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ABSTRACT 

Structural stability is one of the design requirements in laminated-glass beams and plates 

due their slenderness and brittleness. In this paper the equations of the classical Euler 

theory for buckling of isotropic monolithic beams are extended to laminated-glass beams 

using the effective thickness and the effective Young modulus concepts. It is 

demonstrated that the dependency of the effective stiffness on boundary conditions can 

be considered using buckling ratios of Euler theory corresponding to isotropic linear 

monolithic beams. The analytical predictions are validated by compressive experimental 

tests in simply supported beams. Fixed boundary conditions are difficult to reproduce in 

experimental tests due to the brittleness of the glass and for this reason fixed-fixed and 

fixed-pinned boundary conditions were validated using a finite element model. 

KEYWORDS 

Laminated glass, structural composites, PVB, bucking, structural stability, 

viscoelasticity. 

  

mailto:aenlle@uniovi.es


2 
 

NOMENCLATURE 

𝐸𝑒𝑓𝑓  Effective Young modulus 

𝐸   Glass Young modulus of glass layers 

𝐸2(𝑡)  Viscoelastic relaxation tensile modulus for polymeric interlayer 

𝐺2(𝑡)  Viscoelastic relaxation shear modulus for the polymeric interlayer 

𝐻1  Thickness of glass layer 1 in laminated glass 

𝐻2  Thickness of polymeric layer 2 in laminated glass 

𝐻3  Thickness of glass layer 3 in laminated glass 

𝐻𝑇𝑂𝑇 = 𝐻1 + 𝐻2 + 𝐻3  

𝐻0 = 𝐻2 + (
𝐻1 + 𝐻3

2
) 

𝐼  Second moment of area 

𝐼1 =
𝐻1

3

12
 

𝐼3 =
𝐻3

3

12
 

𝐼𝑇 = 𝐼1 + 𝐼3 =
𝐻1

3 + 𝐻3
3

12
 

𝐼𝑇𝑂𝑇= = 𝐼𝑇(1 + 𝑌) 

𝐾2(𝑡, 𝑇) Viscoelastic bulk modulus 

L  Length of a glass beam 

𝑃(𝑡, 𝑇)  Critical load 
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T   Temperature 

𝑇0  Reference temperature 

𝑌 =
𝐻0

2𝐻1

𝐼𝑇(𝐻1+𝐻3)
  

 

LOWERCASE LETTERS 

𝑎𝑇  Shift factor  

𝑏  Width of a glass beam 

𝑔(𝑥)  Shape function (Galuppi and Royer Carfagni model) 

𝑡  Time 

𝑤  Deflection  

GREEK LETTERS 

𝜂2  Loss factor of the polymeric interlayer of laminated glass 

𝜈1  Poisson ratio of the glass layers  

𝜈2(𝑡, 𝑇) Viscoelastic Poisson ratio of the polymeric interlayer 
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1 INTRODUCTION 

Laminated glass is a sandwich or layered material which consists of two or more plies of 

monolithic glass with one or more interlayers of a polymeric material with mechanical 

properties that are time (or frequency) and temperature dependent [1]. Polyvinyl butyral 

(PVB) is the most widely used interlayer material, although the new ionoplastic 

interlayers improve the mechanical properties of laminated glass for a broad range of 

temperatures [1]. Polyvinyl butyral (PVB) is sold in thicknesses of 0.38 mm or a multiple 

of this value (0.76 mm, 1.12 mm, and 1.52 mm). 

Laminated glass is easy to assemble in a finite element model but many small 3D elements 

are needed to mesh accurately because the thickness of the viscoelastic interlayer is 

usually very small compared with the dimension of the laminated-glass element. Cubic 

elements in 3D and square elements in 2D generally result in equations that are well 

conditioned but if the element shape is greatly distorted from these ideal shapes, 

numerical difficulties can arise [2]. If we wish to mesh the interlayer of a square 

laminated-glass plate 2000 𝑚𝑚 × 2000 𝑚𝑚 with 2 cubic elements along the thickness, 

we would need approximately 27.7 × 106 elements only to mesh the interlayer. 

Moreover, if a quasi-static analysis is performed taking into account the temperature and 

time-dependent behaviour of the interlayer, the time needed to perform the calculation is 

considerably higher than that needed for a static analysis. Consequently, the 3D models 

in laminated-glass elements are very costly in time and memory.  

The calculation of laminated-glass elements can be facilitated by simplifying the 

viscoelastic solution using the quasi-elastic method, which consists of describing the 

viscoelastic behaviour of the interlayer by an elastic behaviour with parameters that 

depend on the load duration and temperature [3, 4, 5, 6, 7]. This means that the memory 

effect of the viscoelastic material is neglected and that the mechanical properties are linear 

elastic but time dependent [7, 8, 9].  

The concept of effective thickness has been proposed in recent years [7, 9, 10] based on 

the quasi-elastic solution. This method consists of calculating the thickness (time and 

temperature dependent) of a monolithic element with bending properties equivalent to 

those of the laminated one, that is, the deflections provided by the equivalent monolithic 

beam are equal to those of the layered model with a viscoelastic core. The effective 
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thickness can then be used in analytical equations and simplified finite element models 

in place of the layered laminated-glass element [7, 9, 10, 11]. The effective-thickness 

concept is proposed in most of the technical standards related to laminated glass and it is 

more readily applicable in design practice. The effective-thickness concept is not easy to 

implement in finite element programs because a monolithic model with constant Young 

modulus and a temperature- and time-dependent thickness has to be defined. As the 

effective thickness is derived from the effective stiffness [7, 9, 10], an effective Young 

modulus [11] can also be inferred from the effective stiffness, this being more attractive 

to be used in numerical models (a monolithic model with constant thickness is defined 

whereas the Young modulus is time and temperature dependent).  Thus, the effective-

thickness and the effective Young modulus concepts can be used interchangeably with 

the same accuracy. 

The effective-thickness concept allows also stress-effective thickness to be defined, i.e. 

the thickness of a monolithic beam with equivalent bending properties in terms of 

stresses. However, due to the fact that the buckling behaviour is governed by its flexural 

stiffness, only the deflection effective thickness is considered in this paper. 

If laminated-glass elements are subject to compressive loads, structural stability is one of 

the design requirements because laminated-glass elements are brittle and slender. Due to 

the fact that the stiffness of the interlayer is temperature and time dependent, the same is 

true of the critical load, that is, the critical load of a laminated-glass beam subject to 

constant compressive load decreases with time.    

Several analytical models have been proposed for determining the critical load of a simply 

supported laminated-glass beam [12, 13, 14, 15] but only a few are devoted to other 

boundary conditions [16].  In monolithic beams, the effect of the boundary conditions is 

considered through the buckling ratio  (or alternatively with the effective length 𝐿𝑒𝑓𝑓) 

whereas the stiffness EI is constant. In this paper, we demonstrate that the effective 

stiffness also depends on the boundary conditions and its effect can also be taken into 

account through the buckling ratio .  

The aim of this paper is to propose a simplified method to calculate critical loads in 

laminated-glass beams with different boundary conditions using the Euler theory [17] of 

monolithic beams, the quasi-elastic solution [8, 9] and the effective-stiffness concept [7, 
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8, 9, 10].  As a means of validating the model, the critical load of several laminated-glass 

beams, made of annealed glass plies and a PVB core, were predicted using the effective 

stiffness concept and validated by experimental tests and numerical models. 

