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Chapter 1 
 
Introduction 
 
 

Mankind has been interested in understanding what energy is and how its use 
can be exploited to its advantage since the dawn of time. The relevance of the energy 
for human beings is already highlighted by the Greek myth of Prometheus1 who was a 
titan that stole the fire from the gods to give it back to men. This myth represents the 
importance of the discovery and mastery of fire as an essential starting point in the 
advancement of civilization through its use for cooking, lighting, warming, protecting 
against wild animals, making tools, etc. Moreover, in a spiritual sense, the fire is usually 
understood in a metaphorical way as a symbol of life, consciousness and intelligence; 
issues also related with human development. 

Despite the great importance that energy has had throughout history, it was not 
until the eighteenth century when the use of energy became more essential in society 
due to the Industrial Revolution, and the beginning of the intensive use of coal as 
primary energy source. A crucial time in the development of energy use is the mid-
nineteenth century, when there was a series of discoveries that revolutionised the world. 
To cite just two cases, in 1831, Faraday (among other scientists) discovered 
electromagnetism and also by this time in different parts of the world the modern oil 
extraction industry had begun. In the early twentieth century, the relevance of energy 
greatly increased after half a century of technological improvements and it became the 
main driver of industrial development and the facilitator of many human activities. As a 
consequence, during the twentieth century, electricity production increased until 15,000 
TWh (terawatt-hours), world crude oil consumption reached approximately 4,000 Mtoe 
(million tonnes of oil equivalent) and world population growth expanded from about 1.6 
billion people to 6 billion.2 This dramatic growth depicts indeed that the great advances 
in technology of the twentieth century have been closely linked to an increasing 
dependence on energy. 

Due to the concern that involves the use of energy resources for human activity, 
some energy-related topics have been analysed by economists in the past.3 However, it 
is commonly accepted that the economics of energy was not developed as a specialised 
branch until the first oil shock in the 1970s (Edwards, 2003). The consequences of the 
high increase in oil prices highlighted the importance of energy in economic 
development of the countries and thereafter, researchers, academics and policy makers 
have shown great interest in energy studies. 

                                                
1 The word ‘energy’ precisely comes from ancient Greek word energeia (ἐνέργεια) which in English 
means being-at-work (Sachs, 1995). 
2 This information has been obtained from the World Bank, the US Energy Information Administration 
(EIA) and the US Census Bureau. 
3 One of the pioneering scholars on these issues was Jevons (1865) who already showed concern over the 
depletion of coal in his book “The Coal Question”. 
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Following Bhattacharyya (2011), energy economics is focused, like any other 
branch of the economy, on the allocation of scarce resources in society. For this reason, 
it covers a wide range of microeconomic and macroeconomic issues in the demand and 
supply of energy. The topics that have been analysed within this field of research have 
been expanded over time to address new issues that have emerged in the energy 
industry. For example, the major concern of energy economics in the 70s was trying to 
understand the energy industry and particularly the oil industry, analyse the energy 
substitution and begin to study the alternative of renewable energy. The interest in 
environmental issues and economic development was increased in the following decade, 
while in the 90s, the issues that received most attention were those related with the 
liberalization and restructuring of energy markets, although concerns about climate 
change and other environmental issues still remained. 

Finally, in recent years, attention has focused on high oil prices, energy scarcity, 
and the debate about state intervention and the role of the market in the management of 
energy supply. This discussion has basically attempted to find an answer to the concern 
of ensuring the supply of energy to the population in a carbon-constrained world. In 
summary, energy economics has provided tools for a better understanding of the role of 
energy in the society over time, trying to answer the most important questions about 
demand and supply of energy, given the political and economic situation of each 
moment. 

Since energy economics encompasses a very wide range of topics, this thesis 
covers a small portion of this field of research. The core of the document is formed by 
four chapters in which efficiency analysis models are applied to the supply and demand 
for energy in different sectors of the economy such as electricity and transportation. It 
should be noted, however, that these chapters can be read separately and understood as 
independent essays with their respective specific motivations and conclusions. 
Regarding this issue, all of these essays have been submitted to international academic 
journals in an effort to make available, results obtained during the research process of 
this thesis. In fact, one of them (Chapter 2) has recently been published in an 
operational research journal.4 

Chapters 2 and 3 are specifically focused on the efficiency analysis of electricity 
transmission companies. The electricity sector is undeniably one of the systemic sectors 
of the economy as it provides an essential input for the production system of the 
countries (and therefore affects the competitiveness of enterprises) and simultaneously, 
is a basic element for welfare and comfort in society. Over recent decades, this sector 
has been undergoing intense economic, technological and environmental changes, 
among others. 

As mentioned before, since the 90s one of the objectives of the economics of 
energy has been to study the liberalization processes of the energy markets, as it has 
been in the case of the electricity sector. In most developed countries, this industry has 
been restructured with the aim of improving both service quality and firms’ 
performance, ensuring that the consumers benefit from those gains (Jamasb and Pollitt, 
2007). As a consequence of this, former state-owned utilities were privatised and 
electricity sectors were vertically separated into different segments: generation, 
transmission, distribution and retailing. The reforms that were carried out, led to the 
                                                
4 Llorca, M., Orea, L. and Pollitt, M.G. (2014), “Using the latent class approach to cluster firms in 
benchmarking: An application to the US electricity transmission industry”, Operations Research 
Perspectives, 1(1), 6-17. 
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creation of some bodies to execute coordination functions that previously were internal 
to the companies, and in turn, also led to different treatments of the unbundled 
activities: generation and retailing have generally been opened to market competition, 
while transmission and distribution networks have been treated as natural monopolies 
that have to be regulated. Nowadays, regulated segments (i.e. transmission and 
distribution) still provide the infrastructure for the competitive segments and represent a 
significant share of the total price paid by final customers in many countries. 

