
Benchmarks for Fuzzy Job Shop Problems

Juan José Palacios1, Jorge Puente1, Camino R. Vela1, Inés
González-Rodŕıguezb,∗

aDepartment of Computing, University of Oviedo, Campus de Gijón, 33204, Gijón,
(Spain)

bDept. of Mathematics, Statistics and Computing, University of Cantabria, Av. Los
Castros s/n, 39011, Santander (Spain), Tel: +34 942202201

Abstract

The fuzzy job shop scheduling problem with makespan minimisation is a prob-
lem with a significant presence in the scientific literature. However, a common
meaningful comparison base is missing for such problem. This work intends to
fill the gap in this domain by reviewing existing benchmarks as well as propos-
ing new benchmark problems. First, we shall survey the existing test beds for
the fuzzy job shop, analysing whether they are sufficiently varied and, most
importantly, whether there is room for improvement on these instances — an
essential requirement if the instances are to be useful for the scientific commu-
nity in order to compare and develop new solving strategies. In the light of this
analysis, we shall propose a new family of more challenging benchmark prob-
lems and provide lower bounds for the expected makespan of each instance as
well as reference makespan values obtained with a memetic algorithm from the
literature. The resulting benchmark will be made available so as to facilitate
experiment reproducibility and encourage research competition.

Keywords: Fuzzy sets, Scheduling, Job Shop, Benchmark, Metaheuristics

1. Introduction

Scheduling is with no doubt a research field of great importance, involving
complex combinatorial constraint-satisfaction and optimisation problems and
with relevant applications in industry, finance, welfare, education, etc [53, 61].
In particular, the job shop problem in its numerous variants is a model for
many real problems which has posed and still poses a challenge to the research
community, due to its complexity. As is the case with many hard optimisation
problems, it is usual to resort to metaheuristic techniques that find approximate

∗Corresponding author
Email addresses: palaciosjuan@uniovi.es (Juan José Palacios), puente@uniovi.es

(Jorge Puente), crvela@uniovi.es (Camino R. Vela), gonzalezri@unican.es (Inés
González-Rodŕıguez)

Preprint submitted to Information Sciences July 17, 2015

http://ees.elsevier.com/ins/viewRCResults.aspx?pdf=1&docID=23055&rev=2&fileID=712982&msid={373E98DC-D986-4489-A2CD-F07626F18565}

good solutions [7, 59]. Traditionally, such techniques are empirically evaluated
on several benchmarks of common use which are available to the researchers,
such as the instances from [2, 3, 17, 34] or [58]. Results and comparisons on
these benchmark instances allow to validate the quality of different proposals
and to advance in the quest for better solving methods.

To enhance the applicability of scheduling, part of the research is devoted
to modelling and handling the uncertainty pervading real-world situations [28].
Probability theory is the most extended approach to scheduling with uncer-
tainty. However, it may prove difficult to use in practice due to the quantity
and quality of information needed to elicit probability distributions as well as
to the computational complexity of working with these distributions. An al-
ternative and increasingly popular approach is to use fuzzy sets in the setting
of possibility theory [16, 19, 66], since they provide an acceptable trade-off be-
tween expressivity and computational difficulty. There are in fact numerous
research papers where uncertain durations are represented as fuzzy numbers,
mostly triangular fuzzy numbers, among others, for single machine schedul-
ing [10],[32], parallel machine scheduling [4, 49], flow shop scheduling [9, 31],
open shop scheduling [46], job shop scheduling [18, 24, 35, 45, 52, 54, 55, 60, 71]
and [41], and for flexible job shop scheduling in [40, 48, 64, 65] to mention
but a few. Indeed, the recent review of metaheuristic algorithms to solve fuzzy
job shop problems in [1] highlights the relevance of this topic. Additionally,
fuzzy numbers and, in general, fuzzy intervals, can be linked with traditional
intervals [20], which constitute an alternative approach to modelling uncertain
durations [21].

Unlike the deterministic case, no common test-bed is available for the fuzzy
job shop that allows for fair and meaningful comparisons and assessment of dif-
ferent proposals. Moreover, only a portion of the instances used in the literature
for experimental results are available to the research community. This is an im-
portant issue since, as Beasley puts it in his introduction of the OR-Library “If
a standard set of test problems is available, then algorithms can be compared
on a more realistic basis (with regard to their performance on exactly the same
set of test problems) than would otherwise be so’’[5]. This paper attempts to
contribute to filling this gap. To do that, we start by reviewing and studying the
level of difficulty of the available instances with regard to the most widely used
objective function, the makespan. This will allow us to identify those that are
easy and already solvable with the existing methods, making them unsuitable
for the development of new more powerful metaheuristics. We shall then argue
the necessity of providing a family of more challenging instances. To this end,
we shall fuzzify a well-known benchmark and obtain preliminary results and
lower bounds. The contribution of this paper is thus to identify a benchmark
with the most challenging instances and, consequently, provide a solid basis for
future research on the fuzzy job shop scheduling problem.

In the sequel, after introducing the necessary background on job shop and
fuzzy durations in Section 2, Section 3 includes a review of the existing papers
on fuzzy job shop and the instances used therein to obtain experimental results.
Section 4 is devoted to introduce a common framework that will be used in

2

Section 5 to analyse and evaluate the difficulty of the available instances. Then,
in Section 6 we shall propose a new test-bed and provide first results for future
reference. Finally, in Section 7 we summarise the main conclusions.

2. Background on the Fuzzy Job Shop Scheduling Problem

The job shop scheduling problem, or JSP in short, consists in scheduling a set
of n jobs J1, . . . , Jn to be processed on a set of m physical resources or machines
M1, . . . ,Mm subject to a set of constraints. There are precedence constraints,
so each job Ji, i = 1, . . . , n, consists of m tasks {θi1, . . . , θim} to be sequentially
scheduled. There are also capacity constraints, whereby each task θij requires
the exclusive use of a different machine for its whole processing time without
preemption, i.e. tasks must be processed without interruption. A solution to
this problem is a schedule–an allocation of starting times for all tasks – which is
feasible, in the sense that all constraints hold, and is also optimal according to
some criterion. Here, we shall consider the objective of minimising the makespan
Cmax, that is, the time lag from the start of the first operation until the end of
the last one, as it has been the objective function most used by researchers.

An extension of the JSP is the fuzzy job shop problem or FJSP, where task
durations are taken to be triangular fuzzy numbers, as explained below.

2.1. Uncertain processing times

In real-life applications, it is often the case that the exact time it takes to
process a task is not known in advance. Consider for instance subcontracted ac-
tivities in manufacturing environment, debugging tasks in software engineering
or activities performed by more or less skilled workers. However, based on pre-
vious experience, an expert may have some knowledge (albeit uncertain) about
the duration. The crudest representation for uncertain processing times would
be a human-originated confidence interval. If some values appear to be more
plausible than others, a natural extension is a fuzzy interval or fuzzy number
(cf. [13, 15]).

A fuzzy quantity Q is a fuzzy set on the reals R with membership function
µQ : R → [0, 1]. The α-cuts of a fuzzy quantity are given by Qα = {r ∈ R :
µQ(r) ≥ α}, α ∈ (0, 1], and its support is defined as Q0 = {r ∈ R : µQ(r) > 0}.
A fuzzy interval is a fuzzy quantity whose α-cuts are intervals (bounded or not)
and a fuzzy number M is a fuzzy quantity with compact support and unique
modal value whose α-cuts are closed intervals, denoted Mα = [mα,mα].

The simplest model is a triangular fuzzy number or TFN, using an interval
[a1, a3] of possible values and a modal value a2 in it, so a TFN A, denoted
A = (a1, a2, a3), has a membership function given by:

µA(x) =

x−a1
a2−a1 : a1 ≤ x ≤ a2
x−a3
a2−a3 : a2 < x ≤ a3

0 : x < a1 or a3 < x

(1)

As we shall see, TFNs are widely used in the literature on fuzzy scheduling.

3

2.1.1. Ordering of TFNs

There is no natural relation of total order in the set of TFNs. Hence, in
order to compare different TFNs, several ranking methods have been proposed
in the literature [6, 8].

The membership function µN of a fuzzy number N can be seen as a possi-
bility distribution on the real numbers; this allows to define the expected value
of a fuzzy quantity [27], given for a TFN A by

E[A] =
1

4
(a1 + 2a2 + a3). (2)

It induces a total ordering ≤E on the set of fuzzy intervals [18], where for
any two fuzzy intervals M,N M ≤E N if and only if E[M] ≤ E[N]. The
expected value coincides with the neutral scalar substitute of a fuzzy interval
and can also be obtained as the centre of gravity of its mean value or using the
area compensation method [15]. Additionally, ≤E coincides with several other
ranking methods from the literature as highlighted in [47]. It is also possible to
establish a relation with classical interval comparison in the light of imprecise
probabilities, with ≤E coming down to using Hurwicz criterion on upper and
lower expectations derived from the fuzzy number [12]. This provides us with an
interpretation for comparisons based on ≤E as those corresponding to a decision
maker who keeps an equilibrium between pessimism and optimism.

Related to this is a ranking method widely used in the fuzzy scheduling
literature following the seminal papers of Sakawa et al. [55, 56]. For any TFN
N , we define three defuzzification indices: c1(N) = E[N], c2(N) = n2 and
c3(N) = n3 − n1, so N <R M if c1(N) < c1(M) or else if c1(N) = c1(M) and
c2(N) < c2(M) or else if c1(M) = c1(N), c2(N) = c2(M) and c3(N) < c3(M).

2.1.2. Arithmetic

For the job shop, we essentially need two operations on fuzzy numbers, the
sum and the maximum. These are obtained by extending the corresponding
operations on real numbers using the Extension Principle [14]: for any two
fuzzy numbers M and N and any bivariate function f on the reals,

∀r ∈ R, µf(M,N)(r) = sup{min(µM (r1), µN (r2)) : f(r1, r2) = r} (3)

if f−1(r) 6= ∅, being equal to 0 otherwise.
According to this, the sum of two TFNs M,N is another TFN given by the

following equation [44]:

M +N = (m1 + n1,m2 + n2,m3 + n3) (4)

Unfortunately, computing the maximum of two TFNs is not that simple and
can result cumbersome. Also the result, although guaranteed to be a fuzzy num-
ber, may not be a TFN. In practice, for the sake of simplicity and tractability
of numerical calculations, it is usual to approximate the maximum by a TFN
which is relatively easy to compute. Two methods can be found in the literature
on fuzzy scheduling.

