
materials

Article

Hybrid ABC Optimized MARS-Based Modeling of
the Milling Tool Wear from Milling Run
Experimental Data

Paulino José García Nieto 1,*, Esperanza García-Gonzalo 1, Celestino Ordóñez Galán 2 and
Antonio Bernardo Sánchez 3

1 Department of Mathematics, Faculty of Sciences, University of Oviedo, C/Calvo Sotelo s/n,
33007 Oviedo, Spain; lato@orion.ciencias.uniovi.es

2 Department of Mining Exploitation, University of Oviedo, 33004 Oviedo, Spain; ordonezcelestino@uniovi.es
3 Department of Mining Technology, Topography and Structures, University of León, 24071 León, Spain;

antonio.bernardo@unileon.es
* Correspondence: lato@orion.ciencias.uniovi.es; Tel.: +34-985-103417; Fax: +34-985-103354

Academic Editors: Jai-Sung Lee and J. Paulo Davim
Received: 18 November 2015; Accepted: 25 January 2016; Published: 28 January 2016

Abstract: Milling cutters are important cutting tools used in milling machines to perform milling
operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid
model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a
milling tool is proposed. The model was based on the optimization tool termed artificial bee
colony (ABC) in combination with multivariate adaptive regression splines (MARS) technique.
This optimization mechanism involved the parameter setting in the MARS training procedure,
which significantly influences the regression accuracy. Therefore, an ABC–MARS-based model was
successfully used here to predict the milling tool flank wear (output variable) as a function of the
following input variables: the time duration of experiment, depth of cut, feed, type of material,
etc. Regression with optimal hyperparameters was performed and a determination coefficient of 0.94
was obtained. The ABC–MARS-based model's goodness of fit to experimental data confirmed the
good performance of this model. This new model also allowed us to ascertain the most influential
parameters on the milling tool flank wear with a view to proposing milling machine's improvements.
Finally, conclusions of this study are exposed.

Keywords: multivariate adaptive regression splines (MARS); artificial bee colony (ABC); statistical
learning techniques; milling tool wear monitoring; hyperparameter selection; regression analysis

1. Introduction

Machine tools play main roles in modern society. Due to the quick development of the industry
and standard of living, it is required more and more that the machine tools have to be safe, reliable,
economical, and intelligent. However, several problems may appear, leading to the blockage of the
equipment and giving place to serious accidents. In order to avoid accidents, it is mandatory to carry
out a scheduled preventive maintenance on the machine tool, which will increase the total operation
costs. For this reason, wear failure diagnosis has been accepted completely by the companies since the
1980s. Indeed, machinability can be expressed as the easiness or difficulty in a machining operation
involving cutting conditions such as cutting speed, feed rate, and depth of cut. The tool wear describes
the gradual failure of cutting tools due to regular operation. Specifically, flank wear is a type of wear
in which the portion of the tool in contact with the finished part erodes. Therefore, milling cutters are
essential components used in milling machines, which are prone to wear and the subsequent failure.

Materials 2016, 9, 82; doi:10.3390/ma9020082 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://www.mdpi.com/journal/materials


Materials 2016, 9, 82 2 of 17

Some general effects of tool wear include increased cutting forces, increased cutting temperatures,
poor surface finish, decreased accuracy of finished part, tool breakage, and a change in tool geometry.
Therefore, it is very important to be able to predict the wear of this component before failure, preventing
serious accidents [1–3].

Milling is the machining process of using rotary cutters to remove material from a workpiece
advancing (or feeding) in a direction at an angle with the axis of the tool. It is one of the most
commonly used processes in industry today for machining parts to precise sizes and shapes. After the
advent of computer numerical control (CNC), milling machines evolved into machining centers
(milling machines with automatic tool changers, tool magazines or carousels, CNC control, coolant
systems, and enclosures), generally classified as vertical machining centers (VMCs) and horizontal
machining centers (HMCs). Indeed, the milling process removes material by performing many
separate, small cuts. Note that a high-quality product often implies a high-quality surface finish and
dimensional accuracy. Ideally, a sharp tool should be maintained at all times. A worn tool also results
in more friction which, in turn, results in higher cutting temperatures. Unwanted effects may arise
from these temperatures, e.g., it may produce untemperedmartensite in heat treatable steel [1–3].

Therefore, the motivations behind this study from the technological and economical points of
view can be the minimizing of milling's total cost (which can be measured by the total cost of replacing
all worn tools during a production period), maximizing of productivity (which can be measured by
the total number of parts produced per period), and maximizing of quality of cutting.