Different regulatory practices have been applied in electricity markets which are 
mostly based on benchmarking methods to determine the relative firms’ cost efficiency 
or service quality through the comparison of each firm with those with best 
performance. Published papers have basically employed parametric, nonparametric and 
semi-parametric techniques in those analyses. A recent issue that is increasingly 
discussed in this literature is the need to control for the different environmental 
conditions under which each utility operates in order to obtain reliable (and fair) 
efficiency scores. This is not a minor issue in an incentive regulation setting as these 
conditions may have significant financial implications for the regulated companies. The 
concern about the inclusion of environmental variables in efficiency analysis has 
generated the development of many models for all of the abovementioned approaches 
(i.e., parametric, nonparametric and semi-parametric). 

As Brunekreeft et al. (2005) and Joskow (2014) point out, the electricity 
transmission system is a critical segment of the electrical grid due to its influence over 
the whole electrical grid in features such as the efficient use and expansion of the 
network, and making investment decisions on locational choices of new generation and 
energy intensive users. Despite this, and while the distribution segment has received 
large amounts of attention, there is a lack of empirical studies that analyse firms’ 
performance in the electricity transmission sector (Haney and Pollitt, 2013). 
Remarkable exceptions are Huettner and Landon (1978), Pollitt (1995), Dismukes et al. 
(1998), and von Geymueller (2009). Although the potential importance of weather 
conditions in electricity transportation (i.e. transmission and distribution) is highlighted 
in some engineering papers, it has only begun to be considered in economic research on 
firms’ performance in electricity distribution quite recently (see Yu et al., 2009). One of 
the most interesting issues with environmental conditions is to identify if companies are 
using them as an excuse for poor performance as Nillesen and Pollitt (2010) suggest for 
the US electricity distribution system.5 Returning to the case of the limited empirical 
literature on electricity transmission, none of the previously mentioned papers controls 
for environmental conditions. 

In an effort to fill this gap, the following two chapters of this thesis are focused 
on the analysis of the electricity transmission network. In Chapter 2, an empirical 
analysis of the economic characteristics of the technology and the inefficiency of the US 
electricity transmission firms is conducted through the estimation of several 
heteroscedastic models taken from the recent Stochastic Frontier Analysis (SFA) 
literature (for a detailed survey of this literature see Kumbhakar and Lovell, 2000). 
Unlike previous papers, the estimation of these models allows us to identify the 
determinants of firms’ inefficiency in this industry and to control for weather 
conditions; one of the most decisive, uncontrollable factors in electricity transportation. 
In addition, the estimated models allow us to discuss whether the environmental factors 

                                                
5 More concretely, they suggest that companies which operate under unfavourable environmental 
conditions can become best-practice. 
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should be treated as determinants of firms’ performance or as technological cost drivers, 
which may mean that companies are using environmental conditions as an excuse to 
avoid being penalized in regulatory processes due to their poor performance. 

While Chapter 2 is mainly focused on observed differences across regulated 
electricity networks, Chapter 3 has to do with unobserved technological and 
environmental differences. In this chapter, the use of a Latent Class Model (LCM) 
approach is advocated to deal with this issue before carrying out a conventional 
efficiency analysis using DEA (Data Envelopment Analysis). As shown by Zhou et al. 
(2008), this nonparametric approach has become a widespread tool in energy and 
environmental studies, especially for benchmarking electric utilities. The characteristics 
that have made this approach appealing for regulators are that it imposes few 
assumptions on firms’ technology features and it allows them to avoid the traditional 
convergence problems in the SFA literature. However, this approach does not easily 
address the effect of unobserved geographical and weather conditions on firms’ 
performance. 

It is common practice to assume that the whole set of benchmarked companies 
share the same technology in incentive regulation. Therefore, any difference in firms’ 
performance is attributed to an inefficient use of the factors that are under the control of 
the companies. Possible differences among utilities associated with different 
technologies or environments are often overlooked or are not properly addressed, and 
hence the efficiency scores obtained from those analyses might be biased. 

Our proposal in Chapter 3 is based on the fact that LCMs are designed to cluster 
firms by uncovering differences in technology parameters taking into account for 
clustering the data the same technological relationship that is going to be analysed later. 
This approach allows for a split of the electricity networks into a number of different 
classes where each class is associated with a specific technology or environment, before 
performing a traditional efficiency analysis of regulated electricity networks. A 
simulation analysis is carried out to examine whether the latent class approach 
outperforms other more arbitrary and less robust procedures of splitting a sample of 
observations. The procedure is illustrated with an application to the same US electricity 
transmission sample examined in the previous chapter, since these companies are 
expected to operate under different technologies, taking into account that they are 
located in different states and are subject to different environmental conditions. 

In contrast to the previous supply-oriented essays, the remaining two chapters 
are focused on energy demand (for the case of transportation and residential sectors) 
and the efficiency in its use or consumption, another of the major concerns of energy 
economics due to the large dependence on non-renewable energy resources in human 
activity and the climatic change. The recent situation of economic crisis has led the 
national and supranational authorities to reassess the balance of priorities between the 
three objectives of energy policy: security of supply, competitiveness and 
environmental sustainability (Becker Zuazua, 2011). 