4

The most common approach is to approximate the maximum by the TFN
that results from evaluating this operation on the three defining points of each
TFN, that is, for every M , N TFNs:

max(M,N) ≈ maxI(M,N) = (max(m1, n1),max(m2, n2),max(m3, n3)) (5)

This approximation has been widely used in the scheduling literature, among
others, in [9, 11, 18, 24, 26, 33, 35, 45, 51, 55], or [63].

Some arguments can be given to support this approximation. First, for any
two fuzzy numbers M and N , if f is a bivariate continuous isotonic function,
then F = f(M,N) is another fuzzy number such that

∀α ∈ [0, 1], Fα = [f(mα, nα), f(mα, nα)]. (6)

Computing f(M,N) is then equivalent to computing f on every α-cut. In par-
ticular, the maximum is a continuous isotonic function, so it can be calculated
by evaluating two maxima of real numbers for every value α ∈ [0, 1]. It seems
then natural to approximate the maximum by the TFN that results from using
linear interpolation, evaluating equation (6) only for certain values of α (this
is proposed for 6-point fuzzy numbers in [18]). Given that the defining values
(m1,m2,m3) of a TFN N are such that M0 = [m1,m3] and M1 = [m2,m2], the
approximated maximum as in (5) corresponds to such an interpolation for α = 0
and α = 1. Secondly, if F = max(M,N) denotes the maximum of two TFNs
M and N and G = maxI(M,N) the approximated value by interpolation, then
F = G if M and N do not overlap and, in any case, it holds that

∀α ∈ [0, 1], f
α
≤ g

α
, fα ≤ gα. (7)

The approximated maximum G is thus a TFN which artificially increases the
value of the actual maximum F , but maintaining the support and modal value,
that is, F0 = G0 and F1 = G1. This approximation can be trivially extended
to the case of more than two TFNs.

More recently, it has been proposed in [37] to approximate the maximum of
two TFNs M and N by means of the above ranking method, so max(M,N) ≈
maxR(M,N) where maxR = M if N <R M and maxR(M,N) = N otherwise.
It is not guaranteed that the approximated maximum maintains the support
nor the modal value. However, in [37] and [38] some examples are considered
which lead the author to conclude that “the approximate max obtained by the
new criterion approaches the real max better than that obtained from ” maxI .
Since then, this alternative approximation for the maximum has been adopted
among others in [40, 70, 71] and [64].

It is important to notice that, for any two TFNs N1 and N2, if MI =
maxI(N1, N2) is the maximum approximated by interpolation and MR =
maxR(N1, N2) is the maximum approximated by the ranking method, it is
always the case that mi

R ≤ mi
I for i = 1, 2, 3 and, hence, MR ≤E MI and

MR ≤R MI .

5

3. Review of Existing Benchmarks

In this section we review the existing test-beds for the fuzzy job shop schedul-
ing problem, including information on how the instances have been generated
and whether they are openly available to the research community. A first re-
view of benchmark datasets for fuzzy job shop is already included in [1]; here
we elaborate on the information given in that survey and complement it with
data that allows for fair and rigorous comparisons of different proposals from
the literature. We shall analyse the results reported for those instances, taking
into account both the objective function considered in each case as well as the
fuzzy arithmetic used (maximum approximation and order relation), this being
a key issue for meaningful comparisons. The size of each instance will be given
using the notation n×m, meaning that it consists of n jobs and m machines.

The instances used so far in the literature can be divided in two big groups,
depending on whether they have been generated from scratch (called “original
instances” hereafter) or by fuzzifying well-known benchmark instances from
crisp job shop.

3.1. Original Fuzzy Instances

In this group of test beds we find what is perhaps the most widely used set
of instances for fuzzy job shop, those proposed by Sakawa et al. in [56] and [55].
The first paper provides the data for an instance of size 6×6 and an instance of
size 10×10, while the latter provides three more instances for each size. In both
cases, the original instances also include data regarding job due dates since the
objective functions are at least partially concerned with due-date satisfaction.
In the following, we shall denote the 6 × 6 and 10 × 10 instances from [55] as
S6.1,S6.2,S6.3 and S10.1,S10.2,S10.3 respectively, and the instances from [56] as
S6.4 and S10.4.

This set of 8 problems was originally proposed to test genetic algorithms
and has been later used by several authors to evaluate different metaheuristics
designed for a great variety of objective functions: genetic algorithms with
different codifications in [23, 24], and [36]; particle swarm optimisation [35];
memetic algorithm (MA1) combining a GA with local search [25]; simulated
annealing [63]; differential evolution [29]; and hybrid discrete particle swarm
optimisation (HDPSO) in [41]. Results for makespan minimisation can be found
in [23], where the authors propose a GA using <E and maxI to obtain results
on the instances from [55], and in [50] where the authors propose a shifting
bottleneck hybridised with a GA using <R and maxI . More detailed results
for all 8 instances are obtained in [36] with a random-key based GA, denoted
RKGA using <R and maxR. Finally, in [41] the HDPSO method is compared
with RKGA and a GA from [55] using <R and maxR.

Both in [36] and [41] the authors argue the need of larger instances in order
to verify the ability of their proposals to improve the state-of-the-art. In [36]
the author proposes two instances of size 15 × 10 while in [41] an instance
of size 16 × 16 is proposed, in both cases accompanied by the corresponding

6

results. In the following, we will refer to these instances as Lei01,Lei02 and
LP01 respectively.

3.2. Fuzzified Instances

A second group of instances is obtained by fuzzifying task durations of well-
known benchmarks for crisp JSP. Specifically, the instances considered herein
have been taken from the following test beds: FT from [17], La from [34], ABZ
from [2], and ORB from [3]. To our knowledge, this approach was first adopted
by Fortemps in [18] to generate fuzzy versions of the well-known FT06 and
La11–14. Although the fuzzification method was originally intended to generate
symmetric 6-point fuzzy numbers, it can be easily adapted to generate symmet-
ric TFNs. This is actually done in [23], where durations for FT06 and La11–14
but also for FT10 and FT20, La24 and ABZ7 are fuzzified as TFNs. The authors
use the proposed problems in [23] and also in [25] in order to compare a GA
proposed therein with the SA from [18] in terms of E[Cmax] and to evaluate
new memetic approaches. The same authors argue the need of harder instances
in a later work [26], so using the same fuzzification method, they extend the
test bed by adding 8 new fuzzy instances of famous crisp benchmark problems:
La21, La25, La27, La29, La38 and La40, and ABZ8, ABZ9. Results for these
fuzzified instances are obtained in [26] and [54] using maxI and <E . In the
sequel, we shall denote these instances with the original name subscripted with
F, in reference to the author of the fuzzification method.

In the paper of Tsujimura et al. [62] two more instances of size 6 × 6 and
20×5 respectively, built from FT06 and FT20, are explicitly given in the paper,
although the fuzzification method used is not made explicit. So far, the instances
have been only used to evaluate the GA proposed in this paper (that we shall call
TGA) for makespan minimisation using <R and maxR as well as an alternative
ranking method and associated maximum. Only graphical results are provided,
without accompanying numerical results. We shall denote these instances as
FTT06 and FTT20.

A new fuzzification method is proposed by Ghrayeb [22] to transform dura-
tions into non-symmetric TFNs, and FT06, La12, La13 and La14 are fuzzyfied
accordingly (the resulting problem instances will be denoted with the original
name followed by the subscript G) in order to test a bi-criteria genetic algorithm.
Unfortunately, only FTG06 is made available. For all four instances the paper
reports the best makespan obtained with GA (denoted GGA hereafter) using
maxI and <E .

The same fuzzification method is used in [45] for FT06, FT10, FT20 as well as
La01, La03, La05, La07, La09 and ABZ5, ABZ6. The author reports results on all
instances for a PSO algorithm combined with genetic operators (GPSO) using
maxI together with an alternative ranking method; only the ranking index of the
resulting makespan is given, making comparisons unsuitable on these instances.

A similar fuzzification method is used by Lin in [42] to build ten fuzzy in-
stances from each of the crisp instances FT06, La01, La06. These fuzzy instances
(denoted hereafter with the original name followed by the subscript L) are used
to illustrate the difference between two proposals made in the paper (namely,

7

using normal vs. non-normal TFNs to model uncertainty) and then solved using
a classical genetic algorithm from the literature. The solutions reported by the
author correspond to a different arithmetic for TFNs (based on a ranking using
the so-called signed distance) and makespan values are already defuzzified, thus
making comparisons impossible.

A different method for fuzzifying task durations as non-symmetric TFNs
is proposed by Song et al. in [57] to generate fuzzy instances of FT10, La02,
La19, La21, La24, La25, La27, La29 and La36–40. The authors use the result-
ing instances to evaluate an ant colony algorithm hybridised with tabu search
(TSANT) to optimise due-date satisfaction; no information is reported about
the arithmetic for TFNs used and only the average agreement index, a measure
related to due-date satisfaction, is reported, making comparisons with their
method unsuitable on these instances. The resulting problem instances will be
denoted with the original name followed by the subscript S.

Finally, in the work of Zheng et al. [70], a third fuzzification method for gen-
erating non-symmetric TFNs is proposed and used to fuzzify instances ORB1–5
as well as La20–22 and ABZ5,ABZ6. The resulting instances are denoted with
the original name followed by the subscript Z hereafter. The information given
in [70] about the experimental results is quite exhaustive: it reports the results
obtained with the swarm based neighbourhood search (SNS) method proposed
in that paper, but also provides results on the same instances for the RKGA
and their own implementation of the GPSO, all of them using maxR and <R.
Similar results on the same instances for GPSO, RKGA and a new ant bee
colony (ABC) algorithm are given in [71]. Notice that these are the instances
referred to as “Lei’s” in [1], since the same original instances and fuzzification
method is used by one of the authors in [39]; however, the results reported in
this late paper correspond to a variant of FJSP considering the additional con-
straint of preventive maintenance, together with the corresponding additional
data for the benchmark instances.

Table 1: Existing instances for FJSP

Instance Size Prop. Best Cmax Result Avail.

S6.1 6× 6 [55] HDPSO [41] (maxR, <R) Y
RKGA [36] (maxR, <R)
MA1 [25] (maxI , <E)

S6.2–3 6× 6 [55] HDPSO [41] (maxR, <R) Y
RKGA [36] (maxR, <R)

S6.4 6× 6 [56] HDPSO [41] (maxR, <R) Y
RKGA [36] (maxR, <R)

S10.1 10× 10 [55] HDPSO [41] (maxR, <R) Y
RKGA [36] (maxR, <R)

S10.2 10× 10 [55] HDPSO [41] (maxR, <R) Y
Continued on next page

8

Table 1 – continued from previous page

Instance Size Prop. Best Cmax Result Avail.