In order to produce quality product, a cutting tool must have three characteristics:

‚ Hardness: hardness and strength at high temperatures.
‚ Toughness: so that tools do not chip or fracture.
‚ Wear resistance: having acceptable tool life before needing to be replaced.

Some materials commonly used in milling tools as cutters are: high-speed steels, carbon tool steels,
cast cobalt alloys, cemented carbide, ceramics, etc. Therefore, the milling tool wear has to be controlled.
In order to estimate the best conditions, i.e., the values of the most influential parameters in milling
machines, as well as to predict the milling tool wear, the flank wear was predicted from the other
operation parameters [1–4] by applying an innovative and new regression technique described here.

Indeed, the main goal of this research work was to obtain the dependence relationship of the
milling tool wear (output variable) as a function of the ten milling operation input variables [1–3]
indicated later. Different methods have been used previously to tackle this kind of problem,
such as linear regression [5,6], neural networks [6–10], support vector machines [11,12], genetic
programming [13–16], and so on. The objective of this study is to evaluate the application of
multivariate adaptive regression splines (MARS) in combination with the artificial bee colony (ABC)
optimization technique to identify the milling tool flank wear (see Figure 1). On the one hand, the
MARS technique is based on the statistical learning theory and is a new class of model that can be
used to predict values in very different areas [17–21]. It is a non-parametric regression technique and
can be seen as an extension of linear models that automatically models nonlinearities and complex
interactions between variables. Some motivations behind the application of the proposed method with
respect to other already existing techniques are as follows: (1) MARS models are more flexible than
linear regression models; (2) MARS models are simple to understand and interpret; (3) MARS can
handle both continuous and categorical data; (4) MARS models tend to have a good bias-variance
trade-off; and (5) MARS models give us an explicit mathematical formula of the dependent variable
as a function of the independent variables through an expansion of basis functions (hinge functions
and products of two or more hinge functions). This last feature is a fundamental difference compared
to other alternative methods because most of them behave like a black box. On the other hand, the
artificial bee colony (ABC) technique is an optimization algorithm based on the intelligent foraging
behavior of honey bee swarm [22–24]. The only limitation of this model is due to its special feature
being a data-driven technique.
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as an entry cut and an exit cut. Data sampled by three different types of sensors (acoustic emission 

sensor, vibration sensor, current sensor) were acquired at several positions [1–4]. The data is 

organized in a MATLAB structure array [25] with fields as shown in Table 1 below: 

Table 1. Structure field names and description. 

Field Name Description 
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run Counter for experimental runs in each case 

VB (mm) 
Flank wear, measured after runs; Measurements for VB were not taken 

after each run 

Time (mm) Duration of experiment (restarts for each case) 

DOC (mm) Depth of cut (does not vary for each case) 
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AE_spindle Acoustic emission at spindle 

There are 16 cases with a varying number of runs. The number of runs was dependent on the 

degree of flank wear that was measured between runs at irregular intervals up to a wear limit (and 

sometimes beyond). Flank wear was not always measured and at times when no measurements 

were taken, no entry was made. The sixteen cases are enumerated in Table 2. 

Figure 1. Vertical milling machine: (1) milling cutter; (2) spindle; (3) top slide or over arm; (4) column;
(5) table; (6) Y-axis slide; (7) knee; and (8) base.

In summary, this paper is organized as follows: firstly, Section 2 describes the materials, methods
and dataset; then, Section 3 presents and discusses the results of the new hybrid ABC–SVM-based
method; and finally, Section 4 presents the main conclusions of this research work.

2. Materials and Methods

2.1. Experimental Datasets

The dataset represents experiments from runs on a milling machine under various operating
conditions (see Appendix A). In particular, tool wear was investigated here in a regular cut, as well
as an entry cut and an exit cut. Data sampled by three different types of sensors (acoustic emission
sensor, vibration sensor, current sensor) were acquired at several positions [1–4]. The data is organized
in a MATLAB structure array [25] with fields as shown in Table 1 below:

Table 1. Structure field names and description.

