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Abstract: A one-pot chemoenzymatic method has been described for the synthesis of -

butyrolactones starting from the corresponding ketones through a Baeyer-Villiger reaction. 

The approach is based on a lipase-catalyzed perhydrolysis for the formation of peracetic acid, 

which is the responsible for the ketone oxidation. Optimization studies have been performed 

in the oxidation of cyclobutanone, finding Candida antarctica lipase type B, ethyl acetate and 

urea-hydrogen peroxide complex as the best system. The relative ratio of these reagents has 

also been analyzed in depth. This synthetic approach has been successfully extended to a 

family of 3-substituted cyclobutanones in high substrate concentration, yielding the 

corresponding lactones with excellent isolated yields and purities, under mild reaction 

conditions and after a simple extraction protocol. 
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1. Introduction 

 

Hydrolases are enzymes capable to naturally catalyze hydrolytic reactions for a vast 

number of organic compounds such as peptides, esters or amides.1,2 Alternatively, and 

depending on the reaction conditions, they can also accelerate the reverse transformations 

leading to the corresponding esterification, aminolysis, ammonolysis, perhydrolysis, 

hydrazynolysis or thiolysis products, specially when working in non-aqueous media.3,4 

Within this class of enzymes, perhydrolases are able to efficiently catalyze perhydrolysis 

reactions for the formation of peracids,5,6 but the unusual participation of lipases for global 

oxidative process has attracted the attention of different research groups in the last 

decade.5,7,8 Thus, examples of lipase-mediated epoxidation,9-14 Baeyer-Villiger reactions,15-

19 perhydrolysis of carboxylic acid and esters,20 sequential Baeyer-Villiger reaction and 

ring-opening polymerization,21 and also consecutive esterification and Baeyer-Villiger 

cascade reactions22 have appeared in the literature, giving access to synthetically useful 

oxygenated heterocycles through clean and selective transformations under mild reaction 

conditions. 

In this context, the synthesis of lactones is highly appealing because of their interesting 

properties as subunits for polymer industry, and their applications in medicinal chemistry, 

fragrance and food industry. Lipases provide useful possibilities for the synthesis of lactones 

by the proper combination of a peracid precursor, solvent and an oxidizing agent in mild 

reaction conditions,7 avoiding the use and storage of peracids that are usually associated with 

explosion risks. This in situ formation of a peracid, commonly large aliphatic linear peracids 

or peracetic acid, provides an environmentally friendly alternative route to the desired 

oxygenated heterocyles.23 



 3 

Examples described in the literature have been mainly focused on the oxidation of 

cyclopentanones and cyclohexanones.15-19,24,25 Herein we have explored the possibility of 

using a cascade chemoenzymatic strategy for the production of -butyrolactones from 

cyclobutanones. With that purpose, different enzymes have been tested in order to find 

adequate oxidizing conditions, paying special attention to the oxygen source and the substrate 

concentration. 

 

2. Experimental 

 

2.1. Material and methods 

Candida antarctica lipase type B (CAL-B, Novozym-435, 7300 PLU/g) and 

Rhizomucor miehei lipase (RML, 150 IUN/g) were kindly gifted by Novo-Nordisk. 

Pseudomonas cepacia lipase supported on diatomite (PSL-SD, 23000 U/g), AK lipase from 

Pseudomonas fluorescens (AK, 23700 U/g) and Candida rugosa lipase (CRL, 1410 U/g) were 

acquired from Sigma-Aldrich. Other chemical reagents were used as purchased from Sigma-

Aldrich, Acros or Fluka, without further additional purification. The only exceptions were 

phosphoryl chloride (POCl3) that was used freshly distilled, and distilled Et2O and THF, 

which were dried over sodium under inert atmosphere using benzophenone as indicator. 

NMR spectra were recorded on Bruker AV-300 and Bruker DPX-300 spectrometers 

(300.13 MHz for 1H and 75.5 MHz for 13C). All chemical shifts (δ) are given in parts per 

million (ppm) and referenced to the residual solvent signal as internal standard. All coupling 

constants (J) are reported in Hz. Mass spectra (MS) were recorded using a MAT-95 Finigan 

spectrometer by positive electrospray ionization (ESI+). High resolution mass spectra 

(HRMS) were obtained using a Bruker MicroQtof spectrometer by positive electrospray 

ionization (ESI+). Gas chromatography (GC) analyses were performed on a Hewlett Packard 

6890 Series chromatograph equipped with FID. All the data have been included in the 
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supporting information file. IR spectra were recorded as thin films on NaCl plates on a 

Perkin-Elmer Spectrum 100 FT-IR and are reported in frequency of absorption (cm-1). Thin-

layer chromatography (TLC) was conducted with Merck Silica Gel 60 F254 precoated plates 

and visualized using a UV lamp and/or potassium permanganate stain. Column 

chromatography was performed using Merck Silica Gel 60 (230-400 mesh).  

 

2.2. Typical procedure for the synthesis of 3-methyl-3-phenylcyclobutanone (1b) 

 

Scheme 1. Chemical synthesis of 3-methyl-3-phenylcyclobutanone (1b). 

 

a) [2+2] cycloaddition reaction.26 To a solution of α-methylstyrene (4b, 650 μL, 5.0 

mmol) in dry Et2O (50 mL), Zn (654 mg, 10.0 mmol) was added under inert atmosphere. The 

system was sonicated, while a solution of trichloroacetyl chloride (3, 837 μL, 7.5 mmol) in 

dry Et2O (25 mL) was carefully added under inert atmosphere, maintaining the bath 

temperature between 15 and 20 ºC. Sonication was extended for an additional hour after the 

addition was completed, and after this time the reaction was stopped by filtration over celite. 

