
SQLMutation: A tool to generate mutants of SQL database queries

Javier Tuya, Mª José Suárez-Cabal, Claudio de la Riva
University of Oviedo (SPAIN)

{tuya | cabal | claudio} @ uniovi.es

Abstract

We present a tool to automatically generate mutants

of SQL database queries. The SQLMutation tool is
available on the Web and it can be accessed using two
different interfaces: A Web application to interactively
generate the mutants and a Web service that allows it
to be integrated with other applications developed
using different platforms.

Keywords: Database testing, SQL testing, SQL

query, Mutation operators

1. Introduction

The Structured Query Language (SQL) [6] is a
semi-declarative language used by the applications to
access the information stored in relational database
systems.

The most frequent SQL queries used in applications
are those that retrieve information from one or more
tables of the database [8]. The select clause
determines which fields (columns) constitute the query
output, the from clause determines which tables are
used and the join determines the criterion for joining
rows from different tables. Then the where clause
filters the rows based on some other criteria. The
group by clause indicates how to combine the
selected rows and the having clause performs a final
filter based on other conditions. Additionally, the
order by clause determines how to order the
resulting set of data.

When testing SQL queries we must take into
account a number of issues that are specific to this
language, such as the non procedural character of SQL,
the high input and output spaces, the dependence on
the database schema, the presence of unknown values
(due to the use of tri-valued logics) and in general, the
existence of few specifically tailored adequacy criteria
to assess the test cases [9].

Mutation testing has been demonstrated as a
powerful approach to evaluate test cases and for

comparing different testing strategies or techniques.
Empirical studies show that the generated mutants
provide a good indication of the fault detection ability
of a test suite [1,2]. Some previous works in database
testing have used mutants to evaluate the fault
detection capability of database test cases [4,5,11] in
order to assess the effectiveness of test generation
techniques. In [3] a set of SQL mutants based on
features present in a conceptual model of the database
schema is presented. However, all the above
approaches are either manual or focus on a reduced
subset of SQL features.

In [10] we described a set of mutation operators for
SQL select queries that covers a wide range of the
SQL syntax and semantics. The goal of this paper is to
present some internal details about the tool that
automates the mutation process. This tool is named
SQLMutation and it is publicly accessible at
http://in2test.lsi.uniovi.es/sqlmutation. It allows the
mutants to be generated interactively from a Web
browser, or from other programs by consuming a Web
service.

In the rest of the paper we provide an overview of
the mutants (Section 2), some technical details about
the tool (Section 3) and typical faults (Section 4).
Finally, we present some conclusions (Section 5).

2. SQL mutants

The mutation operators are organized into four
categories:
• SC - SQL clause mutation operators: These

perform mutations on the main clauses: select,
join, sub-queries, group by, union, order by and
aggregate functions.

• OR - Operator replacement mutation operators:
These are similar to the expression modification
operators described in [7] plus additional operators
specific to between and like predicates.

• NL - NULL mutation operators: Mutations related
to the handling of null values, whose aim is to
ensure that test cases exist that exercise the nulls
both in the conditions and the query outputs.

• IR - Identifier replacement mutation operators:
Replacement of columns, constants and query
parameters that are present either in the query or in
the tables used by the query.

Each category defines several mutation operators or
mutant types. As most of the operators can be applied
in different SQL clauses, each type is further
decomposed into subtypes, each of which refers to a
particular mutant type when applied to a given clause.
The mutation operators are described in detail in [10].

3. The SQLMutation tool

Figure 1 depicts the main architecture of the tool.
Two implementations of the Server front-end are
available: a Web application for interactive usage and a
Web service for use from other applications. The core
of the system is the Mutator that creates the mutants.
This is helped by Schema (which provides information
about all elements in the database schema), the Parser
(transforms the SQL query into an internal
representation) and the MutantWriter which stores the
mutants that are being generated and returns them to
the Server in a suitable format.

In the following subsections each of the
components is described in more detail.

3.1. Server front-ends

The mutation process requires the user to specify
both the SQL query and information about the database
schema (table names, column names, data types as well
as primary keys and null constraints). The first front-
end to SQLMutation is a Web application that allows
the user to introduce this information from a browser
and then generate the mutants. Figure 2 shows a
sample of the main screen.

The mutants are presented to the browser in a table,
including the classification of each mutant (category,
type and subtype) along with the mutated SQL. An

Figure 1. Architecture of the tool

Figure 2. Main Screen (Web interface)

additional form is available to submit problem reports
or requests for enhancement.

