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Foreword 

Application domains that entail planning and scheduling (P&S) problems present a set of 

compelling challenges to the AI planning and scheduling community, from modeling to 

technological to institutional issues. New real-world domains and problems are becoming 

more and more frequently affordable challenges for AI. The international Scheduling and 

Planning Applications woRKshop (SPARK) was established to foster the practical 

application of advances made in the AI P&S community. Building on antecedent events, 

SPARK'13 is the seventh edition of a workshop series designed to provide a stable, long-term 

forum where researchers and practitioners can discuss the applications of planning and 

scheduling techniques to real-world problems. The series webpage is at 

http://decsai.ugr.es/~lcv/SPARK/ 

 

We are once more very pleased to continue the tradition of representing more applied aspects 

of the planning and scheduling community and to perhaps present a pipeline that will enable 

increased representation of applied papers in the main ICAPS conference. 

 

We thank the Program Committee for their commitment in reviewing. We thank the 

ICAPS'13 workshop and publication chairs for their support. 
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Abstract

We confront the problem of scheduling the charge of electric
vehicles, under limited electric power contract, with the ob-
jective of maximizing the users’ satisfaction. The problem is
motivated by a real life situation where a set of users demand
electric charge while their vehicles are parked. Each space
has a charging point which is connected to one of the lines of
a three-phase electric feeder. We first define the problem as a
Dynamic Constraint Satisfaction Problem (DCSP) with Opti-
mization. Then, we propose a solution method which requires
solving a number of CSPs over time. Each one of these CSPs
requires in its turn solving three instances of a one machine
sequencing problem with variable capacity. We evaluated the
proposed algorithm by means of simulation across some in-
stances of the problem. The results of this study show that
the proposed scheduling algorithm is effective and produces
much better results than some classic dispatching rules.

Introduction
It is well known that the use of Electric Vehicles (EVs) may
have a positive impact on the economies of the countries and
on the environment, due to promoting the use of alternative
sources of energy and relieving the dependency of foreign
petrol. At the same time, the emerging fleet of EVs intro-
duces some inconveniences such as the additional load on
the power system. However, the charge of EVs is usually
more flexible than the conventional load of oil vehicles as in
many cases the owners require charging while their vehicles
are parked during large time periods. This flexibility may
be exploited to design appropriate algorithms for charging
control (Wu, Aliprantis, and Ying 2012).

In this paper we consider a real life problem that requires
scheduling the charging intervals of a set of EVs that de-
mand power while they are parked in their own spaces within
a community car park. A charging station is installed in
the car park so that each space has an independent charg-
ing point. However, if the power demand is very large dur-
ing a given time period, not all the requiring vehicles can be
charged simultaneously, as the contracted power is limited.
So, in these situations, an appropriate scheduling policy is
necessary to organize and control the charging intervals of

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the vehicles along the time they are in the car park (Sedano
et al. 2012).

We propose modeling the problem of computing such a
schedule in the framework of Dynamic Constraint Satisfac-
tion Problems (DCSP) with Optimization. As it is usual,
one problem of this class requires solving a number of CSPs
over time. In order to solve each one of these CSPs, we
propose an algorithm that requires solving a number of in-
stances of a one machine scheduling problem with variable
machine capacity. The scheduling algorithm is evaluated by
means of simulation and compared with some dispatching
rules such as First Come First Scheduled (FCFS) or Latest
Starting Times (LST).

The rest of the paper is organized as follows. In the next
section we summarize the aspects of the charging station that
are relevant from the point of view of the scheduling algo-
rithm. Then, we define the problem and describe the pro-
posed algorithm to solve it. Finally, we report the results of
the experimental study and give some conclusions and ideas
for future research.

Description of the charging station
In this section we summarize the main characteristics of the
electrical structure and the operation mode of the charging
station. These elements are detailed in (Sedano et al. 2012).
Figure 1 shows a schema of the distribution net of the charg-
ing station. The net is feeded by a three-phase source of
electric power. In the model considered here, each line feeds
a number of charging points. The station has about 180
spaces, each one having a charging point which may be in
two states: active or inactive. When it is inactive, the charg-
ing point is not connected to the electric net, while in active
state it is connected to the net and transfers energy at a con-
stant rate (2.3Kw) in the so called mode 1 (Sedano et al.
2012).