The reaction crude was washed with water (2 × 25 mL), an aqueous NaHCO3 saturated 

solution (5 × 25 mL) and brine (25 mL). The organic phase was dried over Na2SO4, filtered 

and the solvent was evaporated under reduced pressure. The resulting crude was purified by 

column chromatography on silica gel (5% EtOAc/hexane), yielding the 2,2-dichloro-3-

methyl-3-phenylcyclobutanone 5b (92% yield). 

b) Reduction with Zn. The 2,2-dichloro-3-methyl-3-phenylcyclobutanone (5b, 1.160 g, 

5.06 mmol) was dissolved in MeOH (20 mL), and NH4Cl was added until saturation. Then, 

Zn (1.987 g, 30.38 mmol) was added and the mixture stirred at 40 ºC for 6 h. After this time, 
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the reaction was filtered over celite and the solvent was evaporated under reduced pressure. 

The reaction crude was redissolved in Et2O (100 mL) and washed with water (2 × 50 mL), an 

aqueous NaHCO3 saturated solution (2 × 50 mL) and brine (50 mL). The organic phase was 

dried over Na2SO4, filtered and the solvent was evaporated under reduced pressure. The 

resulting crude was purified by column chromatography on silica gel (10% EtOAc/hexane), 

yielding the cyclobutanone 1b (71% yield; 65% global yield for the two steps). Colourless oil; 

Rf (20% EtOAc/hexane): 0.68; IR (NaCl): ν 3059, 3026, 2958, 2921, 1785, 1602, 1496, 1445, 

1381, 1080, 764 cm-1; 1H RMN (CDCl3, 300.13 MHz):  1.62 (s, 3H, CH3),  3.07-3.17 (m, 

2H, CHH),  3.42-3.53 (m, 2H, CHH),  7.23-7.42 (m, 5H) ppm; 13C RMN (CDCl3, 75.5 

MHz):  31.1 (CH3),  34.0 (C),  59.3 (2CH2),  125.7 (2CH),  126.3 (CH),  128.6 (2CH), 

 148.3 (C),  206.6 (CO) ppm; HRMS (ESI+, m/z): calculated for (C11H12NaO) (M+Na)+: 

183.0780, found: 183.0776. 

 

2.3. Typical procedure for the synthesis of 3-arylcyclobutanones 1c-f,i27,28 

 

Scheme 2. General synthesis of 3-arylcyclobutanones 1c-f,i. 

 

a) Preparation of the Cu-Zn complex. To a suspension of Zn (6.5 g, 99.4 mmol) in 

water (10 mL), a solution of CuSO4·5H2O (760 mg, 4.76 mmol) in water (5 mL) was added in 

two times. After one minute, the solid was filtered and washed with water (2 × 5 mL), acetone 

(2 × 5 mL) and Et2O (2 × 5 mL). The resulting grey-black solid was dried in a Kugelrohr 

apparatus at 100 ºC for 6 h, and stored under inert atmosphere. 
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b) [2+2] cycloaddition reaction. A suspension of the corresponding styrene 3c-f,i (5.0 

mmol) and Cu-Zn complex (1.31 g, 0.26 g/mmol styrene) in dry Et2O (20 mL) was prepared 

under inert atmosphere. A mixture composed by trichloroacetyl chloride (3, 1.116 mL, 10.0 

mmol) and freshly distilled phosphoryl chloride (POCl3, 512 μL, 5.5 mmol) in dry Et2O (11 

mL) was slowly added under inert atmosphere at room temperature, and once the addition 

was finished, the mixture was refluxed for 24 h. After this time, the mixture was left to cool 

down until room temperature, and filtered over celite. A major part of the Et2O was 

evaporated in the rotary evaporator, adding then hexane (100 mL). The mixture was 

vigorously stirred and then left unaltered, observing the formation of a precipitate. The 

supernatant was washed with an aqueous NaHCO3 saturated solution (2 × 40 mL) and brine 

(40 mL). The organic phase was dried over Na2SO4, filtered and the solvent evaporated under 

reduced pressure, yielding the corresponding 2,2-dichloroketone 5c-f,i. 

c) Reduction with Zn. The previous reaction crude containing the dichlorinated 

cyclobutanone 5c-f,i (5.0 mmol) was dissolved in glacial acetic acid (20 mL) and Zn (1.34 g, 

20.0 mmol) was added. The reaction was refluxed for 12 h, and after this time water (25 mL) 

was added. The solution was extracted with Et2O (2 × 15 mL), the organic phases were 

combined and washed with an aqueous NaHCO3 saturated solution (4 × 15 mL) and brine (2 

× 15 mL). The resulting organic phase was dried over Na2SO4, filtered and the solvent was 

evaporated under reduced pressure. The reaction crude was purified by column 

chromatography on silica gel (10-20% EtOAc/hexane), yielding the cyclobutanones 1c-f,i 

(12-50% isolated yield). 

3-Phenylcyclobutanone (1c). 34% yield. Colourless oil; Rf (20% EtOAc/hexane): 0.45; 

IR (NaCl): ν 3062, 3029, 2975, 2923, 1785, 1603, 1496, 1380, 1104, 780 cm-1; 1H NMR 

(CDCl3, 300.13 MHz):  3.10-3.22 (m, 2H, CHH), 3.35-3.47 (m, 2H, CHH), 3.51-3.65 (m, 

1H, CH), 7.13-7.31 (m, 5H) ppm; 13C NMR (CDCl3, 75.5 MHz):  28.5 (CH), 54.8 (2CH2), 
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126.6 (2CH), 126.7 (CH), 128.8 (2CH), 143.7 (C), 206.8 (CO) ppm; HRMS (ESI+, m/z): 

calculated for (C10H10NaO) (M+Na)+: 169.0624, found: 169.0632. 