Field Name Description

case Case number (1–16)
run Counter for experimental runs in each case

VB (mm) Flank wear, measured after runs; Measurements for VB were not taken after each run
Time (mm) Duration of experiment (restarts for each case)
DOC (mm) Depth of cut (does not vary for each case)

Feed (mm/rev) Feed (does not vary for each case)
Material Material (does not vary for each case)
smcAC AC spindle motor current
smcDC DC spindle motor current

vib_table Table vibration
vib_spindle Spindle vibration

AE_table Acoustic emission at table
AE_spindle Acoustic emission at spindle

There are 16 cases with a varying number of runs. The number of runs was dependent on
the degree of flank wear that was measured between runs at irregular intervals up to a wear limit
(and sometimes beyond). Flank wear was not always measured and at times when no measurements
were taken, no entry was made. The sixteen cases are enumerated in Table 2.
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Table 2. Experimental conditions.

Case Depth of Cut (mm) Feed (mm/rev) Workpiece Material

1 1.5 0.5 cast iron
2 0.75 0.5 cast iron
3 0.75 0.25 cast iron
4 1.5 0.25 cast iron
5 1.5 0.5 steel
6 1.5 0.25 steel
7 0.75 0.25 steel
8 0.75 0.5 steel
9 1.5 0.5 cast iron
10 1.5 0.25 cast iron
11 0.75 0.25 cast iron
12 0.75 0.5 cast iron
13 0.75 0.25 steel
14 0.75 0.5 steel
15 1.5 0.25 steel
16 1.5 0.5 steel

The setup of the experiment is as depicted in Figure 2 below. The basic setup encompasses the
spindle and the table of the Matsuura machining center MC-510V. An acoustic emission sensor and a
vibration sensor are each mounted to the table and the spindle of the machining center. The signals from
all sensors are amplified and filtered, then fed through two root mean square (RMS) converters before
they enter the computer for data acquisition. The signal from a spindle motor current sensor is fed into
the computer without further processing. The matrix for the parameters chosen for the experiments
were guided by industrial applicability and recommended manufacturer’s settings. Therefore, the
cutting speed was set to 200 m/min which is equivalent to 826 rev/min. Two different depths of cut
were chosen, 1.5 mm and 0.75 mm.
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Figure 2. Experimental setup.

Additionally, two feeds were taken, 0.5 mm/rev and 0.25 mm/rev which translate into
413 mm/min and 206.5 mm/min, respectively. Two types of workpiece material, cast iron and
stainless steel J45, were used. Furthermore, a 70 mm face mill with sixinserts KC710 was chosen
as the cutting tool. The insert KC710 is coated with multiple layers of titanium carbide, titanium
carbon nitride, and titanium nitride (TiC/TiC-N/TiN) in sequence. These layers retain the toughness
of tungsten carbide but have improved resistance to cratering and edge wear. At the same time, they
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have the advantage of titanium carbide plus reduced face friction. These choices equal eightdifferent
settings. All experiments were done a second time with the same parameters with a second set of
inserts. The size of the workpieces was 483 ˆ 178 ˆ 51 mm.

2.1.1. Data Acquisition and Processing

As described in the previous section, the data were sent through a high speed data acquisition
board with maximal sampling rate of 100 kHz. The sampled output of the data was used for the
signal processing software. LabVIEW® [26] was used for this task. This software is a general purpose
programming development system which uses a graphical language (G). With G, programs are created
in block diagram form. The chosen layout has allowed for data acquisition, storage, presentation, and
processing. Data were stored to allow for real time simulation, and also later analysis.

Several sensor signals underwent preprocessing. In most cases, the signal was amplified to be
able to meet threshold requirements of equipment. In particular, the signals from the acoustic emission
sensors and from the vibration sensors were amplified to be in the range of ˘5 V for maximum load,
considering the maximum allowable range of the equipment. The signals were filtered by a high-pass
filter, the vibration sensor signals were additionally filtered with a low-pass filter. Corner frequencies
were chosen according to the noise that could be observed on an oscilloscope. Periodical noise of
180 Hz was observed on the oscilloscope for the vibration signal corresponding to the third harmonic
of the main power supply. Therefore, the chosen corner frequency for the low-pass filter was 400 Hz.
For the high-pass filter, 1 kHz was chosen. Above 8 kHz, the range of the acoustic emission sensor
ends. That is, readings above that frequency cannot be attributed to any occurrence in the machining
process. Since it clutters the signal unnecessarily, it was filtered out. Acoustic emission and vibration
signals were fed through an RMS device. Its use smoothes the signal and makes it more accessible to
signal processing. The root mean square (RMS) is a statistical measure of the magnitude of a varying
quantity and it is proportional to the energy contents of the signal. The RMS of a function f for a period
of time is defined by [1–4]:

RMS “

g

f

f

f

e

1
∆T

∆T
ż

0

f 2 ptq dt (1)

where ∆ T is time constant and f ptq the signal function. In this case, as the data is discrete the formula
used was [1–4]:

RMS “

g

f

f

e

1
n

n
ÿ

k“1

p f ptkqq
2 (2)

wheren is the number of samples. There are only a value of the variables case, run, VB, and time per
each structure array in the dataset. Furthermore, variables DOC, Feed, and Material do not vary within
each case. Additionally, variables smcAC, smcDC, vib_table, vib_spindle, AE_table, and AE_spindle are
curves with 9000 points each. The RMS has been obtained for each of these curves in order to have
only one value per each one of the other variable values.

2.1.2. Tool Wear

In an industrial process, the manufacturing of a high-quality product often involves a high-quality
surface finish and dimensional accuracy. Therefore, a sharp tool must be kept at all times. A cutting
tool in disrepair deforms the surface to a greater depth and may tear the surface which, in turn,
may lower the fatigue resistance. Additionally, a cutting tool with considerable wear also results in
more friction which in turn results in higher cutting temperatures. Indeed, undesirable effects may
occur from these temperatures such as the presence of untemperedmartensite in heat treatable steel.
Therefore, tool wear has to be controlled [1–4].
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Tool wear comes in different forms. Apart from the intuitive rounding of the cutting edge,
crater wear on the rake face due to the abrasion of the sliding of the chip on the rake face and flank
wear due to friction of the tool on the workpiece occur [27,28]. Speed of cutting, more than other
parameters, influence the rate of wear; depth of cut and feed rate also affect the tool life. In our
experiments, we measured the flank wear VB as a generally-accepted parameter for evaluating tool
wear (see Figure 3) [1–4,27–29].
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Figure 3. Tool wear VB as it is seen on the insert.

The flank wear VB is measured as the distance from the cutting edge to the end of the abrasive
wear on the flank face of the tool. The flank wear was observed during the experiments. The insert
was taken out of the tool and the wear was measured with the help of a microscope.

2.2. Multivariate Adaptive Regression Spline (MARS)

Multivariate adaptive regression splines (MARS) is a multivariate nonparametric classification/
regression technique [17–21]. Its main purpose is to predict the values of a continuous dependent
variable, y pnˆ 1q, from a set of independent explanatory variables, Xpnˆ pq. The MARS model can
be represented as:

y “ f pXq ` e (3)

wheref is a weighted sum of basis functions that depend on X and e is an error vector of dimension
pnˆ 1q. MARS can be considered as a generalization of classification and regression trees (CART) [20]
and is able to overcome some limitations of CART. MARS model does not require any a priori
assumptions about the underlying functional relationship between dependent and independent
variables. Instead, this relation is uncovered from a set of coefficients and piecewise polynomials
of degree q (basis functions) that are entirely driven from the regression data pX, yq. The MARS
regression model is constructed by fitting basis functions to distinct intervals of the independent
variables. Generally, piecewise polynomials, also called splines, have pieces smoothly connected
together. In MARS terminology, the joining points of the polynomials are called knots, nodes, or
breakdown points. These will be denoted by the small letter t. For a spline of degree q each segment
is a polynomial function. MARS uses two-sided truncated power functions as spline basis functions,
described by the following equations [17–21]:

r´ px´ tqsq` “

#

pt´ xqq i f x ă t

0 otherwise
(4)

r` px´ tqsq` “

#

pt´ xqq i f x ě t

0 otherwise
(5)

where q pě 0q is the power to which the splines are raised and which determines the degree of
smoothness of the resultant function estimate. When q “ 1, which is the case in this study, only simple
linear splines are considered. A pair of splines for q “ 1 at the knot t “ 3.5 is presented in Figure 4.
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Figure 4. A graphical representation of a spline basis function. The left spline (x ă t, ´px´ tq) is
shown as a dashed line and the right spline (x ą t, `px´ tq) as a solid line.

The MARS model of a dependent variable y with M basis functions (terms) can be written
as [30–36]:

ŷ “ f̂M pxq “ c0 `

M
ÿ

m“1

cmBm pxq (6)

where ŷ is the dependent variable predicted by the MARS model, c0 is a constant, Bm pxq is the m-th
basis function, which may be a single spline basis functions, and cm is the coefficient of the m-th basis
functions. Both variables to be introduced into the model and the knot positions for each individual
variable have to be optimized. For a data set X containing n objects and p explanatory variables, there
are N “ nˆ p pairs of spline basis functions, given by Equations (4) and (5), with knot locations
xij(i “ 1, 2, ..., n; j “ 1, 2, ..., p).