Since the 1970s world oil crisis, previously mentioned as the origin of the 
energy economics, and the growing awareness of global warming in the late 1980s, 
reducing energy consumption and emissions has become a key energy policy objective 
for most governments across the globe. The promotion of energy efficiency as a means 
to that end, has converted the definition and measurement of this concept into an 
essential objective for the majority of the countries, prior to the design of economic and 
energy policies with the aim of reducing the use of energy. 
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To help achieving the ultimate goal of reducing energy consumption, various 
quantitative indicators that are related to the energy efficiency of each country have 
been developed and have been used in international comparisons. In that sense, there is 
no single definition universally accepted for the concept of energy efficiency. Ang 
(2006) indicates that the most common practice has been to link this idea with some 
thermodynamic, physical-based and monetary-based indicators that relate energy 
consumption to measurements of the economic activity or energy services derived from 
this consumption. Nonetheless, the value of energy intensity can vary significantly over 
time due to changes in the structure of GDP (Gross Domestic Product), which are 
difficult to assimilate into the concept of energy efficiency. In general, the most basic 
indicators do not allow cross-country comparisons and the calculation of potential 
energy savings. Regarding this issue, Filippini and Hunt (2011, 2012), suggest the use 
of an SFA approach to estimate energy demand frontier functions. The “frontier” nature 
of this approach allows the computation of alternative measures of energy efficiency 
that do not suffer from the same problems as the conventional indicators of energy 
intensity. The efficiency measures obtained are based on the comparison of the energy 
consumption of the countries with respect to the minimal energy consumption predicted 
by the frontier, which takes into account the optimizing behaviour of companies and 
individuals. The estimation of these models allows to control for characteristics such as 
economic or environmental factors that affect the sector and may bias the results 
obtained from standard energy intensity indicators. The frontier approach allows them 
to obtain a “pure” measure of the inefficient use of energy for each country. 

The countries that aim to reduce their energy consumption and mitigate their 
greenhouse gas emissions should be especially concerned about the adoption of 
measures that improve the energy efficiency especially in those sectors in which are 
more energy intensive. In Chapter 4, the SFA model proposed by Filippini and Hunt 
(2011, 2012) is used to estimate energy demand functions in the transport sector in 
Latin America and the Caribbean. Transportation is the sector that involves the largest 
energy consumption in this region (43%), and the Economic Commission for Latin 
America and the Caribbean (ECLAC, 2010) indicates that the share of this sector 
respect to total energy consumption will even increase in the future. Despite this, there 
is a scarcity of empirical analysis on the transport sector in Latin America and the 
Caribbean which has been motivated by data unavailability and the absence of a formal 
link between institutions that are in charge of providing information on energy and 
transport. Given the amount of energy consumption in transport and the increase of 
energy prices that were experience by this region in recent years, it is thus necessary to 
conduct studies focused on the energy consumption of this sector that help raise 
awareness about the environmental sustainability issues that are mentioned in the 
“Millennium development goals” proposed by ECLAC (2005). 

A Latent Class Stochastic Frontier Model (LCSFM) is proposed in Chapter 4 to 
capture unobserved demand heterogeneity due to the impossibility of including all 
relevant variables capturing the numerous and different features of the transport sector 
in each country. This approach allows us to test for the existence of groups of countries 
with clearly differentiated demands that are associated with distinct price and income 
elasticities. As the transport of both goods and passengers implies the consumption of 
different types of energy, an index that aggregates various energy prices is thus required 
for the analysis. However, international agencies do not provide specific indicators of 
aggregate energy prices in transport for the majority of the countries analysed. For this 
reason, the construction of a transitive multilateral index is proposed, which, in contrast 
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to those frequently presented by the aforementioned agencies, facilitates international 
comparisons over time. 

Finally, it should be mentioned that in practice, the achievement of savings in 
energy consumption through the promotion of energy efficiency do not depend only on 
the energy efficiency itself. Actual savings in energy consumption after an efficiency 
improvement might not coincide with the expected savings due to the so-called rebound 
effect, a phenomenon already highlighted by Jevons (1865) who observed that 
technological improvements that increased the efficiency in the use of coal in the 18th 
and 19th centuries, led to increases in its consumption in a broad range of industries. 
The rebound effect is a phenomenon that links both energy consumption and energy 
efficiency with energy services: as energy efficiency improvements make energy 
services cheaper, they may lead to increase the demand of those services. This response 
may thus offset the reduction in energy consumption that is predicted by engineering 
models. 

Measuring the rebound effect is crucial in order to properly evaluate the 
effectiveness of energy policies that aim to promote energy efficiency improvements. 
There are many empirical studies that use econometric methods to estimate the rebound 
effect. In their review of the literature, Sorrell and Dimitropoulos (2008) have found a 
lack of consensus with regard to a consistent method to its measurement. In principle, it 
could be directly obtained from the elasticity of demand for energy services with respect 
to changes in energy efficiency. However, relatively few studies follow this approach 
because data on either energy services or energy efficiency is unavailable or is limited 
in terms of accuracy. As a consequence of this, the rebound effect is often measured 
indirectly through the estimate of different elasticities that are considered equivalent to 
the elasticity of the demand for energy with respect to changes in energy efficiency. The 
most commonly used is the own-price elasticity of the demand for energy, as is directly 
obtained from energy demand estimates. 