3-(2-Bromophenyl)cyclobutanone (1d). 31% yield. Yellow oil; Rf (20% 

EtOAc/hexane): 0.72; IR (NaCl): ν 3062, 2983, 2927, 1788, 1590, 1567, 1472, 1380, 1102, 

1027, 755 cm-1; 1H NMR (CDCl3, 300.13 MHz):  3.16-3.29 (m, 2H, CHH), 3.46-3.59 (m, 

2H, CHH), 3.87-4.02 (m, 1H, CH), 7.10-7.19 (m, 1H), 7.30-7.39 (m, 2H), 7.57-7.64 (m, 1H) 

ppm; 13C NMR (CDCl3, 75.5 MHz):  29.1 (CH), 53.2 (2CH2), 124.9 (CBr), 126.6 (CH), 

127.8 (CH), 128.4 (CH), 133.3 (CH), 141.7 (C), 206.0 (CO) ppm; HRMS (ESI+, m/z): 

calculated for (C10H9BrNaO) (M79Br+Na)+: 246.9729, found: 246.9703. 

3-(3-Bromophenyl)cyclobutanone (1e). 32% yield. Pale yellow oil; Rf (30% 

EtOAc/hexane): 0.77; IR (NaCl): ν 3062, 2975, 2923, 1785, 1636, 1596, 1566, 1477, 1378, 

1102, 1074, 780 cm-1; 1H NMR (CDCl3, 300.13 MHz):  3.18-3.30 (m, 2H, CHH), 3.45-3.58 

(m, 2H, CHH), 3.61-3.74 (m, 1H, CH), 7.22-7.27 (m, 2H), 7.36-7.43 (m, 1H), 7.45-7.48 (m, 

1H) ppm; 13C NMR (CDCl3, 75.5 MHz):  28.3 (CH), 54.7 (2CH2), 122.9 (CBr), 125.3 (CH), 

129.9 (2CH), 130.4 (CH), 146.0 (C), 205.7 (CO) ppm; HRMS (ESI+, m/z): calculated for 

(C10H10BrO) (M79Br+H)+: 224.9910, found: 224.9889. 

3-(4-Bromophenyl)cyclobutanone (1f). 50% yield. Yellowish-orangish solid. Mp: 49-

51 ºC; Rf (30% EtOAc/hexane): 0.59; IR (nujol): ν 3055, 2987, 1786, 1489, 1422, 1395, 1101, 

1075, 1009, 821 cm-1; 1H NMR (CDCl3, 300.13 MHz): 3.13-3.25 (m, 2H, CHH), 3.42-3.55 

(m, 2H, CHH), 3.57-3.69 (m, 1H, CH), 7.13-7.19 (m, 2H), 7.42-7.48 (m, 2H) ppm; 13C NMR 

(CDCl3, 75.5 MHz):  28.2 (CH), 54.8 (2CH2), 120.6 (CBr), 128.4 (2CH), 131.9 (2CH), 

142.7 (C), 206.0 (CO) ppm; MS (ESI+, m/z): 225 (M79Br+H)+; 227 (M81Br+H)+. 

3-(4-Methylphenyl)cyclobutanone (1i). 12% yield. Yellowish oil; Rf (30% 

EtOAc/hexane): 0.79; IR (NaCl): ν 3023, 2974, 2922, 1785, 1608, 1516, 1450, 1417, 1379, 

1167, 1109, 1020, 813 cm-1; 1H NMR (CDCl3, 300.13 MHz):  2.36 (s, 3H, CH3), 3.17-3.29 
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(m, 2H, CHH), 3.42-3.55 (m, 2H, CHH), 3.59-3.71 (m, 1H, CH), 7.15-7.23 (m, 4H); 13C 

NMR (CDCl3, 75.5 MHz):  21.0 (CH3), 28.1 (CH), 54.8 (2CH2), 126.4 (2CH), 129.4 (2CH), 

136.2 (CMe), 140.6 (C), 206.9 (CO) ppm; HRMS (ESI+, m/z): calculated for (C22H24NaO2) 

(2M+Na)+: 343.1669, found: 343.1654. 

 

2.4. Synthesis of ethyl 3-oxocyclobutanecarboxylate (1j) 

3-Oxocyclobutanecarboxylic acid (6, 200 mg, 1.75 mmol) was dissolved in dry THF (7 

mL) and a drop of DMF was added under inert atmosphere. The solution was cooled down in 

an ice-bath, and oxalyl chloride (276 μL, 3.51 mmol) was added, stirring the mixture for 30 

minutes. After this time, the reaction was left to warm to room temperature, the solvent 

evaporated under reduced pressure and the residue redissolved in ethanol (7 mL). The 

solution was stirred for 1 h at room temperature. Then the solvent was evaporated in the 

rotary evaporator and the reaction crude purified by column chromatography on silica gel (20-

30% EtOAc/hexane), yielding the cyclobutanone 1j as a pale yellow oil (82% isolated yield). 

Rf (20% EtOAc/hexane): 0.30; IR (NaCl): ν 2985, 2937, 1797, 1733, 1467, 1375, 1346, 1215, 

1193, 1099, 1052, 858 cm-1; 1H NMR (CDCl3, 300.13 MHz):  1.25 (t, 3JHH= 7.1, 3H, CH3), 

3.12-3.43 (m, 5H, 2CH2+CH), 4.17 (q, 3JHH= 7.1, 2H, OCH2) ppm; 13C NMR (CDCl3, 75.5 

MHz):  14.2 (CH3), 27.4 (CH), 51.6 (2CH2), 61.3 (OCH2), 174.1 (COO), 203.9 (CO) ppm; 

HRMS (ESI+, m/z): calculated for (C7H10NaO3) (M+Na)+: 165.0522, found: 165.0531. 