1.1 The effective-thickness concept 

  

The concept of effective thickness for calculating deflections in laminated-glass beams 

under static loads was proposed by Calderone et al. [7] based on a previous work of 

Wölfel [18]. Later, Galuppi and Royer-Carfagni [9] derived new equations for the 

deflection effective thickness using a variational approach and assuming that the 

deflection shape of the laminated-glass beam coincides with that of a monolithic beam 

under the same load and boundary conditions; that is, the deflection of the beam is 

assumed to be: 

𝑤(𝑥, 𝑡, 𝑇) = −
𝑔(𝑥)

𝐸𝐼(𝑡, 𝑇)𝑆
 (1) 

where g(x) is a shape function that takes the form of the elastic deflection of a monolithic 

beam with constant cross section under the same load and boundary conditions as the 

laminated-glass beam and where 𝐸𝐼(𝑡)𝑆 is the bending stiffness of the laminated-glass 

beam given by: 

𝐸𝐼(𝑡, 𝑇)𝑆 =
1

𝜂𝑆(𝑡, 𝑇)
𝐸𝐼𝑇(1 + 𝑌)

+
1 − 𝜂𝑆(𝑡, 𝑇)

𝐸𝐼𝑇

 
(2) 

Where: 


𝑆

(𝑡, 𝑇) =
1

1 +
𝐸𝐻1𝐻2𝐻3𝜓𝐵

(1 + 𝑌)𝐺2(𝑡, 𝑇)(𝐻1 + 𝐻3)
 
 

(3) 

The parameter 𝜓𝐵 [9] can be expressed as: 
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𝜓𝐵 =
𝛾

𝐿2
 (4) 

with 𝛾 being a constant parameter which depends on the boundary and load conditions 

[9]. 

Calderone et al. [7] proposed an effective stiffness for a laminated-glass beam subjected 

to static loads, which is expressed as: 

𝐸𝐼(𝑡, 𝑇)𝑆 = 𝐸𝐼𝑇  (1 + 𝛤𝑆(𝑡)𝑌) (5) 

where 

𝛤𝑆(𝑡, 𝑇) =
1

1 + 9.6
𝐸 𝐻1 𝐻2 𝐻3

𝐺2
 (𝑡, 𝑇) (𝐻1 + 𝐻3) 𝐿2

 
(6) 

Eqs. (2) and (5) can be expressed in a unified form as 

𝐸𝐼(𝑡, 𝑇)𝑆 = 𝐸𝐼𝑇  (1 +
𝑌

1 + 𝛾
𝐸 𝐻1 𝐻2𝐻3

𝐺2
 (𝑡, 𝑇) (𝐻1 + 𝐻3) 𝐿2

) (7) 

Eq. (6) proposed by Calderone et al. [7] is based on a previous work of Wölfel devoted 

to composite sandwich structures under various boundary and loading conditions, leading 

to different values of the parameter γ. Calderone et al. [7] proposed γ = 9.6 for all the 

boundary conditions, although in Wölfel’s formulation [18] this is associated with a 

simply supported beam under uniformly distributed load. 

Galuppi and Royer Carfagni [9] proposed to calculate the parameter 𝜓𝐵 by means of: 
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𝜓𝐵 =
∫ 𝑔′′(𝑥)2𝑑𝑥

𝐿

0

∫ 𝑔′(𝑥)2𝑑𝑥
𝐿

0

  ;          0 ≤ 𝑥 ≤ 𝐿 (8) 

The authors derived 𝜓𝐵 = 10/L2 for a beam under concentrated load and 𝜓𝐵 =
168

17𝐿2 =

9.882

𝐿2  for a beam under distributed load. Assuming a bending deflection sinusoidal in shape 

(equivalent to consider a sinusoidal load) given by: 

𝑔(𝑥) = 𝑠𝑖𝑛 (
𝜋𝑥

𝐿
)  ;          0 ≤ x ≤ L (9) 

it is derived that 𝜓𝐵 =
𝜋2

𝐿2  

Parameter Y in Eqs. (4) and (7) is a constant coefficient that relates the monolithic and 

the layered limits of the effective stiffness 𝐸𝐼(𝑡, 𝑇)𝑆 by means of the expression   

1 + 𝑌 =
𝑚𝑜𝑛𝑜𝑙𝑖𝑡ℎ𝑖𝑐 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝐸𝐼(𝑡, 𝑇)𝑆 

𝑙𝑎𝑦𝑒𝑟𝑒𝑑 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝐸𝐼(𝑡, 𝑇)𝑆
=

𝐸𝐼(0, 𝑇)𝑆

𝐸𝐼(∞, 𝑇)𝑆
        (10) 

Thus, the layered limit is given by 𝐸𝐼𝑇 and the monolithic limit by 𝐸𝐼𝑇(1 + 𝑌), 

respectively. 

1.2 Analytical models for the buckling strength of laminated-glass columns 

Foraboschi [19] developed a mathematical model for determining the critical load, on 

laminated-glass columns subjected to compressive loads and provides a closed-form 

expression to calculate the critical load, which is expressed as: 

𝑃𝑐𝑟𝑖𝑡(t, T)

𝑏
=

𝐸𝐻3 

2𝐿2
+

2𝐻𝐺2(𝑡, 𝑇)

𝐻2
∫ 𝜉′(𝑥)𝑑𝑥

𝐿

0

 (11) 

where 𝜉(𝑥) is a function that describes the axial relative translation of the inner edge of 

the glass ply with respect to the axial axis. 
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The model is derived for a cantilever beam but the author proposes to extend the technique 

to other boundary conditions using an effective length. A sensitivity analysis shows that 

buckling strength depends on the thickness of the core, the environmental temperature, 

and the load duration. The paper also provides rules in order to use laminated glass for 

compressive elements. 

Blaauwendraad [12] proposed a formula for the buckling force of a simply supported 

laminated-glass column which is expressed as: 

𝑃𝑐𝑟𝑖𝑡(t, T)

𝑏
=

𝜋2𝐸𝐼𝑇 

𝐿2
+

𝐻0
2

𝐿2

𝜋2𝐸𝐻1
+

𝐿2

𝜋2𝐸𝐻3
+

𝐻2 
𝐺2(𝑡, 𝑇)

 
(12) 

The layered and the monolithic limits are easy to calculate considering 𝐺2(𝑡, 𝑇) = 0 and 

𝐺2(𝑡, 𝑇) = ∞, respectively. As pointed out by the author, this equation coincides with the 

equation derived by Satler and Stein [13] for sandwich panels. 

Aiello et al. [20] performed some experimental compressive tests on glass panels and 

columns. These authors concluded that the buckling strength of the panels depends 

greatly on their slenderness and that the model of Blaauwendraad [12] provides a good 

approximation of the buckling force. 