The operation of the station is controlled by a distributed
system comprising a master and a number of slaves. Every
two consecutive charging points in the same line are under
the control of the same slave. The master has access to the
database where the vehicles’ data and the charging sched-
ule are stored. It receives information about the state of the
charging vehicles from the slaves, and transmits to the slaves
starting times and durations of charging intervals. So the
slaves are responsible for activating and deactivating charg-
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Figure 1: General structure of the distribution net of charg-
ing stations. It is formed by different parts such as: (1)
power source, (2) three-phase electric power, (3) charging
points, (4) masters, (5) server with database, (6) communi-
cation RS 485, (7) communication TCP/IP, (8) slaves.

ing points as well as registering asynchronous events such
as a new vehicle arriving to the system.

The operating mode of the station is as follows. Each user
has one vehicle and one space assigned. These are concrete
spaces as each user has to be the owner or the renter of its
stall and he cannot use the space of another user. This re-
striction makes the scheduling problem harder to solve as
each stall is connected to one of the three lines of the three-
phase feeder and so keeping the balance constraints may not
be easy. So, for a vehicle and user can use the station, they
have to be registered in the system. When entering in the
station, the user has to check in and identify himself and the
vehicle. At this time, the user has to connect the vehicle to
the charging point and provide the charging time, as well as
an expected time, or due date, for taking the vehicle away.
These values are then used by the control system to sched-
ule the vehicle, i.e., to establish a starting time. In principle,
the vehicle will start to charge at this starting time unless the
schedule is modified before it.

There are some constraints that must be satisfied for the
station to work properly. For example, although there are
180 spaces available, not all the charging points in these
spaces can be activated at the same time. In practice there
is a maximum number of vehicles N that can be in charge
(actives) at the same time in a line which depends on the
contracted power. Also, due to electro-technical and eco-
nomical reasons, the current consumption in the three lines
must be balanced. This condition is considered as a maxi-
mum imbalance between any two lines.

In this paper we consider a simplified model of the charg-
ing station which make the following assumptions: the user
never takes the vehicle away before the declared due date
and the battery does not get completely charged before the
charging time indicated by the user. Even though they are
unrealistic assumptions, the model may be adapted to deal
with these situations with nothing more than introducing
new asynchronous events.

In principle, each time a new vehicle requires charging,
the current schedule may get unfeasible and so a new sched-
ule should be built. However, in order to avoid the system to
collapse if many of such events are produced in a very short
period of time so that a new schedule cannot be obtained
from one event to the next, new schedules are computed at
most at time intervals of length ∆T . In order to do that,
the protocol is the following: every ∆T time units a super-
visor program, running on the server, checks for the events
produced in the last interval. If at least one event was pro-
duced that could make the current schedule unfeasible, then
the scheduler is launched to obtain a new feasible schedule
which is applied from this time on.

Modeling frameworks
Given the characteristics of the charge scheduling problem,
maybe the most appropriate framework for modeling is the
dynamic constraint satisfaction problem framework (DCSP)
introduced in (Dechter and Dechter 1988). A DCSP is a
sequence of CSPs, 〈P1, P2, . . . , Pn〉, where each Pi, 1 <
i ≤ n is derived from Pi−1 by adding and removing a
limited number of constraints. Some variants of the DCSP
framework has been proposed that capture other character-
istics such as dynamic domains of the variables, state vari-
ables which are controlled by the physical system and not
by the decision maker, or the uncertainty about the presence
of some constraints. However, none of these characteristics
appears in the version of the charging scheduling problem
considered here. All of these and other frameworks are sur-
veyed in (Verfaillie and Jussien 2005).

There are two main types of methods to solve a DCSP:
reactive and proactive. A reactive algorithm does not use
knowledge of the possible changes, so it may not produce
robust solutions, but at the same time it may react better to
any kind of change. On the contrary, a proactive method is
able to exploit any available knowledge and so it may pro-
duce robust or flexible solutions. In both cases, the algo-
rithms may either reuse the solutions of the previous CSP or
compute a new solution from scratch. Each of these options
has its own advantages and drawbacks. Solution reuse may
speed up the calculation of a new solution, but at the same
time may prevent the algorithm from obtaining a better one.

A particular case of proactive method is the online
stochastic optimization framework (Chang, Givan, and
Chong 2000), (Bent and Van Hentenryck 2004), which has
been applied to a variety of problems where a set of requests
are given over time. Online stochastic optimization algo-
rithms rely on two main components: an offline solver for
a set of requests, and a sampler that generates fictitious re-
quests with a given distribution along a time horizon. The
online stochastic algorithms solve instances which are com-
posed by subsets of requests including real and fictitious
ones, then they take decisions from the solutions of these
fictitious instances. So, the application of online stochastic
optimization to the charge scheduling problem may make it
difficult to maintain the balance constraints if the process-
ing times of the fictitious operations differ much from the
charging periods required for the incoming vehicles.
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From all the above, we have opted to model the electric
vehicle charging scheduling problem, termed PI in the se-
quel, in the framework of DCSP with optimization and to
use a reactive method to solve it. So, in the next sections
we give the formal definition of the problem and describe
the proposed algorithms. Before this, we also give a formal
definition of the problem as a static CSP, which assumes a
complete knowledge in advance about the vehicle arrivals.
This helps to understand the subsequent dynamic definition.