 

2.5. Synthesis of benzyl 3-oxocyclobutanecarboxylate (1k). 

3-Oxocyclobutanecarboxylic acid (6, 200 mg, 1.75 mmol) was dissolved in dry THF (7 

mL), and a drop of DMF was added under inert atmosphere. The solution was cooled down in 

an ice-bath, and oxalyl chloride (276 μL, 3.51 mmol) was added, stirring the mixture for 30 

minutes. After this time, the reaction was left to warm to room temperature and benzyl 

alcohol (544 μL, 5.26 mmol) was added. The solution was stirred overnight at room 
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temperature. Then the solvent was evaporated in the rotary evaporator and the reaction crude 

purified by column chromatography on silica gel (20% EtOAc/hexane), yielding the 

cyclobutanone 1k as a pale yellow oil (76% isolated yield). Rf (30% EtOAc/hexane): 0.56; IR 

(NaCl): ν 3034, 2926, 2854, 1792, 1732, 1498, 1456, 1380, 1347, 1186, 1100, 1051, 752 cm-

1; 1H NMR (CDCl3, 300.13 MHz):  3.20-3.50 (m, 5H, 2CH2+CH), 5.19 (s, 2H, CH2Ph), 

7.33-7.39 (m, 5H) ppm; 13C NMR (CDCl3, 75.5 MHz):  27.5 (CH), 51.7 (2CH2), 67.2 

(OCH2), 128.4 (2CH), 128.6 (CH), 128.7 (2CH), 135.5 (C), 173.9 (COO), 203.6 (CO) ppm; 

HRMS (ESI+, m/z): calculated for (C12H12NaO3) (M+Na)+: 227.0679, found: 227.0660 

 

2.6. General procedure for the synthesis of lactones 2b-l with m-chloroperbenzoic acid 

(MCPBA). 

To a solution of the corresponding 3-arylcyclobutanone 1b-l (0.25 mmol) in CH2Cl2 

(1.0 mL), MCPBA (88 mg, 0.50 mmol) was added and the mixture was stirred for 20 h. The 

mixture was washed with an aqueous NaHCO3 saturated solution (6 x 5 mL), the organic 

phase dried over Na2SO4, filtered and the solvent evaporated under reduced pressure. The 

reaction crude was purified by column chromatography on silica gel (10-30% EtOAc/hexane), 

yielding the lactones 2b-l (44-99% isolated yield: 93% for 2b; 83% for 2c; 72% for 2d; 99% 

for 2e; 85% for 2f; 86% for 2g; 88% for 2h; 44% for 2i; 77% for 2j; 75% for 2k; 96% for 2l). 

These standards were used for the development of GC analysis methods prior to carry out the 

chemoenzymatic reactions. 

 

2.7. General procedure for the chemoenzymatic synthesis of lactones 2a-l using CAL-B, UHP 

and EtOAc. 

Over a solution of the corresponding cyclobutanone 1a-l (0.25 mmol) in EtOAc (379 

μL, 30.0 mmol), complex urea-hydrogen peroxide (UHP, 35 mg, 0.38 mmol) and CAL-B 

(12.5 mg) were added. The suspension was shaken for 20 h at 30 ºC and 250 rpm, then an 
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aliquot was analyzed by GC. The reaction was left shaken until complete conversion was 

reached, then water was added (2 mL) and the enzyme filtered off. The solution was extracted 

with EtOAc (3 × 5 mL) and the organic phases combined and washed with water (2 × 5 mL) 

and brine (5 mL). The resulting organic phase was dried over Na2SO4, filtered and the solvent 

was evaporated under reduced pressure to obtain the corresponding lactones 2a-l (51-99% 

isolated yield). For fluorinated lactone 2k a column chromatography on silica gel (30% 

EtOAc/hexane) was necessary, as the reaction did not lead to complete conversion. 

4-Methyl-4-phenyldihydrofuran-2(3H)-one (2b). 93% yield; White solid; Mp: 49-51 

ºC; Rf (30% EtOAc/hexane): 0.43; IR (nujol): ν 3024, 2969, 2930, 2904, 1773, 1601, 1497, 

1305, 1173, 1094, 1020, 767 cm-1; 1H NMR (CDCl3, 300.13 MHz):  1.54 (s, 3H, CH3), 2.68 

(dd, 2JHH= 16.8, 4JHH= 0.4, 1H, CHH), 2.93 (dd, 2JHH= 16.8, 4JHH= 0.6, 1H, CHH), 4.39-4.47 

(m, 2H, OCH2), 7.18-7.23 (m, 2H), 7.27-7.33 (m, 1H), 7.36-7.42 (m, 2H) ppm; 13C NMR 

(CDCl3, 75.5 MHz):  28.1 (CH3), 42.1 (CH2), 44.2 (C), 78.5 (OCH2), 125.2 (2CH), 127.3 

(CH), 129.1 (2CH), 144.4 (C), 176.2 (CO) ppm; HRMS (ESI+, m/z): calculated for 

(C11H12NaO2) (M+Na)+: 199.0730, found: 199.0781. 