Feldmann et al. [15] proposed to calculate the critical load of a simply supported beam 

with the Euler Theory but using effective stiffness, i.e.:  

𝑃𝑐𝑟𝑖𝑡(t, T)

𝑏
=

𝜋2𝐸𝐼𝑒𝑓𝑓 

𝐿2
 (13) 

where 

𝐸𝐼𝑒𝑓𝑓 = 𝐸𝐼𝑇  (1 +
𝑌

1 +
𝐸 𝐻1 𝐻2 𝐻3

𝐺2
 (𝑡, 𝑇) (𝐻1 + 𝐻3) 

𝜋2

𝐿2

) (14) 

Galuppi and Royer-Carfagni [14] developed an analytical model for the buckling of a 

simply supported laminated-glass column with viscoelastic core under a compressive load 
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𝑃(𝑡) which can be time dependent. A full viscoelastic solution is developed, although it 

is complex because the classical superposition of solutions commonly used in linear 

viscoelasticity through Bolztman integral cannot be used due to the geometric 

nonlinearities associated with the buckling phenomenon [14].  

A simpler model was derived using the quasi-elastic approximation which neglects the 

memory effect [14]. Assuming that the beam axis presents an initial sinusoidal 

imperfection given by: 

𝑤𝑜(𝑥, 𝑡) = 𝑒 𝑠𝑖𝑛 (
𝜋𝑥

𝐿
) (15) 

and considering the deflection of the beam (figure 1) as: 

𝑤(𝑥, 𝑡, 𝑇) = 𝑎(𝑡, 𝑇) 𝑠𝑖𝑛 (
𝜋𝑥

𝐿
) (16) 

 

Figure 1. Schematic representation of a simply supported beam with an initial 

deformation. 

 

the authors derived a simple equation for the critical load of a simply supported beam, 

which is given by the equation: 

𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑇)

𝑏
=

𝜋2

𝐿2
𝐸𝐼𝑇 (

𝐺2(𝑡, 𝑇) ∙
𝐼𝑇𝑂𝑇

𝐼𝑇
𝐿2 +

𝐸𝐻1𝐻3𝐻2𝜋2

(𝐻1 + 𝐻3)  

𝐺2(𝑡, 𝑇) ∙ 𝐿2 +
𝐸𝐻1𝐻3𝐻2𝜋2

(𝐻1 + 𝐻3)  

) (17) 

Eq. (14) can also be expressed as: 
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𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑇)

𝑏
=

𝜋2

𝐿2
𝐸𝐼𝑇 (1 +

𝑌

1 +
𝐸𝐻1𝐻2𝐻3

𝐺2(𝑡, 𝑇)(𝐻1 + 𝐻3)
𝜋2

𝐿2 

) (18) 

After simple manipulations, it can be easily demonstrated that the Eq. (18) derived by 

Galuppi and Royer Cargfagni [14] for a simply supported beam coincides with that [Eq. 

(12)] developed by Blaauwendraad [12] and with that [Eq. (13)] derived by Feldman et 

al. [15].  

The time-dependent deflection 𝑎(𝑡, 𝑇) of the beam is given by: 

𝑎(𝑡, 𝑇) =
(

G2(𝑡, 𝑇)(𝐻1 + 𝐻3)
𝐻2𝐸𝐻1𝐻3

+
𝜋2

𝐿2  
) 𝑃(𝑡)𝑒

𝐸𝐼𝑇
π4

𝐿4 −
𝜋2

𝐿2 P(𝑡) +
G2(𝑡, 𝑇)(𝐻1 + 𝐻3)

𝐻2𝐻1𝐻3
(

𝜋2

𝐿2  
𝐼𝑇𝑂𝑇 −

𝑃(𝑡)
𝐸 )

 (19) 

which can also be expressed as: 

𝑎(𝑡, 𝑇) =
(

G2(𝑡, 𝑇)(𝐻1 + 𝐻3)
𝐻2𝐸𝐻1𝐻3

+
𝜋2

𝐿2  
) 𝑃(𝑡)𝑒

𝐸𝐼𝑇
π2

𝐿2 (
𝜋2

𝐿2  
+

G2(𝑡, 𝑇)(𝐻1 + 𝐻3)
𝐸𝐻2𝐻1𝐻3

(1 + 𝑌)) − P(t) (
𝜋2

𝐿2 +
G2(𝑡, 𝑇)(𝐻1 + 𝐻3)

𝐸𝐻2𝐻1𝐻3
)

 (20) 

Amadio and Bedon [21] developed an analytical model for the buckling of laminated-

glass beams based on the Euler theory and the effective stiffness 𝐸𝐼(𝑡, 𝑇)𝑠 proposed by 

Calderone et al. [8], i.e.: 

  

𝑃𝑐𝑟𝑖𝑡(t, T)

𝑏
=

𝜋2𝐸𝐼(𝑡, 𝑇)𝑠

𝐿2
 (21) 

where 𝐸𝐼(𝑡, 𝑇)𝑠 is given by Eq. (5). The authors observed that the Eq. (21) overestimates 

the critical load when using the parameter Γ𝑆(𝑡, 𝑇) given by Eq. (6) and they suggest 

modifying this equation by introducing a new parameter 𝛿 as: 

Γ𝑆(𝑡, 𝑇) =
1

1 + 9.6𝛿
𝐸 𝐻1 𝐻2 𝐻3

𝐺2
 (𝑡, 𝑇) (𝐻1 + 𝐻3) 𝐿2

 
(22) 
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From numerical simulations, they arrived at 𝛿 = 1.03 for a simply supported beam, i.e. 

𝛾 = 9.6 ⋅ 𝛿 = 9.888. This value agrees well with Eq. (18), derived by Galuppi and Royer 

Carfagni [14], where 𝛾 = 𝜋2 = 9.870. 

1.3 On the layered and monolithic limits of laminated-glass beams 

 

The works of Norville [22] and Galuppi and Royer-Carfagni [9] have pointed out that the 

response of laminated-glass beams presents two borderlines: 1) the layered limit 

corresponding to the case when the beam consists of free-sliding glass plies and 2) the 

monolithic limit, when the Euler–Bernoulli assumptions hold (plane sections remain 

plane) for the entire section of the laminated-glass element (the response of the composite 

beam approaches that of a homogeneous glass beam with inertia equal to the inertia of 

the properly spaced glass layers of the interlayer gaps) [9].  

PVB mechanical behavior can be established by relaxation or creep tests in the time 

domain or its corresponding dynamic tests in the frequency domain [23]. The relaxation 

master curve of the shear modulus 𝐺2(𝑡, 𝑇) at temperature T is usually fitted with a 

generalized Maxwell model which can be represented with a Prony series given by [24]: 

𝐺2(𝑡, 𝑇) = 𝐺2
∞ + ∑ 𝑔𝑖 e

(−
𝑡
𝜏𝑖

)
 

𝑛

𝑖=1

= 𝐺2
0 − ∑ 𝑔𝑖 (1 − e

(−
𝑡
𝜏𝑖

)
 )  

𝑛

𝑖=1

 (23) 

The shear modulus G2(𝑡, 𝑇) for the polyvinyl butyral [10] is presented in figure 2, which 

shows that the G2(𝑡, 𝑇) presents a minimum value G2
∞ = G2(∞, 𝑇) for the long term and 

a maximum value G2
0 = G2(0, 𝑇) for the short term. Thus, for laminated-glass beams, two 

different borderlines need to be defined: (1) the long-term limit associated with G2
∞ and 

(2) the short-term limit associated with G2
0 . 
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Figure 2. Shear-relaxation modulus for the PVB at 𝑇 = 20𝑜𝐶 [10]. 