Definition of the PI problem as a static CSP
As we have pointed, if the problem data, i.e., the arrival
times of the vehicles and their charging times and due dates
were known in advance, the problem could be formalized as
a static CSP. Even though this is not the case for our prob-
lem, we consider here a static version of it. The purpose
is twofold, firstly to clarify the overall problem and then
to define the simulation framework which will be used in
our experimental study. In the next subsections we give the
problem data, the goal, the problem constraints and the eval-
uation function to be optimized.

Problem data. In an static instance P of the PI problem
there are 3 charging lines Li, 1 ≤ i ≤ 3, each one having ni
charging points. N > 0 is the maximum number of charg-
ing points that can be active at the same time in each one of
the three lines. The line Li receives a number of Mi vehi-
cles {vi1, . . . , viMi

} from a time 0 up to a planning horizon.
Each vehicle vij is characterized by an arrival time tij ≥ 0, a
charging time pij and a time at which the user is expected to
take the vehicle away, or due date, dij by which the battery
of the vehicle should be charged.

There is also a parameter ∆ ∈ [0, 1] which controls the
maximum imbalance among the lines.

Goal. The goal is to get a feasible schedule for P, i.e.,
assigning starting times to the decision variables stij for
each vehicle vij satisfying the constraints and optimizing the
evaluation function.

Constraints

I. For all vehicle vij , stij ≥ tij .

II. No preemption is allowed, so a vehicle vij cannot be
disconnected before its charging time Cij is reached,
i.e., Cij = stij + pij .

III. The number of active charging points in a line at a
given time cannot exceed N , i.e.,

max
(t≥0;i=1,2,3)

Ni(t) ≤ N (1)

where Ni(t) denotes the number of charging points of
line Li which are active during the time interval [t, t+
1).

IV. The maximum imbalance between any two lines Li

and Lj is controlled by the parameter ∆ as

max
(t≥0;1≤i,j≤3)

(|Ni(t)−Nj(t)|/N) ≤ ∆ (2)

Evaluation function. The evaluation function is the total
tardiness defined as∑

i=1,2,3;j=1,...,Mi

max(0, Cij − dij) (3)

which must be minimized.

Definition of the PI problem as a DCSP
The PI problem may be naturally considered as a dynamic
problem due to the fact that the arrival of vehicles is not
known in advance. For this reason, an instance P can be
defined as a sequence of instances, P1,P2, . . . of a static
CSP termed PII. Each Pk is defined (see the next Section)
from the set of vehicles in the system which have not yet
completed their charging periods.

To solve this problem, we adopted here a similar strat-
egy to that used in (Rangsaritratsameea, Ferrell, and Kurzb
2004) for the dynamic Job Shop Scheduling problem where
the jobs are unknown until they arrive. In that paper, the
authors propose to build a new schedule at each ”reschedul-
ing point” combining all previous operations that have not
started processing together with operations arriving after the
previous rescheduling point.

Due to technological restrictions, we do not consider
rescheduling each time a new vehicle arrives. Instead, we
consider rescheduling each time the Supervisor is activated.
The new schedule involves the vehicles which have arrived
from the previous point together with all the vehicles in the
system which have not yet started to charge.

Solving the dynamic PI problem
Algorithm 1 shows a simulation of the actual algorithm to
solve a dynamic PI problem. In the simulation, the problem
data and the sequence of times for the Supervisor to be ex-
ecuted are given to the algorithm. The algorithm iterates on
this sequence of times T1, T2, . . . . In the iteration k, i.e., at

Algorithm 1 Solving the PI problem.
Require: The data of a P instance of the PI problem: tij , pij and

dij for all vehicles vij ; and the sequence of times T1, T2, . . . at
which the Supervisor is activated.