S10.3 10× 10 [55] HDPSO [41] (maxR, <R) Y
RKGA [36] (maxR, <R)
MA1 [25] (maxI , <E)

S10.4 10× 10 [56] RKGA [36] (maxR, <R) Y

Lei01,02 15× 10 [36] RKGA [36] (maxR, <R) Y

LP01 16× 16 [41] HDPSO [41] (maxR, <R) Y

FTT06 6× 6 [62] TGA [62] (maxR, <R) Y
FTL06 6× 6 [42] – −− N
FTG06 6× 6 [22] GGA [22] (maxI , <E) Y
FTF06 6× 6 [23] MA1 [25] (maxI , <E) Y
FTG10 10× 10 [45] – N
FTF10 10× 10 [23] MA [54] (maxI , <E) Y
FTS10 10× 10 [57] – N
FTT20 20× 5 [62] TGA [62] (maxR, <R) Y
FTG20 20× 5 [45] – N
FTF20 20× 5 [23] MA [54] (maxI , <E) Y

LaL01 10× 5 [42] – −− N
LaS02 10× 5 [57] – N
LaG01,03,05 10× 5 [45] – N
LaL06 15× 5 [42] – −− N
LaG07,09 15× 5 [45] – N
LaG12-14 20× 5 [22] GGA [22] (maxI , <E) N
LaF11-14 20× 5 [23] MA1 [25] (maxI , <E) Y
LaS19 10× 10 [57] – N
LaZ20 10× 10 [70] ABC [71] (maxR, <R) N

GPSO [70] (maxR, <R)
LaF21 15× 10 [26] MA [54] (maxI , <E) Y
LaZ21 15× 10 [70] SNS [70] (maxR, <R) N
LaZ22 15× 10 [70] ABC [71] (maxR, <R) N
LaF24 15× 10 [23] MA [54] (maxI , <E) Y
LaF25 15× 10 [26] MA [54] (maxI , <E) Y
LaS21,24,25 15× 10 [57] – N
LaF27,29 20× 10 [26] MA [54] (maxI , <E) Y
LaS27,29 20× 10 [57] – N
LaF38,40 15× 15 [26] MA [54] (maxI , <E) Y
LaS36–40 15× 15 [57] – N

ORBZ1–4 10× 10 [70] ABC [71] (maxR, <R) N
ORBZ5 10× 10 [70] ABC [71] (maxR, <R) N

SNS [70] (maxR, <R)
GPSO [70] (maxR, <R)

Continued on next page

9

Table 1 – continued from previous page

Instance Size Prop. Best Cmax Result Avail.

ABZG5,6 10× 10 [45] – N
ABZZ5 10× 10 [70] ABC [71] (maxR, <R) N
ABZZ6 10× 10 [70] SNS[70] (maxR, <R) N

ABC [71] (maxR, <R)
ABZF7 20× 15 [23] MA [54] (maxI , <E) Y
ABZF8,9 20× 15 [26] MA [54] (maxI , <E) Y

A summary of the relevant FJSP instances can be found in Table 1. The
three first columns contain the name of the instances, as described above,
their size and the paper where they were first proposed. The fourth column
(Best Cmax Result) indicates (if they exist) the algorithms obtaining the best
makespan results so far and the paper where these results are reported, together
with the name of the method and the fuzzy arithmetic used (maximum approx-
imation, ordering criterion). Notice that for some algorithms (e.g. RKGA,
GPSO) different results are reported in different papers; when this is the case,
we have opted for the most favourable results. Finally, the last column (Avail.)
indicates whether the resulting instances are openly available to the research
community.

Finally, not all instances reviewed in [1] are included in Table 1 and in the
posterior analysis. This is either because the instances are not available (directly
or via a fuzzification method) as those from [33] or [50], or because they do not
correspond to the standard FJSP as presented in Section 2, but to variants
thereof. This is the case with the instances from [60], [68], [65] or [67]. We have
opted for excluding these variants of FJSP from our study, as doing otherwise
would make it far too lengthy.

4. Framework for Further Analysis

We now introduce a common framework that will be used in the following
sections to analyse and evaluate the difficulty of the available instances. The
analysis will be based on what seems to be the state-of-the-art algorithms for
makespan minimisation: RKGA, SNS, HDPSO, ABC, GPSO, GGA and MA.
Remember that only graphical results are provided for TGA, making it unsuit-
able for comparisons. For the latter, notice that MA using (maxI , <E) has been
shown (cf. [54],[26]) to outperform MA1. Furthermore, MA1 itself improved a
permutation-based GA from [23] which compared favourably with a GA similar
to that from [55].

A summary of the most relevant methods can be seen in Table 2. It contains
all methods which have obtained best-known results for some of the instances
in Table 1; most of these methods will be considered in the following sections.
For each row, the first column contains the acronym of the method, the second
column, its full name and the third and fourth column report respectively the

10

Table 2: Acronyms of most relevant methods for FJSP

Acronym Method Proposed Best
in result

ABC Ant Bee Colony [71] [71]
GGA Ghrayeb’s Genetic Algorithm [22] [22]
GPSO Genetic-operator Particle Swarm Optimisation [45] [70],[71]
HDPSO Hybrid Discrete Particle Swarm Optimisation [41] [41]
MA Memetic Algorithm [54] [54]
RKGA Random-Key Genetic Algorithm [36] [36],[71]
SNS Swarm-based Neighbourhood Search [70] [70]
TGA Tsujimura’s Genetic Algorithm [62] [62]

references to the papers where the method was first proposed and where best
results have been reported.

For the sake of meaningful comparisons, we need to adopt a single opera-
tional approach to fuzzy durations. We have opted for using maxR and <R,
given that all but two of the state-of-the-art algorithms report results based on
this arithmetic. For all these algorithms, we shall use the data available in the
literature (notice that not all instances have been solved with every method).
Additionally, we will provide new results on every instance using maxR and
<R obtained with the memetic algorithm MA and a new proposed GRASP
algorithm.

4.1. Parameters for GRASP and MA

In addition to the state-of-the-art methods, we will also use a simple greedy
randomised adaptive search procedure (GRASP) based on the neighbourhood
structure described in [54]. The reason is to avoid possible objections to the
experimental analysis based on the relative complexity of the MA— combining
a genetic algorithm with local search— compared to lighter metaheuristics such
as genetic algorithms. This GRASP algorithm will help analyse the limitations
of the existing benchmarks in Section 5.

The parameter values for the MA are chosen so as to evaluate approximately
the same number of individuals as the remaining state-of-the-art methods. In
particular, in [70] and [71] we find results obtained with RKGA, GPSO, SNS
and ABC using the following configuration: RKGA, population size 100 and
600/1000 generations; GPSO, population size 20 and maximum number of gen-
erations 600/1000; SNS, swarm size 100 and maximum number of generations
600; ABC, swarm size 100 and maximum number of cycles 500. We also find
results for RKGA in [36] using population size 100 and 200/300 generations for
instances of size 6×6 and 10×10 respectively. Preliminary experiments suggest
that this stopping criterion for MA becomes excessive for most of the instances,
since convergence is generally achieved earlier and the marginal improvement in

11

quality solution for longer runs does not justify the added computational effort,
especially as the problem size increases. Indeed, for each instance we have run
MA 10 times on a population with 100 individuals, recording the point when
the gradient in the convergence curve becomes very small. The obtained results
suggest that convergence is achieved with 125 generations for problems with 100
tasks or less, 160 generations for 150 to 256 tasks and 300 generations for 300
tasks. This will be the configuration used hereafter.

Regarding GRASP, it is run to generate ni × ng solutions for each instance,
being ni and ng the number of individuals and generations respectively used by
the MA on the same instance. We believe this is as close as it can get to having
identical running conditions: although both MA and GRASP use a hill-climbing
strategy which performs an a-priori unknown number of iterations, neighbour
evaluations do not compute a full schedule from scratch, but instead use an
optimised partial evaluation; it is also impossible to predict in GAs how many
chromosomes will pass onto the next generation and will not be re-evaluated.

An alternative approach would be to use CPU times as a basis for com-
parison. However, this information is not always available for the state-of-the-
art algorithms; additionally, there are many variables that can affect the out-
come of computerized stochastic optimizers, from the CPU architecture, CPU
speed (MHz), bus speed, amount of memory, etc to operating system, com-
puter language and compiler version. It has also been known that speed “ad-
justments” as those from The Standard Performance Evaluation Corporation
(SPEC, http://www.spec.org) do not take into account all involved factors.
Keeping this in mind and for the sake of completeness, Table 3 contains a sum-
mary of the known running times for each method under consideration —when
this information is available—, as well as for GRASP and MA on instances
grouped by size, having ascertained that there is great similarity in running
conditions for instances of the same size. It is worth to remember the different
configurations used in the three referenced papers as it also influences the CPU
times; notice, for example the big differences in CPU times used in 10 × 10
instances between RKGA in [36] and in [71]. We can observe that MA takes in
average 78% of the time of GRASP. This difference is due to the fact that MA
does not re-evaluate identical individuals in consecutive generations together
with the lower cost of the local search in the last iterations, where individuals
are closer to the final solution.

4.2. Non-available fuzzified instances

As it can be appreciated in Table 1, results for many algorithms in the lit-
erature have been obtained on fuzzified instances that are not openly available.
When this is the case, in order to decide on their potential as future bench-
marks, we shall generate new instances from the original crisp ones following
the corresponding fuzzification method, so GRASP and MA are run on these
new instances. In consequence, we cannot guarantee that all the methods con-
sidered in this study obtain results on exactly the same instance, we can only
guarantee that the instances have been generated from the same original crisp
instance following the same method.

