Thermal stability of ettringite exposed to atmosphere: implications for the uptake of harmful ions by cement

Amalia Jiménez* and Manuel Prieto

Departamento Geología, Universidad de Oviedo, 33005 Oviedo, Spain
*corresponding author: amjimenez@uniovi.es
Address: Jesus Arias de Velasco s/n, 33005 Oviedo (Spain)
Phone: +34 985109552
Fax: +34985103103

KEYWORDS: ettringite, thermal behavior, decomposition kinetics, calorimetry, thermo-XRD.
ABSTRACT: The decomposition behavior of ettringite, Ca$_6$Al$_2$(SO$_4$)$_3$(OH)$_{12}$·26H$_2$O, at different temperatures was studied by means of isothermal XRD experiments, in which the evolution of the solid is monitored as a function of time. The experiments were performed at 40, 50, 55, and 60 ºC for a natural ettringite specimen. The experimental data were used to construct a Temperature-Transformation-Time (TTT) diagram. Such a diagram enables the prediction of the reaction pathways during the transformation process. The decomposition behavior was also studied under non-isothermal conditions using thermogravimetry and differential scanning calorimetry, and the obtained results were correlated with the results of the XRD study. Finally, the transformation kinetics and the activation energy ($E_a = 246.1$ kJ·mol$^{-1}$) of the reaction were estimated using the so-called “time to a given fraction” method. The temperature at which the initial transformation stage occurs (lower than 50°C) indicates that ettringite cannot be considered a suitable host phase for the immobilization of radionuclides and other harmful elements, as is frequently proposed in the literature.

INTRODUCTION

Ettringite occurs in natural alkaline environments that are associated with silicates, calcite and phosphates. Ettringite is a rare mineral, being neither ubiquitous nor abundant. However, a non-natural analog of ettringite forms via hydration of calcium aluminates when gypsum is added during the early hydration of Portland cements, which explains the environmental relevance given to this mineral. Portland and modified Portland cements are useful matrices for the immobilization and storage of contaminants contained
in various forms of hazardous wastes4-6 ettringite is frequently assumed to play a key role in these immobilization processes. After the pioneering work of Bannister et al.7, the crystal structure of ettringite has been the subject of numerous detailed studies3,8-10 Hartman and Berliner8, using time-of-flight neutron powder diffraction techniques, refined the structure of ettringite in the P31\textsubscript{1}c space group with \(a \approx 1.116\) nm and \(c \approx 2.135\) nm (at 10K). The calculated heavy atom positions are essentially the same as those obtained in previous investigations, but in addition this study provides the precise hydrogen atom positions, revealing the arrangement of the hydrogen bonding network in the structure. Moreover, a comparative study on the crystal structure of wet and dried ettringite reveals that the amount of structural water, the point symmetry of sulfate and the hydrogen bond network are analogous in both cases11. Although ettringite is typically described by the general formula \(\text{Ca}_{6}\text{Al}_2(\text{SO}_4)_3(\text{OH})_{12}\cdot 26\text{H}_2\text{O}\), the exact water content varies because it can include adsorbed water in addition to structural water.3 The basic structural framework consists of alternating calcium and aluminum coordination polyhedra, i.e., \(\text{Ca(OH)}_4(\text{H}_2\text{O})_4\) and \(\text{Al(OH)}_6\), that form ‘columns’ parallel to the c-axis. Water molecules and sulfate tetrahedra occupy the wide channels located between these columns and are connected by an extensive network of hydrogen bonds, which are responsible for the structural stability. Due to these features, the ettringite structure is flexible enough to accommodate foreign cations and oxyanions.

Ettringite is usually considered a remarkable host phase for the sequestration of radionuclides12 and other harmful ions. The crystal structure of ettringite favors the substitution of \(\text{SO}_4^{2-}\) by other oxyanions, such as chromate, arsenate, selenate, selenite, vanadate, molibdate, and stannate.13-18 Moreover, the substitution of \(\text{Ca}^{2+}\) by divalent
cations (Pb$^{2+}$, Cd$^{2+}$, Co$^{2+}$, Ni$^{2+}$, etc.) at the M$^{2+}$ site is largely known. Such availability for ionic substitution suggests that ettringite-based solid-solution formation can be one of the most effective mechanisms for immobilization of toxic cations and oxyanions in cements. Cement maintains a high buffering reserve of alkalinity, which reduces the solubility of the ettringite host phase and hence the ‘solubility’ of the foreign substituting ions.