Ensure: A schedule S for P defined by the time each vehicle starts
to charge stij and the total tardiness produced by this schedule.
S = ∅;
for all k = 1, 2, . . . do

if a new vehicle vij has arrived at a time t = tij ∈ (Tk−1, Tk]
then

Generate a new instance Pk of the problem PII with all
vehicles vij s.t. tij ≤ Tk and that have not started charging
yet;
Calculate a solution S for the instance Pk; {A solution S
defines starting times st∗ij ≥ Tk to schedule all vehicles
vij that are not active at Tk}

end if
Establish S as the current solution along [Tk, Tk+1); i.e., for
each st∗ij ∈ S such that Tk ≤ st∗ij < Tk+1, set stij = st∗ij
in the final schedule S, so that vij starts charging at st∗ij ;

end for
return the schedule S for P and its total tardiness;
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time Tk, a new instance Pk of PII is created if some vehi-
cle arrived from the previous instant Tk−1. This instance is
solved and the new solution replaces the current one from Tk
on. If no vehicle has arrived from Tk−1 to Tk then the cur-
rent solution can remain active until the next iteration. The
current solution is applied during the time it is active. This
means that the vehicles start charging at the times st∗ij given
in the current solution, so stij is fixed to st∗ij in the solution
to the P instance, and disconnected at their expected times
Cij = stij + psij .

Definition of the PII problem
The PII problem can be defined as a static CSP as fol-
lows: In an instance Pk, we are given a set of vehicles
{vi1, . . . , vili , . . . , vimi} at time Tk in each line Li, 1 ≤ i ≤
3. Each vehicle vij requires a charging time pij and has a
due date dij . The vehicles vi1, . . . , vili are already active,
as they started to charge at a time t < Tk and have not yet
finished, i.e., Cij = stij + pij > Tk. While the vehicles
vili+1, . . . , vimi

have not yet started to charge. So, in the it-
eration k, the capacity of the line Li to charge new vehicles,
denoted Mk

i (t) is given by

Mk
i (t) = N −

∑
1≤j≤li

Xij(t), t ≥ Tk (4)

where

Xij(t) =

{
1, t < Cij

0, t ≥ Cij
(5)

The objective is to obtain a feasible schedule for all ve-
hicles in the system such that all of them can be sorted out,
even if no new vehicles arrive after Tk. This requires assign-
ing starting times st∗ij to all vehicles unscheduled at time Tk,
which are compatible with the starting times of the vehicles
already scheduled by Tk. This means that all the constraints
naturally derived from the static PI problem must be satis-
fied.

Also, the evaluation function will be, in principle, mini-
mizing the total tardiness. However, as the solution to the
instance Pk is expected to be useful along a short time pe-
riod (until the arrival of a new vehicle), we will try to maxi-
mize the number of charging vehicles at the beginning. So,
we could consider a time horizon th at which a new event
may be expected and try to maximize the charge along the
interval [Tk, Tk + th]. This new objective may be expressed
as maximizing∫ Tk+th

Tk

(N1(t) +N2(t) +N3(t))dt (6)

where Ni(t); i = 1, 2, 3 denotes the number of active vehi-
cles in line Li at time t.

Solving the PII problem
The PII problem is really hard to solve because of the con-
straint derived from constraint (IV) of the static PI problem,
which for the instance Pk may be expressed as

max
(t≥Tk;1≤i,j≤3)

(|Ni(t)−Nj(t)|/N) ≤ ∆ (7)

It is not easy to build a schedule satisfying this constraint
and at the same time maximizing expression (6). To solve
this problem, we propose to use two simple dispatching rules
and a more sophisticated algorithm based on problem de-
composition.

Solving PII with a dispatching rule. We propose to use
a simple dispatching rule termed LTS (Latest Starting Time)
to solve each Pk instance. This rule works as follows: the
unscheduled vehicles at time Tk in the system are sorted in
accordance with their latest starting times given by dij −
pij , then these vehicles are scheduled in this order and each
one is given the earliest starting time such that the scheduled
vehicles satisfy all the constraints. This rule can be easily
implemented, but the restriction that the balance constraint
must be satisfied after scheduling each vehicle is very hard
and may prevent the algorithm from reaching near optimal
solutions.

Solving PII by problem decomposition. We also propose
a method that uses problem decomposition in the following
way. First of all, we establish a profile of maximum charge,
Nmax

i (t), i = 1, 2, 3, for each one of the three lines; so that
these profiles satisfy the constraint

max
(t≥Tk;1≤i,j≤3)

(|Nmax
i (t)−Nmax

j (t)|/N) ≤ ∆ (8)

Then, we try to obtain a schedule for each one of the lines,
so that Ni(t) is as close as possible to Nmax

i (t) for t ≥ Tk
while it satisfies the constraint

Ni(t) ≤ Nmax
i (t), t ≥ Tk (9)

Hence, combining the solutions to the three lines may give
rise to a feasible solution to the PII instance. If not, the pro-
files Nmax

i (t) are adjusted and new schedules are computed
for one or more lines.