Chapter 5 brings attention to the fact that the standard energy demand frontier 
model introduced by Filippini and Hunt (2011, 2012), that has been used in the previous 
chapter, is closely connected to the measurement of the rebound effect. In particular, it 
is shown that this model implicitly imposes a zero rebound effect, which contradicts 
most of the available empirical evidence on this issue and may explain why previous 
applications have not examined this issue. This restrictive assumption is relaxed through 
the modelling of a rebound-effect function that acts as a correction factor that mitigates 
or intensifies (i.e. adjusts) the effect of an efficiency improvement on energy 
consumption. The model is illustrated with an empirical application for the US 
residential energy sector where this issue can be particularly relevant since it accounts 
for 37% of the national electricity consumption, 17% of greenhouse gas emissions and 
22% of primary energy consumption (International Risk Governance Council (IRGC), 
2013). 
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Chapter 2 
 
Efficiency and environmental factors in the US 
electricity transmission industry 
 
 
2.1. Introduction 

The electricity industry in most developed countries has been restructured over 
recent decades with the aim of reducing costs, improving service quality and 
encouraging electricity utilities to perform efficiently. As a result, former state-owned 
utilities were privatized and electricity sectors were vertically separated into generation, 
transmission, distribution and retailing, particularly in Europe (see Jamasb and Pollitt, 
2005). Whereas some of these segments such as generation and retailing were opened to 
competition, other segments such as transmission and distribution are still regulated. In 
this sense, incentive-based regulation schemes have been implemented in several 
countries (e.g. UK, Norway) in order to encourage both transmission and distribution 
utilities to perform efficiently. 

Joskow (2014) points out that for industries in which regulated segments provide 
the infrastructure platform upon which competitive segments rely, social welfare 
depends on firms’ performance and reforms made in both regulated and competitive 
segments. Much of the research in the electricity industry has focused on competitive 
wholesale markets, although the regulated segments provide the infrastructure for the 
competitive segments and even though networks constitute a significant share of the 
final price paid by electricity consumers.6 Even though electricity transmission is 
necessary for distribution and retailing, there is a lack of empirical studies that analyse 
both the economic characteristics of the technology and firms’ inefficiency in the 
electricity transmission. 

Statistical benchmarking methods have been largely used in the electricity 
industry to determine the relative efficiency of individual firms’ costs compared to their 
peers (see Haney and Pollitt, 2009, 2013). Obtaining reliable (and fair) measures of 
firms’ inefficiency requires controlling for the different environmental conditions under 
which each firm operates. This is especially acute in benchmarking because of the 
financial implications that this analysis can have on the firms and their effect over the 
whole network. One of the most interesting issues with environmental conditions is the 
question of whether firms are using them as an excuse for poor performance. In line 
with this, Nillesen and Pollitt (2010) find that firms which operate in unfavourable 
conditions can become best-practice for the case of US electricity distribution. 

One of the most decisive uncontrollable factors in electricity transportation (i.e. 
in transmission and distribution) is the weather conditions of the area in which the 
companies operate. Billinton and Wenyuan (1991), and Billinton and Acharya (2005) 

                                                
6 Typically distribution and transmission charges combined compose around 25% of the residential bill 
(excluding taxes and environmental charges). 
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tried to explain changes in the probability of failure rate in the system using complex 
mathematical models. Generally speaking, they pointed out that most technical 
interruptions occur when weather is adverse and, in particular, extremely adverse. They 
also showed that assessing likely failure rates while ignoring weather tend to give too 
optimistic and erroneous predictions. 

Regarding electricity transmission, Billinton and Wu (2001) pointed out that 
overhead transmission lines are exposed to a wide range of weather conditions and, that 
both failures rates and the probability of overlapping failures tend to increase sharply 
during periods of extremely adverse weather conditions. Rothstein and Halbig (2010) 
find that many atmospheric and hydrological parameters not only affect electricity 
generation and consumption, but also electricity transportation. Indeed, overhead lines 
are affected by atmospheric influences in several ways, such as lightning, wind, 
additional weight (e.g. ice or snow), low temperatures, humidity and moisture. 

Despite the potential role of weather conditions in electricity transportation, only 
a few papers have analysed firms’ performance in the electricity distribution sector 
controlling for environmental factors. In particular, Yu et al. (2009) showed using nine 
weather variables that severe weather conditions tend to increase service interruptions, 
and this in turn increases costs associated with replacing the damage equipment and 
restoring power. Jamasb et al. (2010, 2012) also concluded that the lack of inclusion of 
variables related to weather conditions might downward bias the estimated coefficients 
of other relevant variables, and, in particular, those associated with the marginal cost of 
quality improvements. Using weather and geographic composites, Growitsch et al. 
(2012) predicted up to 30% lower costs than average, for utilities that operate in areas 
with extremely good environmental conditions, and up to 39% higher costs than 
average, for utilities that operate in areas with extremely bad environmental conditions. 
On average, they predicted higher costs of about 5% as a result of hostile weather 
conditions.7 

On the other hand, as far as we are aware there are only four published papers 
that separately study the performance of transmission firms, none of them include 
inefficiency determinants and only the most recent of them has controlled for 
environmental conditions. Using a sample of US firms, Pollitt (1995) analysed 
differences in efficiency between state-owned and private electricity transmission 
companies. He did not find significant differences between both types of firms using 
parametric and nonparametric specifications of the frontier model. Using also US data, 
Huettner and Landon (1978) and Dismukes et al. (1998) have examined the existence of 
returns to scale in the provision of electric transmission services. Huettner and Landon 
(1978) do not find increasing returns to scale, except for one category of sales expenses. 
In contrast, Dismukes et al. (1998) find significant economies of scale for all the NERC 
(North American Electric Reliability Corporation) reliability regions using data for the 
period 1986-1991. von Geymueller (2009) carried out a comparison of static and 
dynamic DEA models in electricity transmission using data of 50 US utilities for the 
period 2000-2006. The author finds that static models tend to overestimate firms’ 
inefficiency because they do not take into account the existence of quasi-fixed inputs. 