The best scenario for immobilization of pollutant ions by co-crystallization is to have a low solubility related to a robust controlling phase. The question is whether ettringite can be considered a ‘robust’ phase or not. In fact, the thermal stability of ettringite appears to be quite limited. The mechanism of decomposition of ettringite has been the subject of a number of studies, but some important aspects are still under discussion. In the presence of liquid water, the stability limit of ettringite is clearly established to be \sim120ºC. However, ettringite is thermally unstable at much lower temperatures in contact with the atmosphere, particularly at low water vapor pressures, when water is present mainly as ‘crystal water’. During the decomposition process, there appears to be a simultaneous loss of hydroxyls and water molecules from the structure, which eventually leads to a product that is amorphous to X-rays, although the existence of metaettringite (a partially dehydroxylated product that still yields an electron diffraction pattern) has been reported.

Although the structural changes occurring during the decomposition of ettringite are reasonably well established, it is not clear whether ettringite may decompose over the temperature-time range relevant to the performance of ettringite-based products in warm service environments. Concrete service temperatures can exceed 40ºC in near-surface scenarios where severe insolation occurs, or in deep hot mines and nuclear waste repositories, where temperatures can attain values higher than 50ºC as a consequence of
both the geothermal gradient and the heat generated by high-level nuclear wastes.27-30 For instance, Blanco-Martín31 modelled the evolution of the temperature in a deep disposal in salt rocks and they assessed temperatures above 60\(^{\circ}\)C after few days of the radionuclides emplacement and peaks of temperature above 180\(^{\circ}\)C after about 1 year in different locations of the disposal. Clearly, all the previous results indicate that the thermal stability of ettringite is limited, but its decomposition kinetics at different temperatures is actually not very well known.

Pourched and co-workers24 proposed a kinetic model for ettringite decomposition from isothermal and non-isothermal thermogravimetric measurements obtained at 50 \(^{\circ}\)C and 0.5 \(^{\circ}\)C/min, respectively. However, to our knowledge, a systematic thermo X-ray diffraction (XRD) study has not been performed yet. In most works, XRD patterns of the decomposition products are obtained \textit{ex-situ} or are performed intermittently as the temperature is increased at a given heating rate. Unfortunately, while those previous studies are suitable to establish the decomposition sequence, they are unable to answer some practical questions such as “How long will ettringite remain stable at 40\(^{\circ}\)C in contact with the atmosphere?”.

This work addresses the decomposition behavior of ettringite at specific temperatures through isothermal XRD experiments, in which the evolution of the diffractograms is monitored \textit{in situ} as a function of time. The experiments were performed at 40, 50, 55, and 60\(^{\circ}\)C for a natural ettringite specimen. We previously demonstrated that this natural specimen was more resistant to dehydration than the typical synthetic samples, due to its better crystallinity. The aim was to select the most favorable starting material from the point of view of keeping stability. The experimental data were used to construct a
Temperature-Transformation-Time (TTT) diagram. Such a diagram allows for prediction of the reaction pathways during sub-solidus phase transformations and is commonly used in material and mineral sciences.32 However, to our knowledge, TTT diagrams have not been applied to the decomposition processes involving solid and gas phases. The decomposition behavior was also studied under non-isothermal conditions by thermogravimetry and differential scanning calorimetry, and the obtained results were correlated with the results of the XRD study. Finally, the transformation kinetics and the activation energy of the process were estimated using the so-called “time to a given fraction” method.32

MATERIALS AND METHODS

Synthetic and natural samples

Synthetic ettringite was obtained following a modification of the method described by Perkins and Palmer33 This procedure begins with the preparation of two reactant solutions by adding 6.65 g of Al\textsubscript{2}(SO\textsubscript{4})\textsubscript{3}\cdot18H\textsubscript{2}O and 4.44 g of Ca(OH)\textsubscript{2} to 100 ml and 250 ml of deionized water, respectively. The two starting solutions were introduced in a glove-box with a nitrogen atmosphere, in which nitrogen was bubbled through the reactant solutions to avoid CO\textsubscript{2} contamination. After 24 hours, the reactant solutions were mixed in polypropylene beakers and adjusted to pH 11.5 with the addition of 0.5 ml of NaOH (1N). Next, additional deionized water (150 ml) was added to obtain 500 ml of a final solution with suitable molar ratios of Ca/SO\textsubscript{4} = 2 and Ca/Al = 3. The mixture was stirred at 400 rpm over 48 hours at 25 ± 0.5 °C and maintained statically over two weeks in nitrogen atmosphere at 25°C. After the reaction period, the precipitate was separated from the aqueous solution via centrifugation (6000 rpm) and subsequently filtered through 0.45 μm
filters. The precipitates were dried at room temperature in a desiccator to avoid dehydration.

