
Adapting Decision DAGs for Multipartite
Ranking?

José Ramón Quevedo, Elena Montañés, Oscar Luaces and Juan José del Coz
{quevedo,elena,oluaces,juanjo}@aic.uniovi.es

Artificial Intelligence Center, University of Oviedo at Gijón (Spain)

Abstract. Multipartite ranking is a special kind of ranking for problems
in which classes exhibit an order. Many applications require its use, for
instance, granting loans in a bank, reviewing papers in a conference or
just grading exercises in an education environment. Several methods have
been proposed for this purpose. The simplest ones resort to regression
schemes with a pre- and post-process of the classes, what makes them
barely useful. Other alternatives make use of class order information
or they perform a pairwise classification together with an aggregation
function. In this paper we present and discuss two methods based on
building a Decision Directed Acyclic Graph (DDAG). Their performance
is evaluated over a set of ordinal benchmark data sets according to the
C-Index measure. Both yield competitive results with regard to state-
of-the-art methods, specially the one based on a probabilistic approach,
called PR-DDAG.

1 Introduction

Multipartite ranking has been recently named [11] as an extension of the tradi-
tional bipartite ranking from the binary to the multiclass case. Bipartite ranking
aims to learn a model whose performance is evaluated according to its ability of
sorting positive before negative examples. Such ability is commonly assessed in
terms of the AUC, which is the area under the Receiver Operating Character-
istic (ROC) curve [6]. In fact, multipartite ranking has also been called ordinal
ranking, since it relates an ordinal classification and a ranking. Ordinal classifi-
cation means to perform a classification whose classes display an order. Ordinal
ranking goes further and also provides a ranking of the examples within the
same class. Obviously, a good multipartite ranker is expected to place examples
of the higher classes before examples of the lower ones.

Many applications may take advantage of this special kind of ranking. For
instance, a banker commonly classifies customers that ask for a mortgage into
classes as high risk, moderate risk, low risk, no risk. Imagine now that a certain
number of mortgages are able to grant according to the interests of the bank

? This research has been partially supported by Spanish Ministerio de Ciencia e In-
novación (MICINN) grants TIN2007-61273 and TIN2008-06247 and by FICYT, As-
turias, Spain, under grant IB09-059-C2.

and that such number falls below the number of customers classified as no risk.
Obviously, the bank has to decide within the no risk customers to who give the
mortgage. Hence, an order within the examples of each class must be provided.
The same demand happens in many other environments, for instance in job
vacancies, paper reviews in a conference or waiting list in hospitals according to
the urgency degree of the disease.

The main goal of this paper is to explore the use of a Decision Directed
Acyclic Graph (DDAG) [24] to address the problem of multipartite ranking.
DDAGs have been successfully applied before, but to the best of our knowledge
for classification purposes rather than for ranking [3,7,23,24,27]. Unlike other
approaches, our proposal makes use of the class order information to lead the
build of the graph. We present two different methods that exploit the struc-
ture of a DDAG to produce a ranking. The first one follows a crisp approach
and produces a global ranking by concatenating a set of consecutive bipartite
rankings. The second one is a probabilistic approach where each example is prop-
agated through all possible paths with a cumulative probability attached. The
performance of both methods is as good as some state-of-the-art techniques,
outperforming them in some situations. In addition, they are computationally
more efficient than other algorithms used for the same purpose.

The rest of the paper is organized as follows. Section 2 includes an overview of
some related work. In Section 3, the multipartite ranking problem is stated and
the main state-of-the-art approaches are described. Then, Section 4 presents the
two different DDAG-based methods proposed in this paper to tackle multipartite
ranking. In Section 5 results of the experiments over benchmark data sets are
described and analyzed. Finally, Section 6 draws some conclusions.

2 Related Work

Multipartite ranking is closely related to other fields that have been extensively
studied. Ordinal classification, a research field between classification and regres-
sion, is one of the closest. In fact, it shares properties with the former that a
specific number of classes is stated, and with the latter that such classes are
ordered. This is the reason why most of the research is focused on adapting
either classification or regression techniques to cope with ordinal classification.
However, none of them seem completely adequate, since the former discards
class order information, whereas the latter exploits that order relation but mak-
ing strong assumptions about the distances between classes [19]. Recently, some
work has been done to exploit class order information. In [2], authors reduce the
problem to the standard two-class problem using both support vector machines
and neural networks also providing generalization bounds. Two new support
vector approaches for ordinal regression, which optimize multiple thresholds to
define parallel discriminant hyperplanes for the ordinal scales are proposed in [4].
Frank and Hall [8] present a simple approach encoding the order information in
class attributes allowing the use of any classifier that provides class probability
estimates. Also, Herbrich et al. [14] proposed a distribution independent risk for-

mulation of ordinal regression. It allows to derive an uniform convergence bound
whose application configures a large margin algorithm based on a mapping from
objects to scalar utility values, thus classifying pairs of objects.

Label ranking is another field also closely related to multipartite ranking,
since a required order for the classes is stated. In this framework the goal is to
learn a mapping from instances to rankings over a finite number of labels. How-
ever, the labels are ranked instead of the instances, as in multipartite ranking.
Some research deal with this discipline, as the work in [17], where authors learn
a ranking by pairwise comparison or in [1], in which they propose a sophisticated
k-NN framework as an alternative to previous binary decomposition techniques.