12

http://www.spec.org

Table 3: CPU times on fuzzy JSP instances grouped by sizes

Size CPU (sec)
RKGA1 RKGA2 GPSO2 SNS3 ABC2 GRASP4 MA4

6× 6 – – – – – 0.65 0.42
10× 10 7.56 15.30 16.55 8.64 11.98 2.43 1.78
20× 5 – – – – – 2.82 2.37
15× 10 – 30.65 31.90 15.95 20.85 5.73 4.35
20× 10 – – – – – 8.70 7.17
15× 15 – – – – – 9.52 7.47
16× 16 – – – – – 14.10 9.03
20× 15 – – – – – 29.12 23.59

1: Results given in [36] using Visual C++ 7.0 on a Pentium IV 2.0GHz PC
2: Results given in [71] using Visual C++ 6.0 on a PC 2GB RAM 2.5GHz CPU
3: Results given in [70] using Visual C++ 6.0 on a PC 2GB RAM 2.5GHz CPU
4: GRASP and MA are implemented in C++ on a Xeon 2.2GHz

As detailed in Section 3, there are essentially four fuzzification methods: the
one proposed by Fortemps [18], adapted to TFNs in [23], the one proposed by
Ghrayeb [22], the one proposed by Zheng [70] and the one proposed in Song [57].
For all four methods, each fuzzy duration is generated so the most likely value
of the TFN is the original crisp duration, while the lower and upper bounds of
the support are taken as random values in some interval. Differences reside on
how these bounds are generated; the definition of the interval from which they
are taken is different in each case, the values can be integer [18, 70] or real [22]
and the resulting TFNs may be symmetric [23] or not [22, 57, 70]. We refer the
interested reader to the original references for further detail.

It should be noticed nonetheless that the random nature of the fuzzification
methods results in differences in the fuzzy durations and, hence, in oscillations
in the makespan values obtained for the fuzzified instances. This must be kept
in mind when presenting new results on these instances and making comparisons
between different algorithms.

4.3. Lower Bounds for Fuzzy Instances

It is common in the literature to assess the performances of a method or
compare several methods not in terms of the makespan itself, which constitutes
an absolute performance measure, but in terms of relative measures such as the
relative error w.r.t. a lower bound LB, defined in our case as:

RE =
| E[Cmax]− LB |

LB
(8)

However, in order to use such relative quality measures some lower bound must
be available and, furthermore, such lower bound should be as tight as possible.

13

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

FT10 FT20

Best RE wrt LB1

Avg.RE wrt LB1

Best RE wrt LB2

Avg.RE wrt LB2

Figure 1: Comparison of relative errors w.r.t different Lower Bounds

In the case of fuzzy instances, it can be proved that a lower bound for the
expected makespan of the fuzzy instance is given by an optimal solution (or
any lower bound) of the associated expected crisp problem, that is, the problem
where durations are the expected value of the corresponding fuzzy ones. This
holds both when (≤R,maxR) or (≤E ,maxI) is used. Let us denote this lower
bound as LB1. In the case of symmetric instances, the associated expected
crisp problem is actually the original JSP instance, so the optimal solution of
the crisp instance (or any lower bound) provides a lower bound for the expected
makespan of the fuzzy solution, as already stated in [18]. In the case of non-
symmetric instances, we propose to obtain the lower bound using the IBM ILOG
CPLEX CP Optimizer software [30] to find the optimal solution (when possible)
of the associated expected crisp problem.

A simpler way to compute lower bounds, proposed in [58], can be easily gen-
eralised to provide a lower bound, denoted LB2, for the expected makespan of
any FJSP instance. However, LB2 strongly depends on the correlation between
the number of jobs and the number of machines, with tighter lower bound val-
ues for problems where the number of jobs and machines differ and worse lower
bound values for square problems. Consider for instance the lower bounds ob-
tained for the symmetric fuzzy versions of FT10 and FT20: LB1 = 930 vs.
LB2 = 655 for FTF10 and LB1 = 1165 compared to LB2 = 1120 for FTF20

The importance of the tightness of the lower bound is illustrated in Figure 1.
For the same instances, FTF10 and FTF20, it shows RE values w.r.t. both LB1

and LB2 for the best and average solutions obtained with MA. The null RE
w.r.t. LB1 shows that the best solution found for both instances is in fact
optimal, while the small average relative error suggests that the quality of all
solutions is quite similar (and hence close to optimality). However, the values of
RE w.r.t. LB2 may be quite misleading: while it is approximately only 4% for
FTF20 it soars up to 42% for FTF10, which may (wrongly) lead us to conclude
that the behaviour of MA on FTF10 is actually an order of magnitude worse
than for FTF20. For this reason, in the following we shall always use LB1 to

14

compute RE values, refering to it as LB for the sake of simplicity.

5. Analysis of Existing Instances

In this section we shall analyse the potential of the existing instances as
future benchmarks. As in Table 1, we will group the instances in families and,
within each family, according to their size. For each group, a table will report for
each instance and solving method considered the best and average RE values,
together with the best makespan found, its expected value and the average ex-
pected makespan. To improve readability, the best average expected makespan
value obtained across all methods for each instance appears in bold.

5.1. Analysis of Original Fuzzy Instances

We start the analysis of existing benchmarks with the so-called original fuzzy
instances: S6.1–4, S10.1–4, Lei01,02 and LP01. Together with the results avail-
able for HDPSO in [41] and RKGA in [36] we will provide new results obtained
with 30 runs of GRASP and MA.

5.1.1. Instances S6.1–4

The best solution found on each instance is always the same for all four
methods, namely:

S6.1 : Cmax = (56, 80, 103)

S6.2 : Cmax = (51, 70, 86)

S6.3 : Cmax = (50, 65, 84)

S6.4 : Cmax = (29, 36, 43)

Furthermore, the average expected makespan across all executions always coin-
cides with the LB of each instance, with the exception of RKGA ,which obtains
an average expected makespan of 70.45 for S6.2 while the best expected value
obtained is equal to the LB=69.25.

The fact that all four methods (HDPSO, RKGA, GRASP and MA) obtain
the optimal solution in all runs for every problem (except for the minor variation
for RKGA in S6.2) indicates that these instances offer no room for improvement
and hence are not adequate for future comparisons.

5.1.2. Instances S10.1–4

Results for problems S10.1–4 of size 10 × 10 can be seen in Table 4. It
should be noted that the data for HDPSO on instances S10.2 and S10.4 are
those published in the Erratum to [41].

We can see that GRASP obtains very similar results to RKGA and HDPSO;
in average, GRASP is slightly better than RKGA in three instances and
slightly worse than HDPSO in two instances, but overall differences in expected
makespan are not significant, with an improvement of at most 2.7% and a wors-
ening of at most 0.9%. Results are also very similar for the best makespan.

15

Table 4: Results on instances S10.1–4 (10 × 10)

Problem LB Method Best Cmax E[Cmax] RE
Best Avg. Best Avg.

S10.1 128.50 HDPSO (96, 129, 160) 128.50 128.93 0.00 0.33
RKGA (96, 129, 160) 128.50 129.78 0.00 0.99
GRASP (96, 129, 160) 128.50 130.01 0.00 1.17
MA (96, 129, 160) 128.50 128.50 0.00 0.00

S10.2 122.50 HDPSO (92, 119, 160) 122.50 125.90 0.00 2.78
RKGA (89, 123, 158) 123.25 127.25 0.61 3.88
GRASP (92, 122, 161) 124.25 126.53 1.43 3.29
MA (86, 125, 155) 122.75 124.75 0.20 1.84

S10.3 115.00 HDPSO (85, 116, 143) 115.00 115.15 0.00 0.13
RKGA (85, 116, 143) 115.00 116.25 0.00 1.09
GRASP (85, 116, 143) 115.00 115.00 0.00 0.00
MA (85, 116, 143) 115.00 115.00 0.00 0.00

S10.4 45.75 HDPSO (27, 47, 62) 45.75 46.28 0.00 1.15
RKGA (28, 47, 62) 46.00 47.13 0.55 3.01
GRASP (27, 47, 62) 45.75 45.88 0.00 0.29
MA (26, 46, 65) 45.75 45.75 0.00 0.00

Regarding MA, it obtains slightly better results and, in three of the four in-
stances it achieves the optimal solution in all runs, while for the remaining
instance S10.2—which is optimally solved by HDPSO— the variation between
the best and the average is less than 1.7%. All instances are solved to optimality
by at least one method (in the case of S10.1 and S10.3 by all methods). It is
therefore reasonable to conclude that instances S10.1–4 do not have significant
room for improvement.

5.1.3. Instances Lei01,02 and LP01

Finally, we analyse the larger instances proposed “to verify the capability to
solve large-scale problem” in [36] of size 15×10 and [41] of size 16×16. Table 5
summarises the available data for RKGA and HDPSO as well as the results
obtained with GRASP and MA. We can see that GRASP improves the average
E[Cmax] obtained by RKGA in instances Lei01,02; unfortunately, the average
value for HDPSO in LP01 is not available. GRASP also slightly improves the
best solution for Lei01 and LP01. Regarding MA, it clearly outperforms the best
and average expected makespan for all instances, with an improvement over 6%
in the best solutions found for LP01 and over 4.5% in the average solutions
obtained on Lei01 and Lei02.

The small RE values obtained by MA suggest that these instances offer little
room for improvement. On the other hand, unlike previous test-beds, none of
the methods reach the LB, being quite far from it in average. This indicates

16

Table 5: Results on Larger Instances Lei01,02 and LP01

Problem LB Method Best Cmax E[Cmax] RE
Best Avg. Best Avg.

Lei01 197.25 RKGA (142, 207, 271) 206.75 210.45 4.82 6.69
GRASP (144, 207, 268) 206.50 208.85 4.69 5.88
MA (136, 200, 258) 198.50 199.34 0.63 1.06

Lei02 163.00 RKGA (118, 170, 223) 170.25 175.60 4.45 7.73
GRASP (119, 171, 227) 172.00 175.11 5.52 7.43
MA (116, 162, 213) 163.25 167.48 0.15 2.74

LP01 186.00 HDPSO (151, 202, 247) 200.50 – 7.80 –
GRASP (141, 194, 254) 195.75 201.48 5.24 8.32
MA (138, 190, 233) 187.75 188.87 0.94 1.54

that, despite the scarce room for improvement, the instances remain potentially
unsolved. In consequence, we believe that they should be considered when
evaluating future new algorithms.

5.2. Analysis of Fuzzified Instances

In this section we analyse the instances obtained after fuzzifying well-known
benchmarks for crisp JSP. In the experimental study we will consider any fuzzy
instance from Table 1 for which results with at least one method from RKGA,
SNS, GPSO, ABC or MA are available. We now proceed to analyse the different
fuzzified instances, grouped by families.

5.2.1. Instances FT

The FT instances, proposed by Fisher and Thomson [17], are three instances
of size 6× 6 (FT06), 10× 10 (FT10) and 20× 5 (FT20).

Instance FT06 has been fuzzified in the literature in three different ways,
yielding four different fuzzy instances FTT06, FTF06, FTL06 and FTG06, which
have been used in a few contributions. As it was the case with the S6.1–4 family,
in these small instances both MA and GRASP reach the optimal solution in all
runs, making it clear that these fuzzy instances obtained from FT06 are easy to
solve and not complex enough to serve as future benchmark.