The second front-end is a Web service that provides
a method getMutants which takes two input
parameters: the SQL query to be mutated and the
database schema. The database schema must be
supplied in an internal XML format used by
SQLMutation. The following is a sample of a schema
that declares a table with two columns, the first is the
primary key, and the second has a not null constraint:

<schema><table name="staff">
<column name="empnum" type="char" key="true"
 notnull="true"/>
<column name="empname" type="char"
 notnull="true"/>
</table></schema>

The Web service response is an XML formatted

string which contains all the mutants and/or error
information if applicable. A sample of this response is
presented below:

<sqlmutationws><version>1.1.46.0</version>
<mutants>
 <mutant><id>1</id><category>SC</category>
 <type>SEL</type><subtype>SLCT</subtype>
 <equivalent/>
 <sql>SELECT DISTINCT empname FROM staff
 WHERE empnum = 'E1'</sql>
</mutant>
 <mutant><id>2</id><category>IR</category>
 <type>IRC</type><subtype>IRCCS</subtype>
 <sql>SELECT STAFF.EMPNUM FROM staff
 WHERE empnum = 'E1'</sql>
</mutant>
 . . .
</mutants></sqlmutationws>

Using the Web service front-end, third party

applications written in different platforms such as Java
or .NET are able to integrate the SQLmutation tool. In
the online documentation, two sample clients written in
VB.NET and Java with Eclipse Web Tools Platform
are supplied.

3.2. Schema, Parser and MutantWriter

Before generating the mutants, the Schema class is
instantiated into the sSchema object and loaded with
the XML representation of the database schema (see
above). During the mutation process the sSchema
object is called repeatedly to obtain columns,
constants, their data types, constraints and to resolve
the table aliases.

The Parser transforms the SQL query into an
internal XML format by replacing the keywords by
elements and then reorganizing the resulting XML
document in order to produce a suitable structure of the

query. Keywords are represented as elements and
columns, tables, parameters and constants as text. An
example of the internal XML representation of the
query presented in Figure 1 is the following:

<sql><select>empname</select>
<from>staff</from>
<where>empnum<eq/>'E1'</where></sql>

 While the Mutator generates each mutant it calls

the MutantWriter interface which stores an application-
dependent representation of each mutant. For instance,
the implementation of the interface used in the Web
application stores the mutants in an HTML table
object, and the Web service stores the mutants in
XML.

3.3. Mutator

The core of SQLMutation is a set of classes
(represented by the Mutator in Figure 1) that receives
the schema and the SQL query, calls the Parser and
loads the XML representation of the query into a DOM
model. Then the Mutator traverses recursively each
element in the DOM and whenever it finds an element
or text node performs one or more of the following
operations:
• Scope setting: Column references must be mapped

to the corresponding table in the database schema
that declares it. When visiting each select
clause (a query may have more than one select
clause when there is a union or a subquery) or
each join clause, a list of the tables that are in
the scope of this node is updated. An additional
list is created including the columns, constants and
parameters needed for the replacements made in
by the IR category of mutants.

• Column resolution: When a text node is found, the
Schema determines whether it is a constant,
parameter or column reference. In the last case, the
table that declares the column is searched for in
the list. When a table appears more than once, the
references are mapped to the corresponding
aliased table.

• Mutation: If the visited node is an element or text
node suitable for generating one or more mutants,
a clone of it is first created and then every
necessary transformation to obtain the mutant(s) is
performed on the clone. Immediately after
generating each mutant, the MutantWriter is called
to save the transformed clone into a new mutant.

After finishing the mutation process, the server
application will call the MutantWriter to get all
generated mutants and send them back to the client.

4. Using the SQL mutants

Next, we will present some results of the faults
introduced in a set of queries developed by seven
students during an exercise of SQL development. The
exercise consisted in writing four queries using the
same database schema. All of the queries must join
three tables using different kinds of join-types. The
queries have simple where-conditions and two of them
have a group by and having clauses.

We generated the mutants of the desired queries,
removed the equivalent mutants and executed them
against the test databases developed by the students.
The mutation scores are presented in Table 1.

Table 1. Mutation Scores

Category Q1 Q2 Q3 Q4 Tot.
IR – Identifier Replac. 98,8 94,2 87,9 78,1 89,1
NL – Nulls 96,4 77,1 60,0 78,4
OR – Operator Replac. 87,4 80,0 81,4 74,0 80,3
SC – SQL Clauses 86,8 39,0 50,4 69,6 59,6

Total 89,6 80,7 75,0 73,6 78,5

We examined the queries written after the exercise

and counted the kind of faults committed in each one.
The result is presented in Table 2.