No so much research can be found about multipartite ranking. In [26], the
authors derive distribution-free probabilistic bounds on the expected error of
a ranking function learned by a k-partite ranking algorithm. Waegeman et al.
[29] generalize the Wilcoxon-Mann-Whitney statistic to more than two ordered
categories in order to provide a better evaluation system in ordinal regression.
One of the most recent work that copes with the problem itself is [11], in which
the use of binary decomposition techniques are explored. On one hand, the au-
thors adapt for this purpose an ordinal classification method [8] that converts
the original m class problem into a m− 1 binary problems. On the other hand,
they analyze the use of pairwise classification [10] to induce also a multipartite
ranker. The main problem that arises in decomposition approaches is that after
such decomposition, an aggregation scheme must be adopted to compose again
the original problem. In multipartite ranking combining scoring functions of each
model is a better practice than combining the rankings yielded by each model
[11].

3 Multipartite Ranking

As commented above, multipartite ranking provides a ranking of instances in
ordinal classification tasks. Let us include some definitions to formally state the
problem.

Definition 1 Let be L = {`1, ..., `p} a set of classes. Then, a natural order rela-
tion denoted by ≺ is defined over L such that it holds `i ≺ `j if `i is semantically
below `j, with i, j ∈ {1, ..., p}.

Definition 2 Let be L = {`1, ..., `p} a set of classes that satisfy a natural order
relation denoted by ≺. Let also be S = {x1, ...,xm} a set of m instances from
an input space X , in which each instance xi is labeled as `xi ∈ L. Then, the
goal of multipartite ranking consists of obtaining a ranking function f : X → R

such that as many as possible xi,xj ∈ X such that `xi
≺ `xj

it must satisfy that
f(xi) < f(xj).

Thus, f(·) must place all the instances classified under the class `i before any
instance classified under the class `j whenever `i ≺ `j , with i, j ∈ 1, ..., p.

A well-known approach to address this task proposes to convert the original
problem into a single binary classification problem. It involves including several
pairwise constraints according to the order relation defined over L, each one
being a new instance that will feed the binary classifier. Formally, since for
all i, j ∈ {1, ...,m} such that `xi

≺ `xj
it must be held that f(xi) < f(xj)

and assuming that f is linear, then it holds that f(xi − xj) < 0. Analogously,
f(xk − xl) > 0 for all k, l ∈ {1, ...,m} such that `xl

≺ `xk
. Hence, S+ =

{xi − xj/`xi ≺ `xj} is the set of positive examples of the binary classification
task and S− = {xk − xl/`xl ≺ `xk} conforms the negative ones. The main
disadvantage of this approach is that the number of instances for such binary
classification problem is the order of O(m2).

Decomposition methods involve several binary learning problems instead of
a single one, but with the advantage that such problems are smaller and do not
require to increase the number of instances. Some approaches fall into this kind
of decomposition previously used for classification [8,10] and recently adapted
to multipartite ranking [11]. They differ in the selection of the binary problems
they solve.

The Frank and Hall (FH) approach [8] defines p− 1 binary problems, where
the i-th problem consists of obtaining a model Mi able to separate the class
C+i = {`1, ..., `i} from the class C−i = {`i+1, ..., `p}, when i ranges from 1 to
p−1. This model provides the probability, denoted by P (`i ≺ `x), of an instance
x of belonging to a class higher than `i in the order relation defined over L.
Such probabilities in turn define one ranking per model. These rankings must
be aggregated to obtain a global one. The aggregation function must guarantee
that instances of lower classes keep lower in the global ranking and so does the
function defined as follows

M(x) =
p−1∑
i=1

Mi(x) =
p−1∑
i=1

P (`i ≺ `x). (1)

The learning by pairwise comparison (LPC) or round robin learning [10] defines
p(p− 1)/2 binary problems, where the i, j-th problem consists of separating the
class `i and `j , when i, j range from 1 to p and `i ≺ `j . This approach is also used
in other learning tasks, as in multiclass classification, where the output of each
induced model Mi,j for an example x is accounted as a vote for the predicted
class `i or `j ; then the most voted class is predicted following the MaxWins
voting scheme [9]. But, this method is not suitable in multipartite ranking, since
it is not able to induce a ranking. In [11], the authors propose two alternative
aggregation functions, assuming that binary models yield normalized scores, i.e.
Mi,j(x) ∈ [0, 1], which is the probability that x belongs to class `j . Both sum
the predictions in favor of the higher class,

M(x) =
∑

1≤i<j≤p

Mi,j(x), (2)

but in the second one those predictions are weighted by the relative frequencies,
pi, pj of the classes `i, `j in the training set,

1|5

2|51|4

2|41|3 3|5

2|31|2 4|53|4

21 3 54

Fig. 1. A Decision Directed Acyclic Graph

M(x) =
∑

1≤i<j≤p

pipjMi,j(x). (3)

4 Two DDAG-based methods for multipartite ranking

In this section we will present and discuss two different methods that are based
on a common idea, building a DDAG [24] to cope with the multipartite ranking
problem. The first one, called CR-DDAG, produces a global ranking by combin-
ing a set of consecutive bipartite rankings. The second one, called PR-DDAG,
adds a probabilistic framework based on the structure of a DDAG. Since both
methods share the same DDAG structure, we will first describe and motivate it.

A Directed Acyclic Graph (DAG) is a graph whose edges have an orientation
and no cycles. A special case is the DDAG presented in [24]. In that paper, the
authors describe and analyze a method to solve multiclass classification problems
employing a DAG to combine the set of binary classifiers yielded by a decom-
position scheme identical to the one used by LPC (see previous section). Thus,
DDAG also trains p(p−1)/2 classifiers, one for each pair of classes. However, LPC
and DDAG differ in the way they combine the predictions of those classifiers. In
the latter, the structure of the DDAG determines such combination.

