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Abstract. We consider the job shop scheduling problem with fuzzy
durations and expected makespan minimisation. We formally define
the space of semi-active and active fuzzy schedules and propose and
analyse different schedule-generation schemes (SGSs) in this fuzzy
framework. In particular, we study dominance properties of the set
of schedules obtained with each SGS. Finally, a computational study
illustrates the great difference between the spaces of active and the
semi-active fuzzy schedules, an analogous behaviour to that of the
deterministic job shop.

1 Introduction

Scheduling is a research field of great importance, involving com-
plex combinatorial constraint-satisfaction optimisation problems and
with relevant applications in industry, finance, welfare, education,
etc [13]. To enhance the applicability of scheduling, part of the re-
search in this field has been devoted to modelling the uncertainty
and vagueness pervading real-world situations, with great diversity
of approaches [9]. In particular, fuzzy sets have been used in differ-
ent manners, ranging from representing incomplete or vague states
of information to using fuzzy priority rules with linguistic qualifiers
or preference modelling [4]. They are also emerging as an interest-
ing tool for improving solution robustness, a much-desired property
in real-life applications [10, 15].

A key issue in scheduling is the definition of subsets of feasible
solutions and the study of their properties, in particular, whether they
are guaranteed to contain at least one optimal solution. For classical
deterministic scheduling, the best known are the sets of semi-active,
active and non-delay (or dense) schedules, and it is common practice
to restrict the search to some of these subspaces. This is achieved us-
ing schedule generation schemes (SGSs) which, given an operation
processing order, produce a schedule (an assignment of start times
to all operations) based on this ordering. SGSs are extensively used
in (meta)heuristic procedures and can also be viewed as branching
schemes of exact search methods. It is essential to have proper SGSs,
to know which is the set of schedules obtainable with a given SGS
and how it relates with the schedule categories and to study the theo-
retical ability of any SGS to reach the optimum. Surprisingly enough,
although we can find some ad-hoc extensions of deterministic SGSs
to the fuzzy framework, no effort has been made to give precise def-
initions for types of schedules when fuzzy times are involved, nor
have SGSs been defined and studied systematically in this frame-
work.
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In this paper, we intend to fill the existing gap in the litera-
ture. Inspired by the work of [1],[18],[19] for different determinis-
tic scheduling problems, we provide a formal definition of the con-
cepts of semi-active and active schedules as well as several SGSs for
the fuzzy job shop problem with expected makespan minimisation
(FJSP). We shall study the relationship between different types of
schedules and the sets generated by SGSs, and investigate whether
such sets necessarily contain one optimal schedule. Finally, we shall
provide computational results to compare the different SGSs.

2 The Fuzzy Job Shop Problem

The job shop scheduling problem, or JSP in short, consists in
scheduling a set of n jobs J1, . . . , Jn to be processed on a set
of m physical resources or machines M1, . . . ,Mm. Each job
Jj , j = 1, . . . , n, consists of mj ≤ m tasks or operations
(o(j, 1), . . . , o(j,mj)) to be sequentially scheduled (precedence
constraints). Each task o(j, l) needs the exclusive use of a ma-
chine μo(j,l) for its whole processing time do(j,l) > 0 (capacity
constraints). There is no preemption, i.e. all operations must be
processed without interruption and no reentrance, i.e., operations
within a job are processed by different machines: ∀j, μo(j,l) �=
μo(j,l′), ∀l �= l′. A solution to this problem is a schedule–an al-
location of starting times for all operations – which is feasible, in
the sense that all constraints hold, and is also optimal according to
some criterion. Here, we consider the objective of minimising the
makespan Cmax, which is the time lag from the start of the first
operation until the end of the last one. This is the most commonly
considered regular (non-decreasing with task processing times) per-
formance measure.

In order to simplify notation, we assume w.l.o.g. that tasks are
indexed from 1 to N =

∑n
j=1 mj , so we can refer to a task o(j, l) by

its index o =
∑j−1

i=1 mi+ l. The machine, duration, starting time and
completion time of a task o are denoted respectively μo, do, So and
Co (notice the last two depend on the schedule). The set of tasks is
denoted O = {0, 1, . . . , N}, where 0 is an initial dummy operation,
taken to be the first operation of each job (i.e. o(j, 0) = 0, ∀j =
1, . . . , n) and such that d0 = S0 = 0 . Finally, a feasible schedule
will be represented by the vector of operation starting times t, where
to = So is the starting time of operation o ∈ {1, . . . , N} (in our
case, a triangular fuzzy number, as described below).