The problem of calculating a schedule for a line subject
to a maximum load is denoted PIII herein and the instance
of this problem which consist in scheduling the vehicles in
the line Li, subject to the profile Nmax

i (t) at time Tk, is
denoted Pki. So, our proposed method starts from some
initial profiles and then these profiles are updated as long
as the solutions obtained to the Pki instances, 1 ≤ i ≤ 3,
derived from a Pk instance, do not make up a solution to the
Pk instance.

Algorithm 2 describes the calculation of a solution to
a Pk instance. The algorithm starts from trivial profiles
Nmax

i (t) and then iterates until a solution is reached. In
each iteration, it solves the three Pki instances subject to
the profiles Nmax

i (t). If these solutions make up a solution
for Pk, the algorithm finishes; otherwise, some profile is
adjusted from the earliest time t′ at which an imbalance is
detected onwards. In this way, the profiles are maintained as
large as possible at the beginning and so, hopefully, the eval-
uation function given in expression (6) is maximized. The
adjustment of the profiles is the most controversial operation
in this algorithm. We will reconsider this issue later.
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Algorithm 2 Solving the PII problem.
Require: The data of an instance Pk: pij and dij for all unsched-

uled vehicles vij that arrived by Tk; and the values stij and pij
for all vehicles scheduled before Tk such that stij + pij ≥ Tk.

Ensure: A schedule S for Pk defined by the time each vehicle
starts to charge st∗ij and the total tardiness produced by this
schedule.
Set the initial profiles to Nmax

i (t) = N, t ≥ Tk, 1 ≤ i ≤ 3;
while Pk remains unsolved do

Solve the instances Pki under the current profiles Nmax
i (t);

{The three PIII instances get solved with charge profiles
Ni(t)}
Let t′ ≥ Tk be the earliest time such that an imbalance exists,
i.e., Ni(t

′)−Nj(t
′) > ∆×N for some 1 ≤ i, j ≤ 3;

if there exists such a time t′ then
Adjust the profile of maximum load for the line Li so that
Nmax

i (t) ≤ Nj(t) + ∆×N , t ≥ t′;
else

The solutions to the Pki instances, 1 ≤ i ≤ 3, make up a
solution to Pk;

end if
end while
return the schedule S for P and its total tardiness;

Definition of the PIII problem
In an instance Pki of the PIII problem we are given the set of
vehicles {vi1, . . . , vili , . . . , vimi

} at time Tk in the line Li.
Additionally, we are given a maximum charge profile for the
line Li, Nmax

i (t), t ≥ Tk.
The objective is to obtain a schedule for the vehicles,

i.e., starting times st∗ij ≥ Tk for the inactive vehicles
vili+1, . . . , vimi

, such that the following two constraints, de-
rived from the PII instance, are satisfied:

i. st∗ij ≥ Tk, for each inactive vehicle.

ii. Ni(t) ≤ Nmax
i (t), for all t ≥ Tk.

The evaluation function is the total tardiness, defined as∑
j=li+1,...,mi

max(0, Cij − dij) (10)

which must be minimized.

Solving the PIII problem
The Pki problem can be viewed as that of scheduling a num-
ber ofmi− li jobs, all of them available at time Tk, on a ma-
chine whose capacity varies along the time, and the objective
is minimizing the total tardiness. The processing time of the
jobs are the charging times of the vehicles vili+1, . . . , vimi ,
respectively. Each job can use only one slot of the machine
at a time. In other words, the machine is a cumulative re-
source with variable capacity. Cumulative scheduling has
been largely considered in the literature, mainly in the con-
text of the Resource Constrained Project Scheduling Prob-
lem (RCPSP). However, to the best of our knowledge, cumu-
lative resources with time dependent capacity has not been
considered yet.

In our case, the capacity of the machine is defined by
the profile Nmax

i (t) and the vehicles already scheduled

vi1, . . . , vili , which complete charging at times Cij ≥ Tk.
So, the capacity of the machine may be expected to be in-
creasing at the beginning, as long as the scheduled vehicles
complete charging, and decreasing at the end, as the profiles
Nmax

i (t) are non increasing along time. To be concrete, the
capacity of the machine at time t for the line Li, Capki (t), is
calculated as

Capki (t) = min(Mk
i (t), Nmax

i (t)), t ≥ Tk (11)

We denote this problem as (1, Cap(t)||
∑
Ti) following

the conventional notation (α|β|γ) proposed in (Graham et
al. 1979).

Solving the (1, Cap(t)||
∑
Ti) problem. In the simple

case where the capacity Cap(t) is non decreasing, the prob-
lem is equivalent to the problem of identical parallel ma-
chines with variable availability denoted (P,NCinc||

∑
Ti)

following the notation used in (Schmidt 2000), where P is
the number of parallel machines and Ninc denotes that the
availability of machines is non decreasing along the time.
Scheduling problems with machine availability appear in
many situations, for example when maintenance periods are
considered, with different profiles of machine availability.
This kind of problems are surveyed in (Ma, Chu, and Zuo
2010).

