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Abstract. We propose an enhanced depth-�rst heuristic search algo-
rithm to face the job shop scheduling problem with operators. This prob-
lem extends the classical job shop scheduling problem by considering a
limited number of human operators that assist the processing of the oper-
ations. We considered total �ow time minimization as objective function
which makes the problem harder to solve and more interesting from a
practical point of view than minimizing the makespan. The proposed
method exploits a schedule generation scheme termed OG&T , two ad-
missible heuristics and some powerful global pruning rules that require
recording expanded states. We have conducted an experimental study
across several benchmarks to evaluate our algorithm. The results show
that the global pruning method is really e�ective and that the proposed
approach is quite competent for solving this problem.

1 Introduction

We face a variant of the job-shop scheduling problem in which the processing
of an operation on a given machine requires the assistance of one of a limited
number of available operators. This problem has been recently proposed in [3]
with the objective of minimizing the makespan; it is termed JSO(n, p), where n
represents the number of jobs and p represents the number of available operators.
In this paper, we consider minimizing the total �ow time. This objective function
is often of more interest than makespan in real environments [7] and at the same
time it makes scheduling problems harder to solve [15].

To solve the JSO(n, p) problem, we propose a partially informed depth-
�rst search algorithm [24] enhanced with global pruning rules. The de�nition
of the search space and the heuristic estimation are borrowed from [29] where
a best-�rst search algorithm is proposed for the same problem. Besides, a key
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component of our approach is the combination of depth-�rst search with a global
pruning rule. This rule is de�ned in accordance with the formal de�nition given
in [16] for dominance relations that guarantees a single optimal solution. To
implement this pruning method, the expanded states have to be maintained
in memory in order to be compared with each expanded state. This is space
consuming and so it requires to establish a limit to prevent the algorithm from
running out of memory. In this work, we use a single static method that limits the
size of the memory dedicated to store expanded nodes to a given value. When this
limit value is reached, no more states are stored. In spite of this simple memory
model, the pruning method is really e�cient. As we will see, it allows the depth-
�rst search algorithm to reduce the number of expansions in more than one
order of magnitude meanwhile it is able to reach and certify an optimal solution.
For large instances that cannot be solved to optimality, the global pruning rule
allows the algorithm to obtain better solutions by a given time, even though it
can expand less nodes by this time due to dominance checking. At the same time
checking the dominance relations is not a time consuming task thanks to the use
of hashing mechanism.

Over the last years, global pruning rules that are based on dominance rela-
tions were widely used in constraint-based reasoning for breaking symmetries in
some classes of problems [13]. In this context, rules more powerful than those in-
tended for detecting symmetries were also proposed, as for example in [26] where
three symmetric problems such as the Maximum-Density Still Life problem, the
Steel Mill Slab Design and the Peaceable Armies of Queens were considered. The
JSO(n, p) problem presents some symmetries as well; for example two states
with the same subset of operations scheduled at the same times but with a dif-
ferent assignment of operators are actually symmetric; this kind of symmetries
are detected by the proposed rule. Global pruning rules were also used in some
scheduling problems, for example in [23] a dominance rule for the multiple re-
source constrained project scheduling problem is de�ned and then exploited in
combination with a breadth-�rst search algorithm.

As far as we know, the best-�rst search algorithm given in [29] is the only ap-
proach proposed for the JSO(n, p) problem to minimize the total �ow time. This
method is very e�ective for solving small instances but its high memory require-
ments make it inappropriate for facing large instances. So we have considered an
implementation on IBM ILOG CPLEX CP Optimizer to compare with. This is
a commercial solver embedding powerful constraint propagation techniques and
a self-adapting large neighborhood search method dedicated to scheduling [20]
and it is often used to compare with other approaches to scheduling problems.
For example, in [12] the authors confront a parallel machine scheduling problem
with precedence constraints and setup times by means of a branch-and bound
procedure combined with a climbing discrepancy search algorithm. The results
of this algorithm are compared with those from CP Optimizer and in some cases
this solver achieves the best results. This solver is expected to be very e�cient
for a variety of scheduling problems as it is pointed in [1], in particular when
the cumulative demand for resources exceeds their availability as it happens,



for example, in the Satellite Control Network Scheduling Problem confronted in
[18].