The parameter 𝜂𝑆(𝑡) in Eq. (3) takes values in the range 0 ≤ 𝜂𝑆(𝑡) ≤ 1, 𝜂𝑆 = 0 

corresponding to the case of a layered beam and 𝜂𝑆 = 1 to a monolithic beam. The layered 

limit is reached when the term: 

𝐸 𝐻1 𝐻2𝐻3𝜓𝐵

(1 + 𝑌) 𝐺2
 (𝑡, 𝑇) (𝐻1 + 𝐻3) 

 
(24) 

in Eq. (3) is negligible with respect to one. G2(𝑡, 𝑇) can take small values but not zero, 

meaning that the layered limit is never reached. However, we can be very close to the 

layered limit with short beams, boundary conditions related to high values of 𝛾 and low 

values of G2(𝑡, 𝑇), i.e. for the long term. This effect is presented in figure 2, which shows 

the effective stiffness at 𝑇 = 20𝑜𝐶 of a simply supported short beam with 𝐿 = 0.2 𝑚, and 

a longer beam with 𝐿 =1.2 m, both having the following geometrical dimensions and 

mechanical properties: 𝑏 =  10 𝑐𝑚, 𝐻1 = 𝐻3 = 3 𝑚𝑚, 𝐻2 = 0.38 𝑚𝑚,  𝐸 = 70𝐸9 𝑃𝑎 

and 𝜈 = 0.2. 

The monolithic limit is reached when the term given by Eq. (24) tends to infinity. Again, 

this limit is never reached, but due to the relative high magnitude of (G2(𝑡, 𝑇) over the 

short term, the monolithic limit is always very close to the maximum limit given by G2
0. 
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Figure 3. Effective stiffness of a simply supported beam with different lengths at 𝑇 =

20𝑜𝐶. 

From Eq. (18), we infer that the maximum critical load occurs at 𝑡 = 0; that is, it depends 

explicitly on the instantaneous shear modulus G2
0 = G2(0, 𝑇) on the interlayer. The 

critical load corresponding to G2
0 = G2(0, 𝑇) is hereafter referred to as Pcrit

0  (glassy critical 

load in [14]). On the other hand, the minimum critical load, hereafter referred to as Pcrit
∞  

(rubbery critical load in [14]), is reached at 𝑡 = ∞ and it depends on the long-term shear 

modulus  G2
∞ = G2(∞, 𝑇). Thus, using the quasi-elastic approximation, three different 

cases can be considered in the buckling of a laminated-glass beam subject to a constant 

compressive load P [14]: 

1. P > Pcrit
0  . In this case the load P is larger than that corresponding to the short-

term limit (G2(0, 𝑇) = G2
0) and immediate buckling occurs at 𝑡 = 0. 

2. P < Pcrit
∞  . In this case the load P is less than that corresponding to the long-term 

limit (G2(∞, 𝑇) = G2
∞) and no buckling occurs at any time. 

3. Pcrit
0 > P > Pcrit

∞  . The buckling instability occurs at a certain critical time 𝑡𝑐𝑟𝑖𝑡, 

which depends on the magnitude of the load P and on the temperature. This 

phenomenon is known as creep buckling [14].  

In [14] it is demonstrated that the glassy critical load Pcrit
0 and the rubbery critical load 

Pcrit
∞  obtained with the quasi-elastic approximation coincide with those derived using the 

full viscoelastic analysis because the quasi-elastic and the viscoelastic solutions have the 

same behaviour at 𝑡 = 0 and 𝑡 → ∞. The three aforementioned different cases are of 

theoretical interest, but for practical applications a safe procedure is needed in order to 
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avoid failures due to buckling, i.e. the compressive load acting of the beam must be less 

than Pcrit
∞  . Therefore, the quasi-elastic solution can be used advantageously to determine 

safe critical loads in laminated glass, avoiding the use of more complex models. 

2 CRITICAL LOAD OF LAMINATED-GLASS BEAMS COMBINING THE EULER 

THEORY AND THE EFFECTIVE STIFFNESS 

As illustrated in Section 1, most of the analytical models proposed for the buckling of 

laminated-glass beams are valid for simply supported beams. The effective thickness 

proposed by Galuppi and Royer Carfagni [9] and the effective stiffness proposed by 

Feldman et al. [15] use parameters which depend on the load and boundary conditions. 

The effective thickness [9] and the effective stiffness [15] can be extended to calculate 

the buckling of a simply supported beam, assuming a sinusoidal transversal load (equal 

in shape to the buckling deflection of a monolithic beam with the same boundary 

conditions).  

In this section, a simple expression to calculate the buckling load of a laminated-glass 

beam with any kind of boundary condition is derived. The critical load of a linear-elastic 

monolithic beam, according to the Euler theory is given by [25]: 

𝑃𝑐𝑟𝑖𝑡 =
𝜋2𝐸 𝐼

(𝛽𝐿)2
 (25) 

where 𝛽 is the buckling ratio. In the present paper, we propose extending the equations 

of the Euler Theory for monolithic beams to laminated-glass beams, substituting the 

stiffness EI in Eq. (25) by the effective stiffness  EI(t, T)S  given by Eq. (7), i.e.: 

𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑇) =
𝜋2𝐸𝐼(𝑡, 𝑇)𝑆

(𝛽𝐿)2
 (26) 

The critical load of an elastic monolithic beam with constant cross section and 

stiffness 𝐸𝐼, using the Rayleigh Ritz method [25] with an approximate deflection curve 

g(𝑥), is given by: 

𝑃𝑐𝑟𝑖𝑡 =
𝜋2𝐸𝐼

(𝐿𝑒𝑓𝑓)
2 =

∫ 𝐸𝐼𝑔′′(𝑥)2𝑑𝑥
𝐿

0

∫ 𝑔′(𝑥)2𝑑𝑥
𝐿

0

 (27) 
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where 𝐿𝑒𝑓𝑓 is the effective length.  Identifying Eqs (8) and (27) gives: 

𝐿𝑒𝑓𝑓 =
𝜋

√𝜓𝐵

 (28) 

This means that the parameter 𝜓𝐵 is related to the buckling ratio 𝛽 by means of the 

equation: 

𝜓𝐵 =
𝜋2

𝐿𝑒𝑓𝑓
2 =

𝜋2

𝛽2𝐿2 
 (29) 

For a simply supported beam, 𝛽 = 1 and the Eq. (29) coincides with the results provided 

by Eq. (8) using a sinusoidal shape for 𝑔(𝑥). If Eq. (29) is substituted in Eq. (3), it 

becomes: 


𝑆

(𝑡, 𝑇) =
1

1 +
𝐸1𝐻1𝐻2𝐸3𝐻3

(1 + Y)G2(𝑡, 𝑇)(𝐸1𝐻1 + 𝐸3𝐻3)
𝜋2

𝛽2𝐿2 
 

(30) 

The effective stiffness given by Eq. (7) can be expressed as:  

𝐸𝐼(𝑡, 𝑇)𝑆 = 𝐸𝐼𝑇 (1 +
𝑌

1 +
𝐸1𝐻1𝐻2𝐸3𝐻3

𝐺2(𝑡, 𝑇)(𝐸1𝐻1 + 𝐸3𝐻3)
𝜋2

(𝛽𝐿)2 

) (31) 

It can be seen in Eq. (31) that the effective stiffness depends on the boundary conditions 

through the buckling ratio 𝛽. This means that the concept of effective buckling length 

used in monolithic beams with the Euler theory cannot be directly extended to laminated-

glass beams, that is, the critical loads are not proportional to (
1

𝛽
)

2

. 