This chapter contributes to the literature analysing firms’ performance in the 
electricity transmission industry with an empirical analysis of the US electricity 
transmission system for the period 2001-2009. The analysis of the economic 
                                                
7 In contrast, Nillesen and Pollitt (2010) do not find that US electricity distribution companies with 
unfavourable conditions are worse performers. 
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characteristics of the technology (such as economies of scale or economies of density) 
and the inefficiency of each US utility relies on the estimation of several specifications 
of heteroscedastic models taken from the recent SFA literature. Unlike previous papers, 
our SFA models allow us to identify the determinants of firms’ inefficiency in this 
industry, and discuss whether the environmental factors should be treated as 
determinants of firms’ performance or as technological cost drivers.8 This is not a 
semantic point in an incentive-regulation framework as regulators should purge the data 
when environmental conditions are part of the technology, i.e. they are cost drivers 
independent from firms’ performance, but not when they have an indirect effect through 
inefficiency. That is, conditional on a wide definition of the technology, firms cannot 
use unfavourable environmental conditions as an excuse to avoid being penalized due to 
their bad performance. To examine this issue we have applied a modified version of the 
‘zero inefficiency stochastic frontier model’ recently introduced by Kumbhakar et al. 
(2013). To the best of our knowledge, this is the first time this model is used to capture 
differences in technology instead of differences in performance. 

The estimated coefficients provide useful information about the firms’ 
performance with both policy and managerial implications. We find using more recent 
data and larger firms than in previous papers that, given network infrastructure, most of 
the electricity transmission networks exhibit natural monopoly characteristics. Our 
results also indicate that more adverse conditions generate higher costs, mainly through 
higher levels of inefficiency. Furthermore, we find that investing in capital is a better 
strategy than incurring additional operating costs to deal with adverse weather 
conditions. On the other hand, we find that, as expected, firms’ performance gets better 
when demand tends to be steady as firms cannot adjust their inputs without cost over 
time. The average efficiency at the beginning of the period is larger than in previous 
studies. But, using our preferred estimated model, the results indicate that efficiency has 
declined (and diverged) over time, suggesting that there is room for improvement in the 
performance of the US electricity transmission system. It should be mentioned that the 
use of US data to benchmark European and Australasian utilities is often suggested and 
has been undertaken by some regulators including the British regulator, Ofgem. Hence 
although the results obtained here relate to US transmission network, they are important 
for non-US regulators. 

This chapter is organized as follows. Section 2.2 provides a brief review of the 
transmission and distribution literature and the most commonly used approaches to 
benchmark firm performance in incentive regulation schemes. Section 2.3 describes the 
theoretical cost function that we estimate as well as the empirical specifications of the 
estimated models. Section 2.4 presents the data and variables used in the empirical 
analysis. Section 2.5 reports the parameter estimates and the results obtained from those 
estimates. Section 2.6 presents the main conclusions. 

 

2.2. Benchmarking in electricity transmission 
The electricity sector is an industry with different and interrelated activities, 

which are affected by production and consumption decisions across the whole system. 
                                                
8 An additional contribution of the present chapter is that we control for weather characteristics by 
including a set of weather variables as determinants of firms’ inefficiency that were gathered specifically 
for the present application. In addition, as our sample period is more recent than those analysed in 
previous papers we can see whether there has been an improvement in average efficiency in the US 
electricity transmission industry. 
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The US electricity system traditionally has been composed of large vertically integrated 
utilities. Nevertheless, in the last two decades several reforms have been implemented 
with the aim of disaggregating most utilities into differentiated segments. These reforms 
have led to different treatments of the separated activities: generation and retail are 
regarded as potentially competitive markets, while transmission and distribution 
networks are treated as natural monopolies that have to be regulated (see Joskow, 2014). 
As Jamasb and Pollitt (2007) point out, from an economic perspective, the aim of 
electricity unbundling is to provide utilities with incentives to improve their operating 
and investment efficiency and to ensure that consumers benefit from the gains. The 
main methods used to achieve these objectives are incentive regulation mechanisms, 
which include financial rewards and penalties for the firms linked with their 
performance. 

Joskow (2014) notes that much of the research in this sector has focused on the 
competitive markets although the regulated segments provide the infrastructure for the 
competitive segments and represent an important amount of the total price paid by final 
consumers and have an important joint effect with competitive segments on social 
welfare. For these reasons, electricity transmission has played an important role in the 
success of liberalised power markets. Electricity reforms have led to the creation of 
some bodies to perform the coordination functions that formerly were internal to the 
firms. To deal with this issue and the stresses in transmission system after years of 
underinvestment, the Federal Energy Regulatory Commission (FERC) pursued the 
implementation of a Standard Market Design in the US and encouraged the so-called 
Regional Transmission Organizations (RTO) to facilitate efficient trade over wide areas 
and transmission investment. According to Greenfield and Kwoka (2011), the RTOs - 
such as PJM - provide transmission services but do not own transmission facilities and 
they are not responsible for the maintenance and repair, or fixed investment costs, of the 
transmission facilities over which they direct the flow of power. Their essential role is 
as an independent service provider that administers the terms and conditions of 
transmission services and maintains the short-term reliability of the network. 

Despite the importance of RTOs in the overall performance of the electricity 
system, the transmission utilities and the structure of the network charges have a great 
effect on network use and its development. Following Brunekreeft et al. (2005, p.74-
75), the setting of the charges at an appropriate level is a key issue because it affects 
“the locational choices of new generation (and of energy intensive users), as well as 
influencing the bidding behavior of generators, and the willingness of neighboring 
electricity markets to trade and cooperate”. As a result, “ideally the structure of network 
charges should encourage: i) the efficient short-run use of the network (dispatch order 
and congestion management); ii) efficient investment in expanding the network; iii) 
efficient signals to guide investment decisions by generation and load (where and at 
what scale to locate and with what choice of technology-base-load, peaking, etc.); iv) 
fairness and political feasibility, and v) cost-recovery” (Brunekreeft et al., 2005, p.75). 