The natural ettringite specimen was obtained from the N’Chwaning mine in Kuruman (South Africa), and consisted of single, light greenish and prismatic crystals approximately 8 mm in length and 3 mm in width.

Characterization of the ettringite samples

Both the synthetic and the natural samples were characterized by XRD. The natural specimen was first gently crushed by hand using an agate mortar to a fine powder of approximately 20 μm in particle size, whereas the synthetic samples were analyzed as obtained after being dried in a desiccator at room temperature. The diffraction patterns were collected in a Philips X’Pert-PRO automatic diffractometer using CuKα radiation and scanning over the 2θ range of 5º to 60º. Indexing of the main reflections was made using the crystallographic analysis tools of the computer program X’Pert HighScore Plus (©2008, PANalytical B.V.). To investigate the crystallinity of the samples, the widths of some selected reflections were analyzed by considering the full width at half-maximum (FWHM) values. The smaller the FWHM values are, the larger the crystallite size is and the better is the crystallinity. As is widely known, the crystallite size represents the size of the coherently diffracting domain and not the size of the precipitate particles. Here, the crystallite size of both samples was roughly estimated using the X’Pert Plus “Scherrer calculator” tool.

Representative individuals of the synthetic and natural samples were imaged using a JEOL-6610 scanning electron microscope (SEM). The SEM is equipped with an INCA
Energy 350-Xmax 50 microanalysis system (EDS) with a SDD-Xmax 50 detector (INCA)
and an ultra-thin window, which permits the detection and semi-quantitative analysis of
light elements. This microanalysis system was used to estimate the chemical composition
(Ca, S, and Al) of both natural and synthetic samples.

Thermal study: Thermogravimetry, DSC and Thermo-XRD

Thermogravimetric (TG) and derivative thermogravimetric (DTG) analyses were
performed with the ettringite samples (~20 mg of initial mass) using a Metter Toledo
TGA/SDTA 851 thermal analyzer. All measurements were performed between 298 and
1273 K at a heating rate of 10 K·min⁻¹ in a dynamic atmosphere, using a nitrogen flow rate
of 50 ml/min. The temperature and weight precision of the apparatus were ± 0.25 K and ± 1
µg, respectively. A Pfeiffer Vacuum ThermoStar™ GSD301T mass spectrometer was used
to analyze the gas phases released during the TG study. The masses 18 (H₂O) and 44 (CO₂)
were tested by using a detector C-SEM, operating at 1400 V, with a time constant of 0.5 s.

The samples were also analyzed via Differential Scanning Calorimetry (DSC) using a
Metter Toledo DCS 822e apparatus to determine the temperatures and enthalpies of
dehydration. Heat-flow measurements were performed in the temperature range of 298-900
K under a flow of N₂ gas at a heating rate of 10 K·min⁻¹. The initial mass of each sample
was ~6 mg. Before characterizing the samples, the equipment was operated using indium
and zinc standards to calibrate the temperature and heat flow. The temperature precision of
the equipment was ± 0.2 K, and the reproducibility was ± 0.1 K.

The evolution of both the natural and the synthetic sample with increasing temperature
was studied via in situ thermo-XRD using CuKα radiation on a PANalytical X’Pert Pro
powder diffractometer equipped with a PIXcel solid-state detector and a high temperature chamber (Anton Paar HTK 1200 N). Diffractograms were collected over a $5 < 2\theta < 40^\circ$ range with a step size of 0.013°. All measurements were performed in static air atmosphere by collecting the diffraction patterns at fixed temperatures (typically at 25°C increments) between 25°C and 250°C. The heating rate between two consecutive scans was 5 K·min⁻¹.