4-Phenyldihydrofuran-2(3H)-one (2c). 83% yield; White solid; Mp: 46-47 ºC; Rf 

(20% EtOAc/hexane): 0.20; IR (nujol): ν 3064, 3032, 2973, 2904, 1763, 1601, 1456, 1355, 

1163, 1010, 761 cm-1; 1H NMR (CDCl3, 300.13 MHz):  2.67 (dd, 2JHH= 17.5, 3JHH= 9.1, 1H, 

CHH), 2.92 (dd, 2JHH= 17.5, 3JHH= 8.3, 1H, CHH), 3.73-3.85 (m, 1H, CH), 4.26 (dd, 2JHH= 

9.0, 3JHH= 8.1, 1H, OCHH), 4.66 (dd, 2JHH= 9.0, 3JHH= 8.3, 1H, OCHH), 7.21-7.40 (m, 5H) 

ppm; 13C NMR (CDCl3, 75.5 MHz):  35.8 (CH2), 41.2 (CH), 74.1 (OCH2), 126.8 (2CH), 

127.8 (CH), 129.2 (2CH), 139.5 (C), 176.5 (COO) ppm; HRMS (ESI+, m/z): calculated for 

(C10H10NaO2) (M+Na)+: 185.0573, found: 185.0592. 

4-(2-Bromophenyl)dihydrofuran-2(3H)-one (2d). 72% yield; White solid; Mp: 56-57 

ºC; Rf (20% EtOAc/hexane): 0.41; IR (nujol): ν 3064, 2990, 2914, 1779, 1568, 1473, 1440, 

1372, 1168, 1023, 753 cm-1; 1H NMR (CDCl3, 300.13 MHz): 2.67 (dd, 2JHH= 17.6, 3JHH= 6.7, 
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1H, CHH), 2.97 (dd, 2JHH= 17.6, 3JHH= 8.6, 1H, CHH), 4.17-4.24 (m, 2H, CH+OCHH), 4.71 

(dd, 2JHH= 9.0, 3JHH= 7.2, 1H, OCHH), 7.17 (ddd, 3JHH= 8.0, 3JHH= 7.1, 4JHH= 1.9 ,1H), 7.26-

7.35 (m, 2H), 7.61 (dd, 3JHH= 8.0, 4JHH= 1.3, 1H) ppm; 13C NMR (CDCl3, 75.5 MHz):  34.9 

(CH2), 40.3 (CH), 73.0 (OCH2), 124.5 (CBr), 126.8 (CH), 128.4 (CH), 129.3 (CH), 133.6 

(CH), 140.0 (C), 176.2 (COO) ppm; HRMS (ESI+, m/z): calculated for (C10H9BrNaO2) 

(M79Br+Na)+: 262.9678, found: 262.9670. 

4-(3-Bromophenyl)dihydrofuran-2(3H)-one (2e). 99% yield; Yellowish oil; Rf (30% 

EtOAc/hexane): 0.50; IR (NaCl): ν 3058, 2971, 2913, 1781, 1597, 1568, 1479, 1266, 1169, 

1024, 737 cm-1; 1H NMR (CDCl3, 300.13 MHz): 2.64 (dd, 2JHH= 17.5, 3JHH= 8.8, 1H, CHH), 

2.93 (dd, 2JHH= 17.5, 3JHH= 8.7, 1H, CHH), 3.70-3.82 (m, 1H, CH), 4.25 (dd, 2JHH= 9.1, 3JHH= 

7.6, 1H, OCHH), 4.66 (dd, 2JHH= 9.1, 3JHH= 7.8, 1H, OCHH), 7.16 (dt, 3JHH= 7.7, 4JHH= 

1.2,1H), 7.25 (t, 3JHH= 7.8, 1H), 7.38 (t, 4JHH= 1.8, 1H), 7.42 (ddd, 3JHH= 7.8, 4JHH= 1.8, 4JHH= 

1.2, 1H) ppm; 13C NMR (CDCl3, 75.5 MHz):  35.6 (CH2), 40.8 (CH), 73.7 (OCH2), 123.3 

(CBr), 125.4 (CH), 130.1 (CH), 130.9 (CH), 131.0 (CH), 141.9 (C), 175.9 (COO) ppm; 

HRMS (ESI+, m/z): calculated for (C10H9BrNaO2) (M79Br+Na)+: 262.9678, found: 262.9657. 

4-(4-Bromophenyl)dihydrofuran-2(3H)-one (2f). 85% yield; White solid; Mp: 72-74 

ºC; Rf (30% EtOAc/hexane): 0.31; IR (nujol): ν 3016, 2930, 2901, 1767, 1589, 1487, 1424, 

1221, 1158, 1016, 826 cm-1; 1H NMR (CDCl3, 300.13 MHz):  2.62 (dd, 2JHH= 17.5, 3JHH= 

8.8, 1H, CHH), 2.93 (dd, 2JHH= 17.5, 3JHH= 8.7, 1H, CHH), 3.68-3.83 (m, 1H, CH), 4.23 (dd, 

2JHH= 9.1, 3JHH= 7.6, 1H, OCHH), 4.65 (dd, 2JHH= 9.1, 3JHH= 7.8, 1H, OCHH), 7.08-7.14 (m, 

2H), 7.46-7.52 (m, 2H) ppm; 13C NMR (CDCl3, 75.5 MHz):  35.7 (CH2), 40.7 (CH), 73.8 

(OCH2), 121.7 (CBr), 128.5 (2CH), 132.4 (2CH), 138.6 (C), 176.0 (COO) ppm; HRMS (ESI+, 

m/z): calculated for (C10H9BrNaO2) (M79Br+Na)+: 262.9678, found: 262.9673. 

