
Using Tensor Products to Detect Unconditional Label
Dependence in Multilabel Classifications

Jorge Dı́ez∗, Juan José del Coz, Oscar Luaces, Antonio Bahamonde

Artificial Intelligence Center. University of Oviedo at Gijón, 33204 Asturias, Spain
http://www.aic.uniovi.es

Abstract

Multilabel (ML) classification tasks consist of assigning a set of labels to each

input. It is well known that detecting label dependencies is crucial in order

to improve the performance in ML problems. In this paper, we study a new

kernel approach to take into account unconditional label dependence between

labels. The aim is to improve the performance measured by a micro-averaged

loss function. The core idea is to transform a ML task into a binary classifica-

tion problem whose inputs are drawn from a tensor space of the original input

space and a representation of the labels. In this joint feature space we define a

kernel to explicitly involve both labels and object descriptions. In addition to

the theoretical contributions, the experimental results of this study provide an

interesting conclusion: the performance in terms of Hamming Loss can be im-

proved when unconditional label dependence is considered, as our method does.

We report a thoroughly experimentation carried out with real world domains

and several synthetic datasets devised to analyze the effect of exploiting label

dependence in scenarios with different degrees of dependency.

Keywords: Multilabel, Label Dependence, Tensor products, Kernel methods

∗Corresponding author
Email addresses: jdiez@aic.uniovi.es (Jorge Dı́ez), juanjo@aic.uniovi.es (Juan José

del Coz), oluaces@aic.uniovi.es (Oscar Luaces), antonio@aic.uniovi.es (Antonio
Bahamonde)

1. Introduction

In multilabel (ML) classification tasks the aim is to assign, to each instance,

more than one class or label instead of a single one; the so-called relevant labels.

This is the case of text categorization where items have to be tagged for fu-

ture retrieval. News or other kind of documents are annotated with more than

one label according to different points of view. Other application fields include

semantic annotation of images and video, functional genomics, music catego-

rization into emotions and directed marketing. Tsoumakas et al. in [27, 28]

have made a detailed presentation of ML classification and their applications.

Probably one of the most popular approaches to tackle a ML classification

task is Binary Relevance (BR). It is the simplest one, but very effective for

some loss measures. Each label is classified as relevant or irrelevant by a binary

classifier independently learned for each label. Notice that BR does not consider

any relation between labels, making the learning assumption that labels are

independent. On the other hand, proper ML strategies try to take advantage

of correlation or interdependency between labels. The presence or absence of

a label in the set assigned to an instance depends on the feature values of the

instance, but it also depends on the relevance of the remaining labels. For

example, it is very likely that labels “NBA” and “Los Angeles Lakers” appear

frequently together as tags for some videos of a sports website because there is

a strong relationship between both labels.

In this sense, two types of label dependence can be taken into account,

namely conditional and unconditional label dependence. See [5] for a complete

discussion of label dependence in ML classification. The difference between both

types of dependency is that conditional dependence captures the dependence

among labels given a particular example, whereas unconditional dependence is

a kind of global dependence, independent of any concrete observation. In the

previous example, it seems that the dependence between labels “Los Angeles

Lakers” and “NBA” is mostly unconditional, no matter the actual content of

the video, if it is related to “Los Angeles Lakers”, it is also related to the “NBA”

2

because the former is a franchise of the latter.

This paper presents a method based on capturing label dependence. The

main goal is that the algorithm takes into account, not only the descriptions of

the objects, but also the dependency between each pair of labels. Lately, many

proposed ML classifiers exploit label dependence, see for instance [17, 22, 23].

Our approach is different from these methods cited previously because combines

together two factors: 1) it exploits unconditional label dependence instead of

conditional dependence which has been more studied in recent years, and 2)

it tackles ML classification as a structured output prediction problem [8, 26].

Our algorithm is a kernel method and the key element is a kernel to capture

unconditional label dependence. It is well known that kernel functions [24]

allow to efficiently represent input instances in a feature space, different from

the original input space. The proposed method incorporates a kernel over the

space of labels, which it is combined with the kernel applied over the input

instances.

The performance of ML classifiers can be measured using very different loss

functions. When ML predictions are bipartitions of the set of labels (relevant

and irrelevant labels), loss functions are computed comparing subsets and av-

eraging scores. Taxonomically, loss measures can be divided into two groups:

example-based and label-based. The latter group includes also two versions de-

pending on how averages are computed: macro-averaged and micro-averaged

loss functions. Theoretically macro-averaged measures can be optimized fol-

lowing a decomposition approach, like BR. Another important characteristic

of our method is that it is designed to optimize a complete family of loss mea-

sures for ML classification, namely micro-averaged loss functions. Our approach

can be applied to optimize any micro-average loss function whenever exists an

algorithm able to optimize such measure for binary classification.

Thus, the main contribution of this work is to propose a kernel-based ML

learner that is devised to induce classifiers aimed at improving the performance

in terms of a micro-averaged measure. Our proposal is based on two ideas:

i) to make a reduction from a ML task into a binary classification problem

3

whose inputs are drawn from a tensor space of the original input space and

a representation of the label space, and ii) to define a kernel that explicitly

incorporates both labels and object descriptions, in an attempt to exploit un-

conditional label dependence. Despite this approach could be applicable for

any micro-averaged measure, we experimentally study its behavior in terms on

Hamming Loss, whose macro-averaged and micro-averaged versions coincide.

Interestingly, the experiments show that our proposal takes advantage of con-

sidering unconditional label dependence and obtains better Hamming scores

compared to making the assumption of label independence. This result is inter-

esting because it answers some questions raised in recent studies [5, 6] about if

exploiting label dependence could help to improve Hamming loss performance.

It also corroborates the results reported in [11], in which the authors investigate

whether Hamming scores can be improved if the distribution of test categories

is known a priori. Here we use a different approach, we introduce additional

prior information in the form of a kernel for labels, but the conclusion is the

same: Hamming scores can be improved in some cases. Additionally, we show

that our kernel can be plugged into the algorithm proposed in [11] boosting its

performance in terms of Hamming loss.