Table 6 contains results of GRASP and MA on the remaining fuzzy instances
in this family. The only possible comparison with other methods from the
literature consists in a qualitative comparison between GRASP and MA results
for FTT20 and the convergence charts in [62]; in this case, it is easily seen that
both methods outperform the GA given in that paper. In general, the relative
improvement of MA with respect to GRASP in terms of the average expected
makespan — FTF10 and FTG10 (5.2%), FTS10 (4.5%), FTT20 (8.7%), FTF20
(9.1%) and for FTG20 (9.9%)— suggests that the algorithms have a similar
behaviour on every fuzzified version of each instance. This similar behaviour

17

Table 6: Results on Fuzzified FT Instances

Problem LB Method Best Cmax E[Cmax] RE
Best Avg. Best Avg.

FTF10 930.00 GRASP (899, 962, 1025) 962.00 986.13 3.44 6.04
MA (871, 930, 989) 930.00 934.53 0.00 0.49

FTG10 938.50 GRASP (888, 967, 1073) 973.75 997.23 3.76 6.26
MA (855, 930, 1039) 938.50 948.06 0.00 1.02

FTS10 935.25 GRASP (876, 959, 1078) 968.00 988.15 3.50 5.66
MA (844, 930, 1037) 935.25 943.49 0.00 0.88

FTT20 1164.25 GRASP (1184, 1242, 1291) 1239.75 1285.17 6.48 10.39
MA (1112, 1165, 1213) 1164.25 1173.37 0.00 0.78

FTF20 1165.00 GRASP (1178, 1258, 1338) 1258.00 1293.50 7.98 11.03
MA (1094, 1165, 1236) 1165.00 1175.73 0.00 0.92

FTG20 1189.75 GRASP (1172, 1260, 1402) 1273.50 1310.23 7.04 10.13
MA (1073, 1165, 1356) 1189.75 1201.97 0.00 1.03

between symmetric and non-symmetric instances can be further confirmed by
the high similarity between the corresponding RE values, both for MA and
GRASP algorithms.

Regarding the hardness of the instances in this family, MA already finds the
optimal solution for all of them in at least one run, with average RE values also
small (ranging from 0.5% to 1%). This indicates that there is scarce room for
improvement on these instances, not encouraging research competition.

5.2.2. Instances La

The La family is a set of 40 instances proposed by Lawrence [34]; seven of
these instances, La21, La24, La25, La27, La29, La38 and La40 form part of the set
of ten problem instances of crisp JSP considered hard to solve [3]. As mentioned
in Section 3, fuzzy versions of several of the La instances have been considered
in the literature, in some cases using more than one fuzzification method.

Regarding the smallest instances, LaL01, LaS02, LaL06 and LaG0i (i=1, 3, 5,
7, 9), they are always optimally solved by MA, and sometimes even by GRASP.
For instances LaF11–14 we observe in [25] the same behaviour as for FT06 above:
MA obtains practically the same makespan value in all runs and the expected
makespan is identical or very close to the lower bound. Also in [22] the proposed
GA obtains solutions for LaG12–14 for which the most likely value coincides with
the optimal solution of the original crisp instance. Furthermore, both MA and
GRASP algorithms reach the optimal solution in every run. In consequence, it is
reasonable to perform a deep analysis only for the larger instances: from LaF21
in the case of symmetric instances and from LaS19 in the case of non-symmetric
ones.

18

Table 7 shows the results on these remaining La instances. For LaZ20–22 we
reproduce the values provided in [70] for SNS together with the values provided
in [71] for ABC, RKGA and GPSO, and the new values obtained with GRASP
and MA. For the remaining instances in this family, the table includes new
makespan and RE values obtained with GRASP and MA.

Table 7: Results on La Instances

Problem LB Method Best Cmax E[Cmax] RE
Best Avg. Best Avg.

LaS19 843.25 GRASP (752, 850, 943) 848.75 863.91 0.65 2.45
MA (751, 837, 948) 843.25 843.80 0.00 0.07

LaZ20 912.50 RKGA (801, 912, 1038) 915.75 932.25 0.36 2.16
GPSO (796, 900, 1025) 905.25 938.88 -0.79 2.89
SNS (790, 897, 1010) 898.50 915.18 -1.53 0.29
ABC (790, 891, 1008) 895.00 913.50 -1.92 0.11
GRASP (817, 904, 1040) 916.25 923.68 0.41 1.23
MA (817, 904, 1040) 916.25 916.25 0.41 0.41

LaF21 1046.00 GRASP (995, 1095, 1195) 1095.00 1116.53 4.68 6.74
MA (981, 1053, 1125) 1053.00 1054.80 0.67 0.84

LaS21 1044.75 GRASP (997, 1092, 1218) 1099.75 1117.15 5.26 6.93
MA (947, 1052, 1156) 1051.75 1053.73 0.67 0.86

LaZ21 1056.50 RKGA (963, 1078, 1244) 1090.75 1126.98 3.24 6.67
GPSO (998, 1116, 1268) 1124.50 1145.63 6.44 8.44
SNS (950, 1075, 1241) 1085.25 1118.98 2.72 5.91
ABC (977, 1094, 1234) 1099.75 1095.20 4.09 3.66
GRASP (991, 1104, 1266) 1116.25 1127.75 5.66 6.74
MA (951, 1053, 1201) 1064.50 1067.62 0.76 1.05

LaZ22 937.00 RKGA (859, 956, 1087) 964.50 984.23 2.93 5.04
GPSO (876, 983, 1138) 995.00 1018.25 6.19 8.67
SNS (844, 954, 1093) 961.25 985.58 2.59 5.18
ABC (840, 951, 1082) 956.00 980.88 2.03 4.68
GRASP (865, 972, 1113) 980.50 1003.42 4.64 7.09
MA (830, 927, 1065) 937.25 943.20 0.03 0.66

LaF24 935.00 GRASP (908, 987, 1066) 987.00 1000.10 5.56 6.96
MA (865, 941, 1017) 941.00 946.23 0.64 1.20

LaS24 938.25 GRASP (885, 990, 1090) 998.75 1001.26 5.38 6.72
MA (830, 951, 1156) 943.25 947.35 0.53 0.97

LaF25 977.00 GRASP (959, 1027, 1095) 1027.00 1043.13 5.12 6.77
MA (897, 977, 1057) 977.00 983.70 0.00 0.69

LaS25 985.75 GRASP (925, 1022, 1177) 1036.50 1051.94 5.15 6.71
MA (882, 977, 1109) 986.25 991.08 0.05 0.54

LaF27 1235.00 GRASP (1254, 1326, 1398) 1326.00 1335.20 7.37 8.11
MA (1173, 1256, 1339) 1256.00 1263.33 1.70 2.29

Continued on next page

19

Table 7 – continued from previous page

Problem LB Method Best Cmax E[Cmax] RE
Best Avg. Best Avg.

LaS27 1233.00 GRASP (1179, 1294, 1444) 1302.75 1336.01 5.66 8.35
MA (1148, 1251, 1368) 1254.50 1261.56 1.74 2.32

LaF29 1152.00 GRASP (1171, 1262, 1353) 1262.00 1283.47 9.55 11.41
MA (1099, 1185, 1261) 1185.00 1197.47 2.86 3.95

LaS29 1156.50 GRASP (1152, 1260, 1437) 1277.25 1290.76 10.44 11.61
MA (1064, 1173, 1336) 1186.50 1200.35 2.59 3.79

LaS36 1277.00 GRASP (1188, 1315, 1497) 1328.75 1350.92 4.05 5.79
MA (1158, 1278, 1426) 1285.00 1296.03 0.63 1.49

LaS37 1398.25 GRASP (1333, 1471, 1636) 1477.75 1513.23 5.69 8.22
MA (1273, 1419, 1569) 1420.00 1432.99 1.56 2.48

LaF38 1196.00 GRASP (1210, 1295, 1380) 1295.00 1321.93 8.28 10.53
MA (1131, 1214, 1297) 1214.00 1224.80 1.51 2.41

LaS38 1204.50 GRASP (1182, 1310, 1428) 1307.50 1327.54 8.55 10.22
MA (1110, 1219, 1345) 1223.25 1234.55 1.56 2.49

LaS39 1234.00 GRASP (1172, 1302, 1474) 1312.50 1334.80 6.36 8.17
MA (1087, 1240, 1390) 1239.25 1244.41 0.43 0.84

LaF40 1222.00 GRASP (1201, 1291, 1381) 1291.00 1314.00 5.65 7.53
MA (1144, 1233, 1322) 1233.00 1239.80 0.90 1.46

LaS40 1226.50 GRASP (1178, 1274, 1410) 1248.00 1313.93 4.69 7.13
MA (1117, 1234, 1334) 1229.75 1241.79 0.26 1.25

The RE values for instance LaZ20 highlight the importance of publishing
the exact data for each instance instead of only making known the fuzzification
method used, due to the stochastic nature or the latter. Indeed, negative RE
values in Table 7 indicate that the expected values of the fuzzy durations gen-
erated for this review are greater than those used in [71]. This advocates the
need of making all information regarding benchmark instances openly available
to the research community, to allow for fair and rigourous comparisons.

The results obtained for LaF21, LaS21 and LaZ21, as well as those obtained for
the rest of instances having symmetric and non-symmetric fuzzy versions, allow
for some additional comparisons between the symmetric and non-symmetric
fuzzy versions of the same original instance. In particular, we can see that the
behaviour of GRASP and MA on each pair of corresponding instances is very
similar when measured in terms of RE values. Also, the results clearly show
that GRASP is not competitive on these instances, while MA reveals itself as
the best method. In particular, for LaZ21 and LaZ22 MA is respectively 84%
and 89% better than the other methods in terms of RE. In general, MA reduces
the average RE w.r.t. GRASP more than 75% using considerably less running
time. More importantly, the relatively small RE values obtained with MA
suggest that, perhaps with the exception of LaF29, La instances do not really

20

stand as a major challenge. Having said this, all fuzzy versions of instances
La21,24,36,39,40 show a complexity similar to that of the instances Lei01,02
and LP01, where the optimal solutions have not been reached but average RE
values are relatively small. Fuzzy versions of La27,37,40 appear to be slightly
harder, being also unsolved and with average RE values around 2.5%. Therefore
we consider that these instances may still be considered open and useful to assess
future solving methods, specially the instances built from La29.