In (Koulamas 1994), the (P ||
∑
Ti) problem, in which all

the machines are continuously available, is proved to be at
least binary NP-hard. An efficient simulated annealing al-
gorithm for this problem is proposed in (Sang-Oh Shim and
Kim 2007). In this algorithm, the starting solution is ob-
tained by means of the apparently tardiness rule. This rule
was adapted for similar problems in (Kaplan and Rabadi
2012), to deal with ready times and due date constraints.
In this paper, we propose to adapt this rule to solve the
(1, Cap(t)||

∑
Ti) problem as follows: let Γ(α) the earliest

starting time for an unscheduled job in the partial schedule
α built so far. Then for all unscheduled jobs that can start at
Γ(α) a selection probability is calculated as

Πj =
1

pj
exp

[
−max(0, dj − Γ(α)− pj)

gp

]
(12)

where p is the average processing time of the jobs and g
is a look-ahead parameter to be fixed empirically. These
probabilities may be applied deterministically, i.e., the job j
with the largest probability is selected to be scheduled next,
or probabilistically. In principle, we will consider the first
option in the experimental study.

Profiles of maximum load
As we have pointed out, the balance among the lines is the
most critical issue of the whole charge scheduling problem.
In order to deal with it, we propose to use the following
model for the profiles of maximum load. A profile Nmax

i (t)
is given by a stepwise non increasing function of the form:

Nmax
i (t) =

{
δj τj ≤ t < τj+1, 1 ≤ j < k
δk τk ≤ t (13)
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where δ1 > · · · > δk and τ1 < · · · < τk, k ≥
1. We represent this profile as a sequence of tuples as:
〈(δ1, τ1), (δ2, τ2), . . . , (δk, τk)〉.

In Algorithm 2, the initial profiles are Nmax
i (t) =

〈(N, 0)〉 for all three lines. Then, these profiles are ad-
justed as long as new imbalances are found after the solu-
tions of the three PIII instances. In particular, when an im-
balance of the form Ni(t

′) − Nj(t
′) > ∆ × N is detected,

then the profile Nmax
i (t) is modified so as a new element

(δ, τ) = (∆ × N + Nj(t
′), t′) is inserted and all tuples

(δj , τj) with δj > δ and τj > τ are removed fromNmax
i (t).

This is a very simple model which helps to keep the load
in the three lines as large as possible at the beginning, hope-
fully along the interval [T, T + th]. However, it may have
some inconvenience as well. For example, a new imbalance
may be produced at a time just after to t′. To avoid this draw-
back, we could adjust the new tuple as (δ − δH , τ − τH),
where δH ≥ 0 and τH ≥ 0 are parameters to be established
empirically. Also, the next imbalance may be at a time lower
than t′ due to the non-preemption constraint. In any case, the
value of Nmax

i (t), for each time t, is non increasing along
the subsequent adjustments. This guarantees that Algorithm
2 terminates after a finite number of steps.

Experimental study
As it was pointed out, we evaluated the scheduling algorithm
by simulation. To do that, we have firstly defined a set of
instances of the PI problem and then we implemented a sim-
ulator to run the Algorithm 1. In the next two subsections,
we give the details of the benchmark defined and summarize
the results of the experimental study.

Benchmark set
We consider that the charging station is installed in a car
park with 180 spaces distributed uniformly in the three lines.
We have generated some benchmarks1 considering a time
horizon of one day and a profile for arrival times which are
based on the expected behavior of the users in some week-
days. Also, we have considered different demand and due
date profiles.

Figure 2 shows the arrival profile of the vehicles along
the day. As we can observe, there are peaks of arrivals at
four different times of the day. The processing times pij
and due dates dij follow the profiles represented in Table 1.
We consider four different profiles depending on the state
of the battery at the arrival time. The second column of the
table represents the probabilities of each case and the two
last columns represent the probability distributions for the
values pij and dij , which are given by means of normal dis-
tributions.

We have defined two types of instances, in the first one
(type 1), 60 vehicles arrive at each line Li along the day
and demand charging, while in the second (type 2) the ve-
hicles are 108 in L1, 54 in L2 and 18 in L3, i.e., 60%, 30%
and 10% respectively. So, in the later case we may expect
that the scheduling algorithm has to control many situations

1These instances are available at http://www.di.uniovi.es/tc
(Repository).
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Figure 2: Arrival profile of vehicles along a day. x-axis rep-
resents the time of the day from 0 to 24 hours and the y-axis
represents the arrival probability.

