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Abstract

Understanding and modeling human preferences is one of the key problems

in applications ranging from marketing to automated recommendation. In

this paper, we focus on learning and analyzing the preferences of consumers

regarding food products. In particular, we explore machine learning methods

that embed consumers and products in an Euclidean space such that their

relationship to each other models consumer preferences. In addition to pre-

dicting preferences that were not explicitly stated, the Euclidean embedding

enables visualization and clustering to understand the overall structure of a

population of consumers and their preferences regarding the set of products.

Notice that consumers’ clusters are market segments, and products clusters

can be seen as groups of similar items with respect to consumer tastes. We

explore two types of Euclidean embedding of preferences, one based on inner

products and one based on distances. Using a real world dataset about con-

sumers of beef meat, we find that both embeddings produce more accurate

models than a tensorial approach that uses a SVM to learn preferences. The
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reason is that the number of parameters to learned in embeddings can be

considerably lower than in the tensorial approach. Furthermore, we demon-

strate that the visualization of the learned embeddings provides interesting

insights into the structure of the consumer and product space, and that it

provides a method for qualitatively explaining consumer preferences. Addi-

tionally, it is important to emphasize that the approach presented here is

flexible enough to allow its use with different levels of knowledge about con-

sumers or products; therefore the application field is very wide to grasp an

accurate understanding of consumers’ preferences.
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1. Introduction

In 1927, Thurstone (1927) presented a law of comparative judgment to

approach to qualitative comparisons from a psychological point of view. Ac-

cording to this law, users react differently to each item, and they identify the

degree of compatibility with the quality to be compared. The difference of

these degrees define the discriminal process between pairs of items.

From a Machine Learning perspective, there are two main ways to ap-

proach preferences. They can be represented by a real-valued function, which

assigns a utility value to the object, or by a preference relation, which com-

pares two different items; see (Hüllermeier and Fürnkranz, 2013). In the first

approach, the degrees of compatibility (usually called utilities) are considered

as the target output that can be learned by means of ordinal regression or
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classification methods. This is a suitable approach when it is possible to

assume that users assign those utilities depending exclusively on the item

being assessed. However, in some cases there is a batch effect; that is, the

assessment of an item depends on the batch of items included in the same

comparison. When this is the case, it is more suitable to use the second

approach and consider preferences as a binary relation. The goal here is to

learn the relative ordering of items given by the user instead of the utility

itself. This is the approach used by Herbrich et al. (1999), Joachims (2002),

Bahamonde et al. (2007) and Rendle et al. (2009).

In this paper we are concerned with learning preferences expressed by

consumers of a kind of products. Consumers typically assign the utilities only

as a way to express relative preferences instead of absolute values. Therefore,

the datasets that we are going to use are collections of pairwise comparisons,

called preference judgments, that represent the discriminant process of one

consumer between two products. In addition to modeling the products, we

also explicitly model individual consumers. To represent the interaction of

consumers and products we propose several factorization approaches and a

tensorial approach.

A desirable property of factorization approaches is that they entail an

embedding of both consumers and products in a common Euclidean space

where the utility can be expressed in geometric (or graphical) terms. The con-

sequence is that, as a side effect, learning preferences with these approaches

provides a setting for visualization of clusters in both consumers and prod-

ucts.

In the following sections we introduce a common framework to learn fac-
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torizations and SVM tensorial models. The purpose is to discuss the char-

acteristics of these approaches according only to their mathematical formu-

lations.

In all cases, the objects involved in preferences (consumers and products)

can be represented by a combination of a binary identification code or by

vectors of feature-values. Notice that, for instance, in food products, the

features of consumers or the products are not always available. Moreover,

if a food industry is planing to launch a new product there is a reduced set

of options that they want to test, and they can be just represented by an

identification code. On the other hand, when there is a selected panel of

singular consumers, they can be unequivocally identified with a label.

After the formal presentation of the methods, we show the results of

an exhaustive experimentation using a real world dataset of consumers of

beef meat. First we compare the results of factorization methods with those

achieved by SVM. In the datasets used in this paper, factorization methods

outperform SVM, probably this is a general fact. One reason is that the

number of parameters to be learned is smaller in the factorization approaches.

Additionally, the formal models learned in all cases are quite similar and they

all capture the possible interactions of both the features of consumers and

products.