A two-step procedure is followed to construct the final model. First, in order to select the
consecutive pairs of basis functions of the model, a two-at-a-time forward stepwise procedure is
implemented [17–21]. This forward stepwise selection of basis functions leads to a very complex
and overfitted model. Such a model, although it fits the data well, has poor predictive abilities for
new objects. To improve the prediction, the redundant basis functions are removed one at a time
using a backward stepwise procedure. To determine which basis functions should be included in the
model, MARS utilizes the generalized cross-validation (GCV) [30–36]. In this way, the GCV is the mean
squared residual error divided by a penalty dependent on the model complexity. The GCV criterion is
defined in the following way [17–21,33–36]:

GCV pMq “

1
n

n
ř

i“1

´

yi ´ f̂M pxiq
¯2

p1´ C pMq {nq2
(7)

where C pMq is a complexity penalty that increases with the number of basis functions in the model
and which is defined as [30–36]:

C pMq “ pM` 1q ` d M (8)
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whereM is the number of basis functions in Equation (6), and the parameter d is a penalty for each
basis function included into the model. It can be also regarded as a smoothing parameter. Large values
of d lead to fewer basis functions and therefore smoother function estimates.

Once the MARS model is constructed, it is possible to evaluate the importance of the explanatory
variables used to construct the basis functions. Establishing predictor importance is in general a
complex problem which in general requires the use of more than one criterion. In order to obtain
reliable results, it is convenient the use of the GCV parameter explained before together with the
parameters Nsubsets (criterion counts the number of model subsets in which each variable is included)
and the residual sum of squares RSS [17–21,33–36].

2.3. The Artificial Bee Colony (ABC) Algorithm

The algorithmArtificial Bee Colony (ABC) is an evolutionary optimization algorithm inspired in
the behavior of bees foraging food sources [22,23,37]. In the evolutionary algorithms, a population of
possible solutions evolves with the iterations toward the optimum using a strategy that involves some
random component [22,23,37]. The ABC is also in the group of swarm intelligence algorithms that
is characterized by the sharing of information between the individuals in the swarm or population.
Indeed, in the ABC technique, the colony consists of three groups of bees: employed bees, onlookers,
and scouts. It is assumed that there is only one artificial employed bee for each food source. In other
words, the number of employed bees in the colony is equal to the number of food sources around the
hive. After going to their food source, employed bees come back to the hive and they dance. If a food
source has been abandoned, the employed becomes a scout and starts to search for a new food source.
Onlookers observe the dances and proceed to choose food sources following the indications of the
dances. Therefore, ABC considers three phases [22–24,37]:

‚ The employed bee phase: each food source is foraged by employed bees.
‚ The onlooker bee phase: they choose a food source watching the dance of employed bees within

the hive. The foraging is supervised and sometimes corrected by the onlooker.
‚ The scout bee phase: the depleted sources are discarded and the scout bees search for new

food sources.

The N food sources are the possible set of solutions and are represented by the vectors pi.
It represents its position in the search space of possible solutions. The food source dimension is the
number of parameters of the optimization problem. The algorithm initializes the food sources or
possible solutions of the problem randomly in a plausible hypercube and the fitness of each food
source is evaluated. The relation between the objective function f and the fitness of a food source is
given by (see Figure 5):

Fitness pF ppiqq “

$

&

%

1
1` F ppiq

i f F ppiq ą 0

1` |F ppiq| i f F ppiq ď 0
i “ 1, ..., N (9)

The lower the objective function value, the higher the fitness. As the algorithm searches for
the highest fitness of a food source, it searches a minimum for the objective function. If we want
to maximize a function g, the objective function, must be F “ ´ g and then a maximum of g is a
minimum of F.
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2.3.1. The Employed Bee Phase

In the first phase the employed bees forage the food sources and tryto introduce a variation of
every i food source according to the equation [22–24,37]:

vij “ pij ` Rij

´

pkj ´ pij

¯

(10)

wherej is the randomly chosen parameter we are modifying, k a randomly chosen food source different
from i, and Rij a number chosen randomly in r´1, 1s. Once calculated vij, its fitness is obtained. If this
is higher than f itness

`

F
`

pij
˘˘

, its value is changed to vij and the trial counter set to one. If not, the
value of the food source does not change and the trial counter is increased.