If Eq. (31) is substituted in Eq. (26), the latter becomes: 

𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑇) =
𝜋2

(𝛽𝐿)2
𝐸𝐼𝑇 (1 +

𝑌

1 +
𝐸1𝐻1𝐻2𝐸3𝐻3

𝐺2(𝑡, 𝑇)(𝐸1𝐻1 + 𝐸3𝐻3)
𝜋2

(𝛽𝐿)2 

) (32) 
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Eq. (32), a general equation to calculate the critical load of a laminated-glass beam under 

compressive loads, presents the following advantages: 

 It is easy to use. 

 It is a general formula which can be applied to any kind of boundary conditions. 

 The buckling ratios of the Euler Theory for monolithic beams can be used for 

laminated-glass beams. 

For a simply supported beam the bucking ratio is 𝛽 = 1 and Eq. (32) can be expressed 

as: 

𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑇) =
𝜋2

𝐿2
𝐸𝐼𝑇 (

𝐺2(𝑡, 𝑇) ∙
𝐼𝑇𝑂𝑇

𝐼𝑇
∙ 𝐿2 +

𝐸𝐻1𝐻2𝐻3𝜋2

(𝐻1 + 𝐻3)

𝐺2(𝑡, 𝑇) ∙ 𝐿2 +
𝐸𝐻1𝐻2𝐻3𝜋2

(𝐻1 + 𝐻3)

) (33) 

Which coincides with the quasi-elastic solution derived by Blaauwendraad [12], Galuppi 

and Royer Carfagni [14] and Feldman et al. [15] for a simply supported laminated-glass 

beam.  

With respect to the bending deflection of a simply supported laminated-glass beam under 

a compressive load 𝑃(𝑡), if Eq.(33) is substituted in Eq.(19), the latter can be expressed 

as: 

𝑎(𝑡, 𝑇) =
𝑒𝑃(𝑡)

𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑇) − 𝑃(𝑡)
 (34) 

If buckling is defined as the load corresponding to  𝑎(𝑡, 𝑇) → ∞ [14], from Eq. (34) it is 

inferred that buckling will occur when: 

𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑇) = 𝑃(𝑡) 
(35) 

i.e. when the curves corresponding to 𝑃(𝑡) and 𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑇) intersect (see figure 4 ). The 

time at which 𝑎(𝑡, 𝑇) → ∞ (intersection of 𝑃(𝑡) and 𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑇) ) is hereafter referred to 

as critical time 𝑡𝑐𝑟𝑖𝑡 whereas the buckling load [load corresponding to the  intersection of 

𝑃(𝑡) and 𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑇𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑇)] is referred to as 𝑁𝑐𝑟𝑖𝑡. 
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Figure 4. Buckling of a laminated-glass beam using the quasi-elastic approximation a) 

non-constant axial load P1(t); b) constant axial load P2(t); c) bending deflection a(t) for 

both loads, P1(t) and P2(t). 

As the solution is elastic the two load histories 𝑃1(𝑡) and 𝑃2(𝑡) shown in figure 4 present 

the same buckling critical load 𝑁𝑐𝑟𝑖𝑡 and the same critical time 𝑡𝑐𝑟𝑖𝑡; that is, the load 

history at short times (𝑡 < 𝑡𝑐𝑟𝑖𝑡) does not influence the prediction of the buckling 
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phenomenon with the quasi-elastic solution. This is important in practical terms because 

it is not possible to perform buckling experiments subjecting the laminated-glass beam to 

a constant load, since 𝑡 = 0. In this paper, the load histories presented in figures 5, 6, 8, 

10 and 11 were used in the experiments. 

According to the Euler theory, the bending deflection of an elastic monolithic beam [25] 

is given by: 

𝑤 = 𝑎 𝑠𝑖𝑛 (
𝜋𝑥

𝐿
) (36) 

where  

𝑎 =
𝑒𝑃

𝜋2𝐸𝐼
𝐿2 − 𝑃

 (37) 

If the stiffness EI in Eq. (34) is substituted by the effective stiffness 𝐸𝐼(𝑡, 𝑇)𝑠 and the load 

P by 𝑃(𝑡), Eq. (34) results in: 

𝑎(𝑡, 𝑇) =
(

𝐺2(𝑡, 𝑇)(𝐻1 + 𝐻3)
𝐻2𝐸𝐻1𝐻3

+
𝜋2

𝐿2  
) 𝑃(𝑡)𝑒 

(𝐸𝐼𝑇
𝜋2

𝐿2 − 𝑃(𝑡)) (
𝜋2

𝐿2  
+

𝐺2(𝑡, 𝑇)(𝐻1 + 𝐻3)
𝐸𝐻2𝐻1𝐻3

) + (1 + 𝑌)
𝐺2(𝑡, 𝑇)(𝐻1 + 𝐻3)

𝐸𝐻2𝐻1𝐻3

 (38) 

This coincides again with the solution derived by Galuppi and Royer Carfagni using the 

quasi-elastic solution [14], demonstrating that the equations of the Euler Theory for 

elastic monolithic beams can be easily extended to laminated-glass beams (with the quasi-

elastic approximation) using the effective stiffness or the effective thickness.  

 

2.1 Methodology 

If the buckling ratio of a monolithic beam with the same boundary conditions as the 

laminated glass one is known from the literature, the technique consists of calculating the 

buckling load using Eq. (32). 

An alternative consists of using the Euler Theory to calculate the critical load 𝑃𝑐𝑟𝑖𝑡−𝑀𝑂𝑁 

of a monolithic beam with the same boundary conditions and thickness 𝐻𝑇𝑂𝑇, and then 

calculate the critical load 𝑃𝑐𝑟𝑖𝑡−𝐿𝐺 of the laminated glass one by means of: 
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𝑃𝑐𝑟𝑖𝑡−𝐿𝐺(𝑡, 𝑇) = 𝑃𝑐𝑟𝑖𝑡−𝑀𝑂𝑁

𝐸𝐼(𝑡, 𝑇)𝑆

𝐸
𝐻𝑇𝑂𝑇

3

12

 
(39) 

On the contrary, if the buckling ratio is not known from the literature, the following 

procedure can be followed: 

1) A finite-element monolithic model with thickness 𝐻𝑇𝑂𝑇, length L and Young modulus 

E have to be assembled. The buckling ratio 𝛽 can be calculated from: 

𝑃𝑐𝑟𝑖𝑡−𝑀𝑂𝑁 =
𝜋2𝐸 𝑏𝐻𝑇𝑂𝑇

3

12(𝛽𝐿)2
 (40) 

where 𝑃𝑐𝑟𝑖𝑡−𝑀𝑂𝑁 is the critical load calculated with the monolithic FE model.  

2) To calculate the Buckling load with expression (32) or expression (39). 