The contributions of the paper are the following: (i) it presents a com-

mon framework for different approaches to learn preferences using matrix

factorization, (ii) the paper illustrates the formal presentation with a real

world problem of consumers and (food) products, (iii) the last section shows

a favorable comparison of factorization and SVM tensorial approaches, (iv)
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the paper emphasizes the graphical and geometrical possibilities of the fac-

torization methods as a tool to analyze the complex relationships of users

and items.

2. Related Work

Learning preferences has been studied with different approaches. A recent

Special Issue of the Machine Learning Journal (Hüllermeier and Fürnkranz,

2013) includes some interesting approaches and application fields.

From a conceptual point of view, the aim is to learn an ordering relation

from some pairwise comparisons. Thus, the learning task can be read as a

binary classification task using SVMs, see for instance (Herbrich et al., 1999;

Joachims, 2002).

In this paper we adopt a more general strategy, we explicitly optimize a

loss function with regularization. For instance, it is possible to use the lo-

gistic loss as in the learner proposed by Rendle et al. (2009). The algorithm

presented in that paper was derived from a Bayesian analysis of the ranking

problem of a user for a set of items. The algorithm is called Bayesian Person-

alized Ranking (BPR) and was devised as a method to solve the maximum

posterior estimation.

We present a general setting that includes, at the same time, a factoriza-

tion framework and a tensorial approach: a SVM that uses tensor products

to model the interactions of consumer and item representations. Tensorial

representations were already used, for instance, in (Basilico and Hofmann,

2004; Rendle and Schmidt-Thieme, 2010; Pahikkala et al., 2012). We report

a comparison between factorization methods and this SVM approach in the
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experimental section using a real dataset.

Factorization algorithms were previously used in recommender systems in

some of the best ranked systems of the Netflix prize; see for instance (Koren

et al., 2009). Many other papers propose matrix factorization for solving

specific problems in recommender systems; see for instance (Ocepek et al.,

2015).

A software library to do factorization machines with a wide variety of

options is presented in (Rendle, 2012). Other similar implementations can

be found in (Chen et al., 2011; Agarwal and Chen, 2009; Bayer, 2015). Let

us remark that the goal of this paper is not to present another implemen-

tation. We use a quite straightforward SGD (Stochastic Gradient Descent)

implementation whose main advantage is that it is the same for 3 different

approaches. We want to underscore that the differences arise only from the

formulation of the approach, but not from any implementation issue. Ad-

ditionally, we are interested in discussing the necessity of using the features

of the items and consumers involved in the preferences judgments. This is a

central point in learning preferences and the approach presented in this paper

is quite suitable for this purpose. We may use all the convenient information

in a real word application.

Another interesting use of factorizations is presented in (Weston et al.,

2010, 2011). The target is information retrieval, and so the aim was to

optimize the ranking of labels attached to queries (images or music). In this

case the output is an ordered set of labels.

As was said in the introduction, we are concerned with the graphical

properties of the model learned from preferences. Both consumers and items

6



are located in an Euclidean space with one specific aim. This is the case,

for instance in (Moore et al., 2012; Chen et al., 2012) where the purpose

was to build an embedding of songs. The proximity was learned from a

collection of playlists. Once the map is built, playlists are generated using

the relative distances of songs. To model proximity, the authors use Gaussian

distributions, and the same tool was used also to add tags to the songs. In

this paper we do not assume any distribution of the representation of data

in the Euclidean space.

Another paper related to the work reported here is (Xing et al., 2002).

Here, the authors learn a metric for Euclidean points that represents sim-

ilarities and dissimilarities. The metric is given by a positive semi-definite

matrix that is the solution of a convex optimization problem. In our case

the factorization eases the learning process since the number of parameters

to be estimated may be significantly fewer. Moreover, the preference learn-

ing tasks only have dissimilarity examples; there are no similarity cases to

guide the induction. On the other hand, in (Xing et al., 2002) there is no

reduction of dimensionality neither visualization purposes: the objective is to

find clusters. A quite similar approach can be found in (Parameswaran and

Weinberger, 2010), in this case to learn a metric for Multi-Task Learning.