5.2.3. Instances ORB

The original benchmark ORB from [3] consists of ten instances of size 10×10;
it is the first five of these instances that have been fuzzified in [70] to evaluate
different metaheuristics for the FJSP.

Table 8 contains the results on these five instances reported in [70] for SNS
together with the values provided in [71] for RKGA, GPSO and ABC, as well
as new values obtained with GRASP and MA. According to these results, MA
is the method with best average performance, achieving the best E[Cmax] on
all five instances (together with ABC for ORBZ2). In fact, the best expected
makespan coincides with LB in all cases. Not only does MA reach the optimal
solution in all instances, but also the average RE values are considerably small,
less than 1% in average. This leads us to conclude that there is scarce room for
improvement in these problems.

5.2.4. Instances ABZ

The five ABZ instances for JSP, first proposed by Adams, Balas, and
Zawack [2], can be divided in two groups: instances ABZ5,6 of size 10 × 10
and the larger and more difficult instances ABZ7–9 of size 20 × 15 — in fact,
the last two instances are still open problems, since the optimal solution is to
date unknown. As already mentioned, fuzzy versions ABZF7–9 of the larger
instances first appear in [23, 26] while the smaller ones are fuzzified in [70] to
obtain ABZZ5,6 and in [22] to obtain ABZG5,6. Table 9 contains the results
available in the literature for the small instances as well as results obtained
with GRASP and MA on all five instances.

Table 9 again illustrates using the same fuzzification method can result in
quite different instances (see the errors for ABZZ6). In any case, for the smallest
instances we can observe that RE values are not only small but very similar for
both GRASP and MA. In addition, the optimal solution is reached for each in-
stance by either MA or GRASP. Regarding the largest instances, the behaviour
on instance ABZF7 appears to be quite similar than that on La27,37,40, making
it suitable for future comparisons. Even more interesting are instances ABZF8,9.
Here, MA obtains much better RE values than GRASP, despite of which aver-
age RE values are greater than 7% for ABZF8,9, more than twice the RE values
on previous instances. This shows the potential of the largest ABZF instances
for future research.

21

5.3. Summary

As an overall conclusion from the analysis performed on all instances pro-
posed in the literature, we see that not all of these instances are suitable for
assessing future solving methods for FJSP. The existing instances that may
offer enough room for improvement to serve as future benchmarks are the
original fuzzy instances Lei01, Lei02 and LP01, the fuzzified instances from
La21,24,36,39,40, La27,37,40 and ABZF7 (which are not yet solved to optimality
even if they do not seem specially hard) and finally instances ABZF8,9, LaS29
and LaF29, this last group representing a real challenge.

The analysis has also illustrated the advantages of having an appropriate
lower bound to calculate accurate RE values. Indeed, inaccurate lower bounds
or errors measured w.r.t. best known solutions may (wrongly) lead us to think
that an instance is far from being solved when this is not the case.

Notice that even though in this paper we have described a method to com-
pute accurate lower bounds for fuzzy instances, the difficulty of some of these
instances make it hard or even impossible to compute the lower bound in a
reasonable amount of time. Take for example the fuzzy instances built from
La29, where the IBM ILOG CPLEX CP Optimizer took more than 30 minutes
to find the optimal solution. In fact, there could be deterministic instances for
which the optimal solution cannot be found. We may say that the proposed
method for finding lower bounds by solving the associated expected crisp prob-
lem is accurate but not scalable, and therefore not appropriate when dealing
with harder instances. Here the symmetric instances offer a great advantage,
since they can benefit from all the studies conducted through decades in clas-
sical JSP, both with exact methods and with algorithms that reach good lower
bounds (cf [43]). In this case, good LB values can be obtained from standard
repositories, as the OR library, thus allowing for fairer assessments when using
symmetric fuzzy instances instead of non-symmetric ones. For these reasons,
we propose to use the fuzzification method from[18] to generate new larger and
harder fuzzy instances with accurate lower bounds.

6. New Instances

Results in Section 5 for the existing FJSP instances suggest that it is neces-
sary to have more challenging problem instances in order to test the potential
of future proposals to solving the FJSP.

Here we propose a new test bed based on the well-known Ta benchmark
proposed in [58] for the JSP. The Ta benchmark is composed of 80 instances,
each with a number of tasks varying from 225 to 2000. 50 of these instances
are considered to be harder than the remaining ones, namely instances Ta01–
50. In fact, the optimal solution has been found so far for only 17 of those 50
instances. Moreover, instances Ta21–30 (size 20×20) and Ta41–50 (size 30×20)
are considered to be “the most difficult JSP benchmark problems” [69] and to
date it has not been proved if the best-known solutions are indeed optimal or
not.

22

We use the fuzzification method proposed in [18] to build fuzzy instances
from the 20 hardest Ta instances, namely Ta21–30 and Ta41–50. As explained
in the previous section, this fuzzification method allows to obtain accurate lower
bounds for the expected makespan of the fuzzy instances. Here, the lower
bounds for the resulting fuzzy instances are given by the best known lower
bounds for the crisp instances1. The resulting test bed, together with all other
instances used in this paper and detailed results of MA and GRASP, is available
on the internet2 and as supplementary electronic material to this work, in order
to facilitate experiment reproducibility and encourage research competition.

We have run both MA and GRASP on this benchmark in order to analyse
the difficulty of the problems and also to provide preliminary results for future
reference. To find the MA’s convergence point we have followed the method
explained in Section 4, letting the algorithm evolve with a population of size 100
until it does not improve significatively. This method suggests that convergence
is achieved with 300 generations for 20 × 20 instances and 425 generations for
30×20 instances, which takes an average runtime between 35 and 108 seconds in
the case of the MA, and between 41 and 115 seconds for the GRASP evaluating
the same number of solutions.

Tables 10 and 11 show respectively the results obtained with both algorithms
for fuzzy instances TaF21–30 and TaF41–50, including the best makespan and
best and average expected makespan values, together with the best and average
RE values w.r.t the lower bound, which is also included next to the name of
each instance.

For these two sets of instances, the behaviour of the algorithms is similar to
their behaviour in previous test beds in the sense that MA reduces considerably
the average RE obtained with GRASP, with an overall improvement over 50%.
Notice however that average RE values for these instances are much larger than
those obtained in the previously-analysed sets of instances, over 10% for MA
and 20% for GRASP, being greater than these values in seven out of the 10
instances TaF41–50. These RE values are only comparable to the RE values
obtained on instances ABZF7–9. This suggests that the new benchmark does
indeed offer room for improvement, posing a challenge to researchers.

7. Conclusions

In this paper we have reviewed the state-of-the-art for FJSP, with a crit-
ical evaluation of the test beds commonly used to assess the performance of
algorithms proposed for this problem.

A thorough analysis of the difficulty of existing benchmark instances has
been carried out based on results reported in the literature for several solving
methods, together with new results obtained with a memetic algorithm (MA)

1An up-to-date record of these bounds can be found in the benchmark repository http:

//mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
2Repository section at http://www.di.uniovi.es/iscop

23

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://www.di.uniovi.es/iscop

from the literature. To avoid possible objections to the analysis based on the
complexity of the MA, we have also proposed and used a GRASP algorithm,
based on the neighbourhood structure from MA. Results have shown that most
of the proposed instances either are already optimally solved or have solutions so
close to the lower bound that no room for significant improvement is left. This
suggests that these instances are not appropriate to assess future metaheuris-
tic proposals. We have highlighted and made openly available to the research
community those instances that are still challenging enough and in addition
we have proposed a new more challenging benchmark composed of 20 fuzzy in-
stances generated from the so-considered most difficult JSP problems. As future
reference, we have provided preliminary results on these instances obtained with
the GRASP and MA algorithms.

Acknowledgements

This research has been supported by the Spanish Government under Grants
FEDER TIN2013-46511-C2-2-P and MTM2014-55262-P.

References

[1] S. Abdullah and M. Abdolrazzagh-Nezhad. Fuzzy job-shop scheduling
problems: A review. Information Sciences, 278:380–407, 2014. doi:
10.1016/j.ins.2014.03.060.

[2] J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure for
job shop scheduling. Managament Science, 34:391–401, 1988.

[3] D. Applegate and W. Cook. A computational study of the job-shop schedul-
ing problem. ORSA Journal of Computing, 3:149–156, 1991.

[4] S. Balin. Parallel machine scheduling with fuzzy processing times using a
robust genetic algorithm and simulation. Information Sciences, 181:3551–
3569, 2011.

[5] J. E. Beasley. OR-library: Distributing test problems by electronic mail.
Journal of the Operational Research Society, 41(11):1069–1072, 1990. URL
http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

[6] G. Bortolan and R. Degani. A review of some methods for ranking fuzzy
subsets. In D. Dubois, H. Prade, and R. Yager, editors, Readings in Fuzzy
Sets for Intelligence Systems, pages 149–158. Morgan Kaufmann, Amster-
dam (NL), 1993.

[7] I. Boussäıd, J. Lepagnot, and P. Siarry. A survey on optimization meta-
heuristics. Information Sciences, 237:82–117, 2013. doi: 10.1016/j.ins.2013.
02.041.

24

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

[8] M. Brunelli and J. Mezei. How different are ranking methods for fuzzy num-
bers? A numerical study. International Journal of Approximate Reasoning,
54:627–639, 2013. doi: 10.1016/j.ijar.2013.01.009.

[9] G. Celano, A. Costa, and S. Fichera. An evolutionary algorithm for pure
fuzzy flowshop scheduling problems. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 11:655–669, 2003.

[10] S. Chanas and A. Kasperski. On two single machine scheduling problems
with fuzzy processing times and fuzzy due dates. European Journal of
Operational Research, 147:281–296, 2003.

[11] S.-M. Chen and T.-H. Chang. Finding multiple possible critical paths using
fuzzy PERT. IEEE Transactions on Systems, Man, and Cybernetics–Part
B:, 31(6):930–937, 2001.

[12] S. Destercke and I. Couso. Ranking of fuzzy intervals seen through the
imprecise probabilistic lens. Fuzzy Sets and Systems, In press, 2014. doi:
10.1016/j.fss.2014.12.009.

[13] D. Dubois and H. Prade. Possibility Theory: An Approach to Computerized
Processing of Uncertainty. Plenum Press, New York (USA), 1986.

[14] D. Dubois and H. Prade, editors. Fundamentals of Fuzzy Sets.
The Handbooks of Fuzzy Sets. Kluwer Academic Publishers,
Boston/London/Dordrecht, 2000.