2.2 Using Monolithic Models 

In recent papers, the effective-thickness concept [7, 9, 10, 11] has been proposed to 

calculate deflections and stresses in laminated-glass beams using the quasi-elastic 

approximation. This means that a thickness dependent on temperature and load duration 

has to be defined. The effective Young modulus is more appealing for use in numerical 

models because a monolithic beam with constant thickness can be assembled in the FE 

program whereas the material is defined as time and temperature dependent using the 

effective Young modulus. An effective Young modulus to be used with constant cross 

sections of monolithic models can be derived from: 

𝐸𝑒𝑓𝑓(𝑡, 𝑇)𝐻𝑇𝑂𝑇
3

12
= 𝐸𝐼(𝑡, 𝑇)𝑆 (41) 

from which it is inferred that [11]: 

𝐸𝑒𝑓𝑓(𝑡, 𝑇) = 𝐸
(𝐻1

3 + 𝐻3
3)

𝐻𝑇𝑂𝑇
3 (1 +

𝑌

1 +
𝐸𝐻1𝐻2𝐻3

G2(𝑡, 𝑇)(𝐻1 + 𝐻3)
𝜋2

(𝛽𝐿)2 

) (42) 
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3 ANALYTICAL PREDICTIONS AND EXPERIMENTAL TESTS 

A simply supported beam with the following geometrical data: 𝐻1 = 2.9 mm, 𝐻3 = 2.9 

mm, 𝐻2 = 0.38 mm, 𝐿 = 0.7 m and 𝑏 = 0.1 m was tested at temperature 𝑇 = 24𝑜𝐶  in 

a 250 kN axial machine (MTS810) (see figure 5). The axial displacement of the beam 

was increased with a constant rate of 0.01 mm/min. The relation between the axial force 

recorded by the machine and the bending deflection at the mid-span measured with a laser 

sensor, is presented in figure 5. The test was stopped when the bending deflection reached 

the magnitude of 7 mm. 

 

Figure 5. Buckling of pinned supported beam (L=700 mm, 𝐻1 = 𝐻3 = 2.9 𝑚𝑚, 𝐻2 =

0.38 𝑚𝑚). Test setup (left) and axial load versus bending deflection at the mid-point of 

the beam. 

In the analytical predictions a Young modulus 𝐸1 = 72 GPa and Poisson ratio 𝜈 = 0.22 

were considered for the glass layers. With respect to the PVB, its mechanical properties 

have been determined in a previous work [10] by dynamic characterization in a DMA 

RSA3. A constant bulk modulus of 𝐾2(𝑡) = 2 𝐺𝑃𝑎 and the shear relaxation modulus 
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𝐺2(𝑡) presented in figure 2 corresponding to a reference temperature 𝑇0 = 20𝑜𝐶 were 

considered in the analytical predictions. Moreover, the effect of temperature was 

considered using the William, Landel and Ferry (WLF) model [26] where the TTS shift 

factor, 𝑎𝑇, is given by: 

𝑙𝑜𝑔(𝑎𝑇) = −𝐶1

(𝑇 − 𝑇0)

𝐶2 + (𝑇 − 𝑇0)
 (43) 

where 𝐶1 = 12.60 and 𝐶2 = 74.46 at 𝑇0 = 20𝑜𝐶.   

The critical load predicted with Eq. (32) is presented in figure 6, which shows that, as 

expected, the critical load 𝑃𝑐𝑟𝑖𝑡 decreases with time. This means that the critical load 

𝑁𝑐𝑟𝑖𝑡 [intersection of 𝑃𝑐𝑟𝑖𝑡 and (𝑡)] will depend on the load history 𝑃(𝑡). The monolithic, 

layered, Pcrit
0  𝑎𝑛𝑑 Pcrit

∞  limits are also indicated in figure 6. 

Figure 6 (right) also shows the analytical critical load 𝑃𝑐𝑟𝑖𝑡 predicted with Eq. (32) 

together with the experimental axial load acting on the beam. Buckling occurs when the 

curves corresponding to 𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑇) and to axial load 𝑃(𝑡) intersect. From figure 5, it is 

inferred that buckling should occur at 𝑡 = 672 𝑠, from which it is determined that 𝑁𝑐𝑟𝑖𝑡 =

1420 𝑁. The maximum axial load reached in the test was 𝑃𝑚𝑎𝑥 = 1450 𝑁. The 

discrepancy between 𝑃𝑚𝑎𝑥  and 𝑁𝑐𝑟𝑖𝑡 was less than 2.5%. This agrees with [14], where it 

is demonstrated that due to the delay in the stress relaxation, a beam for which the 

viscoelasticity of the interlayer is fully considered appears to be stiffer than when the 

response is evaluated by means of the quasi-elastic approximation. 
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Figure 6. Buckling of a simply-supported beam (𝐿 = 700 𝑚𝑚, 𝑏 = 0.1 𝑚, 𝐻1 = 𝐻3 =

2.9 𝑚𝑚, 𝐻2 = 0.38 𝑚𝑚): analytical prediction (left) and comparison between the 

experimental axial load and the predicted critical load (right).  

As reflected in figure 6, for every axial-load time history acting on the beam, there is a 

critical time 𝑡𝑐𝑟𝑖𝑡 for which the instability is expected (𝑃(𝑡) = 𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑇)). From Eq. (38), 

it can be inferred that this critical time depends on the load 𝑃(𝑡) but not on the initial 

imperfection 𝑒. Figure 7 presents the experimental bending deflection at the mid-point of 

beam versus time, together with the analytical deflection 𝑎(𝑡) predicted with Eq. (38) 

using the experimental axial load 𝑃(𝑡) shown in figure 6 and assuming initial 

imperfections 𝑒 =  0.1 mm and 𝑒 =  0.2 mm. The predicted critical time is 𝑡𝑐𝑟𝑖𝑡 = 670 

s. The maximum bending deflection reached at the mid-point of the beam 𝑎 =  7 mm 

corresponds to a stress level of 25-30 MPa, which is close to the ultimate tensile stress of 

floated glass proposed in the codes [27]. 
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Figure 7. Experimental and analytical bending deflection at the mid-point of the beam. 

(𝐿 = 700 𝑚𝑚, 𝑏 = 0.1 𝑚, 𝐻1 = 𝐻3 = 2.9 𝑚𝑚, 𝐻2 = 0.38 𝑚𝑚). 

The same beam was tested for 4700 s applying the compressive load shown in Figure 8, 

where the maximum load level was 1300 N. The predicted critical time for this load was 

𝑡𝑐𝑟𝑖𝑡 =  7400 s, meaning that buckling should not occur during the test. Buckling was not 

detected during the experimental test, confirming the prediction.  

 

Figure 8. Buckling of simply supported beam (𝐿 = 700 𝑚𝑚, 𝑏 = 0.1 𝑚, 𝐻1 = 𝐻3 =

2.9 𝑚𝑚, 𝐻2 = 0.38 𝑚𝑚) under compressive force (maximum force: 1.3 kN). 
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Figure 9 shows that the experimental bending deflection increases with time, the 

maximum deflection being 4.8 mm, this reaffirming that Eqs. (32) and (38) quite 

accurately predict the buckling of the beam. The deflection predicted with Eq. (33), 

assuming initial imperfections 𝑒 = 0.1 mm and 𝑒 = 0.2 mm, are also plotted in figure 9. 

 

Figure 9. Experimental and analytical bending deflection at the mid-point of the beam 

under compressive force. (𝐿 = 700 𝑚𝑚, 𝑏 = 0.1 𝑚, 𝐻1 = 𝐻3 = 2.9 𝑚𝑚, 𝐻2 =

0.38 𝑚𝑚). 