Isothermal XRD experiments

The decomposition behavior of the natural specimen was studied via *in-situ* XRD isothermal experiments using the PANalytical X’Pert Pro powder diffractometer previously described. The sample was placed in a holder, which was introduced in a closed oven chamber (Anton Paar HTK 1200N) at ambient conditions (25 ± 2°C, relative humidity 60-70%) and then brought to prefixed temperatures (40°C, 50°C, 55°C or 60°C). The heating rate was 10 K·min⁻¹, and once the temperature was reached, the sample was maintained at isothermal conditions. The powder patterns in each isothermal series were collected in a static air atmosphere at regular intervals of 5 min (during the first two hours), 1 hour (during the first day) and 6 hours (from the second day). All the diffraction patterns were scanned in the range of $8^\circ < 2\theta < 30^\circ$ with a step size of 0.001°. Every run was duplicated, and the results were found to be reproducible. The decomposition of ettringite with increasing time was checked by evaluating the peak area (A) in counts per second (cps) of the first reflection (100) by using X’Pert Viewer. The transformation extent was established from the ratio A_t/A_0, where A_0 and A_t correspond to peak areas at the beginning of the experiment ($t = 0$) and at a given time (t), respectively.
RESULTS AND DISCUSSION

Characterization of the synthetic sample and the natural ettringite

Figure 1 shows the powder XRD patterns obtained for both the natural and the synthetic sample before the thermal treatment. As expected, both diffractograms fit the reference pattern of ettringite (PDF 00-041-1451; spatial group P31c). The main reflections can be indexed as 100, 110, 104, and 114 (with \(d\)-spacings of \(\sim 9.72\), 5.61, 4.69, and 3.87 Å, respectively). In the case of the synthetic sample, other minor reflections appear, with \(d\)-spacings of \(\sim 7.63\) and 4.28 Å, which can be assigned to the main reflections of gypsum (020 and 021 respectively). Atkins\(^{35}\) also reported the gypsum impurities in their synthetic samples of ettringite. As can be observed, a broad reflection also appears at \(2\theta \sim 29.22^\circ\), which can be assigned to a combination of the main reflection of calcite (104) and the third most important reflection of gypsum (041) that typically occur at \(2\theta \sim 29.45\) and 29.11\(^\circ\), respectively. The occurrence of carbonate phases can be explained by the effect of CO\(_2\) atmospheric\(^{23}\) during handing of the samples but also by trace amounts of calcite in the reactant (CaOH) used in the synthesis of ettringite.

In summary, ettringite was found to be the only phase present in the natural sample, whereas a mixture of ettringite with minor amounts of gypsum, calcite and monocarbonate was identified in the synthetic sample. The initial experimental setup was designed to reach a pH value of 11.5, for which ettringite is the most stable phase. However, during aging (48 hours), the pH decreases until values close to 10.7 are reached, at which point ettringite and gypsum can co-precipitate.\(^{14}\) The presence of gypsum may hence be a result of the compositional evolution of the parent solution during the experiment. These results can be
predicted by inputting the concentration and pH of the parent solution into geochemical
codes, such as PHREEQC36 or GEMS.37 Using PHREEQC with the WATEQ4F database
and the solubility data of Perkins and Palmer33, the saturation index (SI) with respect to
ettringite takes a value of \(\sim 19.9 \), which is therefore the most likely phase to precipitate. The
parent solution was also supersaturated with respect to gypsum (SI = 0.78 > 0) and other
metastable solid phases (monosulfate, portlandite, gibbsite, hydrogarnet), but only gypsum,
calcite and monocarbonate were identified in the diffractograms.

![Figure 1. Powder XRD patterns of the natural (N) and synthetic (S) samples. Ettringite (ett) is the main phase in both samples, while gypsum (g), calcite (c) and monocarbonate (*) were identified as minor phases in the precipitate. FWHM values indicate (see inset) that the natural sample is more crystalline than the synthetic.](image)

Secondary electron images show the elongated, prismatic habit of the ettringite crystals in
both the natural and the synthetic sample (Figure 2). Although the habit is similar in both
cases, the crystal sizes are clearly different. The crystals obtained by precipitation were
found to be significantly smaller (\(\sim 5\mu\text{m} \) long) than the natural ones (\(\sim 8\text{mm} \) long). Semi-
quantitative EDS microanalyses of both the natural and the synthetic sample confirm that the mean Ca/S and Ca/Al atomic ratios are close to 3 and 2 respectively, which agree with the ettringite stoichiometry. The natural specimen appeared to be relatively pure since the presence of foreign elements was not detected via EDS-microanalyses.