More in detail, the nodes of a DDAG are arranged in a triangle (see Figure 1)
with the single root node at the top, two nodes in the second layer and so on
until the final layer of p leaves. The k-th node in layer l < p is connected to the
k-th and (k+ 1)-th node in the (l+ 1)-th layer. Except for the leaves, each node
has an associated model, namely Mi,j , aimed at separating the classes `i and
`j , and two successors which will be two leaves when i = j − 1, or two decision
nodes with models Mi,j−1 and Mi+1,j respectively. The prediction procedure
of a DDAG works as follows (see the example in Figure 1). Starting from the
root (modelM1,5), a DDAG decides at each node, applying modelMi,j , which

of the two classes `i and `j is preferred for a certain instance x. If the former
is the winner, then the instance x is evaluated over its left child node (model
Mi,j−1 in the example), so class `j is discarded. Otherwise, the instance x is
evaluated using its right child node (model Mi+1,j), then class `i is discarded.
The process continues until a leave is reached whose label is returned for the
instance x. Thus, an instance is evaluated over p − 1 different models. Notice
that a DDAG works as a list in which a class is discarded after each evaluation.

There is no consensus about which classes must be considered first and which
ones in last place for each branch of the tree. For instance, in the foundational
paper [24] the choice is arbitrary, in [3] a binary decision diagram and Huffman
code [30] construction is employed and Jaakkola-Haussler [28] error bound is
proposed in [7]. In this paper, we propose an alternative idea. As it can be
easily proved, a DDAG predicts incorrectly the true class of an example x if one
competent model in the prediction path followed by x fails. As it was defined in
other papers [11], a binary model Mi,j is only competent to classify examples
that belong to classes `i or `j . Thus, it is quite dangerous to locate at the root
a model Mi,j if the classes `i and `j are hard to separate, because that model
will evaluate all examples of these classes. Hence, placing such kind of models
at lower levels is preferable, since they will classify less examples.

A simple adaptation of this idea to multipartite ranking (and in general
to ordinal classification tasks) is based on the intuitive assumption, validated
experimentally in [16], that the ordinal structure of the set of classes is also
reflected in the topology of the input space. Thus, it seems that the lowest (`1)
and highest (`p) classes of the order defined over L are those likely to be separated
best. So, modelM1,p is proposed to be located at the root and, therefore, either
the lowest or the highest class is discarded in the first layer. Recursively applying
the same idea, our DDAG will place at each node the model between the two
extreme classes of the ordered subset of classes that have not been discarded by
its ancestor models.

Assuming that the order of the classes is `1 ≺ `2 ≺ `3 ≺ `4 ≺ `5, Figure 1
shows the structure of a DDAG employed for both methods proposed in this
paper. In symbols, if Mi,j corresponds to the k-th node in layer l < p, then
Mi,j−1 andMi+1,j correspond to the k-th and (k+ 1)-th node in the (l+ 1)-th
layer. For instance, in Figure1 the node 2|4 is the 2-nd node of the 3-rd layer
that correspond to the model M2,4 which separates classes `2 and `4 and it is
connected to the 2-nd and 3-rd nodes (respectively 2|3 and 3|4) of the 4-th layer
that respectively correspond to models M2,3 and M3,4.

4.1 Consecutive Rankings DDAG (CR-DDAG)

At first sight, it is not trivial how to adapt a DDAGs to obtain a multipartite
ranking. Originally, they were designed to deal with multiclass classification [24],
which is a quite different task. Our first proposal works under the hypothesis
that a multipartite ranking can be broken down into a set of ordered bipartite
rankings. For instance, for a problem with 5 classes, i.e. L = {`1, ..., `5}, then
the whole multipartite ranking can be formed concatenating the consecutive

bipartite rankings {1−2, 2−3, 3−4, 4−5}. Notice that these consecutive rankings
correspond to the last level before the leaves in the structure of the DDAG
described before (see Figure 1).

This method relies on the assumption that if each bipartite ranker orders
well the examples of its two classes, then concatenating those consecutive binary
rankings will lead to a good overall ranking. But, first of all a classification
procedure is required to decide which bipartite ranker will be used for each
instance. Here is when the DDAG structure plays its role. Taking Figure 1 as
reference, the proposal consists of employing the remaining models, displayed
in the higher levels of the DDAG, to select the bipartite ranker that must be
applied. Thus, our DDAG is divided in two parts: the upper levels take charge of
classifiying examples, and the lower level of ordering them. Hence, a mechanism
to merge the consecutive rankings into a global ranking is required.

For that purpose some modifications in DDAG are carried out in order to
obtain a CR-DDAG. First, the leaves are ruled out. Secondly, the models of the
layer immediately before the leaves, i.e. the set of consecutive bipartite rankers
(Mi,i+1), must yield a value in the interval (0, 1). Finally, the final ranking score
is computed according to the following expression

M(x) = i+Mi,i+1(x), (4)

where Mi,i+1 correspond to the model selected by the cascade classification
process carried out by the higher nodes of the DDAG. Adding the class index
i to the output of the bipartite ranker guarantees that an instance ranked by
Mi,i+1 is placed in the global ranking higher than an instance ranked byMj,j+1

with j < i.
The main disadvantage of CR-DDAG is that if a competent model for an

instance of class `j fails during the classification process, then such instance will
follow a path ending in node whose model will be Mi,i+1 with j 6∈ {i, i + 1}.
Then, if j < i (respectively j > i+ 1), the instance may be placed much higher
(respectively much lower) in the global ranking than it should be. Therefore,
CR-DDAG has two potential sources of errors. On one hand, the classification
process can choose the incorrect ranking model, and, on the other hand, the
bipartite rankers may commit mistakes. The first one is more damaging in the
sense that it could produce bigger losses in ranking evaluation measures.

