CERN-ACC-2014-0221

NOTICE: this is the author’s version of a work that was accepted for publication in 12th IFAC-IEEE International Workshop on Discrete Event Systems (WODES'14).
Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be
reflected in this document. Changes may have been made to this work since it was submitted for publication.

A definitive version was subsequently published in J-J. Lesage et al. (Eds.): Preprints of the 12th International Workshop on Discrete Event Systems (WODES 2014),
pp. 394-399, 2014. DOI: 10.3182/20140514-3-FR-4046.00051

Bringing Automated Model Checking to
PLC Program Development
— A CERN Case Study —

Borja Fernandez Adiego ™ Daniel Darvas *
Jean-Charles Tournier * Enrique Blanco Vinuela *
Victor M. Gonzalez Suarez **

* CERN (European Organization for Nuclear Research),
Geneva, Switzerland (e-mail: {borja.fernandez.adiego, daniel.darvas,
jean-charles.tournier, enrique.blanco} @cern.ch)

** University of Oviedo, Gijon, Spain (e-mail: victor@isa.uniovi.es)

Abstract: Verification of critical software is a high priority but a challenging task for industrial
control systems. Model checking appears to be an appropriate approach for this purpose.
However, this technique is not widely used in industry yet, due to some obstacles. The
main obstacles encountered when trying to apply formal verification techniques at industrial
installations are the difficulty of creating models out of PLC programs and defining formally
the specification requirements. In addition, models produced out of real-life programs have
a huge state space, thus preventing the verification due to performance issues. Our work at
CERN (European Organization for Nuclear Research) focuses on developing efficient automatic
verification methods for industrial critical installations based on PLC (Programmable Logic
Controller) control systems.

In this paper, we present a tool generating automatically formal models out of PLC code. The
tool implements a general methodology which can support several input languages, like the PL.C
programming languages defined in the IEC 61131 standard, as well as the model formalisms of
different model checker tools. The tool supports the three main stages of model checking: system
modelization, requirement formalization and counterexample analysis. In addition, a verification
case study of a PLC program, written in Structured Text (ST) language implemented at CERN
is described. The paper shows that the verification process is automatized and supported by the
proposed tool, thus its difficulty is completely hidden for the control engineer.

Keywords: PLC, IEC61131-3, ST, formal verification, model checking

1. INTRODUCTION a rich formalism to describe the real-life requirements.
However, these techniques are not wide-spread in this
field due to some challenges. First, the system and the
requirement to be checked should be both formalized in

order to apply model checking. This formalization work is

Control systems based on PLCs (Programmable Logic
Controllers) are widely used at CERN (European Orga-
nization for Nuclear Research), such as cryogenics, ven-

CERN-ACC-2014-0221

20/10/2014

@)

tilation or vacuum systems. These systems are developed
using the UNICOS (Unified Industrial Control System)
framework (Vifiuela et al. (2011)), which contains a library
of objects written in ST (Structured Text) programming
language to represent common industrial control instru-
mentations, such as sensors, actuators, etc. These are the
base of all the industrial control systems at CERN.

The control systems are critical to CERN’s operation,
therefore guaranteeing that their behaviour conform to
their requirement specifications is of highest importance. It
implies a crucial need to verify the UNICOS objects, the
building blocks of all these systems. Formal verification,
and especially model checking is a promising technique
to ensure that PLC programs meet their specifications.
The advantages of this technique is that the verification
itself does not need expertise, and the temporal logics,
such as Linear Temporal Logic (LTL) or Computation
Tree Logic (CTL) used as specification language provides

difficult and it requires expertise in the automation and
the verification fields. Moreover, its correctness is crucial
for the verification process. Therefore the formalization
process should be automatized. Second, the formal models
of real-life systems are usually complex and it can make
model checking impossible due to resource constraints.

In this paper, we present a tool generating automatically
formal models out of PLC code and show its applicability
to a real-life case study, as well as to demonstrate its
benefits. The automatic generation tool implements the
methodology presented in Darvas et al. (2013). The tool is
based on Xtext (Eysholdt and Behrens (2010)) and Eclipse
Modeling Framework (Steinberg et al. (2009)) technolo-
gies. It allows to produce formal models for NuSMV
(Cimatti et al. (2002)), UPPAAL (Amnell et al. (2001))
and the BIP framework (Basu et al. (2011)). The appli-
cability of the tool is demonstrated through the formal
verification of a critical object of the UNICOS library

http://dx.doi.org/10.3182/20140514-3-FR-4046.00051

deployed in CERN installations. The case study shows that
model checking can be included in the PLC development
process without the need of making the automation engi-
neers experts in the field of formal verification.