Figure 2. SEM images showing the elongated crystal habit of ettringite in the natural (a) and the synthetic (b) samples.
In the case of the natural sample, the refined unit cell parameters \((a = 11.2530 \, \text{Å} \text{ and } c = 21.6436 \, \text{Å})\) are quite similar to those reported in the reference pattern \((a = 11.2240 \, \text{Å} \text{ and } c = 21.4080 \, \text{Å})\). However, the cell parameters calculated for the synthetic sample \((a = 11.2514 \, \text{Å} \text{ and } c = 22.6788 \, \text{Å})\), exhibit some differences. While the \(a\)-axis parameter is slightly smaller, the \(c\)-axis parameter is clearly larger. These results indicate that the columns of Ca-Al polyhedra along the \(c\)-axis\(^3\) are slightly longer for the synthetic sample than for both the natural specimen and the reference pattern. Significant differences between the crystals in this study and the synthesized \((a = 11.66881 \, \text{Å} \text{ and } c = 21.5366 \, \text{Å})\) by Hartman\(^8\) were also observed. Both the crystal size and the crystal-chemistry appear to be influenced by the crystallization conditions of the precipitation experiments, which obviously differ from the typical conditions of ettringite formation in natural environments.

All the reflections were found to display smaller broadening and higher intensity in the natural sample than in the synthetic one (Figure 1). Inspection of the FWHM data indicates that the most intense 100 reflection is the most narrow (0.053 and 0.116 ° 2Theta for the natural sample and the synthetic, respectively). In a polycrystalline sample, a variety of microstructural phenomena exist that lead to anomalous diffraction effects.\(^{38}\) Peak broadening can be caused by a small crystallite size, the presence of crystal defects, lattice strain, or compositional heterogeneities.\(^{39,40}\) Because ettringite is a stoichiometric phase, the broadening differences between both samples cannot be attributed to compositional heterogeneity. Based on the FWHM of the 100 reflections, the crystallite size can be estimated to be 126 nm and 69 nm for the natural and the synthetic sample, respectively. However, polycrystalline material usually contains other imperfections that can also produce broadening effects.\(^{41}\) Unfortunately, determining the precise contribution of each
of the microstructural factors to the observed broadening is not straightforward. In the case of ettringite, synthetic crystals are usually obtained at a high supersaturation and can be expected to incorporate a higher concentration of defects than natural crystals. Such is the case here, where the precipitation-aging experiments were performed under conditions that appear to affect the crystallinity (Figure 1), crystal habit and crystal size (Figure 2).

Dehydration behavior of ettringite

Although some thermal studies have been performed on natural ettringite, most research was performed using synthetic samples. A comparison between the thermal behavior of synthetic solids and natural specimens of higher crystallinity can provide further insight into this matter. With this aim, Figure 3 displays the thermogravimetric (TG) and derivative thermogravimetric (DTG) curves obtained for the natural (Figure 3a) specimen and the synthetic sample (Figure 3b). Mass spectrometry analyses of the amount of H$_2$O released from both samples at increasing temperatures are also shown. No significant quantities of CO$_2$ were detected in the released gases. Overall, the combination of these three curves (TG, DTG and H$_2$O) indicates that the weight loss observed in both the natural and the synthetic sample is due to the release of water molecules and/or hydroxyl groups.
Figure 3. TG curves (black), DTG curves (green and orange) and H₂O (blue) depicting the release from natural (a) and synthetic (b) samples. DSC curves for natural (c) and synthetic (d) samples as a function of temperature.

