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Abstract. In this work, we present a novel approach for data visualiza-
tion based on interactive dimensionality reduction (iDR). The main idea of
the paper relies on considering for visualization the intermediate results of
non-convex DR algorithms under changes on the metric of the input data
space driven by the user. With an appropriate visualization interface, our
approach allows the user to focus on the relationships among dynamically
selected groups of variables, as well as to assess the impact of a single
variable or groups of variables in the structure of the data.

1 Introduction

Many problems today involve the analysis of large datasets, which also contain
a very large number of variables from which the user should be able to find
meaningful relationships to acquire knowledge. The mere fact of obeying laws,
rules or restrictions arising from the problem domain, leads to dependencies that
make the intrinsic dimensionality of the data to be much smaller. Dimensionality
reduction (DR) algorithms –see [1] for a review– are able to find low dimensional
latent structures hidden in high dimensional data and produce a mapping on a
low dimensional space that preserves the underlying structure of data. They
are extremely useful tools in the field of visual analytics, since they provide an
advanced way for spatialization of data, allowing to create visual representa-
tions where spatial proximity between two items yi and yj in the visualization
represents similarity between xi and xj in a high dimensional space.

Another key ingredient in visual analytics is interaction. Interaction tech-
niques –zoom, pan, brushing, etc.– allow the user to reconfigure the visualization
to focus on the interesting aspects of data or to discard information that is ir-
relevant to the available knowledge of the user. In this paper we present a novel
approach for data visualization that suggests a low level integration of user in-
teraction into the DR computation and visualization process, by means of the
so-called interactive dimensionality reduction (iDR). In section 2 we describe
the iDR approach as a user-driven visualization of intermediate results of DR
algorithms, highlighting some of its potential applications, such as the analysis
of time-varying datasets or sensitivity analysis of data dependencies. In section
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3 we describe an application demo of the iDR idea for the visual analysis of fault
states in a rotating machine. Finally, section 4 concludes the paper.

2 The interactive Dimensionality Reduction approach

In the typical procedure to use DR algorithms for visual analytics, interaction
is often done after DR computation on the input dataset. The user sets up an
initial configuration for the DR algorithm, runs it until convergence and, after N
iterations, the output results are used to produce a visualization. The user may
later use interaction techniques to reconfigure this visualization or even decide to
run the DR algorithm again using another parameterization, starting the cycle
again –see for instance [2]. This approach can be thought of as a batch mode
interaction scheme for DR visual analytics.
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Fig. 1: Batch mode interaction scheme (left) vs. the iDR approach (right)

However, interaction can go far beyond this approach, allowing the user to
take full control of the DR behavior by means of iterative reconfiguration of
computational algorithms [3]. The right picture in Fig. 1, shows the main idea
of this approach for DR analysis, where the intermediate results are used to
produce a visualization at each iteration. The result is a dynamically changing
visualization that allows the user to track changes in the resulting projection
under changes in the problem formulation, such as, for instance, user-driven
changes of the metric in the input space (e.g. by modifying the weights of the
input variables), or under time-varying input data (e.g. in dynamic processes
where the elements of the input dataset change with time). Despite this approach
is still rather unexplored, a few related works can be found, as an interactive
version of PCA [4] and an interactive learning of distance functions [5].

2.1 Applications of the iDR approach

To allow interaction, we shall consider iterative algorithms, such as Stochastic
Neighbor Embedding (SNE) [6] or the Neigborhood Retrieval Visualizer (NeRV)
[7]. For simplicity, let’s consider a block diagram of the SNE algorithm for the
k-th iteration –see Fig. 2. Some of the inputs –data or parameters– to the
algorithm can change or be changed by the user at each iteration.
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Fig. 2: Block diagram of the SNE algorithm at the k-th iteration

2.1.1 Time-varying input datasets

Let the input dataset be {xi}, where xi is a vector with n features xi1, xi2, . . . , xin.
The Q elements of the input dataset may change over time, resulting in a time-
varying dataset {xi}(k) at time k. Using the DR algorithm to visualize time-
varying datasets allows the user to understand not only the main relationships
and structure of data but also how these relationships evolve along time.

2.1.2 Changes in the metric of the input space

A simple but powerful interaction feature can stem from user-driven change in
the input space metric Ω. Let’s consider the following weighted norm in the
input data space

‖x‖2Ω :=
∑

r

∑

s

xrωrsxs. (1)

Using the metric induced by the previously defined weighted norm, the input dis-
tances between input points xi and xj would be dij = ‖xi−xj‖Ω. Let’s consider
the special case where the weight matrix Ω is diagonal Ω = diag(ω1, ω2, . . . , ωn),
where we have dropped the repeated index in ωqq and used ωq instead, to sim-
plify notation. With this choice and an appropriate visual interface, the user
can vary the contribution of any variable to the DR projection by changing the
values of the weights ωq. Any variable q for which ωq = 0 would not contribute
to the DR projection (resulting in a pseudonorm). If a new weight matrix Ω(k)

is used by the DR algorithm at every iteration k, the DR algorithm will result
in a smooth transition (depending on the learning rate) to a new projection that
considers the relationships outlined by the new weight matrix. This mechanism
allows the user to quickly explore dependencies among the variables by selecting
subgroups in the interface. Moreover, since under changes in the metric Ω(k) the
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algorithm converges smoothly to a new stable state –that is, the DR projection
under the new metric–, changes can be tracked by the user, allowing to establish
links and find differences between the new projection and the former one.