To learn metrics is also the aim of Peltonen et al. (2003). The purpose is to

reduce the dimensionality from visualization. The source data are collections

of labelled data for classification tasks. The proposals are extensions of the

so-called Self-Organizing Maps (SOM). However, notice that our purpose is

not only to learn a metric, but to learn preferences while represent in a metric

space both consumers and products.
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Finally, the visualization method presented here is in fact a supervised

learning algorithm, like supervised PCA (Koren and Carmel, 2004; Yu et al.,

2006; Du et al., 2015) for instance. The difference is that our approach

explicitly incorporates the loss function and the definition of similarity that

we want to obtain at the end of the process. And, of course, the method

presented here is devised for learning preferences.

3. Formal Framework

Let us consider the following dataset

D = {(x1, f(x1)), . . . , (xn, f(xn))}. (1)

Here we assume that f is an unknown real function on the space from where

inputs x ∈ Rm are drawn.

The aim is to find a new function g of input data x, that depends also

on some parameters θ, such that the variations of f can be predicted by the

variations of g. The function g will have an analytical definition that makes

it straightforward to compute g on any input. In symbols, the aim of g is to

maximize the probability

Pr
(
f(x) > f(x′) ⇐⇒ g(x, θ) > g(x′, θ)

)
. (2)

In the following, as usual in this context, we will call g a utility function.

To learn g we define the following ordering induced by D

Dor = {
(
xi,xj; [[f(xi) > f(xj)]]

)
: i, j = 1, . . . , n}. (3)

The symbol [[p]] stands for the value 1 when the predicate p is true, and −1

otherwise. In the next subsections we present an approach to learn g from

this binary classification task.
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Formally, the learning process of the parameters θ of g starts with the

dataset Dor (Eq. 3). Soon we shall see that we may use only the examples

of the positive class,

D+
or = {(xi,xj) :f(xi) > f(xj), i, j = 1, . . . , n}. (4)

Notice that, in fact, we do not need the function f in our approach. In

practice, f is hidden and we do not have access to it; otherwise, the dataset

(Eq. 1) could be seen as a regression task. Roughly speaking, the dataset

D+
or is the set of pairs where an explicit ordering has been registered. Each

pair is formed by the better and the worse objects. Usually these pairs are

called preference judgments, see (Joachims, 2002).

We adopted a margin maximization approach, detailed in the next sec-

tion, to learn from such a dataset in order to include the hypothesis learned

by SVMs as in (Herbrich et al., 1999; Joachims, 2002; Bahamonde et al.,

2007; Basilico and Hofmann, 2004; del Coz et al., 2005; Dı́ez et al., 2005,

2006). This could also be solved using a probabilistic approach.

4. Maximum Margin Approach

As usual, we assume that all these examples are independently and iden-

tically drawn (i.i.d.) from an unknown distribution. Thus, using a maximum

margin approach, the parameters θ should minimize

Loss(θ,D+
or) =

∑
(xi,xj)∈D+

or

max
(

0, 1− g(xi, θ) + g(xj, θ)
)
. (5)

Following Rendle et al. (2009), margin maximization can be done using

an SGD algorithm (Robbins and Monro, 1951) with a regularization term
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for the parameter θ, r(θ). Thus, the optimal value, θ∗ is given by

θ∗ = argmin
θ

Loss(θ) + νr(θ) (6)

The idea is to ensure that the difference of the utilities in a preference

judgment is at least 1.

g(xi, θ)− g(xj, θ) ≥ 1, (xi,xj) ∈ D+
or

Of course, this is equivalent to

g(xj, θ)− g(xi, θ) < −1, (xi,xj) ∈ D−or

where D−or is the subset of Dor (Eq. 3) with negative classes. The consequence

is that we may get rid of the negative part since it is redundant.

The corresponding optimization with this loss function can be solved with

Algorithm 1 that implements this approach using an L2 regularization term.

The updating step due to (xi,xj) is done by:

θ ← θ − γ
[∂(Loss(θ))ij

∂θ
+ ν

∂r(θ)

∂θ

]
. (7)

That is,

θ ← θ + γ
[∂g(xi, θ)

∂θ
− ∂g(xj, θ)

∂θ
− ν ∂r(θ)

∂θ

]
(8)

if

1− g(xi, θ) + g(xj, θ) > 0.