After a formal presentation of ML learning tasks and hypotheses, we discuss

in detail label-based loss functions. Then, we derive a kernel method to optimize

micro-averaged measures. The paper ends reporting some experiments devised

to show the performance of such approach.

2. Multilabel Classification

Let L be a finite and non-empty set of labels {l1, . . . , lm}, let X be an

input space, and let Y be the output space, the set of subsets of labels. A ML

classification task can be represented by a dataset

D = {(x1,y1), . . . , (xn,yn)} ⊂ X × Y (1)

of pairs of inputs xi ∈ X and subsets of labels yi drawn from an unknown

distribution. We identify the output space Y with vectors of dimension m with

4

Table 1: Description of the most important symbols used in the paper

D Original ML training set D̃ Transformed training set from D

x Input instance yi Labels associated with x

X Matrix of input spaces x of D Y Matrix of labels y of D

n Number of instances in D m Number of labels in D

X Input space Y Output space

p Dimension of X L Set of labels

h Hypothesis (a ML classifier) l A label from L

 .. is transformed into ... el Vectorial representation of l

⊗ Kronecker product δi,l Kronecker delta

I Identity matrix W Parameter vector of h̃

lk Vector column of label k in Y ρ Correlation coefficient

µ(v) Mean of vector v σ(v) Standard deviation of vector v

components in {0, 1}. In this sense, for y ∈ Y,

l ∈ y and y[l] = 1

will appear interchangeably and will be considered equivalent. In the following,

we assume that the input space is a subset of the Euclidean space of dimension

p,

X ⊂ Rp.

Then, we will refer to a learning task as a couple of matrices

D ≡
(
X,Y

)
(2)

of n rows and p and m columns respectively.

The goal of a ML classification task D is to induce a hypothesis defined as

follows.

5

Definition 1. A ML hypothesis is a function h from the input space to the

output space, set of subsets (power set) of labels P(L); in symbols,

h : X −→ Y = P(L) = {0, 1}m. (3)

In other words, h(x)[l] = 1 means that label l is included in the set of predictions

of the hypothesis h for input x.

2.1. Loss Functions for Multilabel Classification

ML classifiers can be evaluated from different points of view. The predictions

can be considered as either as a bipartition or as a ranking of the set of labels. In

this paper the performance of ML classifiers will be evaluated as a bipartition.

Thus, loss functions must compare subsets of labels.

Usually these measures can be divided into two groups [28]. The example-

based measures compute the average differences of the actual and the predicted

sets of labels over all examples. On the other hand, the label-based measures

decompose the evaluation into separate evaluations for each label. There are two

options here, averaging the measure label-wise (usually called macro-average),

or concatenating all label predictions and computing a single value over all of

them, the so-called micro-averaged version of a measure.

For further reference, let us recall the formal definitions of these measures.

For a prediction of a multilabel hypothesis h(x) and a subset of truly relevant

labels y ⊂ L , for each label l ∈ L we can compute the following contingency

matrix:

y[l] = 1 y[l] = 0

h(x)[l] = 1 a(x, l) b(x, l)

h(x)[l] = 0 c(x, l) d(x, l)

(4)

Each of the functions in this matrix represents one of the four possible states

for a predicted label: a true positive (a), a false positive (b), a false negative

(c) and a true negative (d). They have a value of 1 when the predicates of the

corresponding row and column are both true, otherwise the value is 0. Notice for

instance, that a(x, l) is 1 only when the prediction of h for example x includes

6

the truly relevant label l. Furthermore, for a particular pair (x, l) only one of

the entries of the matrix is 1, the rest are 0.

The measures based on labels are now defined as follows. Throughout these

definitions, h is a ML hypothesis (3) and

D′ = {(x′
1,y
′
1), . . . , (x′

n′ ,y′n′)}

is a test set. Additionally, we use the following aggregations of contingency

matrices:

Al =
∑

x′ a(x′, l) A =
∑

(x′,l) a(x′, l)

Bl =
∑

x′ b(x′, l) B =
∑

(x′,l) b(x
′, l)

Cl =
∑

x′ a(x′, l) C =
∑

(x′,l) c(x
′, l)

Dl =
∑

x′ b(x′, l) D =
∑

(x′,l) d(x′, l)

Definition 2. The Recall is defined as the proportion of truly relevant labels

that are included in predictions. The macro- and micro-averaged version are

computed as follows.

Rma =
1

m

m∑
l=1

Al
Al + Cl

,

Rmi =
A

A+ C
.

Definition 3. The Precision is defined as the proportion of predicted labels that

are truly relevant. Macro and micro versions are defined by

Pma =
1

m

m∑
l=1

Al
Al +Bl

,

Pmi =
A

A+B
.

The trade-off between Precision and Recall is formalized by their harmonic

mean. So, in general, the Fβ (β ≥ 0) is defined by

Fβ =
(1 + β2)P ·R
β2P +R

Definition 4. The macro and micro Fβ (β ≥ 0) are defined by

Fmaβ =
1

m

m∑
l=1

(1 + β2)Al
(1 + β2)Al +Bl + β2Cl

7

Fmiβ =
(1 + β2)A

(1 + β2)A+B + β2C
.

Notice that Precision, Recall and F-measure are not loss function, but score

functions, the higher the better. F1 is the most frequently used F-measure.

Other performance measures for ML classifiers can also be specified using the

contingency matrices (4). This is the case of Hamming loss defined as follows.

Definition 5. Hamming loss measures the proportion of misclassifications. The

macro-averaged version is given by

Hlma =
1

m

m∑
l=1

Bl + Cl
Al +Bl + Cl +Dl

.