4.2 Probabilistic Ranking DDAG (PR-DDAG)

In order to diminish some of the undesirable drawbacks of CR-DDAG, we pro-
pose a Probabilistic Ranking Decision Directed Acyclic Graph in which examples
are propagated through every edge with a probability attached, so no irrevoca-
ble decisions are taken. In fact, PR-DDAG shares some ideas with the LPC
approach. First, it exploits the redundancy considering the outcomes of several
models to rank an instance. And second, it relies on the assumption that the
order of the output space is also reflected on the topology of the input space,
in the sense that the prediction of Mi,k(x) for an instance of class `j will be

higher if k ≤ j and lower if j ≤ i. However, the main difference with LPC is
that PR-DDAG computes the posterior probabilities using the structure of the
DDAG. The goal is that the contribution of competent models will be higher in
the global ranking, reducing the effect of the so-called non-competence problem.
In the next section, we will explain deeply this property.

PR-DDAG suposses that every model Mi,j(x) predicts the probability of
x of belonging to the positive class (`j). Obviously, the probability of being of
the negative class (`i) will be 1 −Mi,j(x). These probabilities are successively
propagated through the graph from the root to the leaves, in such a way that
an instance will reach a node i|j with a probability Pi,j(x) computed as follows

Pi,j(x)=

1, i = 1, j = p,
Pi,j+1(x) · (1−Mi,j+1(x)), i = 1, j < p,
Pi−1,j(x) · Mi−1,j(x), i > 1, j = p,
Pi−1,j(x)·Mi−1,j(x) + Pi,j+1(x)·(1−Mi,j+1(x)), i > 1, j < p.

(5)

Notice that the method states that P1,p(x) = 1, since any instance x must
arrive to the root node with probability 1. At the end, this propagation pro-
cess provides a probability distribution of the classes for an instance x, that is,
{Pi,i(x) : i = 1, . . . , p}.

Finally, in order to produce the global ranking, PR-DDAG employes the
aggregation function proposed in [20]:

M(x) =
p∑
i=1

T (i) · Pi,i(x), (6)

where T (i) is some monotone increasing function of the relevance level i. Ac-
cording to [20], it seems that complex functions do not provide better rankings,
hence, the simple T (i) = i, called expected relevance, can be a sensible and sta-
ble choice. In this case, the product by the index of the class in the summation
enhances the value of the probability as the index of the class increases.

4.3 Analyzing the properties of CR-DDAG and PR-DDAG

Table 1 shows a summary of the main properties of all approaches described
above (FH, LPC, CR-DDAG and PR-DDAG). All methods solve p(p − 1)/2
binary problems except FH which solves just p − 1, which is related to the
training set used in each binary problem they solve. Particularly, FH employs
the whole data set, whereas only instances of two classes are used in the rest
of the approaches. All of them take each instance (p − 1) times, and assuming
an uniform distribution of the instances through the classes, LPC, CR-DDAG
and PR-DDAG only handle m/p instances in each binary problem against m
that FH uses. Then, taking into account the training size and that a O(mα)
binary classifier (typically with α > 1) is chosen, FH has a complexity O(pmα),
whereas LPC, CR-DDAG and PR-DDAG reduce it to O(p2−αmα). Thus, those
methods are more efficient than FH whenever a base learner with super-linear

Table 1. Binary problems and evaluations required by each method

FH LPC CR-DDAG PR-DDAG

Binary problems p− 1 p(p− 1)/2 p(p− 1)/2 p(p− 1)/2
Classes in training All classes Only two Only two Only two
Whole Training size (p− 1)m (p− 1)m (p− 1)m (p− 1)m
Binary Training size m m/p m/p m/p
Binary complexity O(mα) O(p−αmα) O(p−αmα) O(p−αmα)
Whole complexity O(pmα) O(p2−αmα) O(p2−αmα) O(p2−αmα)
Evaluations p− 1 p(p− 1)/2 p− 1 p(p− 1)/2
Non-competence problem No Yes No Yes
Redundancy No Yes No Yes

complexity is applied. Concerning to the evaluation stage (see again Table 1)
FH is comparable to CR-DDAG, which only need to compute p− 1 evaluations,
while LPC and PR-DDAG evaluate all models.

In classification, the non-competence problem does actually not matter so
much for LPC provided all competent models make correct predictions; the same
is true for DDAGs. As explained in [11], however, this property is lost for LPC
in the case of multipartite ranking. Interestingly, it seems to be maintained for
CR-DDAG: as long as all competent binary classifiers make correct decisions,
an instance from class `i must end up either in the bipartite models Mi−1,i or
Mi,i+1, and these are in turn handled by competent bipartite rankers.

PR-DDAG reduces the influence of non-competent models. Let us explain it
with a simple example. Imagine a problem with 3 classes, so the modelM1,3 will
be at the root, and the modelsM1,2 andM2,3 at the second level. If we evaluate
an instance of class 2, the prediction ofM1,3 will distribute its input probability
(1, since it is the root of the DDAG) between its child nodes. Applying recursively
Equation (5), the posterior probability for class 2 will be:

P2,2(x) = (1−M1,3(x)) · M1,2(x) +M1,3(x) · (1−M2,3(x)).

Notice that the sum of the input probabilities of models M1,2 and M2,3 is 1.
Thus, the role of the non-competent modelM1,3 is to distribute the importance
of models M1,2 and M2,3 in order to compute that posterior probability. But,
since both models are competent to that task, the decision of M1,3 is not so
important. In fact, due to the design of the DDAG, it can be proved that,
for any class, the sum of the input probabilities of all its competent models
coming from non-competent models is always 1. This means that the role of the
non-competent models placed above them on the DDAG is to distribute those
input probabilities. At the end, posterior probabilities will depend heavily on
competent models.