Similar tests were performed in a shorter simply supported beam with 𝐿 = 0.5 m and 

same thicknesses and width, i.e.  𝐻1 = 2.9 mm, 𝐻3 = 2.9 mm, 𝐻2 = 0.38 mm, 𝑏 = 0.1 

m. The test was stopped when the bending deflection reached the magnitude of 

approximately 3.75 mm. 

Figure 10 presents the analytical critical load predicted with Eq. (32) together with the 

experimental axial load acting on the beam (corresponding to a constant axial 

displacement rate of 0.01 mm/min). From the figure, we infer that buckling should occur 

at 𝑡 = 104 𝑠, from which get   𝑁𝑐𝑟𝑖𝑡 = 2360 𝑁. The maximum axial load reached in the 

test was 𝑃𝑚𝑎𝑥 = 2420 𝑁. The discrepancy between 𝑃𝑚𝑎𝑥  and 𝑁𝑐𝑟𝑖𝑡 is less than 2.5%. 
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The experimental bending deflection at the mid-point of beam versus time is presented in 

figure 10 (right), together with the analytical deflections predicted with Eq. (38) using the 

experimental axial load 𝑃(𝑡) shown in figure 10 and assuming initial imperfections 𝑒 =

 0.1 mm and 𝑒 =  0.2 mm. The predicted critical time is 𝑡𝑐𝑟𝑖𝑡 = 115 s. The maximum 

bending deflection reached at the mid-point of the beam 𝑎 =  3.75 mm corresponds to a 

stress level of 25-30 MPa, which is close to the ultimate tensile stress of floated glass 

proposed in the codes [27] 

 

Figure 10. Buckling of  simply supported beam (𝐿 = 500 𝑚𝑚, 𝑏 = 0.1 𝑚, 𝐻1 = 𝐻3 =

2.9 𝑚𝑚, 𝐻2 = 0.38 𝑚𝑚), under constant axial displacement at rate 0.01 mm/min. 

Predicted critical load and experimental axial load (left). Predicted and experimental 

bending deflection at the mid-point of the beam (right). 

The same beam was tested for 1480 s, applying the compressive load shown in figure 11, 

where the maximum load level is 2100 N. The specimen broke at 𝑡 = 1480 𝑠 with a 

bending deflection of 9.4 mm. The predicted critical time is 𝑡𝑐𝑟𝑖𝑡 =  1550 s. Figure 11 

presents the experimental bending deflection together with that predicted with Eq. (38), 

assuming initial imperfections 𝑒 = 0.1 𝑚𝑚 and 𝑒 = 0.2 𝑚𝑚. The results presented in 
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figure 11 confirm that Eqs. (32) and (38) quite accurately predict the buckling of the 

beam. 

 

Figure 11. Buckling of simply supported beam (𝐿 = 500 𝑚𝑚, 𝑏 = 0.1 𝑚, 𝐻1 = 𝐻3 =

2.9 𝑚𝑚, 𝐻2 = 0.38 𝑚𝑚) under compressive force (maximum force: 2.1 kN). Predicted 

critical load and experimental axial load (left). Predicted and experimental bending 

deflection at the mid-point of the beam (right). 

3.2 Numerical simulations 

Due to the brittleness of glass, fixed boundary conditions are difficult to reproduce in 

experimental tests. For the validation of Eq. (32) to any kind of boundary conditions, a 

finite-element model was assembled in ABAQUS [28] and the buckling load was 

predicted for simply supported, fixed-pinned and fixed-fixed boundary conditions. An 

ideal (no initial imperfections were considered) linear elastic planar model was assembled 

using quadrilateral linear plane-stress elements with the following geometrical data: 𝐻1 =

4 mm, 𝐻3 = 4 mm, 𝐻2 = 0.38 mm, 𝐿 = 1 m, and 𝑏 = 0.1 m. The mesh of the FE model 

together with some details of the boundary conditions are shown in figure 12.  

 

The same material properties as those considered in Section 3 were considered for the 

glass layers. Because the model is linear elastic, the PVB interlayer was also modeled as 
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linear elastic. For each time 𝑡 = 𝑡𝑖, the constant shear modulus 𝐺2 = 𝐺2(𝑡𝑖, 𝑇) and 

Poisson ratio 𝜈2 = 0.49 were considered for the interlayer. A constant axial loading P 

was applied to the top of the model uniformly distributed. Then a standard linear elastic 

analysis was made to determine the stresses needed to form the geometric stiffness matrix 

𝐾𝐺. Finally an eigenvalue buckling analysis was run to predict the critical load 𝑃𝑐𝑟𝑖𝑡(𝑡𝑖, 𝑇) 

corresponding to each point of time 𝑡 = 𝑡𝑖, which was calculated by: 

𝑃𝑐𝑟𝑖𝑡(𝑡𝑖, 𝑇) = 𝜆1𝑖 ∙ 𝑃 (43) 

where 𝜆1𝑖 is the first eigenvalue or multiplier of the reference load P. The eigenvalue 

problem was solved using the Lanczos method [29]. 

The methodology is schematically shown in figure 13.  This procedure was repeated for 

all the time points considered in the simulations. 

 

Figure 12. Model and mesh details of the numerical model used in the simulations. 
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Figure 13. Methodology to calculate the critical load 𝑃𝑐𝑟𝑖𝑡(𝑡𝑖, 𝑇) at time 𝑡 = 𝑡𝑖. 

 

Figure 14 presents the critical load predicted with Eq. (32) at 𝑇 = 20𝑜𝐶 and 𝑇 = 40𝑜𝐶 

using the buckling ratio 𝛽 = 1, together with the critical load obtained with the FE model. 

From the figure, it is inferred that the discrepancies between the numerical simulations 

and the analytical prediction with Eq. (32) are less than 0.15% for the simply supported 

boundary conditions. 
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Figure 14. Analytical (Eq. (32)) and numerical critical loadings predicted for the simply 

supported beam: 𝑇 = 20𝑜𝐶 (left) and 𝑇 = 40𝑜𝐶 (right). 

Figure 15 shows the analytical and the numerical critical loads predicted for the beam 

with fixed-pinned configuration at 𝑇 = 20𝑜𝐶 (left) and  𝑇 = 40𝑜𝐶 (right), respectively. 

In Eq. (32) the buckling ratio 𝛽 = 0.7 was used. The discrepancies between the two 

models are less than 2.5%.  

 

Figure 15. Analytical [Eq. (32)] and numerical critical loadings predicted for the fixed-

pinned beam: 𝑇 = 20𝑜𝐶 (left) and 𝑇 = 40𝑜𝐶 (right). 

Finally, the critical load of the fixed-fixed configuration was predicted with Eq. (32) using 

the buckling ratio 𝛽 = 0.5. The analytical and the numerical predictions are shown in 

figure 15, from which it was found that discrepancies were less than 4.75%.  
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The results shown in figures 14 to 16 prove that Eq. (32) quite accurately predicts the 

buckling load of a laminated-glass beam with all the boundary conditions considered in 

the investigation.  

 

Figure 16. Analytical (Eq. (28)) and numerical critical loadings predicted for the fixed-

fixed beam: 𝑇 = 20𝑜𝐶 (left) and 𝑇 = 40𝑜𝐶 (right). 