Taking into account that the sum of the components of contingency matrices

of (4) is 1, the macro-averaged Hamming loss can be written as

Hlma =
1

m

m∑
l=1

Bl + Cl
n′

=
B + C

m · n′
(5)

=
B + C

A+B + C +D
= Hlmi.

That is to say, the Hamming loss is a measure that has the same value in their

macro- and micro-averaged versions. Thus, a method that optimizes one of

them, will optimize both.

3. A Reduction Framework for Micro-averaged Loss Functions

Let D (1) be a ML classification task and let L be a loss function, like those

discussed above, defined for a pair of lists of subsets of labels:

L
(
(y1, . . . ,yn), (ŷ1, . . . , ŷn)

)
= L(Y , Ŷ),

where Y and Ŷ are just short names for the lists of subsets of labels yi and

ŷi respectively. If lower values of L are preferable to higher ones, like in case

of Hamming Loss, then for a list of inputs X = (x1, . . . ,xn), the optimal

predictions are given by a hypothesis

h∗L(X) = argmin
Ŷ

∑
Y

Pr(Y |X) · L(Y , Ŷ). (6)

8

In order to optimize micro-averaged measures, our approach is based on the

reduction of the original ML classification task to one binary problem. This

reduction was already introduced in [24].

The key observation is that the sum extended to inputs and labels can be

converted into a sum of a new kind of examples indexed by inputs and labels.

In symbols,

x {(x, l) : l = 1, . . . ,m}.

That is, each example x is transformed into a set of new examples, one for each

label l. Thus, our original ML learning task D (1) is transformed into a new

binary classification task D̃:

D̃ =
{(

(x, l), [[l ∈ y]]
)
: (x,y) ∈ D, l ∈ L

}
. (7)

Here the value of [[q]] for a predicate q is 1 when it is true, and 0 otherwise.

Starting from a ML task D, D̃ is a binary classification task. Moreover,

there is a bijection between hypotheses for D and D̃:

h : X −→ {0, 1}m ∼= h̃ : X ×L −→ {0, 1}),

because every prediction made by h corresponds to exactly one prediction made

by h̃, and the other way around. This correspondence is obviously given that

h(x)[l] = h̃(x, l)

for inputs x ∈ X and labels l ∈ L . And, according to the definitions of

Section 2.1, we have that

Proposition 1. A ML hypothesis h is optimal for a micro-averaged loss func-

tion L if and only if h̃ is optimal for the binary version of L.

Notice that the optimality of h depends on h̃ being optimal for the binary

version of L. This means that we should employ a learner that takes into ac-

count label interdependencies, considering together the predictions for all labels.

However, if h̃ is induced assuming label independence, which usually does not

9

hold in ML classification problems, the corresponding hypothesis h will not be

optimal.

The consequence of this result is that from a theoretical point of view, now

we could obtain, for instance, optimal micro-averaged F1 multilabel classifiers

if we learn optimal binary classifiers for that performance measure. However, it

is not straightforward to do that in practice.

Firstly, in a SVM approach, we must define a kernel suitable for capturing the

similarities of pairs (x, l) of entries of D̃ built from an ML task D as in (7). In the

next section, we describe a kernel method that is able to exploit unconditional

label dependence in the context of the reduction framework described here.

4. A Kernel Method to Optimize Micro-Averaged Measures

In this section, the core of the paper, we are going to present a family of

kernels aiming to improve the performance measured by micro-averaged loss

functions.

4.1. A Tensor Space for ML classification

Remember that our goal is to learn an hypothesis h̃ that somehow take into

account both the description of the objects and label information. So we need

to combine these two elements.

Let us consider the linear properties desired for a hypothesis h̃ learned from

the binary task D̃ derived from the original ML task D. We distinguish between

the two arguments of h̃(x, l). With respect to the label l ∈ L , we could hope to

have the following additive property. If l and l′ are labels assigned to an input x,

then the union {l, l′} must be included in the predictions for x. Somehow, this

condition could be expressed linearly if labels were represented in a vectorial

space. Thus, the first step is to represent the labels in a vectorial space.

The simplest representation is to use a vectorial space of m dimensions and

to map each label l to the canonical base indexed by l. In symbols,

e : L −→ Rm; e(l) = el = (δi,l : i = 1, . . . ,m). (8)

10

Given a label l we obtain a vector, el, of m dimensions in which just one of the

components is 1 and the rest are 0. The components of the vector el are the

Kronecker’s delta: δi,l = [[i = l]]. This is the simplest representation but there

could be other ones, more complex, as we shall see below.

Factorizing the hypothesis h̃ through e, the additive property for labels

means that, for a fixed input x, h̃(x, ·) is linear.

On the other hand, for a fixed label l, we usually search for a linear hypothesis

h̃(·, l) in Rp. In other words, we are searching for bilinear hypotheses

h̃ : Rp × Rm −→ R.

That is, for any x ∈ Rp, the map h̃(x, el) is a linear map from Rm to R, and

for any representation of a label through e, el ∈ Rm, the map from Rp to R is

also linear.

Mathematically, this is equivalent to ask linearity for the extension of h̃

to the tensor product of two Hilbert spaces. The universal property of tensor

products can be stated as follows

Bilinear(Rp × Rm,R) ∼= Linear(Rp ⊗ Rm,R).

Then, finally, we are looking for a hypothesis built from a linear map from the

tensor product. To ease the reading, we overload the name h̃ for the hypothesis

defined from the tensor product space

X ×L
I×e // Rp × Rm in //

h̃
&&

Rp ⊗ Rm

h̃
��
R

where I is the identity and in is the inclusion in the tensor product. Thus, the

hypothesis learned from a ML task will have the form

h̃(x, l) =
〈
W ,x⊗ el

〉
.

Thus, to obtain our hypothesis h̃ we just need to learn the vector parameter W

whose dimension is p×m.