The rest of this paper is structured as follows. Section 2
overviews the related work. Section 3 briefly introduces
our automated formal model generation methodology.
Section 4 shows a complete verification case study, from
the system and the requirement to be verified to the
analysis of the results. Section 5 concludes the paper and
shows the future work.

2. RELATED WORK

The application of formal methods for PLCs has been
studied in previous work for many years (e.g., Frey and
Litz (2000); Canet et al. (2000); Bauer et al. (2004);
Siilflow and Drechsler (2008); Yoo et al. (2008); Pavlovié
and Ehrich (2010)), but either they do not address the
modelling of real systems, or they do not apply verification,
thus they do not have to apply any specific technique to
handle the state space explosion problem.

Some authors addressed the problem of state space explo-
sion by using different abstraction techniques (e.g., Gour-
cuff et al. (2008); Lange et al. (2013); Biallas et al. (2010)),
but they have strong limitations on the system (e.g. only
Boolean variables can be used in the PLC program) or
limitations on the set of requirements that can be verified
(e.g. only reachability properties can be checked).

In addition, only a few works targeting ST code verification
can be found on the literature, as it is the most complex
PLC programming language (e.g., Gourcuff et al. (2006);
Sadolewski (2011b,a)). However, these approaches cannot
be applied to our systems, as either they have limitations
on the data type declarations or they have strong limita-
tions on the specification language.

These works present interesting results, however either
cannot be applied to a real-life PLC programs, as they do
not address the state space explosion problem, or they are
not addressing ST PLC programs. As it is the main PLC
programming language used at CERN, it is unavoidable
to be able to formalize them. In the literature, we have
not found so far any work addressing the verification of
real-world ST programs together with automated model
generation. Finally, all the work found in literature target a
specific verification tool, not providing a general approach.

3. METHODOLOGY

This section introduces the general methodology for veri-
fying PLC programs defined in Darvas et al. (2013). The
methodology produces formal models for different verifi-
cation tools out of PLC programs implemented according
to the IEC 61131 standard (IEC 61131). For that purpose,
a set of transformation rules are defined to produce input
models for e.g. NuSMV (Cimatti et al. (2002)), UPPAAL
(Amnell et al. (2001)) and the BIP framework (Basu et al.
(2011)). To make the approach general, we defined an
intermediate model (IM) based on automata formalism,
which facilitates the addition of new PLC programming
languages or formal model formalisms by decoupling the

inputs and the outputs of the workflow. This IM is also
useful to apply various reductions and abstractions in
order to make the formal model less complex. More details
about the IM and the transformation rules can be found
in Darvas et al. (2013).

The methodology is extended with a set of specification
patterns to help the developer to formalize the require-
ments to be verified. Usually, the high-level requirements
are ambiguous, thus they cannot be verified. LTL provides
an unambiguous specification language, but it is too com-
plex to be used by automation engineers. An intermedi-
ate solution can be the use of patterns, which provides
an easy-to-understand formalism with the possibility of
automatic formalization. This approach is similar to the
idea proposed by Campos et al. (2008), but more com-
plex patterns have been created supporting state changes,
timed behaviour, etc., to cover the real-life needs.

Fig. 1 shows the complete methodology which consists of
6 consecutive steps:

(1) Requirements formalization.

(2) Transformation of the PLC program into the IM.
(3) IM reduction.

(4) Generation of formal models for the model checkers.
(5) Execution of the model checker.

(6) Analysis of the counterexample.

The first step of this methodology is the formalization of
the requirements. The following 3 steps are designed to
automatically generate the formal models. Once the model
and requirements are formalized, model checking can be
applied. Finally, if a given requirement does not hold on
the model, a counterexample is produced by the model
checker, which contains relevant information to identify
the source of the problem.

4. CASE STUDY

This section describes a verification case study which was
performed on a real PL.C program with a real requirement
by applying the proposed methodology. Each step of our
methodology is introduced and measurements are given
for the discussed example.