4-(4-Chlorophenyl)dihydrofuran-2(3H)-one (2g). 86% yield; Pale yellow solid; Mp: 

54-56 ºC; Rf (30% EtOAc/hexane): 0.41; IR (nujol): ν 3055, 2987, 2914, 1782, 1496, 1423, 
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1170, 1094, 1025, 828 cm-1; 1H NMR (CDCl3, 300.13 MHz):  2.61 (dd, 2JHH= 17.5, 3JHH= 

8.9, 1H, CHH), 2.92 (dd, 2JHH= 17.5, 3JHH= 8.7, 1H, CHH), 3.70-3.82 (m, 1H, CH), 4.23 (dd, 

2JHH= 9.1, 3JHH= 7.7, 1H, OCHH), 4.65 (dd, 2JHH= 9.1, 3JHH= 7.8, 1H, OCHH), 7.13-7.19 (m, 

2H), 7.30-7.36 (m, 2H) ppm; 13C NMR (CDCl3, 75.5 MHz):  35.7 (CH2), 40.6 (CH), 73.9 

(OCH2), 128.2 (2CH), 129.4 (2CH), 133.6 (CCl), 138.1 (C), 176.1 (COO) ppm; HRMS (ESI+, 

m/z): calculated for (C10H9ClNaO2) (M+Na)+: 219.0183, found: 219.0156. 

4-(4-Fluorophenyl)dihydrofuran-2(3H)-one (2h). 88% yield; White solid; Mp: 65-67 

ºC; Rf (30% EtOAc/hexane): 0.38; IR (nujol): ν 3068, 2914, 1777, 1602, 1514, 1433, 1219, 

1165, 1013, 843 cm-1; 1H NMR (CDCl3, 300.13 MHz):  2.62 (dd, 2JHH= 17.5, 3JHH= 8.9, 1H, 

CHH), 2.92 (dd, 2JHH= 17.5, 3JHH= 8.7, 1H, CHH), 3.71-3.84 (m, 1H, CH), 4.23 (dd, 2JHH= 

9.1, 3JHH= 7.7, 1H, OCHH), 4.65 (dd, 2JHH= 9.1, 3JHH= 7.8, 1H, OCHH), 7.00-7.09 (m, 2H), 

7.16-7.24 (m, 2H) ppm; 13C NMR (CDCl3, 75.5 MHz):  35.9 (CH2), 40.6 (CH), 74.1 

(OCH2), 116.2 (d, 2JCF= 21.5, 2CH), 128.4 (d, 3JCF= 8.0, 2CH), 135.3 (d, 4JCF= 2.9, C), 162.2 

(d, 1JCF= 246.6, CF), 176.2 (COO) ppm; HRMS (ESI+, m/z): calculated for (C10H9FNaO2) 

(M+Na)+: 203.0479, found: 203.0474. 

4-(4-Methylphenyl)dihydrofuran-2(3H)-one (2i). 44% yield; White solid; Mp: 40-42 

ºC; IR (nujol): ν 2978, 2948, 2916, 1761, 1608, 1519, 1484, 1455, 1427, 1350, 1214, 1158, 

1008, 827 cm-1; Rf (30% EtOAc/hexane): 0.54; 1H NMR (CDCl3, 300.13 MHz):  2.34 (s, 3H, 

CH3), 2.65 (dd, 2JHH= 17.5, 3JHH= 9.2, 1H, CHH), 2.90 (dd, 2JHH= 17.5, 3JHH= 8.6, 1H, CHH), 

3.69-3.82 (m, 1H, CH), 4.24 (dd, 2JHH= 9.1, 3JHH= 8.0, 1H, OCHH), 4.65 (dd, 2JHH= 9.1, 

3JHH= 7.9, 1H, OCHH), 7.10-7.20 (m, 4H) ppm; 13C NMR (CDCl3, 75.5 MHz):  21.1 (CH3), 

35.9 (CH2), 40.9 (CH), 74.3 (OCH2), 126.7 (2CH), 129.9 (2CH), 136.4 (CMe), 137.6 (C), 

176.6 (COO) ppm; HRMS (ESI+, m/z): calculated for (C11H12NaO2) (M+Na)+: 199.0730, 

found: 199.0728. 
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Ethyl 5-oxotetrahydrofuran-3-carboxylate (2j). 77% yield; Yellowish liquid; Rf (40% 

EtOAc/hexane): 0.30; IR (NaCl): ν 2986, 2941, 1783, 1733, 1477, 1375, 1348, 1198, 1176, 

1024, 845 cm-1; 1H NMR (CDCl3, 300.13 MHz):  1.25 (t, 3JHH= 7.1, 3H, CH3), 2.70 (dd, 

2JHH= 17.9, 3JHH= 9.6, 1H, CHH), 2.83 (dd, 2JHH= 17.9, 3JHH= 7.2, 1H, CHH), 3.36-3.47 (m, 

1H, CH), 4.17 (q, 3JHH= 7.1, 2H, OCH2CH3), 4.37-4.52 (m, 2H, OCH2) ppm; 13C NMR 

(CDCl3, 75.5 MHz):  14.1 (CH3), 30.9 (CH2), 40.0 (CH), 61.9 (OCH2CH3), 69.1 (OCH2), 

171.2 (CO2Et), 175.3 (COO) ppm; HRMS (ESI+, m/z): calculated for (C7H10NaO4) (M+Na)+: 

181.0471, found: 181.0477. 