Additionally, to ensure numerical stability, following Weston et al. (2010,

2011), we use a parameter R (a radius) such that the size of θ is always

smaller or equal than R.
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Algorithm 1 SGD algorithm to learn a utility function that maximizes the

margin as defined in (Eq. 5) using an L2 regularization

Input: D+
or; {(Eq. 4)}

Input: γ > 0 {learning rate}; ν > 0 {regularization parameter};

Input: R > 0 {radius};

assign random values to the components of θ;

repeat

fetch random (xbetter,xworse) ∈ D+
or;

if 1 > g(xbetter, θ)− g(xworse, θ) then

θ ← θ + γ
[
∂g(xbetter,θ)

∂θ
− ∂g(xworse,θ)

∂θ
− ν ∂r(θ)

∂θ

]
;

if
∥∥θ∥∥ > R then

θ ← R∥∥θ∥∥θ;
end if

end if

until stop criterion

5. Factorization and Tensorial Approaches

In the last section, inputs were described by a generic vector x and the

aim was to emphasize the ordering of these vectors according to f values.

Now we are going to get into the structure of inputs as the concatenation of

two different vectors, the representation of consumers and items or products

(we prefer products to use p instead of i for short in equations). Thus, in the

following, we are going to assume that each input data can be split in two

parts:

x = (c,p).

11



In this section, we introduce three possible definitions of the utility func-

tion g. They have in common that rest on the interaction of the vectorial

representation of consumers and products.

5.1. Mapping Consumers and Products: Matrix Factorization

In this subsection, we are going to consider an embedding of both con-

sumers and products in a common Euclidean space. Then, the function g

(Eq. 2) will be defined in terms of the mappings in the common space.

We assume that consumers are described by vectors in a Euclidean space

of dimension |Con|, while products are given by vectors with |Prod| compo-

nents. We are going to represent them in a common space of dimension k

using two linear maps given respectively by matrices W and V .

R|Con| −→ Rk, c Wc, (9)

R|Prod| −→ Rk, p V p. (10)

Let us remark that, as usual, we are considering vectors as column matrices.

In this context, the parameter θ to be learned is the set of matrices W ,

V . We are trying to solve the optimization problem

W ∗,V ∗ = argmin
W,V

(
Loss(W ,V , D+

or) + νr(W ) + νr(V )
)
. (11)

Notice that there are different options to define the interaction of con-

sumers and products. Next, we present two of them.
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5.1.1. Inner Products

The first alternative is to formalize the interactions by the following inner

product of the mappings of consumers and products in Rk.

gin(x) = gin(c,p) = 〈Wc,V p〉 (12)

=(Wc)TV p = cTW TV p =

|Con|∑
r=1

|Prod|∑
s=1

(
W TV

)
rs

(
cpT

)
rs

=(V p)TWc =

|Con|∑
r=1

|Prod|∑
s=1

(
V TW

)
rs

(
pcT

)
rs
.

It is interesting to realize that the utility function gin is given by a linear

combination of all products formed by one component from the consumer

description, and one component of the description of the product.

The type of equation is different if we add one constant component (with

value 1 for instance) to the vectorial representation of consumers and prod-

ucts; that is,

cT ← [cT 1]; pT ← [pT 1]. (13)

In this case, the utility function can be thought as follows,

gin(c, p)=
∑
r,s

αrscrps +
∑
r

βrcr +
∑
s

δsps + τ, (14)

for some real coefficients αr,s, βr, δs and τ . That is, the utility is a polynomial

of degree 2 where the monomials of degree 2 are always built by the product

of one component of the representation of consumers and other from the

products.

If we compare the equations (Eq. 12, 14), we appreciate that the coeffi-

cients of the polynomial that defines gin are factorized in two matrices, as

was mentioned in the introduction.
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The partial derivatives needed to implement this approach in Algorithm 1

are the following:

∂gin(c,p)

∂W
=

∂(V p)T (Wc)

∂W
= V pcT ,

∂gin(c,p)

∂V
=

∂(Wc)T (V p)

∂V
= WcpT .

On the other hand, we use the square of the Frobenius norm as the

regularization summand.

r(W ) =
∥∥W∥∥2

F
= Tr(W TW ),

r(V ) =
∥∥V ∥∥2

F
= Tr(V TV ).

Therefore, the regularization derivatives are

∂Tr(W TW )

∂W
= 2W ,

∂Tr(V TV )

∂V
= 2V . (15)

The Frobenius norm of matrices is also used to measure the size of the pa-

rameters in Algorithm 1.