On the other hand, LPC is the most redundant method. In fact, it is the
redundancy obtained from applying such number of models what seems to

Table 2. Properties of the data sets used in the experiments. All of them were
taken from the WEKA repository (http://www.cs.waikato.ac.nz/~ml/weka/
index_datasets.html)

Data set #examples #numeric feat. #nominal feat. #classes

asbestos 83 1 2 3
balance-scale 625 4 0 3
cmc 1473 2 7 3
pasture 36 21 1 3
post-operative 90 0 8 3
squash (unst.) 52 20 3 3
car 1728 0 6 4
grub-damage 155 8 6 4
nursery 1000 0 9 4
swd 1000 100 0 4
bondrate 57 4 7 5
eucalyptus 736 14 5 5
lev 1000 4 4 5
era 1000 4 4 9
esl 488 4 4 9

thwart the misclassification errors produced by the non-competence problem.
PR-DDAG also provides some kind of redundancy, due to the evaluations over
all competent models, but in a lower degree compared to LPC.

5 Experiments

In this section we report the results of the experiments performed to evaluate
the approaches proposed in this paper to tackle multipartite ranking. This set of
experiments was designed to address three main goals. Firstly, CR-DDAG and
PR-DDAG were compared with the main state-of-the-art binary decomposition
approaches for mutipartite ranking, FH and LPC (see Section 3). Secondly, we
studied the influence of the learning algorithm used to build each binary classifier
on the compared multipartite ranking methods. Finally, since our aim is to
predict a ranking, we included a base learner able to optimize the AUC measure
in a bipartite ranking task.

Before discussing the experimental results, the next subsection describes the
settings used in the experiments: learning algorithms, data sets, procedures to
set parameters, and the measure to estimate the scores.

5.1 Experimental settings

Due to the lack of ordinal benchmark data sets, several previous works have used
discretized regression data sets. Despite this can be reasonable, here we wanted

http://www.cs.waikato.ac.nz/~ml/weka/index_datasets.html
http://www.cs.waikato.ac.nz/~ml/weka/index_datasets.html

to study the performance of the different approaches only on truly ordinal data
sets. Thus, the experiments were performed over several ordinal data sets whose
main properties are shown in Table 2. This group of data sets were previously
used in [16].

We compared the five multipartite ranking algorithms described through
the paper, namely, FH (Eq. 1), the two different aggregation methods for LPC
approach: the unweighted variant (Eq. 2), called LPCU in the following, and
the weighted version LPCW (Eq. 3), and finally the two proposed DDAG-based
methods, CR-DDAG (Eq. 4) and PR-DDAG (Eq. 6).

All of them were implemented with three different base learners. First, we
employed a binary SVM (libsvm implementation [31]) with probabilistic outputs,
the second one was the logistic regression of [21], and finally, the implementantion
of SVMperf presented in [18], setting the target maximization function to be
the AUC. In this last case, since its output is not a probability, the algorithm
reported in [25] was used to map it into a probability [22]. SVMperf and libsvm
were used with the linear kernel. In all cases, the regularization parameter C was
established for each binary problem performing a grid search over the interval
C ∈ [10−2, . . . , 102] optimizing the accuracy in the cases of libsvm and logistic
regression and the AUC in the case of SVMperf . Both, accuracy and AUC, were
estimated by means of a 2-fold cross validation repeated 5 times.

The ranking performance of the methods was measured in terms of the C-
index, estimated using a 5-fold cross validation. C-index is a metric of concor-
dance [12] commonly used in statistics and equivalent to the pairwise ranking
error [14]. It has been recently used in [11] for multipartite ranking as an estima-
tion of the probability that a randomly chosen pair of instances from different
classes is ranked correctly. IfM is a model, S the whole training set, p the num-
ber of different classes and Sk with k = 1, ..., p the instances of S of the class k,
then the C-index is defined by

C(M,S) =
1∑

i<j |Si||Sj |
∑

1≤i<j≤p

|Si||Sj |AUC(M,Si ∪ Sj). (7)

This metric considers that each class contribution is proportional to its size.
An analogous metric that grants the same importance for all classes is the
Jonckheere-Terpstra statistic [15], proposed in [13] as another multiclass ex-
tension of the AUC. However, conclusions reported in [11] show little differences
between them.

Finally, according to the recommendations exposed in [5], a two-step statisti-
cal test procedure is carried out. The first step consists of a Friedman test of the
null hypothesis that all rankers have equal performance. Then, in case that this
hypothesis is rejected, a Nemenyi test to compare learners in a pairwise way is
conducted. The average ranks over all data sets are computed and shown at the
last row of every table. The ranks of each data sets are indicated in brackets close
to the corresponding C-index. In case of ties, average ranks are shown. Since we
are comparing 5 algorithms over 15 data sets, the critical rank differences are
1.58 and 1.42 for significance levels of 5% and 10%, respectively.