4.1 Description of the example case

As a case study, we have chosen the OnOff object of the
UNICOS library implemented for S7 Siemens PLCs. This
object represents a physical equipment driven by digital
signals, e.g. a valve, heater or motor. In the PLC, this
object corresponds to a function block written in SCL
(Structured Control Language), which is the equivalent
of ST code in Siemens PLCs. The grammar of the SCL
language is close to the standard ST language, with mostly
syntactic differences. Some key metrics about this object
are shown in Table 1. This object is representative of other
UNICOS objects in terms of size and complexity.

The requirement chosen for this case study is connected
to the so-called Mode manager part of the OnOff object.
The OnOff object can operate in one of the following five
modes: Auto, Manual, Forced, Software Local Drive and
Hardware Local Drive modes. In Auto mode, the object is
driven by the implemented logic. In Manual and Forced

"PLC world" Modelling Verification
abstractions /
reductions
m NuSMV model
next (loc) := case
ST code intermediate model yﬁg‘" ool e e RS 54 o
ee " A e \
IF cs';l';iEN transt. . snl; 0 » Model checking Counterexa}mp/e
ELSE e C] [NOT ¢ L analysis
s . . \ UPPAAL model ///
Requirement o

Fig. 1. Overview of the workflow

Table 1. Case Study metrics

Metric OnOff PLC code

Lines of code 600

Input variables 60

Output variables 62

Data types Booleans, integers, floats, time, etc.
Timers 3

mode, the object is driven by the operator. The other two
modes are for special operations. The transitions between
the operational modes are performed by “mode requests”,
coming from the implemented logic, the operator or a local
device. To perform an operation mode change, a rising
edge is necessary on the corresponding mode request input.
One of these inputs is AuAuMoR, which stands for “Auto
mode request initiated by the logic”. Similarly, there is
a MAuMoR input which stands for “Auto mode request
initiated by the operator”. Fig. 2 shows the state machine
that specifies the behaviour of the mode manager for the
three main modes. In the figure, “RE(z)” stands for rising
edge on input z.

One of the real requirements which can be derived from the
specification of the object, shown in Fig. 2, is the following:

“If there is a rising edge on the AuAuMoR (Auto
mode request initiated by the logic) input, the mode
will be changed to Auto.”

This requirement is ambiguous, thus some refinement is
needed in order to be able to be formalized and verified:

“If the current mode is Auto, Manual or Forced
mode and there is a rising edge on the AuAuMoR
(Auto mode request initiated by the logic) input,
but there are no other mode change requests, the
mode will be Auto at the end of the cycle.”

This is a real requirement and the corresponding PLC
code was developed trying to satisfy this requirement.
According to the specification, this requirement should be
satisfied by the real implementation.

4.2 Formalization of requirements

Verifying UNICOS baseline objects involves complex re-
quirements. For the model checking tools, they should
be formalized as temporal logic expressions, such as LTL
expressions.

As mentioned in Section 3, the formalization of the require-
ments is the first step of the methodology (see Fig. 1).

~AulhMMo
AND
RE(MMMOoR)

—AulhFoMo
AND
RE(MFoMoR)
RE(AuAuMoR) RE(AuAuMoR)
OR OR
RE(MAuMoR) ~ RE(MAuMOoR)

~AulhFoMo
AND
RE(MFoMoR)
~AulhMMo
AND
RE(MMMOoR)

Fig. 2. State machine of the OnOff mode manager

Even if the given example requirement can be considered
as unambiguous, it is not straightforward to formalize us-
ing temporal logic. The requirement formalization is a dif-
ficult task for the control system developers as usually they
are not experienced in temporal logic. To help developers
formalizing the specification requirements, a set of patterns
is provided. For example, the pattern corresponding to the
current requirement is the following:

If there is a rising edge on A and B is true, then C
is true.

However, this pattern is ambiguous, as there are multiple
possible interpretations of “there is a rising edge”. There-
fore we reformalized it to have an unambiguous meaning;:

If in Cycle N: A is false and B is true, and
in Cycle N + 1: A is true and B is true,
then C is true (in Cycle N + 1).

It has to be noticed, that every variable value is checked at
the end of PLC cycles, as the output variables are assigned
to the real peripheries at this point.