We have conducted an experimental study across conventional instances, con-
sidering di�erent number of available operators, to assess our algorithm and also
to compare it with the aforementioned approach. The results of this study show
clearly that the performance of the proposed depth-�rst search algorithm relies
on the global pruning method and that it may outperform the CP implementa-
tion.

The remaining of the paper is organized as follows. In the next section we
de�ne the problem. Then, we describe the schedule generation scheme termed
OG&T proposed in [29] which is used to de�ne the search space for the depth-
�rst search algorithm. Then, we describe this search space and the heuristic
estimation used to guide the search algorithm. After that, we formalize the
global pruning rules for the JSO(n, p) with total �ow time minimization and
demonstrate how these rules can be e�ciently applied in combination with depth-
�rst search. Finally we report the experimental study and we complete the paper
with some general conclusions and some ideas for further research.

2 Problem Formulation

Formally the job-shop scheduling problem with operators can be de�ned as fol-
lows. We are given a set of n jobs {J1, . . . , Jn}, a set of m resources or machines
{R1, . . . , Rm} and a set of p operators {O1, . . . , Op}. Each job Ji consists of a se-
quence of vi operations or tasks (θi1, . . . , θivi). Each task θil has a single resource
requirement Rθil , an integer duration pθil and a start time stθil and an assisting
operator Oθil to be determined. A feasible schedule is a complete assignment of
starting times and operators to operations that satis�es the following constraints:
(i) the operations of each job are sequentially scheduled, (ii) each machine can
process at most one operation at any time, (iii) no preemption is allowed and
(iv) each operation is assisted by one operator and one operator cannot assist
more than one operation at the same time. The objective is �nding a feasible
schedule that minimizes the sum of the completion times of all jobs, i.e. the total
�ow time3. This problem was �rst de�ned in [3] for makespan minimization and
is denoted as JSO(n, p).

The signi�cant cases of this problem are those with p < min(n,m), otherwise
the problem is a standard job-shop problem denoted as J ||ΣCi.

Scheduling problems are usually represented by means of a disjunctive model.
We propose here to use a model for the JSO(n, p) that is similar to that used in
[3]. Figure 1 shows a solution graph for an instance with 3 jobs, 3 machines and
2 operators. In addition to the nodes that represent operations and the dummy
nodes start and end, we introduce nodes to represent operators in this model.
So, we have three main types of arcs: job, machine and operator arcs. Each

3 Note that from the point of view of constraint programming, this problem may be
naturally formulated as a classical job shop scheduling problem with an additional
cumulative resource of capacity p.
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Fig. 1. A feasible schedule to a problem with 3 jobs, 3 machines and 2 operators.

type de�ne the sequence of operations in the same job, machine or operator
respectively. Operator nodes are linked to the �rst operation assisted by the
operator. Also, there are arcs from the start node to each operator node and
from the last operation of each job to the end node.

In Figure 1, discontinuous arrows represent operator arcs. So, the sequences
of operations assisted by operators O1 and O2 are (θ21, θ11, θ32, θ12, θ13) and
(θ31, θ22, θ23, θ33), respectively. In order to simplify the picture, if there are two
arcs between the same pair of nodes, only the operator arc is drawn. Continuous
arrows represent job arcs and dotted arrows represent machine arcs; in these
cases only arcs not overlapping with operator arcs are drawn. In this example,
the completion times of jobs J1, J2 and J3 are 13, 10 and 14 respectively, so the
schedule has a total �ow time of 37.