Table 3. C-index for all approaches using libsvm as the base learner

FH LPCU LPCW CR-DDAG PR-DDAG

asbestos 84.83 (1.00) 75.79 (4.00) 76.48 (2.00) 72.78 (5.00) 76.41 (3.00)
balance-scale 97.91 (4.00) 97.95 (3.00) 97.90 (5.00) 97.99 (2.00) 98.03 (1.00)
cmc 68.59 (1.00) 66.41 (5.00) 66.88 (4.00) 67.24 (3.00) 67.68 (2.00)
pasture 90.40 (4.00) 92.13 (1.50) 92.13 (1.50) 88.67 (5.00) 90.53 (3.00)
post-operative 53.78 (4.00) 50.95 (5.00) 54.48 (2.00) 54.23 (3.00) 57.43 (1.00)
squash (unst.) 89.14 (3.00) 89.59 (1.00) 88.89 (4.50) 88.89 (4.50) 89.41 (2.00)
car 98.59 (2.00) 88.37 (5.00) 98.44 (3.00) 98.92 (1.00) 98.30 (4.00)
grub-damage 73.21 (1.00) 70.67 (2.00) 69.68 (3.00) 68.39 (5.00) 69.13 (4.00)
nursery 98.13 (4.00) 97.03 (5.00) 98.33 (2.00) 98.52 (1.00) 98.30 (3.00)
swd 81.03 (3.00) 81.19 (2.00) 81.01 (4.00) 80.64 (5.00) 81.44 (1.00)
bondrate 66.66 (1.00) 52.76 (5.00) 56.57 (4.00) 61.73 (3.00) 61.98 (2.00)
eucalyptus 93.72 (1.00) 89.47 (5.00) 90.37 (4.00) 93.44 (3.00) 93.63 (2.00)
lev 86.36 (3.00) 86.32 (4.00) 86.46 (1.00) 86.03 (5.00) 86.38 (2.00)
era 73.91 (1.00) 73.81 (3.00) 73.88 (2.00) 72.90 (5.00) 73.66 (4.00)
esl 95.58 (4.00) 95.62 (3.00) 96.16 (1.00) 96.13 (2.00) 95.48 (5.00)

Avg. rank (2.47) (3.57) (2.87) (3.50) (2.60)

5.2 Experimental results

Table 3, Table 4 and Table 5 show the ranking performance in terms of the
C-index for all approaches when libsvm, logistic regression and SVMperf were
respectively adopted as base learners. Analyzing the obtained results using libsvm
to learn each binary model (see Table 3), we observe that the best method is FH,
following by PR-DDAG, LPCW, CR-DDAG and LPCU. However, none of the
methods is significantly better using a Nemenyi test. Between our approaches,
PR-DDAG wins in 11 out of 15 data sets. The same happens between LPCW
and LPCU, the former outperforms the latter 10 times and it is only worse in 4
data sets.

These first results were quite surprising because they contradict in some
way the experimental results reported in [11]. In that work, FH was significantly
better than LPCW and LPCU. The reasons that can explain these quite opposite
conclusions can be: i) we used only truly ordinal data sets, and ii) the base
learner was different (in [11] logistic regression was used). Motivated for this
second reason, we also employed logistic regression as the learning algorithm
(see Table 4). In this case, the obtained results were similar to those presented
in [11]. Now, our approach PR-DDAG obtains better performance, followed by
FH. According to a Nemenyi test, PR-DDAG is only significantly better than
LPCU (for a significance level of 5%), the worst method in this experiment.
The difference between PR-DDAG and LPCW (1.4) is very close to the critical
difference (1.42), but it is not significant (see Figure 2). In this case, CR-DDAG
obtains better results than both approaches based on LPC. It seems that logistic
regression is not a good choice as base learner for LPC, since both versions offer
the worst performance. However, it keeps the fact that LPCW provides better

Table 4. C-index for all approaches using logistic regression as the base learner

FH LPCU LPCW CR-DDAG PR-DDAG

asbestos 82.96 (5.00) 83.50 (2.00) 83.10 (4.00) 83.51 (1.00) 83.46 (3.00)
balance-scale 97.66 (2.00) 97.63 (5.00) 97.65 (3.50) 97.90 (1.00) 97.65 (3.50)
cmc 67.99 (3.00) 67.51 (5.00) 67.98 (4.00) 68.54 (2.00) 68.74 (1.00)
pasture 85.73 (5.00) 86.53 (3.50) 86.53 (3.50) 87.47 (1.00) 86.80 (2.00)
post-operative 45.47 (3.00) 45.52 (2.00) 43.74 (4.00) 42.87 (5.00) 45.66 (1.00)
squash (unst.) 91.26 (2.00) 90.81 (3.00) 90.30 (5.00) 90.64 (4.00) 91.67 (1.00)
car 99.04 (3.00) 86.57 (5.00) 98.94 (4.00) 99.12 (1.00) 99.07 (2.00)
grub-damage 74.16 (1.00) 71.67 (3.00) 71.66 (4.00) 71.04 (5.00) 73.59 (2.00)
nursery 98.58 (1.00) 89.47 (4.00) 88.12 (5.00) 98.57 (2.00) 97.15 (3.00)
swd 81.10 (4.00) 81.14 (3.00) 81.17 (2.00) 81.07 (5.00) 81.49 (1.00)
bondrate 73.07 (3.00) 72.01 (4.00) 71.33 (5.00) 76.85 (1.00) 73.95 (2.00)
eucalyptus 93.99 (2.00) 88.35 (5.00) 89.84 (4.00) 93.76 (3.00) 94.06 (1.00)
lev 86.44 (2.50) 86.41 (4.00) 86.53 (1.00) 86.32 (5.00) 86.44 (2.50)
era 73.90 (2.00) 73.84 (4.00) 73.96 (1.00) 72.83 (5.00) 73.89 (3.00)
esl 96.18 (1.00) 95.39 (5.00) 96.17 (2.00) 95.91 (4.00) 96.08 (3.00)

Avg. rank (2.63) (3.83) (3.47) (3.00) (2.07)

Fig. 2. Friedman-Nemenyi Test (p < 0.1) for all methods using logistic regression

results than LPCU, although the differences are less remarkable than in case of
libsvm adopted as base learner.