5.1.2. Euclidean Closeness

The second option that we explore for defining g is the interaction given

by the closeness. In symbols, we define

gcl(c,p) = −
∥∥Wc− V p

∥∥2
= −

∥∥Wc
∥∥2 − ∥∥V p

∥∥2 + 2〈Wc, V p〉

= −
∥∥Wc

∥∥2 − ∥∥V p
∥∥2 + 2gin(c,p). (16)

Notice that, comparing with the utility function defined in (Eq. 12), now

we add more summands to the equation. The new utility, gcl, includes the
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weighted sum of all monomials of degree 2 formed with variables taken from

the description of consumers (c) or products (p). Of course, to guarantee

this, we need to add one constant component (with value 1 for instance) to

the vectorial representation of consumers and products, see (Eq. 13).

The derivatives needed to implement the learning algorithm are the fol-

lowing:

∂gcl(c,p)

∂W
= −∂(Wc)T (Wc)

∂W
+2

∂gin(c,p)

∂W

= −W (2ccT )+2V pcT,

∂gcl(c,p)

∂V
= −∂(V p)T (V p)

∂V
+2

∂gin(c,p)

∂V

= −V (2ddT )+2WcpT.

We use the same regularization than in the case of the utility defined in terms

of the inner product.

The advantage of this definition of g is that the visual semantics is more

easy to appreciate. The Euclidean representation of consumers and products

are closed or further according with the preferences. The inner product is a

simpler equation, but it is harder to visualize.

5.2. Tensor Product

The full description of the utility functions presented in the last subsection

(Eq. 14) can be seen as a particular case of a linear function in the tensor

product of consumers and products. In symbols,

g⊗(c, p) = 〈w, c⊗ p〉, (17)

where w is a vector in the Euclidean space of dimension |Con|×|Prod|. If we

use a pair of indexes to refer to the components of w, the previous equation
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can be written as

g⊗(c, p) =
∑
r,s

wrscrps. (18)

Once more, this expression includes all the terms of (Eq. 14) provided that

a constant component is included in vectors c and p.

It is important to emphasize that the number of parameters to be learned

in this approach is considerably more than in the factorization cases provided

that the value of k (the dimension of the Euclidean space is small). Again,

we may learn these parameters, the components of w, using the Algorithm 1.

For this purpose, we only need to compute the derivative

∂g⊗(c, p)

∂w
= c⊗ p, (19)

and the derivative of the regularization summand, that is given by

∂r(w)

∂w
= 2w. (20)

The Algorithm 1 learns the parameter w of (Eq. 17) using a SGD. The

size of the parameter is the Euclidean norm of w. This approach is then

equivalent to a Support Vector Machine (SVM) used to learn to rank. In the

experimental section we will denote this learning algorithm as SVM⊗.

6. Experimental Results

In this section we report a set of experiments carried out to show the

performance of the proposals of this paper. First we present some imple-

mentation details of Algorithm 1. Then we introduce the datasets used in

the experiments to report the accuracy obtained with each utility function

(let us recall that in all cases the learning algorithm is the same). Finally,

16



we show some graphical representations obtained as side effect of the learn-

ing process to illustrate the visualization possibilities of the factorization

approaches when used to learn consumer preferences.

6.1. Implementation Details

The implementation of the Algorithm 1 was done using Pegasos as a

model, see (Shalev-Shwartz et al., 2011). Thus, the learning rate follows the

equation

γ =
γ0

1 + γs(n− 1)
.

To avoid many parameters to be adjusted, we fixed γ0 = 1, and γs = 0.01.

The radius (Section 4) was also fixed: R = 1. As usual, n is the ordinal of

the iteration.

To update the model learned by the algorithm we used a mini batch

strategy, averaging the updates every time that 10% of the training examples

were processed.

The only adjustable parameter in the algorithm was the regularization

parameter. We made an internal grid search to determine the best option in

the set

ν ∈ {10i : i = −1, . . . ,−10}

using a 2-fold cross validation repeated 3 times on the training set.

Finally, the algorithm stops when the size of the difference of parameter θ

in two consecutive iterations is smaller than 10−6 or the number of iterations

is 5000.
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Task |D+
or|

Acceptability 3084

Flavor 3080

Tenderness 3313

Table 1: Sizes of the datasets used in the experiments. |D+
or| stands for the number of

Preference Judgments (Eq. 4). The number of consumers is 392 and there are 307 items

6.2. Datasets

The dataset used in this paper comes from a study carried out to deter-

mine the features that entail consumer acceptance of beef meat from seven

Spanish breeds (Gil et al., 2001; Sañudo et al., 2004; del Coz et al., 2005;

Dı́ez et al., 2005, 2006; Bahamonde et al., 2007). Each piece of meat was de-

scribed by: the weight of the animal, ageing time, breed, 6 physical features

describing its texture and 12 sensory characteristics rated by 11 different

experts (132 ratings). The dataset has 307 different items.