The introduced requirement can be formalized using this
pattern, by using the following values:

A: AuAuMoR

B: Mode = Auto or Manual or Forced AND there
are no mode change requests other than AuAuMoR
C: Mode = Auto

This pattern is formal enough to be expressed as an LTL
formula. One possible formalization is the following;:

G((Eoc A=ANBAX(=EoC U (EoC A AN B)))

5 X(=EoC U (EoC /\C)))

In the formalization, EFoC means “end of PLC cycle” and
is true only at the end of PLC cycles. The meaning of

X(=EoC U (EoC A P)) is that the end of the PLC cycle
is not reached until P is true. In other words: P is true at
the end of the next cycle.

4.8 Model generation

The application of model checking needs formal models of
the system to be verified. In our case, the PLC programs
written in ST language have to be transformed into a
formal model which is supported by the model checking
tools. This step is not the main contribution of this paper,
the reader find more details about the model generation
in Darvas et al. (2013).

For that purpose, a tool supporting the methodology pre-
sented in section 3 have been developed, which drastically
reduces the modelization time and the potential human
errors. The generation consists of three steps:

(1) Transformation from the PLC program written in ST
to the IM (Step 2).

(2) Reduction techniques applied to the IM (Step 3).

(3) Generating inputs for the model checkers (Step 4).

Transformation from ST code to IM In the methodology,
as it was introduced in the previous section, the PLC
programs are first transformed into an intermediate model
(IM). For this purpose, the input PLC code should be
parsed. In our tool, the Xtext technology (Eysholdt and
Behrens (2010)) is applied, which automatically generates
an Eclipse-based editor, a parser and the necessary object
model (which is essentially an abstract syntax tree) based
on the given grammar adjusted to the needs of Xtext.

After parsing the code, i.e. the abstract syntax tree is built,
a transformation creates an intermediate model represen-
tation, which is basically the control flow graph repre-
sentation of the PLC program. These transformations are
defined as a set of transformation rules. The intermediate
model formalism is defined as an EMF (Eclipse Modeling
Framework) metamodel (Steinberg et al. (2009)). The
EMF technology makes easier to develop and maintain
the metamodel, as well as facilitates to create correct
instance models which reduces the possibility of faults in
the transformation.

Transformation from IM to specific model checkers The
intermediate model representation of the PLC program is
formal and unambiguous, thus it can be used as an input
for model checking. However, every model checker tool
has a different and custom input formalism to describe
the input models. Therefore before using the verification
tools, converting the IM to the languages of the desired
model checkers is needed (Step 4 on Fig. 1). This trans-
formation is largely syntactical: if the model checker’s
input formalism is close to a description of an automaton
or a state-transition system, the only main task of this
transformation is to handle the syntactic differences.

For example, NuSMV uses a finite state machine as input
language, which can represent our IM in a simple way.
However, small challenges are arisen. For example, the ST
language have a strong typing system, but 0 and FALSE
are equivalent Boolean literals (i.e. b:=0 and b:=FALSE
have the same meaning). However, in NuSMV, the only

possible values of the Boolean variables are TRUE and
FALSE. Therefore before the semantic transformation is
performed, it has to be determined for every element of
every expressions what are the corresponding data types,
i.e. if a “0” literal represents a Boolean or an integer value.

For this transformation, we used the Xtend technology
(Xtend (2014)) which provides good utilities to develop
textual model generator.

After the two transformations (Step 2 and 4), the formal
model is ready to be checked with the verification tool.
However the obtained model is often huge, for example
the potential state space of the model of the OnOff
object contains approximately 102!® states, making its
verification impossible.

Model reductions The performance problem caused by
huge models motivated an intermediate reduction step
between Step 2 and 4. It is inevitable to apply reductions,
simplifications to the model. Therefore a Step 3 was
introduced in the methodology and reduction techniques
are applied to the IM. Here we present the key ideas of the
reduction step and we refer the reader for further details
to Darvas et al. (2014).

Several reduction rules have been designed that can drasti-
cally reduce the size of the model. They can be considered
as simple graph transformations. Furthermore, a cone of
influence (COI) reduction (Clarke et al. (1999)) algorithm
tailored to the PLC domain has been developed. This
algorithm eliminates all the variables that are unnecessary
for the evaluation of the current requirement. Comparing
to the built-in COI included in NuSMV, the obtained
performance is much better, because we can exploit the
fact that IM is a higher level model and it contains more
knowledge about the modelled system.