Table 1: Charging time and due date profiles used to gener-
ate PI instances. N(x, y) denotes a normal distribution with
mean x and standard deviation y. Time is given in hours.

Case Prob. pij dij
1 0.1 N(2, 1) tij + max(pij , N(4, 2))
2 0.3 N(5, 1.5) tij + max(pij , N(6, 2))
3 0.3 N(6.5, 0.75) tij + max(pij , N(8, 2))
4 0.3 N(8.8, 0.6) tij + max(pij , N(11, 2))

of imbalance among the lines in order to build a feasible
schedule. Also, we will consider different values for the im-
balance parameter ∆ (0.2, 0.4, 0.6 and 0.8) and for the max-
imum number of vehicles that can be charging at the same
time in a line N (20, 30 and 40). 30 instances were gener-
ated for each combination of type, ∆ andN , so we have 720
instances in all.

Evaluation of the proposed algorithm
Our main purpose is to evaluate the proposed algorithm to
solve the problem PI, termed PD (Problem Decomposition)
herein, under different demand conditions. We also compare
it with two algorithms: a single dispatching rule FCFS (First
Come First Scheduled) that could be implemented by a hu-
man operator, and the aforementioned scheduling algorithm
that uses the LST rule. In FCFS, the vehicles are scheduled
in the order they arrive to the car park and then each one is
scheduled at the earliest time such that all the constraints of
the problem PI are satisfied. After this, the starting time is
never changed.

Table 2 summarizes the results of these experiments. Each
line of the table shows the average tardiness obtained for the
30 instances of the same type and the same values of ∆ and
N . The parameter ∆T was set to 120 s. Regarding the time
taken by the algorithms, in the case of PD it depends on the
number of adjustments required to reach a solution, and it is
larger for this algorithm than it is for the dispatching rules
FCFS and LST. However, in no case the time required by
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PD was larger than 1 s., which is negligible w.r.t. to 120
s. between two consecutive executions of the scheduler. As
we can observe the total tardiness is lower with PD than it
is with FCFS and LST in almost all the cases. In average,
the total tardiness obtained by FCFS and LTS in this bench-
mark is very similar and it is about 33, 4% larger than that
obtained by PD.

Analyzing the schedules obtained for the algorithms, we
have observed that PD is able to adjust the imbalance of the
schedules up to the limit allowed by the parameter ∆, at dif-
ference of the dispatching rules, and this is the very reason
for its superior performance. As we have conjectured, one
of the reasons of the poor performance of FCFS and LST
is that they have to keep the imbalance constraint after each
operation is scheduled, what requires delaying the starting
time of many operations.

Therefore, from these results, we can conclude that the
proposed algorithm PD is effective to solve the problem PI.

Adjustments of the maximum charge profiles Nmax
i (t).

It is also worth analyzing the number of adjustments re-
quired to reach a solution to a PII instance, as it may have
an important impact on the time required to reach a solution
to the whole PI problem.

Table 2: Summary of results from PD, LST and FCFS on
two instances of types 1 and 2 with different values of the
parameters ∆ and N . The values of tardiness are given in
minutes.

PI Instance Total Tardiness
Type N ∆ FCFS LST PD
1 20 0.2 2,03E+06 2,02E+06 9,26E+05

0.4 7,97E+05 7,96E+05 5,09E+05
0.6 5,73E+05 5,70E+05 4,62E+05
0.8 5,45E+05 5,42E+05 4,57E+05

30 0.2 6,80E+05 6,94E+05 2,14E+05
0.4 1,08E+05 1,04E+05 5,87E+04
0.6 6,73E+04 6,69E+04 5,50E+04
0.8 6,61E+04 6,56E+04 5,50E+04

40 0.2 2,21E+05 2,32E+05 7,76E+04
0.4 9,62E+03 9,01E+03 3,35E+03
0.6 1,50E+03 1,49E+03 1,04E+03
0.8 1,44E+03 1,43E+03 1,04E+03

2 20 0.2 2,00E+07 2,02E+07 1,53E+07
0.4 7,56E+06 7,53E+06 5,55E+06
0.6 3,98E+06 3,97E+06 2,76E+06
0.8 2,41E+06 2,42E+06 1,78E+06

30 0.2 1,15E+07 1,15E+07 8,70E+06
0.4 3,44E+06 3,43E+06 2,57E+06
0.6 1,40E+06 1,40E+06 9,69E+05
0.8 7,21E+05 7,20E+05 5,40E+05