2.1 Uncertain Durations as Fuzzy Numbers

In real-life applications, it is often the case that the exact time it takes
to process a task is not known in advance and only some uncertain
knowledge about the duration is available. The crudest representation
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for uncertain processing times would be a human-originated confi-
dence interval. If some values appear to be more plausible than oth-
ers, a natural extension is a fuzzy interval or fuzzy number (cf. [5]). A
fuzzy interval A is a fuzzy set on the reals with membership function
μA : R → [0, 1] such that its α-cuts Aα = {r ∈ R : μA(r) ≥ α},
α ∈ (0, 1], are intervals (bounded or not). The support of A is
A0 = {r ∈ R : μA(r) > 0} and the modal values are those in
A1. A fuzzy number B is a fuzzy interval whose α-cuts are closed
intervals, denoted Bα = [bα, bα], with compact support and unique
modal value.

The simplest model of fuzzy interval is a triangular fuzzy num-
ber or TFN, using an interval [a1, a3] of possible values and a modal
value a2 in it. A TFN A is denoted A = (a1, a2, a3) and its mem-
bership function takes the following triangular shape:

μA(r) =

⎧⎪⎨
⎪⎩

r−a1

a2−a1 : a1 ≤ r ≤ a2

r−a3

a2−a3 : a2 < r ≤ a3

0 : r < a1 or a3 < r

(1)

In the job shop, we essentially need two operations on fuzzy num-
bers, the sum and the maximum. In principle, these are obtained by
extending the corresponding operations on real numbers using the
Extension Principle. However, computing the sum or maximum of
two fuzzy numbers is cumbersome if not intractable in general, be-
cause it requires evaluating two sums or two maxima for every value
α ∈ [0, 1]. For the sake of simplicity and tractability of numerical
calculations, we follow [6] and approximate the results of these op-
erations by linear interpolation on the three defining points of each
TFN (an approach also taken, for instance, in [3] or [11]). The ap-
proximated sum coincides with the actual sum, so for any pair of
TFNs A and B:

A+B = (a1 + b1, a2 + b2, a3 + b3) (2)

As for the maximum, for any two TFNs A,B, if F = max(A,B)
denotes their maximum and G = (max{a1, b1}, max{a2, b2},
max{a3, b3}) the approximated value, it holds that ∀α ∈
[0, 1], f

α
≤ g

α
, fα ≤ gα. The approximated maximum G is thus

a TFN which artificially increases the value of the actual maximum
F , maintaining the support and modal value, that is, F0 = G0 and
F1 = G1. This approximation can be trivially extended to the case
of more than two TFNs.

The membership function μA of a fuzzy number A can be inter-
preted as a possibility distribution on the reals; this allows to define
the expected value of a fuzzy number [8], given for a TFN A by

E[A] =
1

4
(a1 + 2a2 + a3). (3)

The expected value coincides with the neutral scalar substitute of a
fuzzy interval and can also be obtained as the centre of gravity of its
mean value or using the area compensation method [4]. It induces
a total ordering ≤E in the set of fuzzy intervals [6], where for any
two fuzzy intervals A,B A ≤E B if and only if E[A] ≤ E[B].
Clearly, for any two TFNs A and B, if ∀i ∈ {1, 2, 3}, ai ≤ bi, then
A ≤E B.

2.2 Problem Statement

In analogy to the original problem, our objective is to find a fuzzy
schedule with optimal makespan. However, neither the maximum
nor its approximation define a total ordering in the set of TFNs. Us-
ing ideas similar to stochastic scheduling, we use the total ordering

Algorithm 1 SGS Generic Algorithm
Require: an instance of J |fuzzpo|E[Cmax], P, and a task order, π
Ensure: a schedule t for P according to π

1. A = {o(j, 1) : 1 ≤ j ≤ n}
while A �= ∅ do

2. compute the eligible set E ⊆ A
3. select o(j∗, l∗) = argmin{πo(j,l) : o(j, l) ∈ E}
4. So(j∗,l∗) = ESo(j∗,l∗)
5. A = A− {o(j∗, l∗)}(∪{o(j∗, l∗ + 1)} if l∗ < mj∗)

end while
return t, where ti = Si, i = 1, . . . , N

provided by the expected value, considering that the objective is to
minimise the expected makespan E[Cmax]. The resulting problem
will be denoted J |fuzzdo|E[Cmax] and can be formulated as fol-
lows:

minE[Cmax(S)] = E[ max
1≤j≤n

Co(j,m)] (4)

subject to:

∀i Ci
o = Si

o + dio, ∀o ∈ O (5)

∀i Si
o(j,l) ≥ Ci

o(j,l−1), 1 ≤ l ≤ mj , 1 ≤ j ≤ n (6)

∀i Si
o ≥ Ci

o′ ∨ ∀i Si
o′ ≥ Ci

o, ∀o �= o′ ∈ O : μo = μo′ (7)

Where ∀i represents ∀i ∈ {1, 2, 3}.
Clearly, the FJSP is NP-hard, since setting all processing times to

crisp figures yields the classical JSP.
Notice that the schedule is fuzzy in the sense that the starting, pro-

cessing and completion times of each task are fuzzy numbers, seen
as possibility distributions on the actual values they may take. How-
ever, there is no uncertainty regarding the order in which operations
must be processed: once the starting times have been allocated, they
establish clear orderings among operations in the same machine.

3 Schedule Generation Schemes

A general framework for a SGS is provided in Algorithm 1: given
a task order π (which can be interpreted as a priority vector), it al-
lows to build different types of schedules, depending on the actual
instantiation of some of its actions.

The generic algorithm builds the schedule in N iterations. At each
iteration, the SGS computes a set of eligible tasks, E, which is a sub-
set of the set of available tasks, A, containing the tasks that are can-
didates to be scheduled at the current iteration. In steps 3 and 4 the
SGS selects the operation o(j∗, l∗) ∈ E with the highest priority
according to π and computes its Earliest feasible Starting time (ES)
based on an Appending (ESA) or Insertion (ESI) strategy.

This framework covers a wide range of interesting SGSs, as we
shall see in the sequel. However, it does not comprise all possible
SGSs, in particular those where a non-available operation may be
selected for scheduling or where starting times may be later modified
in the schedule-building process.

3.1 Computing Earliest Feasible Starting Times

In the SGS generic algorithm, once a task has been selected, it is
scheduled at its earliest feasible starting time ES. Depending on how
this value is computed, we distinguish between appending SGS and
insertion SGS.

In an appending scheme, an unscheduled task can be scheduled
only after all tasks that have been previously scheduled in its machine
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and its job. Formally, let o(j, l) be the task for which the starting time
must be computed, let k = μo(j,l) be the machine required by o(j, l)
and let λ(k) ∈ O denote the latest task scheduled (at the current
iteration) on machine k. Then, ESAo(j,l) can be computed in O(1)
as follows:

ESAo(j,l) = max{Cλ(k), Co(j,l−1)} (8)

In an insertion scheme, an unscheduled task o(j, l) may be sched-
uled before tasks already scheduled on its machine, provided that
the starting time of each of these tasks does not change. Hence, the
scheme searches for the first insertion position where the selected
task can fit without delaying the subsequent tasks already sched-
uled. Taking into account the definition of starting and completion
times in the FJSP, the insertion position must fit “in each compo-
nent” of the TFN. More precisely, let ηk be the number of tasks
scheduled on machine k and let σk = (0, σ(1, k), . . . , σ(ηk, k)),
with σ(ηk, k) = λ(k) denote the partial processing order of tasks
already scheduled in machine k. If a position q, 0 ≤ q < ηk, is such
that for all i ∈ {1, 2, 3}:

max{Ci
σ(q,k), C

i
o(j,l−1)}+ dio(j,l) ≤ Si

σ(q+1,k) (9)

then q is a feasible insertion position for operation o(j, l) between
operations σ(q, k) (possibly the dummy first task 0) and σ(q+1, k).
If there exists at least one position q verifying (9), we take q =
minq verifying (9) q and

ESIo(j,l) = max{Ci
σ(q,k), C

i
o(j,l−1)} (10)

Otherwise ESIo(j,l) = ESAo(j,l)

The earliest starting time of an eligible task in an insertion scheme
can be computed in O(m), since there are at most m−1 tasks sched-
uled on machine k = μo(j,l)

4 Schedule Categories and SGSs

The set Σ of feasible solutions usually constitutes a huge search
space. Hence, it is common in deterministic scheduling to restrict the
search to smaller subsets of Σ which define categories of schedules.
Among these, the best known are the sets of semiactive, active and
non-delay schedules [13]. A set of schedules of a given category is
said to be dominant w.r.t. an objective function if it contains at least
one optimal solution. In the following, we will always consider dom-
inance w.r.t. expected makespan. A SGS is complete for a category if
it can be used to generate all the schedules of this category.