There are different regulatory practices across the world to set the total amount 
of network charges in the electricity market which are mostly based on benchmarking, 
i.e. on measuring firm’s efficiency against the firms with best practice performance (see 
Haney and Pollitt, 2013). As regulators reward or punish firms according to their 
(in)efficiency level, the reliability of these scores is particularly crucial for regulatory 
credibility. Any efficiency estimate tries to measure the gap between actual cost 
(production) and the optimal point on the cost (production) frontier, which must be 
estimated from the available data. Published papers have basically employed parametric 



11 
 

(e.g. SFA), nonparametric (e.g. DEA), and semi-parametric (e.g. StoNED, Stochastic 
Nonparametric Envelopment of Data)9 techniques to estimate cost (production) 
frontiers. As all techniques have their advantages and disadvantages,10 the selection of 
an appropriate estimation method is contentious and may influence the obtained results 
and the consequent regulatory policy implications (see, for instance, Coelli et al., 2005). 

Despite the relevance of transmission networks in the electric power industry it 
is very difficult to implement a statistical benchmarking for most of the countries due to 
the lack of domestic comparators (Haney and Pollitt, 2013). International benchmarking 
can be an alternative to deal with this issue, but the regulators face several problems. 
Joskow (2014, pp.54-55) notes that the layout of the transmission network depends on 
countless factors, such as “the distribution of generators and load, population density, 
geographic topography, the attributes and age of the legacy networks’ components and 
various environmental constraints affecting siting of new lines, transformers and 
substations”. Moreover, there is no standardization or homogeneity among countries 
about the voltage boundaries between transmission and distribution networks. For 
instance, in the UK the transmission network is formed by elements that run at 275 kV 
and above, while in other countries like the US or France transmission network is 
formed by elements that run above 60 kV, making an international comparison a 
challenging task. Regarding the inputs and outputs that should be taken into account in 
an empirical analysis on efficiency of transmission systems, Pollitt (1995) pointed out 
that it might be desirable to take every specific factor of the company into account due 
to the complexity of the network. Each transmission system is unique because of the 
different kinds of inputs that they use and the environment in which they operate. 

By contrast, statistical benchmarking methods have been largely used in 
electricity distribution to determine the relative efficiency of individual firms’ operating 
costs and service quality compared to their peers.11 Some countries such Germany, 
Nordic countries and Switzerland have a large number of utilities. This provides a 
suitable basis for the use of advanced benchmarking techniques and without necessarily 
having recourse to international benchmarking. It is generally desirable for regulators to 
have a large number of utilities for comparison and efficiency benchmarking. 

As mentioned above, obtaining reliable (and fair) measures of firms’ 
inefficiency requires controlling for the different environmental conditions under which 
each utility operates. This is especially acute in benchmarking because of the financial 
implications that this analysis can have over the firms and their effect over the whole 
network. The concern about the inclusion of environmental variables (also called 
contextual variables or z-variables) has generated the development of several models 
either using parametric, nonparametric or semi-parametric techniques. Although in this 
chapter we do not pretend to provide a complete survey on the alternatives for including 
z-variables, we present in Figure 2.1 a brief summary of some models that can be 
applied following each approach.12 Given the wide range of models that have been 
developed, here we only mention the methods most frequently applied. 

                                                
9 These models are also labelled as semi-nonparametric. 
10 For instance, SFA has advantages over DEA when noise is a problem, and this can arise from 
measurement errors or other sources of statistical noise such as luck, weather, equipment failure or similar 
factors that are beyond firms’ control. 
11 Jamasb and Pollitt (2001) show the most used approaches and provide a survey of benchmarking 
studies applied mainly in OECD countries. For a more current review of applied papers on electricity 
distribution see for instance Kuosmanen (2012). 
12 For a more detailed review of this topic in SFA and DEA, see Johnson and Kuosmanen (2011, 2012). 
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Figure 2.1. Approaches that allow including environmental variables in efficiency 
analysis (with key papers) 
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The inclusion of environmental variables in DEA has been done in one, two or 
even more stages. Ruggiero (1996) and other authors have highlighted that the one-
stage model introduced in the seminal paper of Banker and Morey (1986) might lead to 
bias. To solve this problem, other models using several stages have been developed in 
the literature. Ray (1988) was the first who proposed a second stage where standard 
DEA efficiency scores were regressed on a set of contextual variables. This practice was 
widespread until Simar and Wilson (2007) demonstrated that this procedure is not 
consistent because the first-stage DEA efficiency estimates are serially correlated. 
Although the bootstrap procedure proposed by these authors to solve this problem in 
two stages became a widely used method in DEA to identify inefficiency determinants, 
three-stage models have also been developed (see, for instance, Fried et al. 2002; and 
Muñiz, 2002). 

In the recently developed semi-parametric literature, we could mention three 
types of models. The first one is the extension of the StoNED method developed by 
Johnson and Kuosmanen (2011) where the z-variables are incorporated additively to the 
parametric part of the function which is estimated jointly with the nonparametric 
frontier. Kuosmanen (2012) has recently applied this approach for the case of the 
electricity distribution sector in Finland.13 Alternatively, Li et al. (2002) introduced the 
Semiparametric Smooth Coefficient Model (SPSCM) where the regression coefficients 
are unknown functions which depend on a set of contextual variables. Sun and 
Kumbhakar (2013) extend this model by allowing the environmental variables to also 

                                                
13 This method has been adopted by the Finnish regulator since 2012. 
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enter through the inefficiency. Finally, the use of an LCSFM approach allows the 
identification of different technology parameters for different groups of firms that share 
environmental features. In an LCSFM the z-variables enter in non-linear form in the 
probabilities of belonging to the classes, and hence they can be viewed as a “discrete, 
semi-parametric approximation to the random parameters model” (Greene, 2005b, 
p.299). The use of the LCSFM in efficiency analysis was proposed by Orea and 
Kumbhakar (2004) and Greene (2005b). 