2.3.2. The Onlooker Bee Phase

For each food source pi, we draw a number ri in r0, 1s. If ri ă probi, we try again to change one
parameter in the food source. The quantity probi is obtained from the fitness of this food source as
follows [22–24,37]:

probi “
0.9 Fitness pF ppiqq

max
k“1,...,N

pFitness pF ppkqqq
` 0.1 (11)

2.3.3. The Scout Bee Phase

If after a determined number of trials a food source is not improved, it is discarded and a new
one is randomly chosen from the initial search space. The food source with the highest fitness is the
temporal optimum in this iteration [22–24,37].

This cycle is continued until a stopping criterion is met. In the present case, the stopping condition
has been a maximum number of iterations and the repetition of the optimum for a determined number
of iterations. If this occurs, it is assumed that the algorithm has already converged.

2.4. The Goodness-of-Fit of This Approach

The operation input variables considered in this research work are shown in Table 3 [1–4].
Therefore, the total number of predicting variables used to build the hybrid ABC–MARS-based model
was nine. The output predicted variable is the flank wear (VB) measured in mm. The VB missing
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values have been removed and 145 samples remain (see Appendix A). Furthermore, the input variable
material is a categorical variable.

Table 3. Operation input variables used in this study and their names.

Input Variables Name of the Variable

Time (mm) Time
Depth of cut (mm) DOC

Feed (mm/rev) Feed
Material Material

AC spindle motor current smcAC
Table vibration vib_table

Spindle vibration vib_spindle
Acoustic emission at table AE_table

Acoustic emission at spindle AE_spindle

To estimate flank wear (VB) from other operation parameters it is important to select the model that
best fits the experimental data [27–29,38,39]. To measure the goodness-of-fit the criterion considered
was the coefficient of determination R2 [38,39]. This ratio indicates the proportion of total variation in
the dependent variable explained by the model (flank wear in our case). A dataset takes values ti, each
of which has an associated modelled value yi. The former are called the observed values and the latter
are often referred to as the predicted values. Variability in the dataset is measured through different
sums of squares [38,39]:

‚ SStot “
n
ř

i“1

`

ti ´ t
˘2: the total sum of squares, proportional to the sample variance.

‚ SSreg “
n
ř

i“1

`

yi ´ t
˘2: the regression sum of squares, also called the explained sum of squares.

‚ SSerr “
n
ř

i“1
pti ´ yiq

2: the residual sum of squares.

In the previous sums, t is the mean of the n observed data:

t “
1
n

n
ÿ

i“1

ti (12)

Bearing in mind the above sums, the general definition of the coefficient of determination is:

R2 ” 1´
SSerr

SStot
(13)

A coefficient of determination value of 1.0 indicates that the regression curve fits the data perfectly.
Furthermore, it is well known that the MARS technique is strongly dependent on the following

hyperparameters [17–21,33–36]:

‚ Maximum number of basis functions (Maxfuncs): maximum number of model terms before
pruning, i.e., the maximum number of terms created by the forward pass.

‚ Penalty parameter (d): is the Generalized Cross Validation (GCV) penalty per knot. A value of 0
penalizes only terms, not knots. The value ´1 means no penalty.

‚ Interactions: maximum degree of interaction between variables.

Some methods often used to determine suitable hyperparameters are [17–21,33–36]: grid search,
random search, Nelder-Mead search, heuristic search, genetic algorithms, pattern search, etc. In this
research work, the artificial bee volony (ABC) technique was applied [22–24,37].
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To fix ideas, a novel hybrid ABC-MARS-based model was applied to predict the milling tool wear
(output variable) from the other nine remaining variables (input variables) in a milling process [1–4],
studying their influence in order to optimize its calculation through the analysis of the coefficient of
determination R2 with success. Figure 6 shows the flowchart of this new hybrid ABC-MARS-based
model developed in this study.
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Cross-validation was the standard technique used here for finding the real coefficient
ofdetermination (R2) [38–40]. Indeed, in order to guarantee the prediction ability of the
ABC-MARS-based model, an exhaustive 10-fold cross-validation algorithm was used [40]. The referred
algorithm consists in splitting the sample into 10 parts and using nineof them for training and the
remaining one for testing. This process was performed 10 times using each of the parties of the
10 divisions for testing and calculating the average error. Therefore, all the possible variability of
ABC-MARS-based model parameters has been evaluated in order to get the optimum point, looking
for those parameters that minimize the average error.