4.1 Semi-active Schedules

For deterministic shop scheduling, the definition of semi-active
schedules is based on the concept of local left shift, a change that
consists in “moving an operation block to the left on the Gantt chart
while preserving the operation sequences” [18]. This can be inter-
preted in the fuzzy case as follows.

Definition 1 Let t be a feasible schedule, then a local left shift of a
task o in t is a move giving another feasible schedule s where

∃i ∈ {1, 2, 3} : sio = tio − 1 ∧ ∀j �= i sjo = tjo

so′ = to′∀o′ ∈ O − {o} (11)

Definition 2 A semi-active schedule is a feasible schedule in which
none of the tasks can be locally left-shifted.

Notice that for any feasible schedule that is not semi-active,
there exists a sequence of local left shifts that produces a semi-
active schedule without increasing any of the makespan components,
Ci

max, and, therefore, without increasing the expected makespan.
Hence, the set of semi-active schedules is strictly contained in the
set of feasible schedules and is dominant for the FJSP with expected
makespan minimization.

We are now in position of defining a SGS that produces semi-
active schedules.

Definition 3 SemiActiveSGS is an appending SGS where the eli-
gible set E equals the set of available operations A, i.e., E = A.

Theorem 1 SemiActiveSGS generates only semi-active schedules
and it is complete in this set.

Sketch of Proof Schedules generated by SemiActiveSGS are al-
ways semi-active because every operation o ∈ O ESAo is assigned
the least possible value, so it is unfeasible to reduce any of its com-
ponents, and no local left-shift is available. On the other hand, given
a semiactive schedule t, we take π to be the topological order from
the constraint graph that represents the precedence and capacity con-
straints between operations in t (this order always exists because,
being t feasible, the graph is acyclic). For any operation ordering π,
SemiActiveSGS(π) schedules all operations following exactly the
same order π, so in particular SemiActiveSGS(π) = t. �

Corollary 2 The set of schedules generated by SemiActiveSGS is
dominant.

4.2 Active schedules

Given a feasible schedule t where no local left shifts are possible, a
global left shift of an operation o is a move that allows “to start an
operation earlier without delaying any other operation” [18]. More
formally:

Definition 4 Let t be a feasible schedule, then a left shift of an op-
eration o in t is a move giving another feasible schedule s where:

∃i ∈ {1, 2, 3} : sio < tio ∧ ∀j �= i sjo ≤ tjo

so′ = to′∀o′ ∈ O − {o} (12)

Definition 5 Let t be a feasible schedule, then a global left shift of
a task o in t is a left shift of o that is not obtainable by a sequence of
local left shifts.

Definition 6 An active schedule is a feasible schedule where no
global or local left shift lead to a feasible schedule.

Notice that an active schedule contains no feasible insertion posi-
tions, because if an insertion position existed, this would allow for at
least one global left shift. Also, given any semi-active but non-active
schedule, it is always possible to perform a sequence of global left
shift moves in order to build an active schedule without increasing
any component of the starting times of tasks. Hence, the set of ac-
tive schedules is a strict subset of the semi-active ones and remains
dominant.

In the following we study different ways of generating active
schedules, starting with a straightforward insertion version of the
general SGS algorithm.
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Definition 7 ActiveSGS is an insertion SGS where the eligible set
E is the whole set of available operations A, i.e., E = A.

Theorem 3 ActiveSGS generates only active schedules and it is
complete in this set.

Proof Let π be a task processing order, let t = ActiveSGS(π) and
let σk = (0, σ(1, k), . . . , σ(ηk, k)) denote the partial sequencing
order in which operations are scheduled on a machine k according
to t. If t is not active, there must exist a task o(j, l) scheduled in its
machine k at a position pk ∈ {2, . . . , ηk} such that for o(j, l) there
exists a feasible insertion position q < pk in σk. Thus, there exists a
feasible schedule s such that so′ = to′ , ∀o′ �= o(j, l) and

∀i sio(j,l) + dio(j,l) ≤ min{tio(j,l+1), t
i
σ(q+1,k)},

∀i sio(j,l) = max{Ci
o(j,l−1), C

i
σ(q,k)} < tio(j,l).