In each testing session, 4 or 5 pieces of meat were tested and a group of

consumers were asked to rate (on a scale of 1 to 10 points) three different

aspects: tenderness, flavor and overall acceptance. The number of consumers

involved in this panel was 392. The features of consumers are just sex, age

and job.

The preferences expressed by consumers were represented in a dataset of

preference judgments like D+
or where each input x is the concatenation of the

feature description of the item and of the user. We only considered pairs

where the preferences of the consumer were strictly different for two items.

Thus, in each dataset the number of preference judgments is slightly different.
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Table 1 reports the number of preference judgments for each learning task.

The data was preprocessed. The discrete features were binarized in the

whole dataset. On the other hand, the continuous features were standardized

in each training set; the mean and standard deviation of training data were

used to standardize the test set.

6.3. Results and Discussion

To estimate the accuracy of the utility functions learned, we used cross

validation in the D+
or versions of acceptability, flavor and tenderness.

In addition to feature descriptions of consumers and items, we added a

binary identification of them. That is to say, each object (consumer or item)

includes in its description a vector of dimension the number of objects; in

that vector all components are 0 but the one with index the ordinal of the

object that has value 1.

To check the role played by these identifiers, we considered two different

versions of each dataset: with and without identifiers. In preference learning,

sometimes we do not have any feature description of items or consumers, then

we can only use such identifiers.

To ease of reading, let us put a simple example. If we have only 3 con-

sumers, their representations can be the following. With id codes the con-

sumers are presented by

consumer1 = (1, 0, 0, sex1, age1, job1),

consumer2 = (0, 1, 0, sex2, age2, job2),

consumer3 = (0, 0, 1, sex3, age3, job3).
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gcl gin

Dataset SVM⊗ 2 10 100 2 10 100

Acceptability

no ID 28.2 28.6 26.4 25.4 31.7 26.8 26.5

with ID 21.9 26.9 18.7 16.2 27.5 18.8 16.1

Flavor

no ID 30.7 35.2 29.9 29.7 36.2 28.5 28.6

with ID 24.6 32.9 21.4 19.9 31.5 20.4 18.1

Tenderness

no ID 25.5 26.4 24.3 25.0 28.5 23.9 23.9

with ID 21.1 24.3 17.5 15.6 26.4 18.2 16.2

Table 2: Percentages of misclassified preference judgments estimated with 10-fold cross

validation using internal grid search for the parameters of the learners. Columns labeled

by 2, 10 and 100 report the scores of factorizations obtained with that value of k. The

testing was carried out in each fold while training was performed in the remaining 9

Without identification codes, we drop the first three binary components and

each consumer will represented only by their sex, age and job. Of course,

analogous representations can be used for products.

The first block of experiments used a 10-fold cross validation. Systems

were trained using 9 folds and the test was performed on the remaining fold.

The scores are reported in Table 2.

We observe that the performance of the SVM that uses the tensor product

(SVM⊗) is worse than the performance of the factorization methods (gin and
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gcl gin

Dataset 2 10 100 2 10 100

Acceptability

no ID 39.0 38.3 38.7 37.9 38.0 38.0

with ID 38.7 37.4 37.4 37.7 37.3 36.6

Flavor

no ID 43.5 43.4 43.0 43.7 43.1 42.5

with ID 43.1 42.6 42.9 43.2 41.3 40.3

Tenderness

no ID 36.5 35.0 35.2 35.3 34.8 35.2

with ID 35.9 34.7 34.1 35.5 34.6 34.5

Table 3: Percentages of misclassified preference judgments estimated with 10-fold cross

validation using internal grid search for the parameters of the learners. Columns labeled

by 2, 10 and 100 report the scores of factorizations obtained with that value of k. The

training was carried out in each fold while testing was performed in the remaining 9

gcl) that are really quite similar. Additionally, the influence of the dimension

of the Euclidean space k (Eq. 9) is dramatic in factorization systems. Greater

values of k provide better results. In all cases, the scores of the tensorial

version are somewhere in the middle of the factorization scores with k = 2

and k = 10.