The third approach included in Figure 2.1 involves several parametric models 
where the contextual variables are treated as inefficiency determinants.14 They can be 
divided in three groups depending on how the z-variables are introduced in the model. 
As the inefficiency term in these models is defined as the truncation (over zero) of a 
normal distributed random variable, the contextual variables can be introduced in the 
model either through the mean as in Kumbhakar et al. (1991) and Battese and Coelli 
(1995), the variance as in Reifschneider and Stevenson (1991) or Caudill and Ford 
(1993), or simultaneously through the mean and variance, as in Alvarez et al. (2006) or 
Lai and Huang (2010). As this is the approach used in this chapter, more details about 
these models can be found in the next section. 

 

2.3. Theoretical model and empirical specification 
In this section we introduce the theoretical cost model that allows us to analyse 

the economic characteristics of the technology, such as economies of scale or 
economies of density, of US electricity transmission firms. In general terms, the cost 
function to be estimated can be written as: 

 ln ln , , , ,C C y n p d t     (2.1) 

where C is a measure of total costs, y is a vector of outputs, n measures the network 
length, p stands for input prices, d is a set of regional dummies and t represents the time 
trend. As usual, if firms minimize cost, this function should be linearly homogeneous 
with respect input prices, and increasing in outputs.15 

Economies of scale and density of electricity transmission firms can be 
computed once equation (2.1) is estimated. We associate economies of scale with 
horizontal system expansion, that is, increases in demand that require enlarging the 
current network to meet extra demand.16 These economies can be then measured by the 
sum of cost elasticities with respect to the outputs, y, and the network length, n: 

 ln ln
ln ln

C CES
y n

 
 
 

     (2.2) 

On the other hand, we associate economies of density with vertical system 
expansion, i.e. expansion in transmitted electricity that do not require additional 

                                                
14 An interesting issue here is whether environmental variables should be included in the frontier as well 
(see later on the discussion in Section 2.4). 
15 Our cost variable is total expenditure (i.e. operating plus capital costs) due to the presence of possible 
trade-offs between operating and capital expenditures (Giannakis et al., 2005). Regarding the set of 
output variables, we include the peak demand, transmission capacity and the energy delivered as cost 
drivers in electricity transmission (see Ofgem 2011, p.44-46). 
16 Note that here density is held constant because both output levels and network size is expanded 
simultaneously. 
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network. These economies can be measured by the sum of elasticity of cost with respect 
to the outputs, y: 

ln
ln

CED
y





     (2.3) 

In this case, the cost elasticity of network is not taken into account, as we are 
considering an increase in output levels, given the actual length of the transmission 
network. 

We next allow for deviations with respect to the above cost function. The 
stochastic frontier literature suggests that these deviations should not be entirely 
attributed to uncontrollable or unobservable factors (i.e. random noise) but also to 
(managerial) inefficiency. To capture both sources of deviations, Aigner, Lovell and 
Schmidt (1977) proposed using an econometric specification of the cost function (2.1) 
that includes two random terms. This model (ALS henceforth) can be presented as 
follows: 

ln it it it itC X v u         (2.4) 

where i stands for firms and t for time, Xit is a vector of explanatory variables,  and β 
are parameters to be estimated, vit ~ N(0,v

2) is the classical symmetric random noise, 
and uit is a one-side error term which captures firms’ inefficiency. 

ALS assumed that this term follows a homoscedastic half-normal distribution, 
i.e. uit ~ N+(0,u

2). As the inefficiency term in ALS has constant variance, it does not 
allow the study of the determinants of firms’ performance, which is the main issue 
examined in this chapter. It might also yield biased estimates of both frontier 
coefficients and firm-specific inefficiency scores (see Caudill and Ford, 1993). To deal 
with this issue, we propose estimating a heteroscedastic frontier model that allows 
incorporating z-variables in the model as efficiency determinants. As there are several 
options to achieve this aim using a parametric approach (see Figure 2.1) and the specific 
assumptions considered in these models might condition our results,17 we explore 
several specifications of the model and carry out model selection tests to choose the 
“best” model. In that sense Coelli et al. (2005) suggest exploring alternative models to 
assess the adequacy and robustness of the results obtained when a parametric approach 
is applied. 

The most general specification of uit that we consider in this chapter is the 
General Exponential Model (GEM hereafter) introduced by Alvarez et al. (2006) that 
can be written as:18 