Interacting with the weights ωq, the user can explore several kinds of non-
linear correlations between the variables. Suppose that the user has chosen
a set of K nonzero weights {ωq1 , ωq2 , . . . , ωqK}. If a 1-dimensional structure
–i.e. a snake-shaped figure– emerges after convergence in the projection, it re-
veals a mutual nonlinear dependency on an independent parameter t of the type
xq1 = fq1(t), xq2 = fq2(t), . . . , xqK = fqK (t). Note that this information is
much more general than the one provided by a linear correlation coefficient or
the more general nonlinear correlations observable in scatter plots, which can
only be visualized for two variables in a single scatter plot.

A further collateral benefit of this kind of DR interaction is sensitivity anal-
ysis. Whenever the user modifies a single weight ωq, the input distance pattern
dij becomes more sensitive to variable q. This will be reflected as large dis-
placements in the projections of all elements that have significant differences
in variable q with respect to the other ones. This sensitivity analysis is not
restricted to a single variable. Eventually, if the interface allows it, the user
could change the weights {ωq1 , ωq2 , . . . , ωqM } of a group of M variables at the
same time to discover elements that differ significantly in any of the variables
xq1 , xq2 , . . . , xqM . Moreover, the displacement trajectories should be different for
elements with different patterns of variation within the group.

2.1.3 Interactive feature space transformations

Feature space transformations [8] allow improving the quality of an existing
embedding in terms of both structural preservation and class separation. One
simple feature extension scheme, for instance, is to augment each element x with
an extended feature set x̄c(x) equal to the centroid of the class c(x) it belongs
to, thus forming an extended vector xe = [x, x̄c(x)]. The DR projection of xe,
therefore contains class information, resulting in a more meaningful projection.
A user-driven variant of this approach, suitable for interaction, could involve a
weight factor λ

xe(λ) = [(1− λ)x, λx̄c(x)]

letting the user modify λ(k) and projecting xe(λ
(k)) at iteration level, the user

can control the balance between class separation and structural preservation. As
a result the user can set the optimum point or even move it to gain insight and
find connections between data structure and class knowledge.

3 Application demo: fault analysis of AC motor

A javascript application using the iDR approach was developed using process-
ing.js (http://processingjs.org), for the analysis of vibration data in a 4kW,
2 pole-pair asynchronous motor, where three vibration signals –measured in the
three axes ax(t), ay(t), az(t)– and two phase currents iR(t), iS(t) were recorded
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at a 5000 Hz sample rate. Two kinds of asymmetries were tested: 1) vibrations
at the rotation frequency produced by a mechanical eccentricity, resulting in a
main vibration component near 25 Hz; and 2) an electrical imbalance caused by a
variable electrical load –impedances in the range (0Ω,∞Ω)– in one of the phases,
causing vibration mainly at twice the 50 Hz line frequency, that is, 100 Hz. Both
normal and fault data, under combinations of these faults, were recorded. Thus,
energies in bands of 25Hz and 100Hz were computed using the FFT algorithm
for the five variables, leading to a 10-dim feature vector that describes the fault
state of the machine.

Fig. 3: Screenshot of the iDR interface

The application demo interface1 –see Fig. 3– iteratively computes and visu-
alizes the SNE algorithm under tunable weights for the input variables. It shows
a dynamic “fault map” consisting of an animated scatterplot of the feature vec-
tors, using a uniform color scale –blue=low, red=high– and size to describe the
values of the feature highlighted in the right list. When the user modifies the
weight of any variable –by dragging the bars of a small barchart of weights on
the bottom right corner–, the fault map gets automatically “reordered”, group-
ing the states according to the weight-dependent similarity metric configured by
the user. Starting from zero weights for all variables, if the user increases the
weight of a variable that characterizes a given fault –e.g. 100 Hz of ax(t), for
the electrical imbalance– its states gradually emerge from the remaining states,
producing a new separated cluster. The same occurs with mechanical imbalance
states if a 25 Hz vibration band is modified –e.g. ax(t), ay(t) or az(t). Further

1Demo available at http://isa.uniovi.es/~idiaz/demos/iDR-vibracionesMotor/
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changes in other variables lead to subtle variations on the cluster structure. In
addition, by hovering on a point, the user gets contextual information, including
the label of the corresponding element, a small bar chart with the actual fea-
ture vector and another bar chart with the best matching pattern from a set of
characteristic patterns obtained using the neural gas algorithm.

4 Conclusions

In this work we have presented a novel approach for data visualization based
on the so-called interactive dimensionality reduction (iDR). The main role of
interaction is to involve the user in the analysis loop by allowing her tuning the
visual representation to focus in the interesting parts of the data. However, the
main idea presented here relies on taking interaction beyond, by changing the
conditions and/or input information to a running DR visualization. We have
outlined here three potential applications of this idea: tracking time-varying
input datasets, interactively exploring nonlinear correlations and combining the
DR visualization with class information, including a demo application to give
a gist of the core idea. While user studies should still be done to assess its
effectiveness, it opens a wide field of exploration, lying in the intersection of
data visualization and machine learning.
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