Benzyl 5-oxotetrahydrofuran-3-carboxylate (2k). 75% yield; White gummy solid; Rf 

(30% EtOAc/hexane): 0.33; IR (NaCl): ν 3066, 3034, 2959, 1779, 1736, 1636, 1498, 1456, 

1383, 1350, 1175, 1013, 754 cm-1; 1H NMR (CDCl3, 300.13 MHz):  2.74 (dd, 2JHH= 17.9, 

3JHH= 9.6, 1H, CHH), 2.88 (dd, 2JHH= 17.9, 3JHH= 7.3, 1H, CHH), 3.44-3.56 (m, 1H, CH), 

4.42-4.56 (m, 2H, OCH2), 5.20 (s, 2H, CH2Ph), 7.33-7.44 (m, 5H) ppm; 13C NMR (CDCl3, 

75.5 MHz):  30.9 (CH2), 40.1 (CH), 67.7 (CH2Ph), 69.0 (OCH2), 128.5 (2CH), 128.8 (3CH), 

135.0 (C), 171.0 (CO2Bn), 175.1 (COO) ppm; HRMS (ESI+, m/z): calculated for 

(C12H12NaO4) (M+Na)+: 243.0628, found: 243.0671. 

4-(Benzyloxy)dihydrofuran-2(3H)-one (2l). 96% yield; White gummy solid; Rf (40% 

EtOAc/hexane): 0.30; IR (NaCl): ν 3066, 3034, 2923, 1779, 1603, 1455, 1401, 1374, 1333, 

1166, 1086, 1050, 993, 886, 747 cm-1; 1H NMR (CDCl3, 300.13 MHz):  2.58-2.73 (m, 2H), 

4.34-4.41 (m, 3H, CH+OCH2), 4.49-4.57 (m, 2H, OCH2Ph), 7.27-7.40 (m, 5H) ppm; 13C 

NMR (CDCl3, 75.5 MHz):  35.0 (CH2), 71.2 (OCH2Ph), 73.2 (OCH2), 73.9 (CH), 127.8 

(2CH), 128.2 (CH), 128.7 (2CH), 137.0 (C), 175.6 (COO) ppm; HRMS (ESI+, m/z): 

calculated for (C11H12NaO3) (M+Na)+: 215.0679, found: 215.0726. 
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3. Results and discussion 

To start with, a screening of biocatalysts for the oxidation of cyclobutanone (1a) was 

performed, considering a representative set of lipases such as CAL-B, RML, AK, PSL-SD 

and CRL. Searching for a simple catalytic cascade system, ethyl acetate (EtOAc) was selected 

as both solvent and peracetic acid precursor, using the stable and safe urea-hydrogen peroxide 

(UHP) complex as oxidizing agent. Initially, the reactions were carried out with 1 equivalent 

of UHP complex and a 0.66 M concentration of 1a in EtOAc at 30 ºC (Table 1). 

Table 1. Baeyer-Villiger reaction of cyclobutanone (1a) using 1 equivalent of UHP, different 

lipases (50 mg enzyme/mmol 1a) in EtOAc (0.66 M of 1a) after 24 h at 30 ºC and 250 rpm. 

 

Entry Lipase Conversion (%)a 

1 ---- 3 

2 CAL-B 77 

3 RML 32 

4 AK 34 

5 PSL-SD 46 

6 CRL 42 

a Calculated by GC analyses of the reaction crudes. 

 

In all cases conversions into the lactone 2a were much higher (>30%, entries 2-6) 

compared to that in absence of enzyme, which just proceeded in 3% conversion (entry 1). 

Moreover, 2a was found to be the unique final product, not detecting any other side reactions. 

Remarkably, the use of an aqueous 30% H2O2 solution29,30 led to the formation of various 

by-products and poor reproducibility. CAL-B came out as the most efficient catalyst,31 
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reaching a 77% conversion after 24 h (entry 2), while RML, AK, PSL-SD and CRL did not 

overcome a 46% yield (entries 3-6). 

In order to obtain complete conversions, different reaction parameters were studied such 

as the amount of UHP or the substrate concentration, maintaining CAL-B as biocatalyst 

(Table 2).28 Thus, the amount of UHP was varied between 1.0 and 2.0 equivalents, 1a being 

used in a really high concentration if compared to other classes of enzymes (0.5-1.0 M). 

Regarding previous results (entry 1), doubling the amount of UHP led to a complete 

conversion in the same reaction time (entry 2). It must be noticed that 24 h were necessary to 

reach complete conversion, as a 91% conversion was achieved after 20 h (entry 3). 

Satisfactorily, 1.5 equivalents of the oxidizing agent allowed the formation of 2a 

quantitatively after 20 h (entry 4), which suggests a deactivation of the enzyme during the 

timeframe at higher UHP concentration. This reaction was performed with both 0.25 mmol 

and 0.5 mmol of 1a observing identical results. Unfortunately a decrease of UHP to only 1 

equivalent at both lower (0.5 M, entry 5) or very high substrate concentration (0.8 and 1.0 M, 

entries 7 and 8), led to modest 64-75% conversion values after 20 h (entries 5-8). Finally, a 

1.0 M substrate concentration was studied. Hence, after examining the influence of UHP ratio 

(1-2 equivalents, entries 8-11), it was observed that an almost complete conversion could only 

be achieved using 2 equivalents of the oxidizing agent (entry 11). 
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Table 2. Baeyer-Villiger reaction of cyclobutanone (1a) using UHP complex and CAL-B (50 

mg/mmol 1a) in EtOAc at 30 ºC and 250 rpm. 

 

Entry Time (h) UHP (eq) 1a (M) Conversion (%)a 

1 24 1.0 0.66 77 

2 24 2.0 0.66 >99 

3 20 2.0 0.66 91 

4 20 1.5 0.66 >99 

5 20 1.0 0.5 64 

6 20 1.0 0.66 71 

7 20 1.0 0.8 74 

8 20 1.0 1.0 75 

9 20 1.2 1.0 79 

10 20 1.5 1.0 83 

11 20 2.0 1.0 96 

a Calculated by GC analyses of the reaction crudes. Lactone 2a was the only product detected. 