11

4.2. Kernels to Learn ML Classifiers

In the tensor space described above, the natural kernels are given by tensor

kernels; that is, the product of kernels of the two factor spaces: the input space

and the label space:

K⊗
(
(x, l), (x′, l′)

)
= kX(x,x′) · kY(l, l′). (9)

Using the linear kernel in both spaces and the vectorial representation e for the

labels defined in (8), we have that

K⊗
(
(x, l), (x′, l′)

)
= kXL(x,x′) · kYL(el, el′)

= 〈x,x′〉 · 〈el, el′〉

= 〈x,x′〉 · δl,l′

= 〈x,x′〉 · [[l = l′]]. (10)

To illustrate the previous formal framework, we may use the Kronecker’s

product of vectors to represent the tensor product. Thus, the Kronecker’s prod-

uct of x ∈ X ⊂ Rp, and el ∈ Rm, for a label l ∈ L , is defined by

x⊗ el = (x · δ1,l, . . . ,x · δm,l) ∈ (Rp)m ∼= Rp ⊗ Rm.

The interpretation of these products in the learning task (2) is that the input

matrix X̃ in D̃ (7) is now the Kronecker’s product of the original input matrix

X and the identiy matrix of dimension m.

X̃ = X⊗ Im. (11)

In this context, the hypothesis h̃ is defined by a vector

W = (w1, . . . ,wm) ∈ Rp×m, wi ∈ Rp. (12)

This means that the algorithm will learn all together the m parameter vectors,

wi, one corresponding for each label. This may allow the learner to capture the

relationships between all labels.

12

In order to predict the relevance of a particular label l we have that

h̃(x, l) =
〈
W ,x⊗ el

〉
=

m∑
i=1

〈wi,x〉 · δi,l = 〈wl,x〉. (13)

Notice that in the preceding derivation, we lost the intercept terms frequently

used in the hypotheses learned by SVMs. In order to use standard software, we

add a new constant feature for all vectors x. This trick recovers the intercept

terms in linear kernels. We only use this kernel in the input space X . Thus, in

practice,

X ⊂ Rp+1. (14)

4.3. Correlation Kernel for Labels

The problem of using the identity matrix in (11), i.e., to use (8) as the

vectorial space to represent the labels and the linear kernel 〈el, el′〉 = δl,l′ in (10)

and (13), is that the algorithm can not capture the relationship between labels.

In other words, we are assuming that the labels are independent, like BR does.

However, the previous framework allows to easily overcome this drawback.

In fact, it is as simple as plugging another kernel for labels in K⊗. This paper

proposes and analyzes a kernel for labels that captures unconditional depen-

dencies among them. In the experimental section at the end of the paper we

will use the correlation coefficient between labels as a kernel. Thus, if Y is the

matrix of the labels (see Section 2) and lk is the k-th column that represents

the corresponding label, the kernel can be given by

kYρ (li, lj) = ρ(li, lj). (15)

in which ρ computes the correlation between label li and label lj .

In order to consider this kernel, once we have a training set with matrix of

labels Y, we only need to redefine a new representation map instead of e (8).

Thus, each label is represented by the standardization of the corresponding

column in Y:

ψY(lk) =
lk − µ(lk)

σ(lk)
√
n
, (16)

13

in which µ and σ represents respectively the mean and the standard deviation of

lk. We call Yψ the matrix of labels transformed by ψ. Then, the inner product

is the correlation:

〈ψY(li), ψY(lj)〉 = KY
ρ (li, lj).

Finally, we have the tensor correlation kernel

K⊗ρ
(
(x, li), (x

′, lj)
)

= 〈x,x′〉 ·KY
ρ (li, lj). (17)

Notice that while this kernel is characterized by the correlation matrix, the

kernel defined in (10) is built from the identity matrix. This means, that when

we use the identity as the similarity matrix of labels, labels are considered

independent among them. In the following, we will refer to the algorithms

using these kernels as SVM⊗ρ and SVM⊗I respectively.

The matrix representation of the input space X̃ in the learning task D̃,

according to (16) is now

X̃ = X⊗ (Yψ)′.

Notice that it is not necessary to compute explicitly this matrix. The kernel (17)

does this job implicitly for us. Of course, this is also the case of the matrix (11)

and the kernel (10).

5. Related Work

Multilabel classification has received the attention of many contributions

with different approaches. In [9] and [24] the approach was an extension of

multiclass classification. Other extensions have been done from different set-

tings; this is the case of Bayesian learners [33], nearest neighbors [34], logistic

regression [15], decision trees [29] and ensembles [14].

There is other interesting group of learners, those based on the chain rule,

which try to mixture both inputs and labels in the learning process. In this

group are [3, 17, 18] and Classifier Chains (CC) [23].

Another successful approach consists in learning a ranking of labels for each

instance and then, if necessary, produce a bipartition using a threshold that can

14

be a fixed value or a variable learned form the learning task. This includes [9]

and [20].

There are other approaches that aim to explicitly optimize a given loss func-

tion. Usually, they are based on theoretical results that inspire heuristic imple-

mentations to improve the scores of ML learners, see [4], [19] and [20]. In this

group we could include also approaches that perform some sort of inference,

for instance, those that optimize subset 0/1 loss using Probabilistic Classifier

Chains [3, 6, 13, 21], and [8], a method that treats a ML task as a special case

of structured-output prediction and makes joint predictions without suffering

from intractability of the inference problem.

On the other hand, this paper is related to those that employ a combined

feature representation. This is the case of [12, 26] that uses joint features maps,

a combined feature representation of inputs and outputs, and, from a different

perspective [32]. With regard to former algorithms, the main novelty of our

method is the use of a specific correlation kernel defined over the label space.

The use of tensor kernels is also highlighted in [10] to incorporate samples from

multiple sources into a joint kernel defined feature space. They are also related

to joint kernels in [31], which were introduced to deal with learning tasks where

the output has very high dimension. The tensor product representation is also

used in Maximum Margin Regression (MMR) [25], a maximum margin frame-

work that can be applied to multiclass (vector valued) classification, i.e. ML

classification tasks, to learn a multi-variate score function in the tensor product

space.