In the last experiment the goal was to check if these multipartite ranking
algorithms can benefit of using a ranking base learner, like SVMperf optimizing
the AUC measure (see Table 5). In this case the differences between all the
approaches are smaller, only 0.74 between the best (FH) and the worst (LPCU).
Now, LPCW and PR-DDAG are almost tied, and the difference between PR-
DDAG and CR-DDAG is the smallest of the three experiments. Again, LPCU
attains worse results than the other methods. It seems that neither CR-DDAG
nor PR-DDAG take advantage of optimizing the AUC. However, it is a good
choice for LPCW, since it obtains better position in this case.

Summarizing all these results, we can draw some conclusions. In general,
none of the methods is significantly better than the others. In fact, only in one

Table 5. C-index for all approaches using SVMperf as the base learner

FH LPCU LPCW CR-DDAG PR-DDAG

asbestos 82.34 (4.00) 82.62 (3.00) 81.97 (5.00) 84.37 (1.00) 83.69 (2.00)
balance-scale 98.06 (1.50) 97.91 (4.50) 97.91 (4.50) 98.06 (1.50) 97.92 (3.00)
cmc 68.15 (2.00) 67.32 (4.00) 67.72 (3.00) 67.10 (5.00) 68.44 (1.00)
pasture 90.40 (4.00) 93.20 (1.50) 93.20 (1.50) 83.07 (5.00) 90.53 (3.00)
post-operative 53.75 (5.00) 55.31 (4.00) 62.81 (1.00) 59.16 (2.00) 56.38 (3.00)
squash (unst.) 87.73 (1.00) 85.58 (4.50) 87.01 (3.00) 87.21 (2.00) 85.58 (4.50)
car 98.86 (3.00) 89.71 (5.00) 98.88 (1.00) 98.83 (4.00) 98.87 (2.00)
grub-damage 72.23 (1.00) 70.72 (3.00) 69.84 (4.00) 64.67 (5.00) 72.03 (2.00)
nursery 98.56 (2.00) 96.90 (5.00) 98.31 (4.00) 98.55 (3.00) 98.60 (1.00)
swd 80.57 (3.00) 81.08 (1.00) 81.03 (2.00) 80.56 (4.00) 80.51 (5.00)
bondrate 69.37 (2.00) 59.95 (5.00) 69.89 (1.00) 68.54 (3.00) 65.77 (4.00)
eucalyptus 93.19 (1.00) 91.11 (4.00) 91.78 (2.00) 88.46 (5.00) 91.46 (3.00)
lev 86.32 (4.00) 86.56 (1.00) 86.27 (5.00) 86.47 (2.00) 86.46 (3.00)
era 73.64 (4.00) 73.78 (2.00) 73.99 (1.00) 72.84 (5.00) 73.73 (3.00)
esl 96.03 (2.00) 95.74 (3.00) 93.90 (5.00) 96.07 (1.00) 95.34 (4.00)

Avg. rank (2.63) (3.37) (2.87) (3.23) (2.90)

case, an algorithm (PR-DDAG) is significantly better than another (LPCU).
However, it seems that FH, PR-DDAG and LPCW perform slightly better than
the rest. Both PR-DDAG and FH are quite stable, no matter what base learner
is used. On the other hand, the choice of the base learner is quite important for
LPC methods. Particularly, in the case of using a logistic regression, applying
LPC approaches is not the best choice.

Focusing on our proposals, PR-DDAG obtains quite similar results than FH
and besides it is computationally more efficient. Despite its appealing idea, CR-
DDAG performs worse, but not significantly, than PR-DDAG. One reason for
this behavior may be the lack of redundancy CR-DDAG suffers from. Indeed, the
performance is affected by the classification stage before the consecutive ranking
combination takes place.

Finally, using a binary base learner that optimizes the AUC does not improve
the results of decomposition multipartite methods. Following [5], we used the
Wilcoxon signed ranks test to compare the performance of the same method
using different base learners. Only twice significantly differences were found. For
LPCU, SVMperf is better than libsvm at level p < 0.05, and for LPCW, logistic
regression is better than SVMperf at level p < 0.10.

6 Conclusions

This paper proposes two multipartite ranking approaches that exploits the or-
der information the classes exhibits. Both have as the point of the departure
the structure of a Decision Directed Acyclic Graph (DDAG) and include a pair-
wise decomposition technique. One of them, called Consecutive Ranking DDAG

(CR-DDAG) combines a set of consecutive bipartite rankings to obtain a global
ranking, but first it performs a classification to decide which bipartite ranker
must be applied. The other, called Probabilistic Ranking DDAG (PR-DDAG)
includes a probabilistic framework based on propagating probabilities through
the graph.

Several experiments over a benchmark ordinal data set were carried out using
different base learners, including one algorithm that optimizes the AUC measure.
None of the methods outperforms the others, but PR-DDAG exhibits competi-
tive performance, in terms of the C-index measure, with regard to other state-
of-the-art algorithms previously proposed in the literature for the same purpose.
PR-DDAG also presents interesting theoretical properties, as its computational
complexity and its capacity of reducing the non-competence problem.

References

1. Klaus Brinker and Eyke Hüllermeier. Case-based label ranking. In Johannes
Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors, Machine Learning:
ECML 2006, volume 4212, pages 566–573. Springer Berlin Heidelberg, 2006.

2. Jaime S. Cardoso and Joaquim F. Pinto da Costa. Learning to classify ordinal data:
The data replication method. Journal of Machine Learning Research, 8:1393–1429,
2007.

3. Peng Chen and Shuang Liu. An improved dag-svm for multi-class classification.
International Conference on Natural Computation, 1:460–462, 2009.

4. Wei Chu and S. Sathiya Keerthi. New approaches to support vector ordinal regres-
sion. In Luc De Raedt and Stefan Wrobel, editors, Proceedings of the ICML’05,
volume 119, pages 145–152. ACM, 2005.

5. Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7:1–30, 2006.

6. Tom Fawcett. An introduction to roc analysis. Pattern Recognition Letters,
27(8):861–874, 2006.

7. Jun Feng, Yang Yang, and Jinsheng Fan. Fuzzy multi-class svm classifier based
on optimal directed acyclic graph using in similar handwritten chinese characters
recognition. In Advances in Neural Networks - ISNN 2005, Second International
Symposium on Neural Networks, 2005, Proceedings, Part I, volume 3496, pages
875–880, 2005.

8. Eibe Frank and Mark Hall. A simple approach to ordinal classification. In EMCL
’01: Proceedings of the 12th European Conference on Machine Learning, pages
145–156, London, UK, 2001. Springer-Verlag.

9. Jerome H. Friedman. Another approach to polychotomous classification. Technical
report, Department of Statistics, Stanford University, 1996.

10. Johannes Fürnkranz. Round robin classification. Journal of Machine Learning
Research, 2:721–747, 2002.

11. Johannes Fürnkranz, Eyke Hüllermeier, and Stijn Vanderlooy. Binary decompo-
sition methods for multipartite ranking. In ECML PKDD ’09: Proceedings of the
European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 359–374. Springer-Verlag, 2009.

12. Mithat Gonen and Glenn Heller. Concordance probability and discriminatory
power in proportional hazards regression. Biometrika, 92(4):965–970, 2005.

13. David J. Hand and Robert J. Till. A simple generalisation of the area under the roc
curve for multiple class classification problems. Machine Learning, 45(2):171–186,
2001.

14. Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Large margin rank bound-
aries for ordinal regression. In Smola, Bartlett, Schoelkopf, and Schuurmans, edi-
tors, Advances in Large Margin Classifiers. MIT Press, Cambridge, MA, 2000.

15. J. Higgins. Introduction to Modern Nonparametric Statistics. Duxbury Press, 2004.
16. Jens C. Hühn and Eyke Hüllermeier. Is an ordinal class structure useful in classifier

learning? Int. J. of Data Mining Modelling and Management, 1(1):45–67, 2008.
17. E. Hüllermeier, J. Fürnkranz, W. Cheng, and K. Brinker. Label ranking by learning

pairwise preferences. Artificial Intelligence, 172(16-17):1897–1916, November 2008.
18. Thorsten Joachims. A support vector method for multivariate performance mea-

sures. In ICML ’05: Proceedings of the 22nd international conference on Machine
learning, pages 377–384, New York, NY, USA, 2005. ACM.

19. Stefan Kramer, Gerhard Widmer, Bernhard Pfahringer, and Michael de Groeve.
Prediction of ordinal classes using regression trees. In ISMIS ’00: Proceedings of
the 12th International Symposium on Foundations of Intelligent Systems, pages
426–434, London, UK, 2000. Springer-Verlag.

20. Ping Li, Christopher J. C. Burges, and Qiang Wu. Mcrank: Learning to rank
using multiple classification and gradient boosting. In John C. Platt, Daphne
Koller, Yoram Singer, and Sam T. Roweis, editors, NIPS. MIT Press, 2007.

21. Chih-Jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. Trust region newton method
for logistic regression. Journal of Machine Learning Research, 9:627–650, 2008.

22. Oscar Luaces, Francisco Taboada, Guillermo M. Albaiceta, Luis A. Domı́nguez,
Pedro Enŕıquez, and Antonio Bahamonde. Predicting the probability of survival in
intensive care unit patients from a small number of variables and training examples.
Artificial Intelligence in Medicine, 45(1):63 – 76, 2009.

23. Cao D. Nguyen, Tran A. Dung, and Tru H. Cao. Text classification for dag-
structured categories. In Advances in Knowledge Discovery and Data Mining, 9th
Pacific-Asia Conference, PAKDD 2005, volume 3518 of Lecture Notes in Computer
Science, pages 290–300, 2005.

24. John C. Platt, Nello Cristianini, and John Shawe-taylor. Large margin dags for
multiclass classification. In Advances in Neural Information Processing Systems,
pages 547–553. MIT Press, 2000.

25. John C. Platt and John C. Platt. Probabilistic outputs for support vector machines
and comparisons to regularized likelihood methods. In Advances in Large Margin
Classifiers, pages 61–74. MIT Press, 1999.

26. Shyamsundar Rajaram and Shivani Agarwal. Generalization bounds for k-partite
ranking. In S. Agarwal, C. Cortes, and R. Herbrich, editors, Proceedings of the
NIPS 2005 Workshop on Learning to Rank, pages 28–23, 2005.

27. Fumitake Takahashi and Shigeo Abe. Optimizing directed acyclic graph support
vector machines. In IAPR - TC3 International Workshop on Artificial Neural
Networks in Pattern Recognition University of Florence, Italy, 2003, 2003.

28. V. Vapnik and O. Chapelle. Bounds on error expectation for support vector ma-
chines. Neural Computation, 12(9):2013–2036, 2000.

29. Willem Waegeman, Bernard De Baets, and Luc Boullart. Roc analysis in ordinal
regression learning. Pattern Recognition Letters, 29(1):1–9, 2008.

30. Mark Allen Weiss. Data structures and algorithm analysis in C (2nd ed.). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

31. T. F. Wu, C. J. Lin, and R. C. Weng. Probability estimates for multi-class classi-
fication by pairwise coupling. J. of Machine Learning Research, 5:975–1005, 2004.

	Adapting Decision DAGs for Multipartite Ranking
	 José Ramón Quevedo, Elena Montañés, Oscar Luaces and Juan José del Coz {quevedo,elena,oluaces,juanjo}@aic.uniovi.es