3 Schedule Generation Schemes

We use here the OG&T algorithm proposed in [30]. This is a schedule generation
scheme for the JSO(n, p) which is an extension of the well-knownG&T algorithm
proposed by Gi�er and Thompson in [14] for the classical job-shop scheduling
problem. The operations are scheduled one at a time following a sequence of non-
deterministic choices. When an operation u is scheduled, its preceding operation
in the job sequence, denoted PJu, was already scheduled if this operation exists.
At this time, u is assigned a starting time stu and an operator Oi, 1 ≤ i ≤ p.
Let SC be the set of scheduled operations at an arbitrary time. Then, the next
non-deterministic choice may be any operation of the set A de�ned as

A = {v /∈ SC,@PJv ∨ (PJv ∈ SC)} (1)

i.e., the set that includes the �rst unscheduled operation of each job that has at
least one unscheduled operation. If the operation u in A is selected, the starting
time of u is given by its head ru which is calculated as

ru = max{rPJu + pPJu , rv + pv, min
1≤i≤p

ti} (2)



where ti, 1 ≤ i ≤ p, is the time at which the operator Oi is available and v
denotes the last operation scheduled having Rv = Ru. At the same time, the
operator Oi that is available at the latest time before ru, i.e.

i = argmax{tj ; tj ≤ ru; 1 ≤ j ≤ p} (3)

is assigned to assist the operation u. Let v∗ be the operation in A having the
earliest completion time if it were scheduled next, i.e.

v∗ = argmin{ru + pu;u ∈ A}. (4)

The set of non-deterministic choices may be reduced to the subset A′ ⊂ A

A′ = {u ∈ A; ru < rv∗ + pv∗} (5)

Moreover, the set of choices can be further restricted in the following way. Let
τ0 < · · · < τk be the sequence of all times along the interval [min{ru;u ∈
A′}, rv∗ +pv∗), where each τi is given by the head of some operation in A′ or the
time at which some operator becomes available. Let p′i be the number of opera-
tors available in the subinterval [τi, τi+1) and let m′i be the number of di�erent
machines that are required by the operations in A′ which may be processed along
this subinterval. Then, A′ may be reduced as long as the following operations
are maintained:

(i) The operations requiring the same machine as v∗.

(ii) For each interval [τi, τi+1) with m
′
i > p′i, the operations required by at least

m′i − p′i machines.

The set of operations obtained in this way is termed B and it is clear that
|B| ≤ |A′| ≤ |A|. An important property of this schedule generation scheme is
that if the number of operators is large enough, in particular if p ≥ min(n,m) so
as JSO(n, p) becomes J ||ΣCi, it is equivalent to the G&T algorithm. In [30] a
full description of OG&T is given together with a formal proof of its dominance
property.

4 Search Algorithm

As we have pointed out, we use here a partially informed depth-�rst search
algorithm [24]. This algorithm starts from an initial state and, in each step, it
expands the �rst one of the set of candidate states stored in the OPEN list.
The successors of each expanded state are sorted by non-decreasing f−values and
then inserted at the beginning of the OPEN list. f is an admissible heuristic
function so as f(s) returns an optimistic estimation of the cost of the best
schedule that can be reached from state s, denoted as f∗(s). In the following
subsections we describe the main components of the depth-�rst search algorithm.



4.1 Search Space

The search space is derived from the OG&T schedule generation scheme for a
problem instance P. In the initial state, none of the operations are scheduled
yet. In intermediate states, a subset of operations SC are already scheduled. To
obtain the successors of a state de�ned by SC, a set B is built as it is indicated
in Section 3 and then one successor state is generated from each operation u ∈ B
in which u is scheduled at its current head ru. From the dominance property of
OG&T , it follows that the search tree includes at least one optimal solution.

4.2 Heuristic Functions

The evaluation function is f(s) = g(s) + h(s), where g(s) denotes the total �ow
time accumulated in the state s, and h(s) is a heuristic function that estimates
the additional cost required to reach a solution from s. We consider two admis-
sible heuristics derived from problem relaxations.

The �rst one, termed hPS , is borrowed from [31] where the problem J ||ΣCi
is considered: it relies on relaxing non-preemption and operator constraints, and
the capacity constraints for all but one of the machines. The optimal solution
to this relaxed problem, denoted as fPS(s), is a lower bound on f∗(s). So, we
compute hPS(s) = fPS(s)− g(s).

The second heuristic is obtained from relaxing constraints other than oper-
ators'. To obtain a polynomial relaxation, the capacity constraints of the ma-
chines and the heads of the unscheduled operations are relaxed. So, in the relaxed
problem the operators play the role of identical parallel machines available at
di�erent times and the unscheduled operations of each job are joined into one
only operation released at time 0. This problem, denoted (P,NCini||

∑
Ci), can

be optimally solved applying the SPT (Shortest Processing Time) rule [2,28].
Algorithm (1) shows the calculation of heuristic hOP for a state s. It is easy to
see that this algorithm runs in a time of order O(max(n×m,n log n)).