Other related works can be found in [19], where the authors present a re-

verse classification where the aim was to optimize macro-averaged loss functions;

also, closely related to our approach is [11], which proposes an efficient algo-

rithm named M3L to tackle multi label problems. Their approach uses the

tensor product to build the prediction function and incorporates prior knowl-

edge in the form of the distribution of the labels. The main differences with our

method is that 1) we use a standard SVM implementation while they propose

a different formulation, specially adapted for optimizing Hamming loss, and 2)

15

we define a kernel that captures unconditional label dependences. We included

this algorithm in the experimental comparison described below.

6. Experimental Results

In this section we report a number of experiments carried to show the prac-

tical performance of the kernel method based on correlations that was presented

in Section 4.3. The goal of these experiments was to show if our approach can

benefit when some level of unconditional label dependence is present. In order

to study this aspect, we used a measure, previously defined in [16], to quan-

tify unconditional dependence that is given by the average of the correlation

of labels (in absolute value) weighted by the number of common examples. In

symbols,

dependency(Y) =

∑
i<j abs(ρ(li, lj))|li ∩ lj |∑

i<j |li ∩ lj |
. (18)

As our target loss function we could employ any micro-averaged loss function

L described in Section 2.1. Recall that in order to optimize L in D we must

use a binary classifier able to optimize the binary version of L in D̃. In these

experiments we focused on Hamming loss, which only requires to optimize the

accuracy in D̃ and can be achieved by using a standard SVM implementation.

We modified a general-purpose SVM to implement the kernels presented in

Section 4. We used LibSVM [1] adding the tensor kernel in two versions. In the

part of x-inputs the linear kernel was employed in all cases after adding a new

column (14) with a constant value set to 1. To deal with label similarities we

used the two kernels discussed above: the one based on the identity matrix (10)

and the correlation kernel (17). We named these algorithms SVM⊗I and SVM⊗ρ ,

respectively. We compared the results of our approach to those of BR, CC (both

using SVM as their base classifier) and M3L, discussed in Section 5. This last

method, like ours, was devised to take advantage of dependency information

between labels by means of a similarity matrix. Thus, we used two versions of

the algorithm, M3LI and M3Lρ, using again the identity and the correlation

matrix, respectively.

16

Notice that SVM⊗I and BR can be considered similar approaches in the sense

that both, in order to build the model, assume independence between labels

(or, stated differently, have a lack of explicit information about the dependency

between labels). The difference is that SVM⊗I makes a global regularization for

the whole model, while the BR method regularizes each classifier independently.

The goal of these experiments was to study whether exploiting unconditional

dependence could help to improve Hamming scores. To check such hypothesis,

we made a thoroughly comparison on a collection of benchmark and synthetic

datasets.

6.1. Results over Benchmark Datasets

Table 2 shows the main characteristics of the benchmark datasets used in

the experiments. The most important one is the level of unconditional label

dependence (18). All these datasets were download from MULAN repository [30]

but one, slashdot, that was obtained from LAMDA repository [35]. Whenever

there was available a split in train and test, we used it; in the other cases, we

made a random split separating 80% of the examples for training and the rest

for testing. The dataset mediamill is available in MULAN; however, we used the

abbreviated version of [2] with 5000 examples to speed up the experimentation.

When the value of a label in a training set was constant (always present

or absent), we removed that label from the dataset. This was done to be able

to compute the correlations ensuring that we are not going to find null stan-

dard deviations. We added the number of remaining labels to the name of

the datasets, to indicate which were pruned. This is the case of enron(52),

medical(38), slashdot(20) and mediamill(87).

In order to adjust the regularization parameter C of all the classifiers con-

sidered, half of the training set was used for learning the models and the other

half was used as the validation set. Once an optimal C value was found, we

used it on the whole training set, and the model so obtained was applied to the

test set. The range of C values explored was {10i : i = −2,−1, 0, 1}. Notice

that the kernels used, (10) and (17), by M3L and SVM⊗ do not have additional

17

Table 2: Summary of benchmark datasets. For each dataset the dependency measured using

(18) is reported in the last column. The datasets are sorted by this value in ascending order

Dataset |Train| |Test| feats. labels card. dep.

slashdot(20) 3025 757 1079 20 1.18 0.05

enron(52) 1123 579 1001 52 3.39 0.12

scene 1211 1196 294 6 1.06 0.14

cal500 402 100 68 174 26.17 0.14

medical(38) 333 645 1449 38 1.26 0.22

mediamill(87) 4000 1000 120 87 4.27 0.23

yeast 1500 917 103 14 4.23 0.25

emotions 391 202 72 6 1.81 0.27

reuters 5695 1424 243 7 1.24 0.31

parameters.

Table 3 reports the Hamming scores obtained by all the algorithms over

the benchmark datasets. At first glance, their results are quite similar for all

of them, except CC. In fact, comparing their scores by means of a Friedman-

Nemenyi test [7] the differences between BR, M3LI , M3Lρ, SVM⊗I and SVM⊗ρ

are not significant at all. We do think that this fact makes sense considering the

properties of the algorithms compared and the characteristics of the benchmark

datasets used in the experiments. In this kind of experiment, which combines

datasets with low and high label dependence, it would be abnormal that one

of the methods outperforms the rest. The reason is that some of the methods

are well suited for those tasks in which the labels tend to be independent (BR,

M3LI and SVM⊗I), other for domains in which the labels show unconditional

label dependence (M3Lρ and SVM⊗ρ) and the last method (CC) for datasets

with conditional label dependence. Thus, it is logical that none of the methods

statistically outperforms the rest for all datasets. Each method should perform

better in those datasets that fit to its properties regarding label dependence.