Although the TG curves obtained for both samples exhibit a similar profile, a detailed study of the DTG curves indicates that differences exist between natural and synthetic sample. The natural sample undergoes a higher (45.5%) total weight loss than the synthetic one (40.50%) at the end of the TG analyses (1000 ºC). Some features of the DTG curves, such as the temperature corresponding to the maximum weight-loss rate, also indicate differences in the dehydration behavior of both samples. The natural sample dehydrated in two separated stages (Figure 3a). The first stage occurs between 25-190 ºC, with a total loss of ~33%, equivalent to 23 water molecules. The maximum weight-loss rate occurs at ~138 ºC, corresponding to the release of ~16 water molecules from the sample. The second stage (190-300 ºC) involves a loss of ~4.5%, which corresponds to a release of ~3 water molecules at a maximum rate at ~274 ºC. After the second stage, both the TG and DTG curves (Figure 3a) show a progressive weight loss (~7.5%) until the end of the experiment.
(1000°C). In the case of the synthetic sample, a double-step dehydration event occurs in the first stage, with a total loss of ~ 27% (~ 19 water molecules) between 25-190°C. The DTG curve shows a maximum rate of weight loss at ~130 ºC and a shoulder at ~155 ºC. The shoulder could be explained by the presence of gypsum, which also dehydrates in two steps: The initial formation of bassanite (CaSO₄·0.5H₂O) is closely followed by a second step, in which dehydration proceeds to completion, with anhydrite (α-CaSO₄) being the final anhydrous phase. Here, the combined dehydration of gypsum and ettringite could explain the DTG behavior of the synthetic sample during the first stage. Dehydration of the ettringite component continues between 190-300 ºC, with a maximum rate at ~ 269 ºC and a total weight loss of ~ 5.6%. At the end of the second stage, the synthetic sample undergoes a total weight loss of ~32.6%. After complete dehydration, a new weight loss occurs between 650 and 800 ºC (Figure 3b), which can correspond to the decomposition of calcite identified by DRX (Figure 1).

The fact that the water molecules in ettringite occupy structural positions with different crystal-chemical roles determines both the hydrogen bonding architecture and the homogenous distribution of the positive charges, which could favor a sequential release of the water molecules with increasing temperature. These crystallographic features would explain the different stages of weight loss observed in the TG/DTG experiments. However, there is no evidence to exclude a more complex behavior involving the simultaneous loss of hydroxyl groups and water molecules. The results of the DSC experiments do not clarify this matter. As seen in Figures 3c and 3d, the DSC curves show two main exothermic intervals below 300°C. In the case of the synthetic sample, the DSC curve shows a double peak in the first interval. The enthalpy ΔH (J/g) and T (ºC) of the
exothermic peaks for each interval are displayed in the graphs. Note that the peak minima in both intervals are less pronounced for the natural sample than for the synthetic one. These results are in good agreement with the TG/DTG study and clearly support the idea that the two exothermic peaks observed in the natural sample are related to the two stages of dehydration/decomposition. In the case of the synthetic sample, the DSC curves confirm the double-step behavior in the first temperature range (25-190°C), which is attributed to the presence of gypsum. Consequently, establishing the nature of the phases resulting from the dehydration process requires complementary structural data.

Thermal evolution of the XRD patterns

Figure 4a displays a series of diffractograms obtained for the natural sample with increasing temperature obtained via thermo-XRD experiments. The most important reflections (100, 110, and 114) of ettringite are found to be fully preserved in the diffractograms obtained up to 50°C and can be clearly identified below 100°C (Figure 4a). Nevertheless, the reflections become less intense and undergo a progressive increase of FWHM values, which indicates a decreasing degree of crystallinity with increasing temperature (see Table 1). The thermal degradation of ettringite is generally considered to represent the transition to an amorphous phase.26 Although this new phase appears to be amorphous according to the XRD results, it shows signs of crystallinity via electron diffraction.23 Such a new phase was termed meta-ettringite because it retains the columnar structure of ettringite along the c-axis. The mechanism of collapse of ettringite to meta-ettringite involves the loss of water molecules and possibly a rotation of individual cationic columns, which results in the loss of crystallinity typical of meta-ettringite22 at
temperatures approximately 115ºC. Figure 4a shows that ettringite reflections are no longer recognized in the diffractograms obtained above 100ºC.

Figure 4. Selected powder XRD patterns obtained during thermal treatment of (a) natural (N) and (b) synthetic samples (S). The numbers indicate the temperature in ºC. The reflections are labelled as ettringite (ett), calcite (c), monocarbonate (*), gypsum (gy) and anhydrite (an).

Table 1. Evolution of the crystallinity of ettringite during thermal treatment: broadening (FWHM) and intensities (I) obtained for the main reflections identified in ettringite.