Table 2. Faults committed in the queries

 Q1 Q2 Q3 Q4 Tot.
Omitted distinct in select 1 1
One join with wrong type 3 3
Two joins with wrong type 3 3 6
Use a wrong SQL86 join 1 1 2
Join incorrect tables 1 1
Wrong columns in order by 1 1
Order by omitted 3 4 4 11
Unnecessary IS NULL 1 1
Omitted IS NULL 5 4 11
Wrong columns in select-list 1 1

The faults were related to the distinct

quantifier, the join and order by clauses, the use
of the is null predicate and the usage of wrong
columns. All of them are faults that are represented by
the mutants. Most of the faults committed are
represented by the mutants that belong to the SC and
NL categories, which are those that have achieved the
lowest mutation scores (Table 1).

The above provides us with some insight into how
well the mutants model the real faults committed in
this exercise. However, if we use the SQL mutants to

assess the adequacy of database tests developed while
writing a query, some relevant faults may not be
represented by the mutants. For instance, a frequent
fault is the omission of the order by clause. If we
generate the mutants of a faulty query that has an
incorrect order by clause, the mutants can assist us
in detecting this fault. But, if the faulty query does not
include an order by clause, no mutants will be
generated for this clause and consequently this fault
will not be detected. A potential new mutation operator
may be needed in that case to insert additional order
by clauses.

5. Conclusions

We presented a tool that automatically generates
mutants of SQL database queries. The tool can be used
interactively or integrated in other tools that consume
the Web service exposed. This system is intended to be
used by researchers in database applications testing for
assessing the adequacy of database test cases and for
comparing different techniques.

The set of the mutants generated covers a wide
range of SQL features, although there is room for
improvement and refinement of the mutants. We
encourage researchers to use it and thus, to collaborate
in its evolution.

6. Acknowledgements

This work was funded by the Department of
Education and Science (Spain) and FEDER funds,
under the National Program for Research,
Development and Innovation, Projects IN2TEST
(TIN2004-06689-C03-02) and REPRIS (TIN2005-
24792-E).

7. References

[1] J. Andrews, L. Briand, Y. Labiche, Is Mutation an
Appropriate Tool for Testing Experiments?, Proc. of the 27th
International Conference on Software Engineering. ACM
Press, New York, NY, USA, 2005, pp. 402-411.

[2] J. Andrews, L. Briand, Y. Labiche, A. S. Namin, Using
Mutation Analysis for Assessing and Comparing Testing
Coverage Criteria, IEEE Transactions on Software
Engineering 32(8) 608-624.

[3] W.K. Chan, S.C. Cheung, T.H. Tse, Fault-Based Testing
of Database Application Programs with Conceptual Data
Model, Proc. of the fifth International Conference on Quality
Software, IEEE Computer Society Press, Los Alamitos,
California, 2005, pp. 187-196.

[4] Y. Deng, P. Frankl, D. Chays, Testing Database
Transactions with AGENDA. Proc. of the 27th International
Conference on Software Engineering, ACM Press, New
York, NY, USA, 2005, pp. 78-87.

[5] S. Elbaum, G. Rothermel, S. Karre, M. Fisher II,
Leveraging User-Session Data to Support Web Application
Testing, IEEE Transactions on Software Engineering 31(3)
(2005) 187-202.

[6] International Standards Organisation, Information
technology – Database languages – SQL, ISO/IEC
9075:1992, third edition.

[7] K.N. King, A.J. Offutt. A Fortran Language System for
Mutation-Based Software Testing. Software Practice and
Experience 21(7) (1991) 686-718.

[8] R. Pönighaus, ‘Favourite’ SQL-Statements – An
Empirical Analysis of SQL-Usage in Commercial
Applications. Proc. of the 6th International Conference on
Information Systems and Management of Data (LNCS, vol.
1006), Springer, 1995, pp. 75-91.

[9] J. Tuya, M.J. Suárez-Cabal, C. de la Riva, A practical
guide to SQL white-box testing, ACM SIGPLAN Notices,
41(4) 36-41, 2006.

[10] J. Tuya, M.J. Suárez-Cabal, C. de la Riva, Mutating
Database Queries, Information and Software Technology,
2006. (In press, doi:10.1016/j.infsof.2006.06.009).

[11] W.T. Tsai, D. Volovik, T.F. Keefe, Automated test case
generation for programs specified by relational algebra
queries, IEEE Transactions on Software Engineering 16(3)
(1990) 316-324.