18

Table 3: Average Hamming scores achieved by SVM⊗, M3L, BR and CC. SVM⊗, M3L both

used without and with the correlation matrix on real world datasets. The score of the best

method for each dataset is shown in bold

Dataset BR M3LI SVM⊗I M3Lρ SVM⊗ρ CC

slashdot(20) 0.0400 0.0417 0.0417 0.0417 0.0414 0.0548

enron(52) 0.0475 0.0475 0.0481 0.0497 0.0483 0.0517

scene 0.1012 0.1063 0.1048 0.1062 0.1045 0.1158

cal500 0.1357 0.1348 0.1357 0.1348 0.1349 0.1819

medical(38) 0.0130 0.0126 0.0133 0.0133 0.0141 0.0131

mediamill(87) 0.0325 0.0330 0.0330 0.0331 0.0330 0.0335

yeast 0.1995 0.1990 0.1989 0.1974 0.1975 0.2110

emotions 0.2162 0.2112 0.2096 0.2162 0.2021 0.2376

reuters 0.0462 0.0458 0.0463 0.0456 0.0467 0.0450

Therefore, the Hamming scores reported must be analyzed taking into ac-

count the level of dependency of each dataset. Interestingly, the conclusions of

such analysis are in line with the expected behavior of each method. It seems

that when label dependence is very low BR performs better than the rest of the

methods. For instance, in the three datasets with lowest label dependence (en-

ron, scene and slashdot) the winner is BR. But when label dependence starts to

increase, other methods take the lead. And particularly when the label depen-

dence is high, the performance of M3Lρ and SVM⊗ρ is better. It is worth noting

that M3Lρ and/or SVM⊗ρ outperform BR in the three datasets with largest la-

bel dependence (emotions, reuters and yeast). In the case of reuters dataset the

absolute winner is CC, a method that performs poorly for most of the datasets.

This seems to suggest that there is some level of conditional label dependence

in such dataset.

Thus, these results are promising but do not totally support (statistically)

our initial hypothesis that the difference in performance would be higher and

19

favorable to the versions using the correlation kernel when the dependency is

large. On the other hand, these results may not be conclusive since the number

of datasets was rather low to generalize the behavior of the algorithms. A

larger collection of datasets, with different degrees of label dependence, would

be needed.

6.2. Performance on Synthetic Multilabel Classification Tasks

In order to elucidate the relation between the unconditional dependence and

the performance of SVM⊗ρ and M3Lρ we generated a collection of synthetic

datasets of different sizes and degrees of dependency. For this purpose, we used

a synthetic dataset generator [16] based on a genetic algorithm to obtain ML

datasets with specific characteristics. The aim of the generator was to produce

a dataset with a given cardinality and dependency.

We built 108 datasets (each one composed by a training, a validation and

a testing set) by varying four parameters. In all cases the input space was

Rp+1 with p ∈ {10, 25, 50, 100}, see (14). The size m of the set of labels var-

ied in {100, 150, 200}. The target cardinalities (average number of labels per

example) ranged in {2.5, 3.5, 4.5}. The desired values for dependency were in

[0.05..0.65]. The generator draws a set of 400 points in [0, 1]p that will be used

to build the training set. Then, it searches for m hyperplanes such that the set

of labels so obtained fits as much as possible the cardinality and dependency

required. Notice that it is nearly impossible to obtain a dataset fulfilling some

combinations of these parameters. Thus, it can only obtains an approximate

solution. After obtaining those hyperplanes, the validation and testing sets are

generated with 400 and 600 examples respectively.

We used these synthetic datasets to check the performance of SVM⊗I and

M3LI with respect to the versions using the correlation kernel, SVM⊗ρ and M3Lρ.

After adjusting the C parameter using train and validation sets, the performance

was computed on the test set. In this case, C ranged in {10i : i = −1, 0, 1, 2, 3}.

We show the average Hamming scores achieved by SVM⊗ρ and SVM⊗I in

Table 4 and Figure 1, where the datasets are grouped by the number of labels

20

Table 4: Average Hamming scores (expressed as percentages) achieved by SVM⊗ using I and

ρ matrices for different number of labels and dimensions (p) of the input space. Each score

is the average of 9 datasets. The last band shows the number of times that the correlation

kernel helps to improve the performance of the algorithm SVM⊗

SVM⊗ scores (% Hamming)

labels p = 10 p = 25 p = 50 p = 100

I

100 0.85 1.32 1.77 2.54

150 0.82 1.30 1.52 2.00

200 0.81 1.13 1.38 1.78

Average 0.83 1.25 1.56 2.11

ρ

100 0.76 1.20 1.64 2.38

150 0.74 1.20 1.42 1.92

200 0.77 1.07 1.31 1.68

Average 0.76 1.15 1.46 1.99

ρ
w

in
s

100 8 6 7 9

150 9 6 7 7

200 8 7 6 7

Total (out of 27) 25 19 20 23

21

SVM⊗
I

SVM⊗
ρ

H
am

m
in

g
Lo

ss

0

0.5

1.0

1.5

2.0

2.5

100 Labels
10 25 50 100

150 Labels
10 25 50 100

200 Labels
10 25 50 100

Figure 1: SVM⊗
ρ and SVM⊗

I average Hamming scores over artificial datasets when the number

of labels varies (100,150 and 200). For each case, four different dimensions (10, 25, 50 and

100) of the input space were analyzed. The scores are expressed as percentages

(m) and input space dimension (p). In general, we observe that the use of

the correlation kernel (17) improves the performance when m and p increase.

This is shown in the last band of Table 4, which reveals the number of times

the version using the correlation kernel wins over the version using the identity

matrix. As we can observe, SVM⊗ρ outperforms SVM⊗I for every combination of

the parameters studied. In fact, SVM⊗ρ wins in 87 cases out of 108. Moreover, it

seems that the differences between both are greater in favor of SVM⊗ρ when the

learning tasks become harder, when the size of the input space and the number

of labels increase. In such cases, the role played by correlations appears to be

decisive.