These reductions do not modify the meaning of the model
with regards to the given requirement. In addition, the
reductions are not just stand-alone rules, they can “help”
each other. Therefore they are applied in an iterative way,
until no further reduction can be achieved. By using these
reductions, the potential state space of the model can be
reduced dramatically, as discussed in the next paragraph.

Evaluation of model generation Table 2 shows key met-
rics on the size of the models and the generation times for
the case study. Three different models are compared here: a
“non-reduced model” without any model reductions (M),
a “reduced model” which is still general, therefore a large
set of different requirements can be verified on them (Ms),
and a model tailored to the current example requirement
which is only suitable for the evaluation of a reduced set
of requirements (Ms3).

As it can be seen in the Table 2, by using the proposed
model reductions in the methodology, the size of the
potential state space (PSS) of the OnOff object can be
reduced from 10%'® to less than 4 - 1019, without affecting
the result of the requirement to be checked.

The reductions are effective in terms of making the models
smaller, but naturally they consume time. However, even
with the most specific reductions, the run time of the
model generation including the ST code parsing, the

reductions, and the generation of the NuSMV inputs
does not take more than 10-15 seconds, which is orders
of magnitude lower than the achieved reduction in the
verification time.

Table 2. Metrics of the models

Metric Non-reduced Reduced Specific
model (M71) model (M2) model (M3)
PSS 1.61- 10218 4.57 - 1036 3.65- 1010
Variables 255 118 33
Generation 0.3s 11.3 s 12.6 s

4.4 Model checking

The next step is the verification of the formalized require-
ment on the formal model (Step 5 on Fig. 1). Currently, our
tool supports the input formalisms of NuSMV, UPPAAL
and the BIP framework. In terms of verification perfor-
mance and requirements specification, NuSMV appears to
be currently the most appropriate tool out of those three
for our cases. Therefore we applied NuSMYV for the current
case study too.

NuSMYV is a widely used open source model checker tool
which supports a general input language and multiple,
generic temporal logics as requirement specification for-
malism. It also provides various parameters to fine-tune
the verification and the run time highly depends on the
used parameters. Without any given parameters, NuSMV
will explore the full state space before the evaluation of the
requirement. However, if this is not necessary for the veri-
fication, it can be disabled by the -df parameter. The -dcx
parameter disables the generation of the counterexample
which makes the verification time smaller, but we cannot
profit from the information given by the counterexample.
The -dynamic parameter enables the dynamic reordering
of the variables, which can drastically reduce the memory
consumption of the tool.

Table 3 shows verification time results for the introduced
requirement on the OnOff object. As it can be seen, the
verification of the non-reduced model (M;) was not suc-
cessful. The requirement can be verified on the general
reduced model, taking 160 s with counterexample genera-
tion. However, much smaller run times can be achieved by
using the reduced model specific to the given requirement
(Ms3). In this case, the verification and the counterexample
generation took less then 1 second together. (The symbol
“—7 indicates an execution longer than 24 hours.)

For the introduced example requirement, the result of the
model checker is false, thus the requirement is not satisfied.

Table 3. Verification run time with NuSMV

Metric Non-reduced Reduced Specific
model (M1) model (M2) model (Ms)
no parameters — — 8.398 s
-dynamic — ~T7h 1.334 s
-dynamic -df — 160.8 s 0.547 s
-dynamic -df -dcx — 3.787 s 0.141 s

4.5 Counterexample analysis

One of the strengths of the model checking method is that
if a requirement is not satisfied, a counterexample can be

-> State: 1.17 <-
inst.HLD = FALSE

onoffl1. HLD := false;
onoffl.ManReg01 :=

inst.MANREGO1[8] = TRUE 2#:0000000000000001;
inst.MANREGO1[9] = FALSE onoffl. AuAuMoR := false;
inst.MANREGO1[10] = FALSE onoffl. AuThMMo := false;

inst.MANREGO1[11] = FALSE onoffl. AuThFoMo := false;

inst.AUAUMOR = FALSE
inst.AUIHMMO FALSE
inst.AUIHFOMO = FALSE

CPC_FB_ONOFF.onoff1();
// Check:
b := onoffl.AuMoSt;

(a) Extract from the
generated counterexample

(b) Extract from the PLC
demonstrator

Fig. 3. Examples for the counterexample and the PLC
demonstrator

generated by the model checker. This counterexample can
be analysed to find the source of the problem (Step 6 on
Fig. 1).