In all cases the use of identifiers improves considerably the scores. In

some case the difference is 10 points better with identifiers than without

them. The reason is that some items or consumers in test sets were also
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known in training stage. But this is the case in many sensory data studies.

Sometimes the number of options that a food industry is considering for

a new product is the whole set of items both in training and in test. On

the other hand, if we want to model the assessments of a selected panel of

consumers, they must be present in training and in test examples.

In the experiments reported in Table 2, 90% of preference judgments are

in the respective training set; therefore, most of the consumers and items in

each respective test set appear in the training set too. To check the effect

of the appearance of already known objects, and also to check the effect of

the number of training examples, we performed two additional experiments.

However, in this case we used only factorization systems since the perfor-

mance of the tensorial systems was very poor. In this way, first we report

the experiments carried out with 10-fold cross validation by using each fold

as training set and the remaining 9 as test. The results are shown in Table 3.

The results are substantially worse, as the number of training examples

is very small. Nevertheless, the impact of the identifiers of consumers and

items is beneficial in all cases but one, although the increase in accuracy is

smaller than in the experiments reported in Table 2. On the other hand,

again we realize that higher values of k give rise to better performance.

Finally, in Table 4 we report an intermediate setting. Now we use only

two folds; therefore, half of the items and consumers in the test set already

appeared in the training set. As expected, the results are better than those

of Table 3, but worse than the scores shown in Table 2. In this case, for

k = 100, the error is mostly below 25% with identifiers, and around 30%

without identifiers. The role of k is again of paramount importance.
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gcl gin

Dataset 2 10 100 2 10 100

Acceptability

no ID 33.0 30.9 31.5 31.2 31.5 31.6

with ID 30.6 26.1 24.7 31.3 28.4 23.6

Flavor

no ID 37.1 33.3 33.4 37.6 33.9 32.1

with ID 34.9 29.1 28.7 36.3 28.2 24.5

Tenderness

no ID 29.4 27.8 28.3 28.9 29.1 28.9

with ID 27.1 25.7 24.1 28.3 24.4 23.7

Table 4: Percentages of misclassified preference judgments estimated with 2-fold cross

validation using internal grid search for the parameters of the learners. Columns labeled

by 2, 10 and 100 report the scores of factorizations obtained with that value of k

6.4. Visualization of Preferences

The graphical possibilities of factorization methods, in addition to good

prediction scores, provide also some interesting applications. In particular,

visualization is very natural when the Euclidean space has up to 3 dimen-

sions. But another application is clustering in order to find groups of con-

sumers with similar tastes or collections of items with similar appreciations

by consumers.

In this subsection we illustrate these applications in sensory data analy-

sis. To create the subsequent visualizations we used all available data with
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identities, applying Algorithm 1 with gcl and k = 2. The idea is to obtain

pictures where the proximity of one item and one consumer is the utility that

represents the preference.

The resubstitution error in acceptability is 15.27%, in flavor is 18.47%,

and in tenderness is 13.91%.

In the graphs, the small dots represent consumers located in R2 according

to their ratings of acceptability (Figure 1), flavor (Figure 2) and tenderness

(Figure 3) respectively.

According to the literature about sensory preferences of beef meat, (Gil

et al., 2001; Sañudo et al., 2004; del Coz et al., 2005; Dı́ez et al., 2005,

2006; Bahamonde et al., 2007), the most important features that explain

the preferences of consumers are ageing and intramuscular fat (intrafat for

short). These are discrete features. Ageing has 3 different values: 1, 7 and

21 days. And intrafat was discretized to obtain 3 options: low, medium and

high.

Thus, in the same graph of consumers, we represented the average item

with each value of these important features. This is a kind of tag in the sense

used in (Chen et al., 2012; Moore et al., 2012) of the feature values.

The left part of Figure 1 is a Voronoi diagram of the space where seeds are

the centroids of the Euclidean representation of the possible values of ageing.

The lowest ageing values, 1 and 7 have centroids very close, and what it is

really interesting is the split between the low (1 or 7 days) and high (21 days).