But we also need to study these results taken into account the level of un-

conditional dependence present. The advantage of using the correlation kernel

analyzing this factor can be easily noticed by observing Figure 2 and Figure 3,

22

SVM⊗
I − SVM⊗

ρ
Fit

H
am

m
in

g
Lo

ss
 D

iff
er

en
ce

 (S
VM

⊗ I
−

SV
M

⊗ ρ)

−0.10

−0.05

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Dependency
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Figure 2: SVM⊗
ρ vs. SVM⊗

I . For each synthetic dataset we represent a point whose X

coordinate is the dependency of the training set and whose Y coordinate represents the benefit

of using the correlation kernel in terms of Hamming score

which depict the increase in performance (difference between Hamming scores)

obtained when using the correlation kernel with respect to the use of the identity

matrix for both SVM⊗ and M3L, respectively. For instance, in Figure 2 we can

observe that when unconditional dependence is low, it seems that SVM⊗I per-

forms slightly better that SVM⊗ρ . But, when the dependency increases, SVM⊗ρ

is the clear winner. A similar behavior happens in the case of M3L, see Figure 3.

These pictures show that the benefits of using the matrix ρ increase proportion-

ally to the dependency. In Figure 4 we compared M3Lρ and SVM⊗ρ and we can

observe that the performance of the latter is better than the former and that

the difference between both algorithms increases with the dependency too.

To statistically confirm these conclusions, we compare M3LI , M3Lρ, SVM⊗I

and SVM⊗ρ by means of a Friedman-Nemenyi test [7] on the scores obtained over

the synthetic datasets. The test, which is graphically summarized in Figure 5,

found significant differences between using or not the correlation kernel both

for SVM⊗ and for M3L. It also found that our approach SVM⊗ρ is significantly

better than the rest of algorithms, although the differences were small. In

23

M3LI − M3Lρ
Fit

H
am

m
in

g
Lo

ss
 D

iff
er

en
ce

 (M
3L

I −
 M

3L
ρ)

−0.15

−0.10

−0.05

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Dependency
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Figure 3: M3Lρ vs. M3LI . For each synthetic dataset we represent a point whose X coordinate

is the dependency of the training set and whose Y coordinate represents the benefit of using

the correlation kernel in terms of Hamming score

addition, we performed a Wilcoxon signed-rank test between SVM⊗ρ and M3Lρ,

obtaining that the difference is significant with p < 0.01 in favor of our approach.

7. Conclusions

This paper presents a new kernel-based approach to handle ML classification

tasks when the aim is to optimize a loss function defined by micro-averaging a

measure based on labels. The core idea is to transform a ML task into a binary

classification problem whose inputs are drawn from a tensor space of the original

input space and a representation of the labels. In fact, the goal is to exploit

the correlation between the labels because they are normally not assigned in-

dependently of each other; instead, they present statistical dependencies. From

a learning point of view, these relationships constitute a crucial source of in-

formation, in addition to that coming from the mere description of the objects.

Here, we propose tensor kernels for combining both sources of information, and

a correlation kernel for taking advantage of such label correlations.

The experiments reported let us conclude that our approach is able to ben-

24

M3LP − SVM⊗
ρ

Fit

H
am

m
in

g
Lo

ss
 D

iff
er

en
ce

 (M
3L

P
−

SV
M

⊗ ρ)

−0.0010

−0.0008

−0.0006

−0.0004

−0.0002

0

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

Dependency
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Figure 4: SVM⊗
ρ vs. M3Lρ. For each synthetic dataset we represent a point whose X coordi-

nate is the dependency of the training set and whose Y coordinate represents the benefit of

using the correlation kernel in terms of Hamming score

efit form capturing unconditional label dependence. Even in the case of Ham-

ming loss, which theoretically can be optimized assuming independence between

labels, like BR does, our method can improve such performance when the un-

conditional dependence increases. This is a quite interesting result because it

answers the questions raised in [6] whether exploiting label dependence could

help to improve Hamming loss performance. In their discussion, they conclude

that the improvements obtained by some ML classifiers (Probabilistic Classi-

fier Chains in their case) are due to employ a much richer hypothesis space in

comparison to the one used by BR. Here, our approach enriches its hypoth-

esis space by considering label correlations through a kernel and outperforms

those methods that assume label independence whenever such correlations are

present.

Acknowledgments

The research reported here is supported in part under grant TIN2011-23558

from the MICINN (Ministerio de Economı́a y Competitividad, Spain). We

would also like to acknowledge all those people who generously shared the

25

Figure 5: Results of a Friedman-Nemenyi test (confidence level of 95%) using the scores

obtained by SVM⊗
I , SVM⊗

ρ , M3LI and M3Lρ. The scale from 1 to 4 shows the average

rank of each method regarding its performance. The bold line links those algorithms whose

differences in performance are not statistically significant

datasets and software used in this paper, as well as the anonymous reviewers

who undoubtedly contributed to improve the quality of this paper.

References

[1] C.C. Chang, C.J. Lin, LIBSVM: A library for support vector machines,

ACM Transactions on Intelligent Systems and Technology 2 (2011) 27:1–

27:27.

[2] W. Cheng, E. Hüllermeier, Combining instance-based learning and logistic

regression for multilabel classification, Machine Learning 76 (2009) 211–

225.

[3] K. Dembczyński, W. Cheng, E. Hüllermeier, Bayes optimal multilabel clas-

sification via probabilistic classifier chains, Proceedings of the 27th Inter-

national Conference on Machine Learning (ICML) (2010).

[4] K. Dembczyński, W. Waegeman, W. Cheng, E. Hüllermeier, An exact al-

gorithm for f-measure maximization, in: Proceedings of the Neural Infor-

mation Processing Systems (NIPS).

26

[5] K. Dembczyński, W. Waegeman, W. Cheng, E. Hüllermeier, On label

dependence and loss minimization in multi-label classification, Machine

Learning 88 (2012) 5–45.

