[8] Steve McConnell. Code Complete. Microsoft Press, 2004.

[9] Bev Littlewood. Mtbf is meaningless in software reliability. Reliability, IEEE Trans-
actions on, vol.24, no.1, pp.82-82, 1975.

[10] Ross Anderson. Why information security is hard - an economic perspective.

[11] Trusted Computer System Evaluation Criteria (TCSEC). United States Depart-
ment of Defense Standard., 1985.

[12] Common Criteria for Information Techonology Security Evaluation.

[13] Systems Security Engineering Capability Maturity Model (SSE-CMM). Interna-
tional Systems Security Engineering Association.

[14] Neuhaus S and Zimmermann T et al. Predicting vulnerable software components.
Computer and communications security, 2007.

[15] Debian Policy Manual. Declaring relationships between packages. https://www.

debian.org/doc/debian-policy/ch-relationships.html.

70

http://heartbleed.com/
https://www.debian.org/doc/debian-policy/ch-relationships.html
https://www.debian.org/doc/debian-policy/ch-relationships.html

Bibliography

[16] Common vulnerability scoring system v3.0: Specification document. https://www.
first.org/cvss/specification-document.

[17] National Institute of Standards and Technology (NIST). National vulnerability
datadata (nvd). https://web.nvd.nist.gov/.

[18] Viet Hung Nguyen and Le Minh Sang Tran. Predicting vulnerable software com-
ponents with dependency graphs.

[19] Irshad Ahmad Mir and S.M.K Quadri. Analysis and evaluating security of
component-based software development: A security metrics framework. I. J. Com-
puter Network and Information Security,, 2012.

[20] Siobhan O’Mahony. The governance of open source initiatives: what does it mean
to be community managed? Springer Science+Business Media B.V. 2007, 14 June
2007.

[21] Xavier Franch, Angelo Susi, and Maria C. Annosi. Managing risk in open source
software adoption.

[22] Eric Steven Raymond. The cathedral and the bazaar.

[23] Ross Gardler and Gabriel Hanganu. Governance models. http://oss-watch.ac.

uk/resources/governancemodels.

[24] Thomas Hofer. Evaluating static source code analysis tools. Master’s thesis, Ecole
Polytechnique Federale de Lausanne, 2007.

[25] Thomas Zimmermann Christian Bird, Tim Menzies. The Art and Science of Ana-
lyzing Software Data. Elsevier, 2015.

[26] Dan Rathbun. Gathering security metrics and reaping the rewards. SANS Institute,
2009.

[27] Microsoft. Definition of a security vulnerability. https://msdn.microsoft.com/

en-us/library/cc751383.aspx.

[28] MITRE. Common vulnerabilities and exposures. https://cve.mitre.org/.

[29] rpm. Dependencies. http://www.rpm.org/wiki/PackagerDocs/Dependencies.

71

https://www.first.org/cvss/specification-document
https://www.first.org/cvss/specification-document
https://web.nvd.nist.gov/
http://oss-watch.ac.uk/resources/governancemodels
http://oss-watch.ac.uk/resources/governancemodels
https://msdn.microsoft.com/en-us/library/cc751383.aspx
https://msdn.microsoft.com/en-us/library/cc751383.aspx
https://cve.mitre.org/
http://www.rpm.org/wiki/PackagerDocs/Dependencies

	1 Motivación
	2 Introducción
	3 Estado actual
	3.1 Métricas
	3.2 CVE
	3.3 CVSS

	4 Análisis
	5 Diseño
	5.1 CVE
	5.2 CVSS
	5.3 Puntuación
	5.3.1 DependencyScore
	5.3.2 FinalScore

	6 Implementación yevaluación
	7 Conclusiones
	1 Abstract
	1.1 Acknowledgments

	2 Introduction
	2.1 Background
	2.2 Dependencies
	2.2.1 Dependency hell

	2.3 Trustworthiness
	2.4 Purpose
	2.5 Proposed solution
	2.5.1 Number of dependencies
	2.5.2 CVE
	2.5.3 CVSS

	2.6 Evaluation
	2.7 Project plan

	3 State of the art
	3.1 Quality of software
	3.1.1 Cyclomatic Complexity
	3.1.2 Source Line of Code
	3.1.3 Bugs per line code
	3.1.4 Code coverage
	3.1.5 Mean Time Between Failures and Reliability

	3.2 Trustworthiness
	3.3 CVE
	3.3.1 How are the CVE assigned?
	3.3.2 CVE-ID Syntax

	3.4 What is CVSS?
	3.4.1 Base Metrics
	3.4.2 Temporal Metrics
	3.4.3 Environmental Metrics
	3.4.4 How is CVSS calculated?

	3.5 Dependency graph
	3.6 Summary

	4 Analysis
	4.1 Trust management
	4.1.1 Approaches for trust management

	4.2 Team
	4.2.1 Contribution models
	4.2.2 Governance models
	4.2.3 Metrics

	4.3 Code analysis
	4.4 Track record of the dependencies
	4.5 Summary

	5 Design
	5.1 Metrics
	5.1.1 Security metrics

	5.2 Metrics for the assessment
	5.3 Number of dependencies
	5.3.1 Apt
	5.3.1.1 Apt-rdepends
	5.3.1.2 Types of dependencies

	5.3.2 Assessment

	5.4 CVE
	5.5 CVSS
	5.6 Score
	5.6.1 Dependency score
	5.6.1.1 Vulnerability sub score
	5.6.1.2 Severity sub score

	5.6.2 Final score

	6 Implementation and evaluation
	6.1 Contributions
	6.1.1 cve-search
	6.1.2 Black Duck Open Hub
	6.1.3 Linear regression
	6.1.4 Considerations

	6.2 Evaluation
	6.2.1 Evaluating the DependencyScore
	6.2.2 Evaluating the FinalScore

	7 Conclusions
	7.1 Future work

	Appendix A Appendices
	A.1 CVSS
	A.1.1 Base Score
	A.1.1.1 Calculations
	A.1.1.2 Metrics and Scores

	A.1.2 Temporal Metrics
	A.1.2.1 Calculations
	A.1.2.2 Metrics and Scores

	A.1.3 Environmental Metrics
	A.1.3.1 Calculations
	A.1.3.2 Metrics and Scores

	A.2 Source Code
	A.2.1 Directions
	A.2.2 Code