With appropriate settings, NuSMV generates detailed
counterexamples, containing the value of each variable
after each transition in the model (corresponding to the ex-
ecution of an instruction in the PLC code). However, these
counterexamples are usually too long. For the current
requirement the detailed counterexample contains about
5000 lines for the specific model (M3) and 37500 lines for
the generic model (M3). These are too detailed for human
analysis. However, they can be reduced, as it is enough
to know the value of the input and output variables at
the end of each PLC cycle, thus the variable valuations
of the intermediate states can be removed. By removing
the unnecessary states and the temporary variables, the
counterexample of the current requirement can be reduced
to approximately 100 lines.

The counterexample can also be used to demonstrate the
problem in a real environment. Using the NuSMV’s coun-
terexample, a demonstrator PLC code can be generated
easily by adding a module simulating the variables from
the counterexample and checking the expected result. In
this way, it can be proved that the counterexample is not
caused by a mistake during the model generation or due
to bad reductions. In this case study, the counterexample
given by NuSMV was confirmed in a real PLC, showing
that the model and the real system are equivalent for this
specific requirement. Fig. 3 shows an extract from the
generated counterexample and the corresponding part of
the PLC demonstrator source code.

Furthermore, the PLC demonstrator can help us to reduce
the counterexample. Usually, most of the input variables
do not have any effect on the evaluated requirement. Those
variables can be fixed to constant values which can help to
focus on the input value changes that causes the violation
of the requirement.

In the current example, by using the counterexample and
the reduced PLC demonstrator we were able to identify
the source of the problem. It turned out, that from Forced
mode the logic cannot switch to Auto mode, it can only
be done by the operator. The corresponding part of the
implementation can be seen in Fig. 4. The highlighted
part shows the code implementing the transition from

1 In the source code, the variables starting with “E_” indicate the
rising edges of the corresponding inputs. AuMoSt_aux is true if

Forced mode to Auto mode, which does not take into
account the AuAuMoR input. This behaviour is correct
and intentional, in this case the source of the requirement,
the specification contained a mistake.

IF (MMoSt_.aux AND (E_MAuMoR OR E_AuAuMoR)) OR
(FoMoSt_aux AND E_MAuMoR) OR
(SoftLDSt_aux AND E_MAuMoR) OR
(MMoSt_aux AND AulhMMo) OR
(FoMoSt_aux AND AulhFoMo) OR
NOT (AuMoSt_.aux OR MMoSt_aux OR

FoMoSt_aux OR SoftLDSt_aux) THEN
(* Setting mode to Auto *)
AuMoSt_aux := true;
MMoSt_aux := false;
FoMoSt_aux := false;
SoftLDSt_aux := false;

END_IF;

Fig. 4. Extract of the source code causing the violation of
the requirement

Many safety and liveness requirements have been verified
using this methodology and the number of discrepancies
between the specification and PLC program were signif-
icant even if testing was applied previously. In all these
cases, 3 possible situations are identified as the source of
the problem: a bug in the implementation, a mistake in
the specification or an incomplete specification.

5. CONCLUSION AND FUTURE WORK

The paper presents a real-life case study to validate a
general approach meant to apply formal verification to
PLC programs. The paper discusses each step of the
methodology and illustrates them with measurements.

We have shown that the methodology hides the difficulty of
building the formal model and of formalizing the require-
ments from the control engineer, as it does not require any
expertise in the field of formal methods from the engineer.
This methodology is being applied extensively to all the 20
objects of the UNICOS library, each containing hundreds
of specification requirements.

By applying this automated methodology to the UNICOS
framework, many discrepancies have been detected be-
tween the specification and the real PLC code, even if the
UNICOS library was tested extensively.

This case study has emphasized the importance of having
a correct, unambiguous and complete specification. Future
plans for this project are to invest a big effort on producing
unambiguous requirement specification which will improve
the quality of the PLC code.