[15] D. Dubois, H. Fargier, and P. Fortemps. Fuzzy scheduling: Modelling flex-
ible constraints vs. coping with incomplete knowledge. European Journal
of Operational Research, 147:231–252, 2003.

[16] D. Dubois, H. Fargier, and P. Fortemps. Scheduling under flexible con-
straints and uncertain data: the fuzzy approach. In Production Scheduling,
chapter 11, pages 301–332. Wiley, 2008.

[17] H. Fisher and G. L. Thomson. Probabilistic learning combinations of local
job-shop scheduling rules. In J. F. Muth and G. L. Thomson, editors,
Industrial Scheduling, pages 225–251. Prentice Hall, 1963.

[18] P. Fortemps. Jobshop scheduling with imprecise durations: a fuzzy ap-
proach. IEEE Transactions of Fuzzy Systems, 7:557–569, 1997.

[19] P. Fortemps. Editorial. Fuzzy sets in scheduling and planning. European
Journal of Operational Research, 147:229–230, 2003.

[20] J. Fortin, D. Dubois, and H. Fargier. Gradual numbers and their application
to fuzzy interval analysis. IEEE Transactions on Fuzzy Systems, 16(2):388–
402, 2008. doi: 10.1109/TFUZZ.2006.890680.

25

[21] J. Fortin, P. Zielinski, D. Dubois, and H. Fargier. Criticality analysis of
activity networks under interval uncertainty. Journal of Scheduling, 13(6):
609–627, 2010. doi: 10.1007/s10951-010-0163-3.

[22] O. A. Ghrayeb. A bi-criteria optimization: minimizing the integral value
and spread of the fuzzy makespan of job shop scheduling problems. Applied
Soft Computing, 2(3):197–210, 2003.

[23] I. González Rodŕıguez, C. R. Vela, and J. Puente. A memetic approach
to fuzzy job shop based on expectation model. In Proceedings of IEEE
International Conference on Fuzzy Systems, FUZZ-IEEE2007, pages 692–
697, London, 2007. IEEE.

[24] I. González Rodŕıguez, J. Puente, C. R. Vela, and R. Varela. Semantics of
schedules for the fuzzy job shop problem. IEEE Transactions on Systems,
Man and Cybernetics, Part A, 38(3):655–666, 2008.

[25] I. González Rodŕıguez, C. R. Vela, J. Puente, and R. Varela. A new local
search for the job shop problem with uncertain durations. In Proceedings
of the Eighteenth International Conference on Automated Planning and
Scheduling (ICAPS-2008), pages 124–131, Sidney, 2008. AAAI Press.

[26] I. González Rodŕıguez, C. R. Vela, A. Hernández-Arauzo, and J. Puente.
Improved local search for job shop scheduling with uncertain durations.
In Proceedings of the Nineteenth International Conference on Automated
Planning and Scheduling (ICAPS-2009), pages 154–161, Thesaloniki, 2009.
AAAI Press.

[27] S. Heilpern. The expected value of a fuzzy number. Fuzzy Sets and Systems,
47:81–86, 1992.

[28] W. Herroelen and R. Leus. Project scheduling under uncertainty: Survey
and research potentials. European Journal of Operational Research, 165:
289–306, 2005.

[29] Y. Hu, M. Yin, and X. Li. A novel objective function for job-shop schedul-
ing problem with fuzzy processing time and fuzzy due date using differen-
tial evolution algorithm. International Journal of Advanced Manufactoring
Technology, 56:1125–1138, 2011.

[30] IBM. IBM CPLEX Optimizer, 2014. URL http://www-01.ibm.com/

software/commerce/optimization/cplex-optimizer/index.html.

[31] H. Ishibuchi and T. Murata. A multi-objective genetic local search algo-
rithm and its application to flowshop scheduling. IEEE Transactions on
Systems, Man, and Cybernetics–Part C: Applications and Reviews, 67(3):
392–403, 1998.

26

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html

[32] A. Kasperski. Some general properties of a fuzzy single machine scheduling
problem. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 15(1):43–56, 2007.

[33] M. Kuroda and Z. Wang. Fuzzy job shop scheduling. International Journal
of Production Economics, 44:45–51, 1996.

[34] S. Lawrence. Resource constrained project scheduling: an experimental
investigation of heuristic scheduling techniques (supplement). Technical re-
port, Graduate School of Industrial Administration, Carnegie Mellon Uni-
versity, 1984.

[35] D. Lei. Pareto archive particle swarm optimization for multi-objective fuzzy
job shop scheduling problems. International Journal of Advanced Manu-
facturing Technology, 37:157–165, 2008.

[36] D. Lei. Solving fuzzy job shop scheduling problems using random key
genetic algorithm. International Journal of Advanced Manufacturing Tech-
nologies, 49:253–262, 2010.

[37] D. Lei. Fuzzy job shop scheduling problem with availability constraints.
Computers & Industrial Engineering, 58:610–617, 2010.

[38] D. Lei. A genetic algorithm for flexible job shop scheduling with fuzzy
processing time. International Journal of Production Research, 48(10):
2995–3013, 2010. doi: 10.1080/00207540902814348.

[39] D. Lei. Scheduling fuzzy job shop with preventive maintenance through
swarm-based neighborhood search. International Journal of Advanced
Manufacturing Technology, 61:1200–1208, 2011. doi: 10.1016/j.cie.2011.
07.010.

[40] D. Lei. Co-evolutionary genetic algorithm for fuzzy flexible job shop
scheduling. Applied Soft Computing, 12:2237–2245, 2012. doi: 10.1016/
j.asoc.2012.03.025.

[41] J.-q. Li and Y.-x. Pan. A hybrid discrete particle swarm optimization
algorithm for solving fuzzy job shop scheduling problem. International
Journal of Advanced Manufacturing Technology, 66:583–596, 2013. doi:
10.1007/s00170-012-4337-3.

[42] F.-T. Lin. Fuzzy job-shop scheduling based on ranking level (λ, 1) interval-
valued fuzzy numbers. IEEE Transactions on Fuzzy Systems, 10(4):510–
522, 2002.

[43] C. Menćıa, M. Sierra, and R. Varela. Intensified iterative deepening A* with
application to job shop scheduling. Journal of Intelligent Manufacturing,
25 (6):1245–1255, 2014. doi: 10.1007/s10845-012-0726-6.

27

[44] H. T. Nguyen and E. A. Walker. A First Course in Fuzzy Logic. Chapman
& Hall, second edition, 2000.

[45] Q. Niu, B. Jiao, and X. Gu. Particle swarm optimization combined with
genetic operators for job shop scheduling problem with fuzzy processing
time. Applied Mathematics and Computation, 205:148–158, 2008.

[46] J. J. Palacios, I. González-Rodŕıguez, C. R. Vela, and J. Puente. Robust
swarm optimisation for fuzzy open shop scheduling. Natural Computing,
13(2):145–156, 2014. doi: 10.1007/s11047-014-9413-1.

[47] J. J. Palacios, I. González-Rodŕıguez, C. R. Vela, and J. Puente. Co-
evolutionary makespan optimisation through different ranking methods for
the fuzzy flexible job shop. Fuzzy Sets and Systems, In press, 2014. doi:
10.1016/j.fss.2014.12.003.

[48] J. J. Palacios, M. A. González, C. R. Vela, I. González-Rodŕıguez, and
J. Puente. Genetic tabu search for the fuzzy flexible job shop problem.
Computers & Operations Research, 54:74–89, 2015. ISSN 0305-0548. doi:
10.1016/j.cor.2014.08.023.

[49] J. Peng and B. Liu. Parallel machine scheduling models with fuzzy pro-
cessing times. Information Sciences, 166:49–66, 2004.

[50] S. Petrovic and C. Fayad. A fuzzy shifting bottleneck hybridised with ge-
netic algorithm for real-world job shop scheduling. In Mini-EURO Confer-
ence, Managing Uncertainty in Decision Support Models, pages 1–6, 2004.

[51] S. Petrovic and X. Song. A new approach to two-machine flow shop problem
with uncertain processing times. Optimization and Engineering, 7:329–342,
2006.

[52] S. Petrovic, S. Fayad, D. Petrovic, E. Burke, and G. Kendall. Fuzzy job
shop scheduling with lot-sizing. Annals of Operations Research, 159:275–
292, 2008.

[53] M. L. Pinedo. Scheduling. Theory, Algorithms, and Systems. Springer,
third edition, 2008.

[54] J. Puente, C. R. Vela, and I. González-Rodŕıguez. Fast local search for
fuzzy job shop scheduling. In Proceedings of ECAI 2010, pages 739–744.
IOS Press, 2010.

[55] M. Sakawa and R. Kubota. Fuzzy programming for multiobjective job shop
scheduling with fuzzy processing time and fuzzy duedate through genetic
algorithms. European Journal of Operational Research, 120:393–407, 2000.

[56] M. Sakawa and T. Mori. An efficient genetic algorithm for job-shop schedul-
ing problems with fuzzy processing time and fuzzy duedate. Computers &
Industrial Engineering, 36:325–341, 1999.

28

[57] X. Song, Y. Zhu, C. Yin, and L. Fuming. A hybrid strategy based on ant
colony and taboo search algorithms for fuzzy job shop scheduling. In Pro-
ceedings of the 8th World Congress on Intelligent Control and Automation,
pages 7362–7365, 2006.

[58] E. Taillard. Benchmarks for basic scheduling problems. European Journal
of Operational Research, 64:278–285, 1993.

[59] E.-G. Talbi. Metaheuristics. From Design to Implementation. Wiley, 2009.

[60] R. Tavakkoli-Moghaddam, N. Safei, and M. Kah. Accessing feasible space in
a generalized job shop scheduling problem with the fuzzy processing times:
a fuzzy-neural approach. Journal of the Operational Research Society, 59:
431–442, 2008.

[61] C. K. Teoh, A. Wibovo, and M. S. Ngadiman. Review of state of the art
for metaheuristic techniques in academic scheduling problems. Artificial
Intelligence Review, 2013. doi: DOI10.1007/s10462-013-9399-6.

[62] Y. Tsujimura, M. Gen, and E. Kubota. Solving job-shop scheduling prob-
lem with fuzzy processing time using genetc algorithm. Journal of Japan
Society for Fuzzy Theory and Systems, 7:1073–1083, 1995.

[63] B. Wang, Q. Li, X. Yang, and X. Wang. Robust and satisfactory job shop
scheduling under fuzzy processing times and flexible due dates. In Proc.
of the 2010 IEEE International Conference on Automation and Logistics,
pages 575–580, 2010.