[6] K. Dembczyński, W. Waegeman, E. Hüllermeier, An analysis of chaining

in multi-label classification, in: ECAI 2012, pp. 294–299.

[7] J. Demšar, Statistical Comparisons of Classifiers over Multiple Data Sets,

Journal of Machine Learning Research 7 (2006) 1–30.

[8] J.R. Doppa, J. Yu, C. Ma, A. Fern, P. Tadepalli, Hc-search for multi-label

prediction: An empirical study, in: Proceedings of AAAI Conference on

Artificial Intelligence (AAAI).

[9] A. Elisseeff, J. Weston, A kernel method for multi-labelled classification,

in: In Advances in Neural Information Processing Systems 14, MIT Press,

2001, pp. 681–687.

[10] D. Hardoon, J. Shawe-Taylor, Decomposing the tensor kernel support vec-

tor machine for neuroscience data with structured labels, Machine learning

79 (2010) 29–46.

[11] B. Hariharan, S. Vishwanathan, M. Varma, Efficient max-margin multi-

label classification with applications to zero-shot learning, Machine Learn-

ing 88 (2012) 127–155.

[12] T. Joachims, T. Finley, C. Yu, Cutting-plane training of structural svms,

Machine Learning 77 (2009) 27–59.

[13] A. Kumar, S. Vembu, A.K. Menon, C. Elkan, Beam search algorithms for

multilabel learning, Mach. Learn. 92 (2013) 65–89.

[14] P. Li, H. Li, M. Wu, Multi-label ensemble based on variable pairwise con-

straint projection, Information Sciences 222 (2013) 269 – 281.

[15] H. Liu, S. Zhang, X. Wu, Mlslr: Multilabel learning via sparse logistic

regression, Information Sciences 281 (2014) 310–320.

27

[16] Ó. Luaces, J. Dı́ez, J. Barranquero, J.J. del Coz, A. Bahamonde, Binary

relevance efficacy for multilabel classification, Progress in Artificial Intelli-

gence 4 (2012) 303–313.

[17] E. Montañés, R. Senge, J. Barranquero, J. Quevedo, J.J. del Coz,

E. Hüllermeier, Dependent binary relevance models for multi-label clas-

sification, Pattern Recognition 47 (2014) 1494 – 1508.

[18] E. Montañés, J.R. Quevedo, J.J. del Coz, Aggregating independent and

dependent models to learn multi-label classifiers, Machine Learning and

Knowledge Discovery in Databases (2011) 484–500.

[19] J. Petterson, T. Caetano, Reverse multi-label learning, Advances in Neural

Information Processing Systems 23 (2010) 1912—1920.

[20] J.R. Quevedo, O. Luaces, A. Bahamonde, Multilabel classifiers with a prob-

abilistic thresholding strategy, Pattern Recognition 45 (2012) 876–883.

[21] J. Read, L. Martino, D. Luengo, Efficient monte carlo methods for multi-

dimensional learning with classifier chains, Pattern Recognition 47 (2014)

1535 – 1546.

[22] J. Read, L. Martino, P.M. Olmos, D. Luengo, Scalable multi-output label

prediction: From classifier chains to classifier trellises, Pattern Recognition

48 (2015) 2096–2109.

[23] J. Read, B. Pfahringer, G. Holmes, E. Frank, Classifier chains for multi-

label classification, Machine Learning 85 (2011) 333–359.

[24] R. Schapire, Y. Singer, Boostexter: A boosting-based system for text cat-

egorization, Machine learning 39 (2000) 135–168.

[25] S. Szedmák, J. Shawe-Taylor, E. Parrado-Hernández, Learning via linear

operators: Maximum margin regression; multiclass and multiview learning

at one-class complexity, Technical Report, PASCAL, Southampton, UK.,

2006.

28

[26] I. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun, Large margin meth-

ods for structured and interdependent output variables, Journal of Machine

Learning Research 6 (2006) 1453.

[27] G. Tsoumakas, I. Katakis, Multi Label Classification: An Overview, Inter-

national Journal of Data Warehousing and Mining 3 (2007) 1–13.

[28] G. Tsoumakas, I. Katakis, I. Vlahavas, Mining Multilabel Data, In O. Mai-

mon and L. Rokach (Ed.), Data Mining and Knowledge Discovery Hand-

book, Springer (2010).

[29] G. Tsoumakas, I. Katakis, I. Vlahavas, Random k-Labelsets for Multi-

Label Classification, IEEE Transactions on Knowledge Discovery and Data

Engineering (2010).

[30] G.T. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, I. Vlahavas, Mulan: A

Java library for multi-label learning, Journal of Machine Learning Research

12 (2011) 2411–2414.

[31] J. Weston, B. Schölkopf, O. Bousquet, Joint kernel maps, Computational

Intelligence and Bioinspired Systems (2005) 135–168.

[32] J. Yu, Y. Rui, Y.Y. Tang, D. Tao, High-order distance-based multiview

stochastic learning in image classification, Cybernetics, IEEE Transactions

on 44 (2014) 2431–2442.

[33] M.L. Zhang, J.M. Peña, V. Robles, Feature selection for multi-label naive

bayes classification, Information Sciences 179 (2009) 3218–3229.

[34] M.L. Zhang, Z. Zhou, ML-KNN: A Lazy Learning Approach to Multi-label

Learning, Pattern Recognition 40 (2007) 2038–2048.

[35] Z. Zhou, Learning And Mining from DatA (LAMDA).

http://lamda.nju.edu.cn/data.ashx, 2010.

29

	Introduction
	Multilabel Classification
	Loss Functions for Multilabel Classification

	A Reduction Framework for Micro-averaged Loss Functions
	A Kernel Method to Optimize Micro-Averaged Measures
	A Tensor Space for ML classification
	Kernels to Learn ML Classifiers
	Correlation Kernel for Labels

	Related Work
	Experimental Results
	Results over Benchmark Datasets
	Performance on Synthetic Multilabel Classification Tasks

	Conclusions