REFERENCES

Amnell, T. et al. (2001). UPPAAL — now, next, and fu-
ture. In Modeling and Verification of Parallel Processes.
Springer.

Basu, A. et al. (2011). Rigorous component-based system
design using the BIP framework. IEEE Sw., 28, 41-48.

Bauer, N., Engell, S., Huuck, R., Lohmann, S., Lukoschus,
B., Remelhe, M., and Stursberg, O. (2004). Verification

the current mode is Auto. The meaning of variables MMoSt_aux,
FoMoSt_aux, and SoftLDSt_aux are similar, with the other modes.

of PLC programs given as sequential function charts.
In Integration of Software Specification Techniques for
Applications in Engineering, 517-540. Springer.

Biallas, S., Brauer, J., and Kowalewski, S. (2010).
Counterexample-guided abstraction refinement for
PLCs. In Proc. of SSV’10. USENIX A., Berkeley, USA.

Campos, J.C. et al. (2008). Property patterns for the
formal verification of automated production systems. In
Proc. of 17th IFAC World Congress, 5107-5112. IFAC.

Canet, G. et al. (2000). Towards the automatic verification
of PLC programs written in Instruction List. In Proc.
of SMC 2000, 2449-2454. Argos Press.

Cimatti, A. et al. (2002). NuSMV 2: An opensource
tool for symbolic model checking. In Computer Aided
Verification, volume 2404 of LNCS, 359-364. Springer.

Clarke, E.M., Grumberg, O., and Peled, D.A. (1999).
Model Checking. The MIT Press.

Darvas, D., Adiego, B.F., and Vinuela, E.B. (2013). Trans-
forming PLC programs into formal models for verifi-
cation purposes. Internal note, CERN. CERN-ACC-
NOTE-2013-0040.

Darvas, D., Fernédndez Adiego, B., Voros, A., Bartha,
T., Blanco Vinuela, E., and Gonzilez Suérez, V.M.
(2014). Formal verification of complex properties on
PLC programs. In Proc. of FORTE 2014. To appear.

Eysholdt, M. and Behrens, H. (2010). Xtext: Implement
your language faster than the quick and dirty way. In
SPLASH/OOPSLA Companion, 307-309. ACM.

Frey, G. and Litz, L. (2000). Formal methods in PLC
programming. In IEEE Int. Conf. on Systems, Man,
and Cybernetics, volume 4, 2431-2436. IEEE.

Gourcuff, V., de Smet, O., and Faure, J.M. (2006). Effi-
cient representation for formal verification of PLC pro-
grams. In Proc. of §th WODES, 182-187.

Gourcuff, V., de Smet, O., and Faure, J.M. (2008). Im-
proving large-sized PLC programs verification using ab-
stractions. In Proc. of 17th IFAC World Congress.

IEC 61131 (2013). IEC 61131: Programming languages for
programmable logic controllers.

Lange, T., Neuhaufler, M., and Noll, T. (2013). Speeding
up the safety verification of programmable logic con-
troller code. In Hardware and Software: Verification and
Testing, volume 8244 of LNCS, 44-60. Springer.

Pavlovi¢, O. and Ehrich, H.D. (2010). Model checking
PLC software written in function block diagram. In
International Conference on Software Testing, 439-448.

Sadolewski, J. (2011a). Automated conversion of ST
control programs to Why for verification purposes. In
Federated Conference on CSIS 2011, 849-854.

Sadolewski, J. (2011b). Conversion of ST control programs
to ANSI C for verification purposes. e-Informatica, 5(1),
65-76.

Steinberg, D., Budinsky, F., et al. (2009). EMF: Eclipse
Modeling Framework 2.0. Addison-Wesley Professional.

Siilflow, A. and Drechsler, R. (2008). Verification of PLC
programs using formal proof techniques. In FORMS/
FORMAT 2008, 43-50.

Vinuela, E.B. et al. (2011). UNICOS evolution: CPC
version 6. In Proc. of 12th ICALEPCS.

Xtend (2014). http://www.eclipse.org/xtend/.

Yoo, J., Cha, S., and Jee, E. (2008). A verification
framework for FBD based software in nuclear power
plants. In Proc. of APSEC’08, 385-392. IEEE.