4 CONCLUSIONS 

Laminated-glass elements are slender and brittle and therefore structural stability is a 

design criterion to be considered when these elements are subject to compressive loads. 

Due to the viscoelastic behaviour of the interlayer materials, the critical load of a 

laminated-glass beam is time and temperature dependent. However, to avoid failures due 

to buckling, a safe procedure is needed and the compressive load acting on the beam must 

be less than the critical load 𝑃𝑐𝑟𝑖𝑡
∞  given by the long-term limit of the interlayer shear 

modulus 𝐺2
∞. This also means that the quasi-elastic solution [5, 6, 8, 9] can be used 

advantageously to obtain safe critical loads in laminated glass, avoiding the use of 

numerical models or complicated analytical models. 

In recent years, several analytical models have been proposed for determining the critical 

load of simply supported laminated-glass beams [12, 14, 15] using the effective stiffness 

and the effective thickness concepts. In this paper it is demonstrated that the effective 

stiffness is also dependent on the boundary conditions and its effect can be considered by 

means of the buckling ratios 𝛽 used in the Euler theory with isotropic linear monolithic 

beams. 
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In this paper, a simple equation (Eq. 32) to calculate the buckling load of a laminated-

glass beam subject to compressive load is proposed. This equation has been derived by 

extending the classical Euler theory for buckling of isotropic monolithic beams to 

laminated glass beams using the effective-stiffness and the effective Young modulus 

concept. The equation is easy to use, it can be applied to any kind of boundary conditions, 

and the buckling ratios of the classical Euler Theory for isotropic monolithic beams can 

be used in laminated-glass beams. 

The accuracy provided by Eq. (32) has been validated by experimental compressive tests 

carried out on two simply supported beams 0.5 m and 0.7 m long, respectively, both of 

them with the following geometrical data: width 𝑏 = 0.1 m, thickness of glass layers 

𝐻1 = 𝐻3 = 2.9 mm and thickness of PVB layer 𝐻2 = 0.38 mm. The tests were performed 

at room temperature 𝑇 = 24𝑜𝐶. The error between the experimental critical load and 

those predicted with Eq. (32) were consistently less than 3%. 

Due to the brittleness of the glass, fixed boundary conditions are difficult to reproduce in 

monolithic and laminated-glass panels. For breakage prevention, contact between the 

glass and any other substance with a hardness equivalent to or greater than the hardness 

of glass should be avoided. Neoprene gaskets or other glazing materials are commonly 

used with frame systems. In order to validate Eq. (32) to fixed boundary conditions, a 

finite element model was assembled in ABAQUS [28] using quadrilateral linear plane 

stress elements and the critical load at temperatures 𝑇 = 20𝑜𝐶 and 40𝑜𝐶 was calculated. 

Simply supported, fixed-pinned, and fixed-fixed boundary conditions were considered in 

the simulations using the following geometrical data: length L= 1 m, width 𝑏 = 0.1 glass 

thickness 𝐻1 = 𝐻3 = 4 mm, and PVB thickness 𝐻2 = 0.38 mm. The discrepancies 

between the numerical and the analytical results (Eq. (32)) are less than 4.75% for all the 

boundary conditions considered in the simulations, demonstrating that Eq. (32) quite 

accurately predicts the buckling load of a laminated-glass beam with all the boundary 

conditions considered in this investigation. 
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Figure Captions: 

Figure 1. Schematic representation of a simply supported beam with an initial 

deformation. 

Figure 2. Shear-relaxation modulus for the PVB at 𝑇 = 20𝑜𝐶 [10]. 

Figure 3. Effective stiffness of a simply supported beam with different lengths at 𝑇 =

20𝑜𝐶. 

Figure 4. Buckling of a laminated-glass beam using the quasi-elastic approximation a) 

non-constant axial load P1(t); b) constant axial load P2(t); c) bending deflection a(t) for 

both loads, P1(t) and P2(t). 

Figure 5. Buckling of pinned supported beam (L=700 mm, 𝐻1 = 𝐻3 = 2.9 𝑚𝑚, 𝐻2 =

0.38 𝑚𝑚). Test setup (left) and axial load versus bending deflection at the mid-point of 

the beam. 

Figure 6. Buckling of a simply-supported beam (𝐿 = 700 𝑚𝑚, 𝑏 = 0.1 𝑚, 𝐻1 = 𝐻3 =

2.9 𝑚𝑚, 𝐻2 = 0.38 𝑚𝑚): analytical prediction (left) and comparison between the 

experimental axial load and the predicted critical load (right).  

Figure 7. Experimental and analytical bending deflection at the mid-point of the beam. 

(𝐿 = 700 𝑚𝑚, 𝑏 = 0.1 𝑚, 𝐻1 = 𝐻3 = 2.9 𝑚𝑚, 𝐻2 = 0.38 𝑚𝑚). 

Figure 8. Buckling of simply supported beam (𝐿 = 700 𝑚𝑚, 𝑏 = 0.1 𝑚, 𝐻1 = 𝐻3 =

2.9 𝑚𝑚, 𝐻2 = 0.38 𝑚𝑚) under compressive force (maximum force: 1.3 kN). 

Figure 9. Experimental and analytical bending deflection at the mid-point of the beam 

under compressive force. (𝐿 = 700 𝑚𝑚, 𝑏 = 0.1 𝑚, 𝐻1 = 𝐻3 = 2.9 𝑚𝑚, 𝐻2 =

0.38 𝑚𝑚). 

Figure 10. Buckling of simply supported beam (𝐿 = 500 𝑚𝑚, 𝑏 = 0.1 𝑚, 𝐻1 = 𝐻3 =

2.9 𝑚𝑚, 𝐻2 = 0.38 𝑚𝑚), under constant axial displacement at rate 0.01 mm/min. 
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Predicted critical load and experimental axial load (left). Predicted and experimental 

bending deflection at the mid-point of the beam (right). 

Figure 11. Buckling of simply supported beam (𝐿 = 500 𝑚𝑚, 𝑏 = 0.1 𝑚, 𝐻1 = 𝐻3 =

2.9 𝑚𝑚, 𝐻2 = 0.38 𝑚𝑚) under compressive force (maximum force: 2.1 kN). Predicted 

critical load and experimental axial load (left). Predicted and experimental bending 

deflection at the mid-point of the beam (right). 

Figure 12. Model and mesh details of the numerical model used in the simulations. 

Figure 13. Methodology to calculate the critical load 𝑃𝑐𝑟𝑖𝑡(𝑡𝑖, 𝑇) at time 𝑡 = 𝑡𝑖. 

Figure 14. Analytical (Eq. (32)) and numerical critical loadings predicted for the simply 

supported beam: 𝑇 = 20𝑜𝐶 (left) and 𝑇 = 40𝑜𝐶 (right). 

Figure 15. Analytical [Eq. (32)] and numerical critical loadings predicted for the fixed-

pinned beam: 𝑇 = 20𝑜𝐶 (left) and 𝑇 = 40𝑜𝐶 (right). 

Figure 16. Analytical (Eq. (28)) and numerical critical loadings predicted for the fixed-

fixed beam: 𝑇 = 20𝑜𝐶 (left) and 𝑇 = 40𝑜𝐶 (right). 

 