In the right hand side of the figure, the centroids of items with medium or

high intrafat are near and provide a clear split with consumers that prefer low

intrafat values. Notice that the split due to ageing and intrafat are almost
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Figure 1: Consumers represented according to their ratings in acceptability. Voronoi

diagram whose seeds are the centroids of items with different values of ageing (left) and

intrafat (right)

the same. That is to say, consumers that like meat with 21 days of ageing

also prefer meat with low intrafat values.

In Figure 2 the position of consumers is different with respect to the

previous picture, now the feature rated by consumers is flavor. In this case

the relevancy of ageing (left hand side of the figure) is clear. Consumers

mostly prefer the flavor of meat after 21 days of ageing. Notice that the

relative position of the centroids is increasing from left to right. According

to intrafat, flavor divides consumers in those that prefer low or medium (their

centroids are quite near) and those that prefer the flavor of meat with high

intrafat. There are two market segments according to intrafat when the flavor

is the target feature.

Finally, Figure 3 depicts consumers located in R2 according to their rat-
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Figure 2: Consumers represented according to their ratings in flavor. Voronoi diagram

whose seeds are the centroids of items with different values of ageing (left) and intrafat

(right)

ings of tenderness. In this case, the centroids are clearly separated. When

considering centroids of ageing values we appreciate that 21 is the value more

associated with tenderness, this is a well known fact since the ageing is closely

related with physical measures of softness in meat.

7. Conclusions

We have presented factorization approaches to learning and visualizing

preferences of consumers about a kind of products. The models learned are

more accurate than existing tensorial approaches that typically use a SVM.

The framework presented in this paper includes at the same time factoriza-

tion and tensorial methods; both cases use the same learning algorithm with

a different equation as the goal to optimize. Then, the accuracy of the model
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Figure 3: Consumers represented according to their ratings in tenderness. Voronoi diagram

whose seeds are the centroids of items with different values of ageing (left) and intrafat

(right)

can be explained in terms of the number of parameters to learn. Factoriza-

tion models are obtained with two embeddings and need substantially less

parameters than tensorial approaches.

Additionally, embeddings can be seen as Euclidean representations of

both consumers and products. The closeness of these representations have a

straightforward semantics. Hence, consumers’ clusters can be seen as market

segments, and products clusters are groups of similar items with respect to

consumer tastes.

As in any other knowledge-based system, we observed that the available

knowledge about consumers and products is of prime importance. If the

identifiers of consumers and products are included, the accuracy of the hy-

pothesis learned is dramatically improved. However, if only identifiers are
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included, there is a drawback that must be considered: no predictions can be

made for new (unknown) consumers and/or products. This is the main limi-

tation of the method, although the method presented here is flexible enough

to be able to use the available knowledge.

The overall approach presented in this paper can be extended to other

application fields. The requirements include situations where the the interac-

tion of two vectors determines a class or an amount endowed with some kind

of ordering. This is the case of recommender systems or in general matrix

completions, well-known applications of embeddings or matrix factorizations.

What we emphasize here is the graphical properties of the Euclidean repre-

sentations. Then, it is possible to learn similarities of objects with respect

to their behavior with a class. The applications include direct marketing and

fraud detection.

To check the validity of the proposal we used a set of experiments carried

out with real data of sensory analysis of beef meat according to consumer

preferences. Factorization methods outperform tensorial SVM. On the other

hand, the Euclidean representations obtained in these datasets emphasize

the relevance of some well-known traits involved in consumer preferences.

The software used in the experiments can be downloaded from this1 web-

site.

1We will provide a link to download the implementation in the final version of the paper
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Campo, M., Panea, B., Albert́ı, P., 2006. Identifying market segments in

beef: Breed, slaughter weight and ageing time implications. Meat science

74 (4), 667–675.
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Hüllermeier, E., Fürnkranz, J., 2013. Editorial: Preference Learning and

Ranking. Machine Learning, 1–5.

Joachims, T., 2002. Optimizing search engines using clickthrough data. In:

Proceedings of the Eighth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. ACM, pp. 133–142.

Koren, Y., Bell, R., Volinsky, C., aug. 2009. Matrix Factorization Techniques

for Recommender Systems. Computer 42 (8), 30 –37.

Koren, Y., Carmel, L., 2004. Robust linear dimensionality reduction. Visu-

alization and Computer Graphics, IEEE Transactions on 10 (4), 459–470.

Moore, J., Chen, S., Joachims, T., Turnbull, D., 2012. Learning to embed

songs and tags for playlist prediction. In: Proceedings ISMIR.
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