<table>
<thead>
<tr>
<th>sample</th>
<th>T (°C)</th>
<th>(001) FWHM (°2Th)</th>
<th>(001) I (counts)</th>
<th>(110) FWHM (°2Th)</th>
<th>(110) I (counts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>25</td>
<td>0.053</td>
<td>19423</td>
<td>0.086</td>
<td>9847</td>
</tr>
<tr>
<td>Natural</td>
<td>50</td>
<td>0.075</td>
<td>9258</td>
<td>0.087</td>
<td>9741</td>
</tr>
<tr>
<td>Natural</td>
<td>75</td>
<td>0.23</td>
<td>2635</td>
<td>0.306</td>
<td>788</td>
</tr>
<tr>
<td></td>
<td>Natural</td>
<td>Synthetic</td>
<td>Synthetic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>100</td>
<td>25</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength</td>
<td>0.33</td>
<td>0.152</td>
<td>0.216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>42.3</td>
<td>852</td>
<td>282</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensity</td>
<td>0.305</td>
<td>0.139</td>
<td>0.118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Units</td>
<td>42</td>
<td>1402</td>
<td>1305</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Although the diffraction patterns obtained between 100°C and 250°C appear to correspond to a non-crystalline material, despite the poor crystallinity, some incipient reflections can be identified (Figure 4a). Thus, in the diffractograms obtained between 100°C and 175°C, the main reflections of gypsum (020 and 021) appear. In addition, some broad reflections observed between 75°C and 250°C can be identified (Figure 4a) as bassanite (CaSO₄·0.5H₂O) and/or metastable γ-anhydrite (CaSO₄). Distinguishing bassanite from γ-anhydrite using conventional powder XRD is complicated due to the slight differences between their crystal structures. The presence of gypsum, hemihydrate and/or anhydrite can be explained by the reaction between water molecules, sulfate and calcium ions to yield coherently diffracting domains of calcium sulfate phases within a matrix of amorphous material. Previous works reported the formation of mixtures of gypsum, hemihydrate and monosulfate (AFm) at ~ 115 °C. Here, monosulfate was not identified in any of the diffractograms obtained between 25°C and 250°C. Moreover, no crystalline aluminates were found, which indicates that the aluminum released from ettringite occurs as an amorphous phase containing aluminum.

Figure 4b shows a series of diffractograms obtained at increasing temperatures for the synthetic sample. Some important differences are found with respect to the series obtained with the natural sample. The main reflections of ettringite only appear in diffractograms obtained below 50 °C, while they were present in the natural sample up to 100°C. By comparing the values of width and intensity of the main reflections (Figure 1), it is clear...
that the synthetic ettringite undergoes an earlier decrease of crystallinity during the heating process. Gypsum appears in the diffractograms obtained at temperatures below 125°C, while bassanite/anhydrite reflections appear in the diffractograms obtained at higher temperatures.

In summary, the previous results indicate that the natural specimen is more resistant to dehydration than the synthetic sample. The natural sample was found to remain unaltered up to 75°C; in contrast, for the synthetic sample, the ettringite reflections begin to vanish at a lower temperature (>50°C). Such a different behavior can be explained by the smaller crystallinity degree of the synthetic sample, which is consistent with the small particle size of these precipitates. Low crystallinity is mostly due to a small crystallite size. The crystallite size is the size of a coherently diffracting domain and thus does not necessarily coincide with the particle size. However, tiny crystals precipitated at a high supersaturation normally exhibit small coherently diffracting domains and poor crystallinity. Therefore, the natural specimen appears to be the best choice to study the dehydration kinetics of ettringite and its implications in the role of this mineral as sequestering phase for harmful ions.

Dehydration kinetics

In-situ XRD isothermal experiments were performed different temperatures (40°C, 50°C, 55°C and 60°C) to determine the dehydration kinetics of ettringite. The study was focused on the first stage described in the previous section and was applied to the natural specimen, which was demonstrated to be a more ‘robust’ phase. Figure 5a shows the changes in the peak area (A) of the main XRD reflection of ettringite (100) as a function of time during
the isothermal experiments. The peak area decreases quickly during the early hours and then slowly evolves towards an asymptotic value. The trend is the same in all the experiments, which indicate that the same transformation mechanism is operating at the studied temperatures. A quantitative estimation of the transformation extent was determined from the ratio A_t/A_0. The time (t) to transform a fraction of ettringite (Y_{10}) of approximately 10% was calculated (see inset in Figure 5b). The decrease in the peak area observed in the isothermal experiments is consistent with the initial decomposition stage, which involves dehydration (Figure 4) and a loss of crystallinity (Table 1). Nucleation, growth and transformation of gypsum and anhydrite occur during the second stage of the thermal treatment (Figure 4) and are not considered here.