Finally, we take h(s) = max(hPS(s), hOP (s)).

Input A state s.
Output The heuristic estimation hOP (s).
Build a (P,NCini||

∑
Ci) instance P relaxing the problem represented by the state

s as it is indicated in the text;
for each operation θ in P from shortest to largest processing times do
Select the operator O available at the earliest time t;
Schedule θ at time t;
Update t = t+ pθ;

return The total �ow time of the built schedule for P- g(s);

Alg. 1: Calculating the heuristic hOP for a state s



5 Dominance Rules

The e�ective search tree may be reduced by means of dominance relations among
states similar to that exploited in [31] for the classic job-shop scheduling problem.
Given two search states s1 and s2, s1 dominates s2 i� f

∗(s1) ≤ f∗(s2). In general,
dominance relations cannot be easily established, but in some particular cases
an e�ective condition for dominance can be de�ned. For the above search space,
an e�cient and e�ective dominance rule is de�ned as follows. If s1 and s2 are
states having the same operations scheduled, SC, then s1 dominates s2 if the
following three conditions hold:

(1) rv(s1) ≤ rv(s2), for all v /∈ SC.
(2)

∑
θivi∈SC

rθivi (s1) ≤
∑
θivi∈SC

rθivi (s2).

(3) av(s1) ≥ av(s2).

where rv(s) and av(s) denote the head of v and the availability of operators in
state s, respectively. It must be taken into account that θivi is the last operation
of job i.

From conditions (1) and (3) it follows that the subproblem represented by
the unscheduled operations SC is less costly for state s1 than it is for s2 and
condition (2) means that the accumulated �ow time due to the jobs with all
their operations scheduled is not greater in s1 than it is in s2. The availability
of operators in a state can be evaluated as follows. Let t1 ≤ · · · ≤ tp be the
times at which the operators get idle in the state s (here it is worth noting that
the operator available at time ti is any Oj , 1 ≤ j ≤ p). If u∗ is the unscheduled
operation with the lowest head in s, then none of the operators can get busy
again before ru∗ , so we can consider that the operators are actually available for
the unscheduled operations at times t′1 ≤ · · · ≤ t′p, where t

′
i = max(ru∗ , ti). So,

the availability of operators in state s is de�ned as the ordered vector av(s) =
(t′1, . . . , t

′
p). On the other hand, if x is the number of jobs and y is the number

of machines with unscheduled operations in SC, then the maximum number of
operators required to schedule the remaining operations in these states is limited
by p′ = min(p, x, y), so av(s1) ≥ av(s2) i� t′1i ≤ t′2i, 1 ≤ i ≤ p′.

The implementation of the dominance rules can be done as follows. When a
state s is considered for expansion, s is compared to all the expanded states hav-
ing the same operations scheduled. This can be done e�ciently if the expanded
states are stored in a CLOSED list implemented as a hash table where the key
values are bit-vectors representing the scheduled operations. Moreover, this rule
may be improved from the following result that establishes a su�cient condition
for the conditions (1), (2) and (3) not to hold simultaneously.

Proposition 1. If the heuristic estimation is obtained from a problem relax-
ation, i.e. f(s) is the cost of an optimal solution to the relaxed problem obtained
from s in accordance with that problem relaxation, and the states s1 and s2 ful�ll
all conditions (1), (2) and (3) then f(s1) ≤ f(s2).
Proof. It is trivial, as any solution to the relaxed instance obtained from s2 is a
solution to the relaxed instance obtained from s1.
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Fig. 2. A partial schedule to a problem with 5 jobs, 5 machines and 3 operators.

So, when a state s is expanded, it has only to be compared with states s′ in
CLOSED having the same operations scheduled and f(s′) ≤ f(s).