But this is absurd because if such feasible insertion position exists at
the end of the algorithm, it must also exist when operation o(j, l) is
to be scheduled by ActiveSGS and, in this case, tio(j,l) = ESIio(j,l)
can never be greater than sio(j,l) for any component i.

Conversely, let t be an active schedule and let π be the task pro-
cessing order obtained as the topological order of the constraint
graph representing t. Since it is active, no feasible insertion posi-
tions can exist in t. Therefore, ActiveSGS(π) will schedule ev-
ery task o(j, l) with starting time ESIo(j,l) = ESAo(j,l) =
max{Cλ(k), Co(j,l−1)} where λ(k) is the operation preceding
o(j, l) in its machine k according to π, i.e. ESIo(j,l) = to(j,l). It
thus follows that t = ActiveSGS(π) = SemiActiveSGS(π) �

Corollary 4 The set of schedules generated by ActiveSGS is dom-
inant.

4.2.1 The fG&T-SGS algorithms

The Giffler-Thompson Algorithm or G&T in short ([7]) is probably
the most famous active schedule generation scheme for determinis-
tic job shop problem, having been used in a variety of settings. It is
an appending algorithm where, given the task o∗ with earliest pos-
sible completion time C∗ at the current step, the set E of eligible
operations (also referred to as conflict set) is the set of operations
processed in the same machine as o∗ which may start before C∗.

G&T provides a complete and constructive heuristic method to
search for solutions in search spaces of reasonable size and has been
used as a branching schema for the deterministic JSP in exact meth-
ods, such as branch and bound [2] or best-first search [17]. Also,
G&T allows further reductions of the search space by including a pa-
rameter that bounds the length of time that a machine is allowed to
remain idle on the chance that a “more critical” job will soon become
available [19].

We can find some ad-hoc extensions of G&T in the fuzzy schedul-
ing literature, from the earliest one in [16] to the most recent one
in [12]. The variety of existing proposals illustrates that extending
G&T is far from trivial. The first difficulty appears when computing
the earliest completion time C∗ at each current step. If it is com-
puted as the minimum completion time of all the unscheduled tasks
currently available, it may not correspond to the completion time of
any specific task because a set of TFNs is not closed under the min-
imum. In consequence, it may not make sense to consider only one
machine when computing the eligible set.

A possible solution is to build the eligible set E with all tasks
o that “can start before C∗”, which in fuzzy framework means

that ∃iESAi
o < (C∗)i, since C∗ is previous to ESAo only if

∀i, (C∗)i ≤ ESAi
o. This is the basis for the first SGS extending

G&T:

Definition 8 The fG&T-SGS1 algorithm is an appending SGS
where the eligible set E is computed as follows:

C∗ = min{ESAo + do : o ∈ A}
E = {o ∈ A : ∃i ESAi

o < (C∗)i} (13)

Theorem 5 fG&T-SGS1 generates only active schedules, but it is
not complete in this set and it is not dominant.

Sketch of Proof We first prove by contradiction that fG&T-SGS1
generates active schedules. Let π be a task processing order and let
us suppose that t = fG&T-SGS1(π) is not active. Let σk = (0,
σ(1, k), . . . , σ(ηk, k)) denote the partial sequencing order in which
operations are scheduled on a machine k according to t. Reasoning as
in Theorem 3, there must exist a task o(j, l) scheduled in its machine
k at a position pk ∈ {2, . . . , ηk}, a feasible schedule s with so′ =
to′ , ∀o′ �= o(j, l) and a position q < pk such that

∀i sio(j,l) + dio(j,l) ≤ min{tio(j,l+1), t
i
σ(q+1,k)},

∀i sio(j,l) = max{Ci
o(j,l−1), C

i
σ(q,k)} < tio(j,l).

For the feasible position q to exist in t, it must be the case that
fG&T-SGS1 has scheduled operation σ(q + 1, k) before o(j, l).

Also, o(j, l) cannot have been in the set A when σ(q + 1, k) was
to be scheduled. This is proved by contradiction using the fact that q
is a feasible insertion position.