The regression modeling has been performed with multivariate adaptive regression splines
(MARS) method, using the Earth library [41] together with the ABC technique with the ABCOptim
package [42] from the R Project. The bounds (initial ranges) of the space of solutions used in ABC
technique are shown in Table 4. Twenty bees and ten food sources have been used in the ABC
optimization. The stopping criteria have been 20 iterations with unchanged results of the coefficient
of determination R2 along with a maximum number of 500 iterations. The problem was solved in a
computer with a Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz with 7.7 GB of RAM and Ubuntu 14.04
LTS operating system.
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Table 4. Initial ranges of the three hyperparameters of the ABC–MARS-based model fitted in this study.

MARS Hyperparameters Lower Limit Upper Limit

Maximum number of basis functions (MaxFuncs) 3 200
Penalty parameter (d) ´1 4

Interactions 1 6

To optimize the MARS parameters, the ABC module is used. The ABC searches for the best
Maxfuncs, Penalty, and Interactions parameters by comparing the cross-validation error in every
iteration. The search space is organized in three dimensions, one for each parameter. The main fitness
factor or objective function is the coefficient of determination (R2).

3. Analysis of Results and Discussion

Table 5 shows the optimal hyperparameters of the best fitted ABC–MARS-based model found
with the artificial bee colony (ABC) technique.

Table 5. Optimal hyperparameters of the best fitted MARS model found with the ABC technique.

Hyperparameters Optimal Values

MaxFuncs 129
Penalty (d) 3
Interactions 2

The results of the best fitted ABC–MARS-based model computed using all the available data
observations are shown in Table 6. Table 6 shows a list of 23 main basis functions for fitted
ABC-MARS-based model and their coefficients, respectively. Please note that h pxq “ x if x ą 0 and
h pxq “ 0 if x ď 0. Therefore, the MARS model is a form of nonparametric regression technique and
can be seen as an extension of linear models that automatically models nonlinearities and interactions
asa weighted sum of basis functions called hinge functions [30–36].

Table 6. List of basis functions of the best fitted ABC–MARS–based model for the tool flank wear (VB)
and their coefficients ci .

Bi Definition ci

B1 1 ´0.0591
B2 DOC 2.1405
B3 Feed 0.1739
B4 Material2 0.6330
B5 h(smcAC ´ 1.9747) ´0.3452
B6 h(2.4182 ´ smcAC) ´1.7527
B7 h(smcAC ´ 2.4182) 3.0985
B8 h(9 ´ Time)ˆDOC ´0.0139
B9 h(Time ´ 9) ˆDOC 0.0100
B10 h(34 ´ Time)ˆMaterial2 ´0.0137
B11 h(Time ´ 34)ˆMaterial2 0.0514
B12 h(smcAC ´ 1.4807)ˆDOC ´2.2377
B13 h(1.4807 ´ smcAC)ˆDOC 2.5430
B14 h(smcAC ´ 2.1822)ˆFeed 0.9637
B15 h(0.3161 ´ vib_spindle)Feed 6.7364
B16 h(0.2111 ´ AE_spindle)ˆMaterial2 ´2.3683
B17 h(AE_spindle ´ 0.2111)ˆMaterial2 0.9884
B18 h(51 ´ Time)ˆh(2.4182 ´ smcAC) 0.0014
B19 h(DOC ´ 0.75)ˆh(2.4182 ´ smcAC) ´2.3128
B20 h(smcAC ´ 2.4182)ˆh(vib_table ´ 1.1543) 5.4917
B21 h(smcAC ´ 2.4182)ˆh(1.1543 ´ vib_table) 0.6416
B22 h(2.4182 ´ smcAC)ˆh(0.3329 ´ vib_table) ´1.4002
B23 h(smcAC ´ 2.4182)ˆh(vib_table ´ 0.2976) ´3.3972
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Furthermore, a graphical representation of the terms that constitute the best fitted
ABC-MARS-based model for the flank wear (VB) can be seen in Figure 7.
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Figure 7. Graphical representation of the terms that constitute the MARS model for the tool flank
wear (VB): (a) first order term of the predictor variable Depth of cut (DOC); (b) first order term of the
predictor variable Feed; (c) first order term of the predictor variable AC spindle motor current (smcAC);
(d) first order term of the predictor variable Material; (e) second order term of the predictor variables
Time and Depth of cut; (f) second order term of the predictor variables Time and AC spindle motor
current (smcAC); (g) second order term of the predictor variables Time and Material; (h) second order
term of the predictor variables Depth of cut (DOC) and Feed; (i) second order term of the predictor
variables Feed and AC spindle motor current (smcAC); (j) second order term of the predictor variables
Feed and Spindle vibration (vib_spindle); (k) second order term of the predictor variables AC spindle
motor current (smcAC) and Table vibration (vib_table); (l) second order term of the predictor variables
AC spindle motor current (smcAC) and Spindle vibration (vib_spindle); and (m) second order term of
the predictor variables Acoustic emission at spindle (AE_spindle) and Material.