40 0.2 7,37E+06 7,37E+06 5,53E+06
0.4 1,71E+06 1,72E+06 1,31E+06
0.6 5,99E+05 6,00E+05 4,22E+05
0.8 2,60E+05 2,59E+05 1,99E+05

Average 9,94E+06 9,95E+06 7,46E+06
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Figure 3: Number of adjustments of the maximum charge
profiles depending on the type of the problems (type 1 or
type 2), the maximum imbalance ∆ (0.2, 0.4, 0.6, 0.8) and
the maximum number of active vehicles in one line N (20,
30, 40). The x-axis represents the group of instances for
each type of problem (∆×100 N ) and the y-axis the average
number of profile adjustments made to solve the PI instances
of each class.

Figure 3 shows the average number of adjustments re-
quired to solve each one of the 24 groups of instances de-
fined by the same type and values of N and ∆. For the
instances of type 2, the number of adjustments depends on
the allowed imbalance ∆ and, as can be expected, this num-
ber is in inverse ratio with ∆. The adjustments also depend
weakly on the maximum number of active vehicles in a line
N , this dependency being also in direct ratio.

Regarding the instances of type 1, where the three lines
receive the same proportion of vehicles, these dependencies
are much more stronger than they are in the type 2. For the
largest values of ∆ the number of adjustments is negligible.
However, for ∆ = 0.2, i.e., when the allowed imbalance
is very low, the number of adjustments is really large. The
reason for this is that for the instances of type 1, when the al-
lowed imbalance is very low, the scheduling algorithm has to
do adjustments in the profiles of maximum load, Nmax

i (t),
in more than one line, while for the problems of type 2 the
adjustments are almost restricted to the line with the largest
number of vehicles.

Conclusions and future work
We have seen that scheduling the charging of electric vehi-
cles may be formulated as a Dynamic Constraint Satisfac-
tion Problem (DCSP) with Optimization. In this paper, we
have given a formal definition for one problem of this family.
This problem is termed PI and it is motivated by a real envi-
ronment in which a number of vehicles may require charge
from an electric system installed in a garage where each ve-
hicle has a preassigned space. This problem is hard to solve
due to the imbalance constraints among the three lines of
the three-phase electric feeder. We have proposed an algo-
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rithm that reduces the calculation of a solution for the dy-
namic scheduling problem to solving a number of instances
of the one machine sequencing problem with variable ca-
pacity, denoted (1, Cap(t)||

∑
Ti). As far as we know, the

(1, Cap(t)||
∑
Ti) problem was not yet considered in the

literature.
The overall charge scheduling algorithm was evaluated by

simulation over a benchmark set inspired in some real sce-
narios. The results of this study shown that the proposed
algorithm is better than some dispatching rules such as First
Come First Scheduled, which could be followed by a human
operator, and a more sophisticated scheduling algorithm that
uses the Least Staring Time rule. In our opinion, the perfor-
mance of our algorithm relies on how it deals with the im-
balance constraints. Instead of keeping this constraint after
each operation is scheduled, as it is done by the other two
algorithms, we define profiles of maximum load in the three
lines and then adapt the schedules to these profiles. Even
though these profiles may require a number of adjustments,
the algorithm produces much better schedules than the other
two algorithms.

This work leaves some issues open for future research.
Firstly, we will make a more comprehensive experimental
study considering instances derived from different expected
scenarios to that considered here. For instance weekend sce-
narios or situations derived from some contingencies. In this
study we will consider some variants of the algorithm that
solves the (1, Cap(t)||

∑
Ti) problem. As we have men-

tioned, the apparently tardiness rule may be used probabilis-
tically to obtain a variety of solutions.

Then, we will have to consider a number of characteristics
of the real situations that have been skipped here. For exam-
ple, the users may pick up the vehicle before the declared
due date dij , or the battery may get fully charged before the
expected charging time pij . In both cases an imbalance may
be produced in the system. To deal with these and other sit-
uations, we will have to add new asynchronous events to the
model.

Another important characteristic that must be considered
is the fact that the charging time of the vehicles may be re-
duced in situations of saturation in order to reduce the tardi-
ness of the vehicles. Furthermore, if the tardiness for some
vehicle is too large in situations of very high demand, the ve-
hicle may be discarded from the schedule and so not served.

Another line for future research will be devoted to gen-
eralize the problem formulation and the solution methods to
situations where, for example, the contracted power changes
over the time or the vehicles can be charged at non con-
stant rate. As it is pointed in (Sedano et al. 2012), the later
is technically possible under certain restrictions and offers
much more flexibility to organize the charging of vehicles
over time. At the same time, it may make the scheduling
problem harder to solve.
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