A direct consequence is that o(j, l−1) cannot have been scheduled
either. In fact, o(j, l−1) cannot even have been in A when σ(q+1, k)
was to be scheduled. This is again proved by contradiction, using the
fact that s and t are identical for every operation other than o(j, l)
and that a feasible insertion position exists.

By repeating this argument “backwards” for all operations preced-
ing o(j, l) in its job, we conclude that o(j, 1) cannot have been in A
when σ(q + 1, k) was scheduled, which is clearly absurd because A
is initialised with the first task of every job.

To show that fG&T-SGS1 does not generate all active sched-
ules nor is it complete, consider a problem with 3 jobs and 3 ma-
chines where durations are do(1,1) = (3, 4, 5), do(2,1) = (2, 4, 6),
do(2,2) = (2, 3, 4), do(2,3) = (13, 15, 17), do(3,1) = (1, 4, 8) and
with the following machine requirements μo(1,1) = 1, μo(2,1) = 2,
μo(2,2) = 1, μo(2,3) = 3, μo(3,1) = 1. Figure 1 shows the job-
oriented Gantt charts adapted to TFNs (following [6]) of all six
feasible active schedules, including the two optimal solutions with
Cmax = (17, 22, 27) (solutions (1) and (3)). In this case, it is easy
to see that fG&T-SGS1 cannot generate any of the optimal (active)
solutions. �

The incompleteness of fG&T-SGS1 stems from the fact that a set
of TFNs is not closed under the minimum, i.e., C∗ may not corre-
spond to the earliest completion time of an operation in A; we can
only guarantee that (C∗)i does correspond to the i-th component of
the earliest completion time of an operation in A. Taking this into
account, we propose an alternative extension of G&T.

Definition 9 The fG&T-SGS2 algorithm is an appending SGS
where the eligible set E is computed as follows.

C∗ = min{ESAo + do : o ∈ A}
A∗ = {o ∈ A : ∃i ESAi

o + dio = (C∗)i} (14)

E = {o ∈ A : ∀o′ ∈ A∗∃i ESAi
o < ESAi

o′ + dio′}
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Figure 1: Gantt chart of the schedules of all active solutions for the example in Theorem 5.

Theorem 6 fG&T-SGS2 generates only active schedules and it is
complete in this set.

Sketch of Proof The argument that fG&T-SGS2 generates active
schedules is analogous to that given for fG&T-SGS1 in Theorem 5.

To see that fG&T-SGS2 is complete, let t be an active sched-
ule, let σ be the task processing order obtained from the topological
ordering of the constraint graph represented by t and let σk be the
partial order determined by σ for a particular machine k. We prove
that for an operation processing order π containing all partial orders
represented by σk and s = fG&T-SGS2(π), we have s = t. It suf-
fices to show that, if σ′ is the task processing order obtained from
the topological ordering of the constraint graph represented by s, ∀k
σk = σ′k.

Let us suppose that there exists at least one k such that σk �= σ′k
and let a = o(j, l) = σ(q, k) be the first operation in σ that is
scheduled in its machine k in a different order from σ. This means
that there exists an operation requiring the same machine as a,
b = σ(q′, k), q′ > q, that will be scheduled by fG&T-SGS2 be-
fore a. Notice that, b ∈ E and a �∈ E. Also, without loss of gen-
erality, we may assume that a ∈ A. Finally, notice that, being an
active schedule, in t there are no feasible insertion positions, that is,
∃i ESAi

a < ESAi
b + dib.

If b ∈ A∗, since a ∈ A−E, there must exist at least one operation
o ∈ A∗ ⊆ E such that ∀i ESAi

o + dio ≤ ESAi
a. o cannot share

job with a or b. If it requires a machine k′ �= k, it can be scheduled
before b without any change in any of the partial orders in σ. Using
this argument a finite number of times, eventually ∀x ∈ A∗, μx = k.
This, together with the fact that t is active, leads to having a ∈ E,
which is a contradiction. If b �∈ A∗, b ∈ E means that ∀o ∈ A∗

∃i : ESAi
b < ESAi

o + dio. Reasoning analogously to the case when
b ∈ A∗, we conclude that it is impossible to schedule b before a,
which is a contradiction. �

Corollary 7 The set of schedules generated by fG&T-SGS2 is

dominant.