As both heuristics hPS and hOP are obtained from problem relaxations, the
evaluation functions de�ned as fPS(s) = g(s) + hPS(s) and fOP (s) = g(s) +
hOP (s) ful�ll the condition of Proposition 1. As f(s) = max(fPS(s), fOP (s)),
the condition may be evaluated on f , due to the fact that f(s1) > f(s2) implies
that at least one of the conditions fPS(s1) > fPS(s2) or fOP (s1) > fOP (s2)
holds.

To demonstrate the application of this rule we can consider a search state
similar to that of Figure 2 with the same operations scheduled, but exchanging
the order of operations θ31 and θ41 on the machine R1. These states dominate
each other, so one of them can be discarded. In this example the heads of the
unscheduled operations and the operators availability are the same in both states.
However, other situations might appear where these values are not the same in
two states while one of them dominates the other.

Note that this pruning method generalizes the procedure for checking dupli-
cations as in these situations the nodes dominate each other.

6 Computational Results

The purpose of the experimental study is to assess our proposal (DF ) and to
compare it with an implementation on IBM ILOG CPLEX CP Optimizer tool
(CP ). In this implementation, JSO(n, p) is modeled like a classical job shop
scheduling problem where the p operators are naturally modeled as a nonrenew-
able cumulative resource of capacity p. In the experiments, the solver was set to
exploit constraint propagation on no overlap (NoOverlap) and cumulative func-
tion (CumulFunction) constraints to extended level. The search strategy used
was depth-�rst search with restarts (default con�guration).

We have experimented across two benchmarks with 560 instances in all. The
�rst one is that proposed in [3], but considering total �ow time as objective
function instead of makespan. All these instances has n = 3 and p = 2 and
are characterized by the number of machines (m), the number of operations per



job (vmax) and the range of processing times (pi). A set of small instances was
generated combining three values of each parameter: m = 3, 5, 7; vmax = 5, 7, 10
and pi = [1, 10], [1, 50], [1, 100]. Also, a set of larger instances was generated with
m = 3, combining vmax = 20, 25, 30 and pi = [1, 50], [1, 100], [1, 200]. In all cases,
10 instances were considered from each combination. The sets of small instances
are identi�ed by numbers from 1 to 27: the �rst set corresponded to the triplet
3 − 5 − 10, the second was 3 − 5 − 50 and so on. The sets of large instances
are identi�ed analogously by labels from L1 to L9. For all these instances the
optimal solution is known and it was obtained by the best-�rst search algorithm
proposed in [29].

The second benchmark includes conventional instances taken from the OR-
library [6]: small instances as LA01 − 05 (10 jobs ×5 machines), medium size
instances as LA06−10 (15×5), LA11−15 (20×5), LA16−20 (10×10) and large
instances as LA36 − 40 (15 × 15). For each instance, all values in the interval
[1,min(n,m)] are considered as the number of operators p. For many of these
instances the optimal solution is still unknown.

In this study, we have given the algorithms a time limit of 300 seconds. Also,
DF has been given a memory limit of 4 GB to store expanded states when
exploiting the global pruning rule. As CP is non-deterministic, we report the
average results across 10 executions. The target machine was Intel Xeon (2,26
GHz), 24 GB RAM. The algorithms are coded in C++.

We have solved all the instances with CP and DF in two di�erent modes:
without pruning (DFNP ) and with pruning (DFP ). Table 1 shows the results
from the �rst set of instances averaged for subsets of instances with the same
number of operations per job vmax. For each algorithm, we report the time taken
in seconds (T), the number of solved instances (#Sol) and the mean relative er-
ror in percentage w.r.t. the optimal solution (%Err). Additionally, we report the
average number of expanded nodes for both DF algorithms (#Exp). As it can

Table 1. Summary of results from instances with 3 jobs and 2 operators.