[64] L. Wang, G. Zhou, Y. Xu, and L. Min. A hybrid artificial bee colony
algorithm for the fuzzy flexible job-shop scheduling problem. International
Journal of Production Research, 51(12):3593–3608, 2013.

[65] S. Wang, L. Wang, Y. Xu, and L. Min. An effective estimation of distri-
bution algorithm for the flexible job-shop scheduling problem with fuzzy
processing time. International Journal of Production Research, 51(12):
3779–3793, 2013.

[66] B. K. Wong and V. S. Lai. A survey of the application of fuzzy set theory in
production and operations management: 1998–2009. International Journal
of Production Economics, 129:157–168, 2011.

[67] Y. Xie, J. Xie, and J. Li. Fuzzy due dates job shop scheduling problem based
on neural network. In Advances in Neural Networks–ISNN 2005, volume
3496 of Lecture Notes in Computer Science, pages 782–787. Springer, 2005.
doi: 10.1007/11427391 125.

[68] Z. Xu, X. Gu, and B. Jiao. Research on job shop scheduling under uncer-
tainty. ACM, pages 695–702, 2009.

29

[69] C. Y. Zhang, P. Li, Y. Rao, and Z. Guan. A very fast TS/SA algorithm for
the job shop scheduling problem. Computers & Operations Research, 35:
282–294, 2008.

[70] Y. Zheng, Y. Li, and D. Lei. Swarm-based neighbourhood search for fuzzy
job shop scheduling. International Journal of Innovative Computing and
Applications, 3(3):144–151, 2011.

[71] Y.-L. Zheng and Y.-X. Li. Artificial bee colony algorithm for fuzzy job shop
scheduling. International Journal of Computer Applications in Technology,
44 (2):124–129, 2012.

30

Table 8: Results on ORB Instances

Problem LB Method Best Cmax E[Cmax] RE
Best Avg. Best Avg.

ORBZ1 1073.50 RKGA (969, 1111, 1240) 1107.75 1138.65 3.19 6.07
GPSO (979, 1104, 1245) 1108.00 1141.60 3.21 6.34
SNS (958, 1086, 1222) 1088.00 1121.28 1.35 4.45
ABC (953, 1086, 1219) 1086.00 1118.65 1.16 4.21
GRASP (986, 1086, 1245) 1100.75 1148.81 2.54 7.02
MA (959, 1059, 1217) 1073.50 1095.67 0.00 2.07

ORBZ2 896.00 RKGA (795, 913, 1029) 912.50 925.28 1.84 3.27
GPSO (791, 909, 1031) 910.00 928.50 1.56 3.63
SNS (789, 892, 1013) 896.50 924.43 0.06 3.17
ABC (793, 894, 1003) 896.00 908.40 0.00 1.38
GRASP (799, 897, 1039) 908.00 920.15 1.34 2.70
MA (784, 889, 1022) 896.00 896.93 0.00 0.10

ORBZ3 1015.25 RKGA (919, 1032, 1175) 1039.50 1092.73 2.39 7.63
GPSO (934, 1064, 1205) 1066.75 1095.50 5.07 7.90
SNS (922, 1044, 1182) 1048.00 1080.33 3.23 6.41
ABC (916, 1033, 1171) 1038.25 1084.85 2.27 6.86
GRASP (942, 1051, 1203) 1061.75 1111.45 4.58 9.48
MA (900, 1005, 1151) 1015.25 1026.51 0.00 1.11

ORBZ4 1014.50 RKGA (907, 1034, 1177) 1038.00 1060.23 2.32 4.51
GPSO (921, 1030, 1170) 1037.75 1057.55 2.29 4.24
SNS (915, 1026, 1166) 1033.25 1052.68 1.85 3.76
ABC (909, 1018, 1157) 1025.50 1044.58 1.08 2.96
GRASP (908, 1018, 1160) 1026.00 1057.38 1.13 4.23
MA (894, 1005, 1154) 1014.50 1022.69 0.00 0.81

ORBZ5 897.25 RKGA (817, 913, 1032) 918.75 927.23 2.40 3.34
GPSO (813, 905, 1034) 914.25 924.85 1.89 3.08
SNS (813, 905, 1034) 914.25 918.70 1.89 2.39
ABC (813, 905, 1034) 914.25 916.70 1.89 2.17
GRASP (810, 903, 1039) 913.75 938.33 1.84 4.58
MA (793, 890, 1016) 897.25 901.37 0.00 0.46

31

Table 9: Results on ABZ Instances

Problem LB Method Best Cmax E[Cmax] RE
Best Avg. Best Avg.

ABZG5 1247.50 GRASP (1127, 1242, 1379) 1247.50 1262.63 0.00 1.21
MA (1127, 1242, 1379) 1247.50 1249.08 0.00 0.13

ABZZ5 1248.75 RKGA (1107, 1240, 1425) 1253.00 1269.13 0.34 1.63
GPSO (1103, 1249, 1427) 1257.00 1272.50 0.66 1.90
SNS (1108, 1242, 1418) 1252.50 1267.43 0.30 1.50
ABC (1107, 1245, 1403) 1250.00 1260.80 0.10 0.96
GRASP (1107, 1234, 1420) 1248.75 1263.13 0.00 1.15
MA (1108, 1239, 1413) 1249.75 1251.86 0.08 0.25

ABZG6 950.25 GRASP (876, 942, 1041) 950.25 964.49 0.00 1.50
MA (876, 942, 1041) 950.25 960.60 0.00 1.09

ABZZ6 952.50 RKGA (824, 948, 1074) 948.50 964.68 -0.42 1.28
GPSO (841, 943, 1070) 949.25 971.00 -0.34 1.94
SNS (831, 945, 1068) 947.25 961.43 -0.55 0.94
ABC (831, 945, 1068) 947.25 957.18 -0.55 0.49
GRASP (840, 945, 1080) 952.50 962.06 0.00 1.00
MA (844, 948, 1074) 953.50 956.14 0.10 0.38

ABZF7 656.00 GRASP (676, 721, 766) 721.00 729.13 9.91 11.15
MA (627, 670, 713) 670.00 679.47 2.13 3.58

ABZF8 645.00 GRASP (692, 731, 770) 731.00 746.07 13.33 15.67
MA (649, 683, 717) 683.00 692.10 5.89 7.30

ABZF9 661.00 GRASP (718, 765, 812) 765.00 774.67 15.73 17.20
MA (660, 700, 740) 700.00 707.97 5.90 7.11

32

Table 10: Results on TaF21–30 fuzzy instances

Problem LB Method Best Cmax E[Cmax] RE
Best Avg. Best Avg.

TaF21 1573 GRASP (1694, 1813, 1932) 1813.00 1850.00 15.26 17.61
AM (1547, 1679, 1811) 1679.00 1709.00 6.74 8.65

TaF22 1542 GRASP (1636, 1775, 1914) 1775.00 1808.37 15.11 17.27
AM (1485, 1632, 1779) 1632.00 1650.80 5.84 7.06

TaF23 1474 GRASP (1639, 1739, 1839) 1739.00 1758.80 17.98 19.32
AM (1506, 1600, 1694) 1600.00 1627.77 8.55 10.43

TaF24 1606 GRASP (1681, 1794, 1907) 1794.00 1820.80 11.71 13.37
AM (1555, 1676, 1797) 1676.00 1696.97 4.36 5.66

TaF25 1518 GRASP (1669, 1760, 1851) 1760.00 1781.80 15.94 17.38
AM (1570, 1655, 1740) 1655.00 1667.43 9.03 9.84

TaF26 1558 GRASP (1677, 1823, 1969) 1823.00 1851.30 17.01 18.83
AM (1561, 1686, 1811) 1686.00 1711.70 8.22 9.87

TaF27 1617 GRASP (1763, 1894, 2025) 1894.00 1926.73 17.13 19.15
AM (1602, 1716, 1830) 1716.00 1744.43 6.12 7.88

TaF28 1591 GRASP (1655, 1770, 1885) 1770.00 1803.60 11.25 13.36
AM (1497, 1629, 1761) 1629.00 1654.60 2.39 4.00

TaF29 1525 GRASP (1666, 1795, 1924) 1795.00 1821.00 17.70 19.41
AM (1545, 1647, 1749) 1647.00 1666.80 8.00 9.30

TaF30 1485 GRASP (1652, 1764, 1876) 1764.00 1791.77 18.79 20.66
AM (1512, 1631, 1750) 1631.00 1645.67 9.83 10.82

33

Table 11: Results on TaF41–50 fuzzy instances

Problem LB Method Best Cmax E[Cmax] RE
Best Avg. Best Avg.

TaF41 1874 GRASP (2140, 2321, 2502) 2321.00 2377.87 23.72 26.75
AM (1955, 2143, 2331) 2143.00 2175.50 14.23 15.96

TaF42 1867 GRASP (2107, 2267, 2427) 2267.00 2309.90 21.42 23.72
AM (1893, 2058, 2223) 2058.00 2090.23 10.23 11.96

TaF43 1809 GRASP (2045, 2206, 2367) 2206.00 2233.20 21.95 23.45
AM (1866, 1985, 2104) 1985.00 2008.83 9.73 11.05

TaF44 1927 GRASP (2162, 2320, 2478) 2320.00 2350.27 20.39 21.97
AM (1947, 2090, 2233) 2090.00 2120.07 8.46 10.02

TaF45 1997 GRASP (2126, 2278, 2430) 2278.00 2306.73 14.07 15.51
AM (1942, 2076, 2210) 2076.00 2098.80 3.96 5.10

TaF46 1940 GRASP (2161, 2337, 2513) 2337.00 2377.07 20.46 22.53
AM (1978, 2133, 2288) 2133.00 2161.37 9.95 11.41

TaF47 1789 GRASP (2072, 2216, 2360) 2216.00 2242.17 23.87 25.33
AM (1893, 2011, 2129) 2011.00 2046.73 12.41 14.41

TaF48 1912 GRASP (2092, 2251, 2410) 2251.00 2279.73 17.73 19.23
AM (1922, 2059, 2196) 2059.00 2084.03 7.69 9.00

TaF49 1915 GRASP (2140, 2267, 2394) 2267.00 2297.80 18.38 19.99
AM (1904, 2038, 2172) 2038.00 2076.43 6.42 8.43

TaF50 1807 GRASP (2113, 2262, 2411) 2262.00 2294.67 25.18 26.99
AM (1940, 2053, 2166) 2053.00 2077.13 13.61 14.95

34