The experimental values obtained at different temperatures for the time (t) at which the fraction transformed was Y_{10} can be used to estimate the activation energy (E_a) via the method of “time to given fraction”. This method establishes that the transformed fraction (Y) and time (t) are related by a function in which the dependent variable is t instead of the kinetic constant (k). Hence, the strong dependence of the “kinetic constant” procedure is avoided. When the mechanism does not change over the temperature range studied, t_Y can be described by the expression:

$$t_Y = A^{-1} e^{\left(\frac{E_a}{RT}\right)},$$

(1)

Where A is a fitting constant, R the gas constant, and T the temperature in Kelvin. In practice, the experimental data can be plotted as shown in Figure 5b, where $\ln t_{0.1}$ is represented on the ordinate against $1/T$ on the abscissa. The slope of the straight line fitting these data-points corresponds to E_a/R and the activation energy can be determined. Here, a
value $E_a = 246 \text{ kJ} \cdot \text{mol}^{-1}$ was obtained for the transformation of ettringite during the first stage. The determination of the kinetic parameters of the complete transformation would require very long experiments that are beyond the scope of the present work.

The progress of a transformation can also be described by a Time-Temperature-Transformation (TTT) diagram\cite{49}, which indicates the time at which the transformation occurs when a sample is kept under isothermal conditions.\cite{32} Figure 5c displays the TTT diagram determined for the beginning of the ettringite transformation ($Y=10$). The critical temperature ($T_c \approx 30^\circ \text{C}$) was estimated by running a heating and cooling cycle over a short period of time, in which no phase transformation was observed below T_c. The curve connecting the experimental data exhibit the typical shape of the TTT diagrams for transformations with increasing temperature. At low temperatures above T_c, the transformation begins after long periods of time. A further increase of temperature dramatically reduces the time over which the transformation begins.
Figure 5. a) Variation of the peak area of the 100 reflection as a function of time during three series of isothermal experiments. b) Experimental data of the time (ln t_{0.1}) for a 10% fraction of transformed ettringite versus 1/T. The slope of the fitting straight line corresponds to E_a/R. Time (hours) to transform a fraction (Y = 10) of ettringite. c) TTT diagram corresponding to a fraction Y = 0.1 of the transformed ettringite.
Environmental implications

The capacity of the ettringite to immobilize contaminants is mostly related with its crystal structure, which allow the substitution of sulfate by oxyanions (chromate, arsenate, or selenate) and calcium by cations (lead, cadmium, cobalt). Such availability for ionic substitution suggests that ettringite-based solid-solution formation can be one of the most effective mechanisms for immobilization of pollutant ions in cements. Among the elements immobilized by ettringite, selenium is considered to have a high priority in the field of nuclear wastes due to the high toxicity of the radioisotope 79Se with a half-life of 3.27×10^5 years50. In fact, 79Se is a critical radionuclide that might diffuse through the engineering and geological barriers of repositories and hence, release from waste disposals to the environment causing an increase of radiotoxicity27 In that context, the study of the thermal stability of ettringite is crucial to understand the evolution of the crystal structure containing harmful ions and how it affects the storage environment. In the present work, the results obtained by calorimetric and thermo-XRD indicate that the dehydration/decomposition of ettringite occurs in two stages via the formation of poorly crystalline phases identified as calcium sulfates with different degrees of hydration and an amorphous phase containing aluminum. The kinetic study performed in this work is focused on the first stage and, for the first time, reveals that the initial transformation stage of ettringite occurs at relatively low temperature (40°C). These results indicate that ettringite cannot be considered an optimum host phase for the immobilization of radionuclides and other harmful elements as frequently proposed in the literature. As long
as decomposition of ettringite exposed to atmospheric conditions is to be expected, the risk of dehydration in different long-term evolutionary scenarios deserves careful assessment.

ACKNOWLEDGMENT

This research was supported by the German Federal Ministry for Education and Research (grant 02NUK019A -IMMORAD) and the Spanish Ministry of Competitiveness and Economy (grant CGL2013- 47988-C2-2-P). Authors also thank the Amphos 21 Group for introducing us to the cement research studies.
REFERENCES

25. Skoblinskaya, N.; Krasilnikov, K., Changes in crystal structure of ettringite on dehydration.