SMALL LARGE
1-9 10-18 19-27 L1-L3 L4-L6 L7-L9

CP
T.(s) 0,02 0,09 0,74 281,00 300,00 300,00
#Sol. 90/90 90/90 90/90 4/30 0/30 0/30
%Err. 0,00 0,00 0,00 0,49 1,56 1,64

DFNP

T.(s) 0,02 0,03 0,76 291,97 300,00 300,00
#Sol. 90/90 90/90 90/90 2/30 0/30 0/30
%Err. 0,00 0,00 0,00 2,40 3,67 4,24
#Exp. 73,58 311,08 4746,47 630215,27 498189,73 393827,57

DFP

T.(s) 0,01 0,03 0,14 12,23 57,60 148,97
#Sol. 90/90 90/90 90/90 30/30 30/30 28/30
%Err. 0,00 0,00 0,00 0,00 0,00 0,01
#Exp. 54,13 135,78 469,81 34635,27 120805 260828,43
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Fig. 3. Errors in percentage obtained with the three algorithms CP , DFNP and DFP
averaged for the LA instances with the same size.

be observed, the small instances (SMALL) were easily solved by the three al-
gorithms, but DFP took the lowest time and expanded much less states than
DFNP . It was in the large instances (LARGE) where there were signi�cant dif-
ferences among the algorithms. CP and DFNP were only able to certify the
optimality in 4 and 2 instances respectively, while DFP certi�ed the optimality
in all but 2 instances and consequently it also layouts much lower error in per-
centage. Also, the number of expanded states was in average almost one order
of magnitude lower with DFP than it was with DFNP , what makes it clear the
utility of the global pruning method.

For the second set of instances neither of the algorithms can reach the optimal
solution in most of the cases. Figure 3 summarizes the error in percentage of the
solutions reached by the three methods. These errors were computed w.r.t. the
lower bounds obtained by the best-�rst algorithm given in [29] after 300 s. As we
can observe, DF reached better solutions when exploiting the global dominance
rule, and in this case it was better in average than CP for 4 subsets of instances
with the same size while it was worse for the subset of 10× 10 instances.

Tables 2 and 3 report results from CP and DFP for the subsets with 5
machines and 10 machines respectively of the second benchmark averaged for
the instances with the same number of operators (#Op) in each subset. For these
instances CP reached the time limit of 300 s. without certifying any optimal
solution, while DFP could certify the optimal solution for a number of instances
with 5 machines, this number decreasing with the number of jobs. Also, the error
in percentage was lower for DFP in about 1,76; 1,12 and 1,12 for instances with
5, 10 and 15 machines respectively in average w.r.t. CP .



Table 2. Summary of results from the LA instances with 5 machines.

10jobs 15jobs 20jobs
CP DFP CP DFP CP DFP

#Op. #Sol. %Err. #Sol. %Err. #Sol. %Err. #Sol. %Err. #Sol. %Err. #Sol. %Err.

1 0/5 0,01 5/5 0,00 0/5 0,78 5/5 0,00 0/5 1,47 5/5 0,00
2 0/5 2,04 5/5 0,00 0/5 3,14 1/5 0,26 0/5 4,41 0/5 0,67
3 0/5 4,54 0/5 0,86 0/5 6,34 0/5 5,30 0/5 7,78 0/5 5,09
4 0/5 4,09 0/5 5,36 0/5 9,76 0/5 11,33 0/5 11,69 0/5 12,61
5 0/5 0,21 5/5 0,00 0/5 10,38 0/5 10,28 0/5 12,25 0/5 15,24

Avg. Err. 2,18 1,24 6,08 5,43 7,52 6,72

Table 3. Summary of results from LA instances with 10 jobs and 10 machines.

CP DFP
#Op. #Sol. %Err. #Sol. %Err.

1 0/5 0,33 5/5 0,00
2 0/5 2,50 5/5 0,00
3 0/5 4,55 0/5 2,40
4 0/5 5,37 0/5 5,79
5 0/5 7,81 0/5 9,33
6 0/5 7,44 0/5 13,64
7 0/5 8,31 0/5 10,97
8 0/5 6,09 0/5 5,47
9 0/5 5,80 0/5 4,23
10 0/5 5,06 0/5 3,69

Avg. Err. 5,32 5,55

Table 3 reports the results for LA instances with 10 jobs and 10 machines.
In this case, the average error was lower for DFP than it was for CP , and only
DFP was able to certify the optimality of the solutions for the instances with
one or two operators. However, the di�erence was lower than it was for the
LA instances with 5 machines. In this case, CP was better than DFP for the
instances with 4, 5, 6 and 7 operators. We conjecture that the reason for the
decreasing of performance for DFP w.r.t. CP in these instances is due to the
heuristic estimation being worse for an intermediate number of operators than it
being for a small or a large number. This is quite reasonable as the heuristic hOP
is expected to return better estimations when the number of operators is small
and so these are the most critical resources. On the contrary, the heuristic hPS
is expected to be better when the number of operators is large and so the critical
resources are the machines as it happens in the classical job shop problem.