Additionally, Table 7 shows the determination and correlation coefficients for the ABC-MARS-
based model. An important goodness of fit, that is to say, a good agreement between the model and
the experimental data can be inferred from these results.

Table 7. Coefficient of determination (R2) and correlation coefficient for the hybrid ABC-MARS-based
model fitted in this study.

Hybrid Model Coefficient of Determination (R2)/Correlation Coefficient (r)

ABC–MARS 0.94/0.97
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The significance ranking for the nine input variables predicting the tool flank wear (output
variable) in this high nonlinear complex problem is shown in Table 8 and Figure 8. Thus, for the
MARS model the most significant variables in the flank wear prediction are the time, depth of cut,
and material followed by AC spindle motor current, acoustic emission at spindle, spindle vibration,
feed, and finally table vibration. This model considers that acoustic emission at table values have no
influence in the flank wear prediction.

Table 8. Significance ranking for the variables involved in the best fitted ABC-MARS-based model for
the tool flank wear (VB) prediction according to criteria Nsubsets, GCV, and RSS.

Input Variable Nsubsets GCV RSS

Time 21 95.9 94.2
Depth of cut (DOC) 21 95.9 94.2

Material2 (Steel) 21 95.9 94.2
AC spindle motor current (smcAC) 20 100.0 100.0

Acoustic emission at spindle (AE_spindle) 12 27.7 27.1
Spindle vibration (vib_spindle) 12 21.6 22.5

Feed 10 18.6 19.3
Table vibration (vib_table) 3 6.8 8.1
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Figure 8. Relative importance of the input operation variables to predict the tool flank wear (VB) in the
fitted ABC-MARS-based model.

Finally, this research work was able to predict the milling tool flank wear in agreement to the
actual milling tool wear values observed experimentally using this hybrid ABC-MARS-based model
with great accurateness and success. Indeed, Figure 9 shows the comparison between the flank wear
(VB) in mm measured and flank wear predicted by the ABC–MARS-based model in the milling process
using the optimal hyperparameters calculated previously indicated in Table 5.
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4. Conclusions

Based on the experimental and numerical results, the main findings of this research work can be
summarized as follows:

‚ Firstly, the hypothesis that the milling tool flank wear can be accurately modeled by using a
hybrid ABC–MARS-based model in the industrial milling process was confirmed.

‚ Secondly, a high coefficient of determination equal to 0.94 was obtained when this hybrid
ABC–MARS-based model was applied to the experimental dataset. Indeed, the predicted results
for this model have been proved to be consistent with the historical dataset of observed actual
milling tool wear values (see Figure 9).

‚ Thirdly, the significance order of the input variables involved in the prediction of the milling tool
flank wear was set. This is one of the main findings in this research work. Specifically, the duration
of experiment (Time), Deep of cut (DOC), and Material2 (steel) variables could be considered the
most influential parameters in the prediction of milling tool flank wear in the same proportion,
followed by AC spindle motor current (smcAC), respectively.

‚ Finally, the results verify that the hybrid ABC–MARS-based regression method significantly
improves the generalization capability achievable with only the MARS-based regressor.
Additionally, this hybrid model is a completely generic since its application can be extended
similarly to other processes such as turning, drilling, grinding, etc. Indeed, the extendibility of the
achieved results to other technological situations and machines for exploitation in a real industrial
context is immediate following the methodology previously indicated in this study.

In summary, authors of this research work have confidence that the results obtained in this study
will be useful to promote new future research works in this direction.

Supplementary Materials: Supplementary dataset related to this article can be found at https://dl.dropboxuser
content.com/u/36679320/Milling_dataset.xls.
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