 

With these results in hand, the strategy was extended to a broad panel of 3-substituted 

cyclobutanones, some of them commercially available and other synthesized through 

conventional chemical protocols (see experimental section). For this study, prochiral 

cyclobutanones, such as the 3,3-disubstituted 1b, 3-aryl-substituted 1c-h, ketoesters 1i-j and 

the alkoxy substituted 1l, were considered. Prior to the performance of the chemoenzymatic 

studies, lactones 2b-l were synthesized by reaction of the corresponding cyclobutanone 1b-l 

with m-chloroperbenzoic acid in dichloromethane, developing adequate GC methods for the 
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analysis of the lipase-mediated oxidations of 1b-l (see experimental section and supporting 

information). Table 3 shows the results achieved for the Baeyer-Villiger reaction of 3-

substituted cyclobutanones 1b-l using CAL-B, UHP complex and EtOAc. Control 

experiments in the absence of the enzyme led in all cases to poor conversions (lower than 

22%), the highest value being obtained with the brominated derivative 1d. This observation 

demonstrates the efficiency of the chemoenzymatic system here employed. Lower conversion 

values (< 5%) were reached with ketoesters 1j-k, and in the presence of unsubstituted phenyl 

derivatives 1b-c. 

Remarkably, after 20 h conversions were equal or higher than 90% in all cases except 

for the fluorinated derivative in the para-position of the phenyl ring 1h (entry 7). A periodic 

time course analysis was performed in order to reach complete conversions, which facilitates 

the purification of the final products, avoiding column chromatography separations. Thus, 

high to excellent isolated yields were achieved for the final -butyrolactones after a simple 

and effective extraction protocol following the enzyme filtration, which is in contrast with 

traditional oxidative processes using metal complexes or inorganic salts. It is also worthy to 

mention that ketoesters 1j and 1k (entries 9 and 10) led to the lactones without formation of 

any undesired hydrolytic products in spite of using a hydrolase in the transformation. 

Complete conversions were found for seven out of the eleven tested substrates after 20 

h, requiring 30 h for the 3-phenyl-cyclobutanones 1b-c and 40 h for the 3-

(benzyloxy)cyclobutanone (1l). Nevertheless, the oxidation of the 3-(4-

fluorophenyl)cyclobutanone (1h) did not proceed to complete conversion after prolonged time 

periods. The chemoenzymatic global oxidative approach was extremely effective for ketones 

presenting substitutions in the phenyl ring such as alkyl rests (methyl, 1i) or halogen atoms 

(bromine or chlorine, 1d-g) in different positions (orto, meta or para), but also when alkyl 

carboxylates (1j,k) and the benzyloxy rest (1l) were considered. All the final products were 

racemic, probing that the enzyme is only responsible for the perhydrolysis reaction leading to 



 18 

the formation of non chiral peracetic acid, which is in turn the responsible for the non 

enantioselective oxidation.8 The scalability of the process was probed at a 250 mg-scale 

using 3-(4-methylphenyl)cyclobutanone (1i) as substrate. Gratifyingly, it was quantitatively 

transformed after 20 h. 

 

Table 3. Baeyer-Villiger reaction of 3-substituted cyclobutanones 1b-l using 1.5 equivalents 

of UHP and CAL-B (50 mg/mmol 1b-l) in EtOAc (0.66 M) at 30 ºC and 250 rpm. 

 

Entry Substrate R1 R2 t (h) Conversion (%)a Yield (%)c 

1 1b Me Ph 30 >99 (94)b 93 

2 1c H Ph 30 >99 (94)b 99 

3 1d H 2-Br-C6H4 20 >99 98 

4 1e H 3-Br-C6H4 20 >99 97 

5 1f H 4-Br-C6H4 20 >99 99 

6 1g H 4-Cl-C6H4 20 >99 87 

7 1h H 4-F-C6H4 20 78 51 

8 1i H 4-Me-C6H4 20 >99 97 

9 1j H COOEt 20 >99 84 

10 1k H COOBn 20 >99 96 

11 1l H OBn 40 >99 (90)b 94 

a Calculated by GC analyses of the reaction crudes. 
b Conversion values after 20 h appear in parentheses. 
c Isolated yields after purification by extraction of the final products, once complete 

conversions were detected by GC. For 1h none significant improvements in the conversion 

value were observed over the time, so 2h was purified by column chromatography on silica 

gel. 
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4. Conclusions 

The development of cascade reactions is a challenging task for organic chemists since 

they simplify the overall process, allowing the participation of unstable intermediates and 

improving the yields of the final products. Herein, we have described a chemoenzymatic 

strategy for the synthesis of -butyrolactones starting from the corresponding cyclobutanones. 

This Baeyer-Villiger reaction is based on two sequential steps carried out in one-pot. Firstly, a 

lipase-catalyzed perhydrolysis of ethyl acetate allows the formation of peracetic acid, which 

smoothly performs the oxidation of the ketones into the lactones in a non-enzymatic fashion. 

Cyclobutanone was selected for simplicity and commercial availability as model substrate, 

finding Candida antarctica lipase type B as the most efficient enzyme to carry out this 

transformation, while the stable UHP complex has served as a mild oxidative agent. The 

influence of the substrate concentration and the amount of UHP has also been studied in 

depth. Satisfyingly, 1.5 equivalents of UHP allowed the preparation of -butyrolactones in 

good to excellent yields after a simple extraction protocol, from a previously acquired or 

synthetized representative number of cyclobutanones in a 0.66 M concentration. Finally, the 

reaction has been satisfactorily scaled-up, demonstrating the efficiency of this 

chemoenzymatic cascade approach. 
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