Similar behavior can be observed in Figure 4 which summarized the results
for the largest instances with 15 jobs and 15 machines. As we can see, DFP is
also the best one when the number of available operators is small or large, but
it is outperformed by CP for some intermediate values of p. At the same time,
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CP shows a more uniform behavior regarding the quality of the solutions found
due to diversifying the search thanks to the use of restarts.

From this study, we claim that the proposed global pruning method, com-
bined with the OG&T algorithm and the heuristics hPS and hOP allows a classic
depth-�rst search algorithm to be quite competitive with a powerful solver such
as CP Optimizer, using depth-�rst search enhanced with restarts, in solving the
JSO(n, p) problem with total �ow time minimization. Also, this algorithm may
be improved with a more sophisticated recording scheme.

7 Conclusions

We have seen that the job-shop scheduling problem with operators with the
objective of minimizing the total �ow time can be e�ciently solved by means
of a partially informed depth-�rst search algorithm. The proposed method uses
local pruning rules in the expansion mechanism, which is inspired in the OG&T
schedule generation scheme, as it can discard some operations from the canonical
set of candidate operations to be scheduled next. And it also uses global pruning
rules by keeping in memory some expanded states and then checking every new
expanded state against them for some dominance relation. To do that we have
given an e�ective pruning condition that can be e�ciently implemented. We have
conducted an experimental study across several benchmarks and the results show
that our approach is competitive for solving this problem.



7.1 Future Research

From the experimental study, we have identi�ed a number of directions for future
research. The �rst one will be aimed at re�ning the dominance rule, given by the
three conditions established in Section 5, so as a larger number of dominance
cases can be determined.

Secondly, we plan to explore adaptive models for storing in memory those
states which are expected to dominate more states that are expanded after them.
Thus, a depth-�rst search algorithm would further exploit the pruning rules.
Concretely, we will try to generalize the method Symmetry Breaking via Dom-
inance Detection [11] to be applied with dominance rules more general than
symmetry tests. This technique would allow a depth-�rst search algorithm to
exploit a dominance relation using only linear space on the maximum depth of
the search tree. In order to use this method, we will need to extend the proposed
pruning rules so that two states at di�erent depths in the search tree could be
compared e�ciently.

The third line of research will be focused on enhancing our algorithm with
constraint propagation. This technique has been a powerful tool in constraint rea-
soning since its inception [22], and has been shown particularly e�ective for solv-
ing scheduling problems [4,5]. For example, edge �nding algorithms [8,10,19,32]
are able to e�ciently detect situations where one operation must be processed
the �rst or the last of a set of operations sharing the same resource in order
to improve the current solution. These methods have been much more e�ec-
tive for makespan minimization than for summation cost functions, as the total
�ow time. Nevertheless, in [17] the authors propose a global constraint involving
unary resources and weighted completion time that propagates constraints quite
well. So, we plan to use this method for reducing the search space and devising
better heuristic estimations for guiding the search, as it was done in [21] for the
job shop scheduling problem with makespan minimization.

Also, the fact that there are human operators involved in the processing of
the operations may reasonably lead to consider uncertainty in the durations of
the operations. This way, another interesting line of research will be focused on
dealing with uncertain processing times as it was done, for example, in [27] where
the durations are modeled with fuzzy numbers, and so developing methods to
obtain robust schedules [25,9].

Finally, in order to overcome the di�culties su�ered by our approach in
the cases where there are an intermediate number of available operators, we
will try to devise good non-admissible heuristics by computing upper bounds
to NP -hard relaxed problems. Concretely, we intend to guide the search using
those estimations and use admissible heuristics for pruning, so guaranteeing
the admissibility of the method. In the same context, we also plan to exploit
strategies that diversify the search among promising regions of the search space,
such as depth-�rst search with restarts. We already have some preliminary results
with both approaches that seem very promising.
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