5 Empirical Behaviour

Having studied the different features of each proposed SGS, in this
section we intend to illustrate their behaviour in practice. To this end,
we will analyse the quality of the solutions generated by each SGS
from a broad sample of operation processing orders, which will also
offer a picture of the different schedule spaces. This study is carried
out on the fuzzy instances from [14], a set of 12 fuzzified versions
of what are considered to be some of the hardest instances for the
JSP. For each instance, we generate T = 1000 random feasible task
orderings and evaluate each ordering using the four SGSs proposed
in this paper.

800

900

1000

1100

1200

1300

1400

1500

1600

1700

SemiActiveSGS iActiveSGS fG&T−SGS1 fG&T−SGS2

E
[M

ak
es

pa
n]

Figure 2: E[Cmax] for 1000 task orderings for instance ABZ9.

The box-plot in Figure 2 corresponds to the expected makespan
obtained with the T task orderings using the different SGSs. It corre-
sponds to instance ABZ9; for the remaining instances, the behaviour
is very similar. As expected, the semi-active solutions generated by
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SemiActiveSGS are much worse than the active ones obtained with
the other SGSs; this is due to the size and features of the related
space of solutions. These results confirm the clear difference, also
in the fuzzy framework, between the spaces of active schedules and
semi-active ones. Differences between active SGSs are on the other
hand not so clear, even if ActiveSGS seems to yield slightly worse
solutions than the two extensions of G&T.

A better assessment of the SGSs is achieved through a se-
ries of non-parametric statistical inference tests, having rejected
the hypotheses of normality for all instances with preliminary
Kolmogorov-Smirnov tests. For each instance we run a Friedman
two-way analysis of variance by ranks. As for the box-plots, results
are very similar for all instances, and show that there is a signif-
icant difference between the samples corresponding to each SGS.
According to the mean ranks provided by the test on ABZ9, the
SGS can be ranked according to the average quality of the solu-
tions as follows: the best one would be fG&T-SGS1 (1.4215), fol-
lowed by fG&T-SGS2 (1.7565), then ActiveSGS (2.822) and fi-
nally SemiActiveSGS (4); the results for the remaining instances
are very similar. Additionally, a Mann-Whitney U test is run on each
pair of samples. According to this test, for instances FT10, FT20 and
LA25, there are not significant differences between fG&T-SGS1
and fG&T-SGS2 (with p-values 0.288, 0.206 and 0.129 respec-
tively). For the remainng instances, a p-value< 0.01 indicates that
there are significant differences between both extensions of G&T.

An explanation for these results is that fG&T-SGS1 maps the
processing orders to a subspace of the active schedules with good
solutions in average, even if it is not guaranteed to contain any op-
timal solution. For large instances with a huge solution space, this
reduction may prove worthwhile. However, for small instances (or
if the SGS is to be used in a exact algorithm) it may be better to
use fG&T-SGS2 or ActiveSGS, which allow to search across the
whole space of active schedules. In fact, although both are complete,
the mapping defined by fG&T-SGS2 seems significantly better in
average quality.

The behaviour shown for the fuzzy setting is consistent with the
deterministic JSP, where active schedules are good in average (and
much better than semi-active ones) and form a dominant set. Also,
in the crisp case the G&T algorithm can be modified in order to
further reduce the search space; at the extreme, the search space is
constrained to that of non-delay schedules, where a machine cannot
be idle if there is an operation that can be executed in it. Experience
demonstrates that the mean value of solutions tends to improve with
the reduction of the search space, despite the risk of losing the opti-
mal solution.

6 Conclusions

This papers provides the first formal definition and study of types of
feasible fuzzy schedules and related schedule generation schemes for
the job shop problem with fuzzy processing times. We have shown
that dominance and completeness are lost when considering a sim-
ple extension of the G&T algorithm, while an insertion SGS algo-
rithm and a more sophisticated extension of the G&T are both com-
plete and dominant. Additional experimental results have confirmed
the differences between semi-active and active subspaces and shown
that narrowing the search space can improve the average quality of
schedules even if dominance is lost. We believe both the theoretical
and experimental results can provide a guide for designing SGS and
incorporate them both into metaheuristic and exact search methods.

As future work, we plan to extend this study to smaller sets of

schedules, such as non-delay. Also, the fuzzy setting allows for alter-
native definitions of left shifts and, consequently, (semi)active sched-
ules, thus admiting more constraints in the solution space than those
existing in the deterministic job shop which may be worth exploring.
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