                                                
17 Similar problems might emerge when non- or semi-parametric approaches are used instead of a 
parametric approach. For instance, Martins-Filho and Yao (2013) point out that although the 
nonparametric approach considered by Kumbhakar et al. (2007) for estimating stochastic frontiers is quite 
general, the problem known as the curse of dimensionality could occur when the number of explanatory 
variables is large. This implies that one cannot be confident about the accuracy of the asymptotic 
approximation and the reliability of the efficiency estimates. Another example is the semi-parametric 
method known as StoNED presented by Kuosmanen (2012). This model allows introducing 
environmental variables in the model, but they can be interpreted either as factors that explain the 
inefficiency, or alternatively, as heterogeneity. Therefore this approach does not address whether 
environmental variables have direct or indirect effects. We discuss this issue in Section 2.4. 
18 Here we have adopted the notation used by Alvarez et al. (2006) and Lai and Huang (2010). Moreover, 
following Alvarez et al. (2006), we will use hereinafter the exponential functional form for the functions 
that incorporate environmental variables in all the estimated models. 
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      2,it it uitu N        (2.5) 

where 

 0expit itz     

 0expuit itz     

and δ0, δ, γ0 and γ are parameters to be estimated, and zit is a vector of efficiency 
determinants. The two intercepts δ0 and γ0 in (2.5) allow us to get the homoscedastic 
frontier models. The environmental variables enter in this model both through the pre-
truncated mean and the variance of the inefficiency term, and hence it allows for non-
monotonic effects of the z-variables on firms’ inefficiency (see Wang and Schmidt, 
2002). Despite being a more comprehensive model than those usually presented in SFA, 
it is rarely estimated in the literature. For robustness grounds, we will also estimate 
more restricted models that are nested in the GEM and then some model selection tests 
will be performed for choosing the preferred specification. 

The second estimated model is the proposed by Kumbhakar, Ghosh and 
McGuckin (1991), Huang and Liu (1994) and Battese and Coelli (1995) (hereafter 
KGMHLBC model). All of them consider a specification in which only the mean of the 
pre-truncated normal variable depends on environmental variables. In other words, it is 
assumed in this model that γ=0 in (2.5) and thus the variance of the pre-truncated 
normal variable is homoscedastic, i.e. uit ~N+(exp(δ0+zit'δ),u

2), where for notational 
simplicity we have relabelled exp(γ0) as u. 

The last two models are similar to the one estimated by Reifschneider and 
Stevenson (1991), Caudill and Ford (1993) and Caudill, Ford and Gropper (1995) 
(henceforth RSCFG model). In these papers the environmental variables are treated as 
determinants of the variance of the pre-truncated normal variable. In other words, they 
assume that δ=0 in (2.5) and thus uit ~N+(µ,(exp(γ0+zit'γ))2), where for notational ease 
exp(δ0) has been relabelled as µ. If μ is allowed to be different from zero, we get the 
RSCFG-μ model introduced by Alvarez et al. (2006). This model nests the original 
RSCFG model in which μ=0 is imposed (i.e. δ0=- is assumed) and therefore it assumes 
that uit follows a half-normal distribution, i.e. uit ~N+(0,(exp(γ0+zit'γ))2). As a 
consequence of this assumption, the so-called scaling property is satisfied in this model 
in the sense that the inefficiency term can be written as a deterministic function of a set 
of efficiency covariates, i.e. h(·)=exp(zit’γ), times a one-sided random variable that does 
not depend on any efficiency determinant, uit

*~N+(0,u
2). 

The defining feature of models with the scaling property is that firms differ in 
their mean efficiencies, but not in the shape of the distribution of inefficiency. That is, 
the scaling property implies that changes in zit affect the scale but not the shape of uit. In 
this model uit

* can be viewed as a measure of “basic” or “raw” inefficiency that does not 
depend on any observable determinant of firms’ inefficiency. On the other hand, the 
scaling function h(·) can be interpreted as the portion of total estimated inefficiency that 
researchers are able to explain with the variables included in h(·). This function hence 
“adjusts” the underlying, and unexplained, inefficiency level upwards or downwards 
due to the influence of some potential inefficiency determinants. Although it has some 
features that make it attractive to some authors (see Wang and Schmidt, 2002), it is an 
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empirical question whether or not the scaling property should be imposed, and not all 
commonly used models fulfil this property.19 

To fully justify the choice of our preferred specification we will use the standard 
Likelihood Ratio (LR) test when comparing nested models (i.e. GEM vs. RSCFG-μ, 
GEM vs. KGMHLBC, RSCFG-μ vs. RSCFG, and RSCFG vs. ALS) and the Vuong 
(1989) test when they are non-nested (i.e. RSCFG-μ vs. KGMHLBC). It should be 
mentioned here that, although the standard RSCFG model is nested in the GEM model, 
they cannot be directly compared using standard LR tests because the GEM coefficients 
of the pre-truncated mean (i.e. δ) are not identified when μ=0 (as assumed in the 
RSCFG model). For the same reason, the ALS model cannot be compared against the 
KGMHLBC model using standard tests (i.e. δ is again not identified when μ=0). To test 
if μ=0, Alvarez et al. (2006) suggest carrying out a simple LR test using the RSCFG and 
RSCFG-μ models. 

 

2.4. Data and sample 
We use a panel data set of 59 US electricity transmission companies for the 

period 2001-2009. Most of these data were collected by various members of the EPRG 
at the University of Cambridge. That information was requested by Ofgem, in order to 
carry out an international benchmarking of electricity and gas utilities. Where the 
transmission operations are part of a larger utility - also involved in generation or 
distribution - shared costs are allocated on pro-rata basis. As can be seen in the data 
Appendix (Section 2.7), an allocation key based on the ratio between wages and salaries 
specific from transmission and the total labour expenses of the utility, were used for the 
assignment of shared costs to transmission. The main source of the electricity 
transmission data was the FERC form 1, an annual report of major electric utilities, and 
the variables collected included the quantity of assets, voltage levels by asset, maximum 
demand, load density, demand growth, maturity of service area, age/condition of 
network, network density and flow patterns.20 

Although the choice of input and output variables is an important issue, there is 
no clear consensus about the variables that should be included to describe the 
performance of transmission and distribution companies. Jamasb and Pollitt (2001) 
show the wide range of variables that have been used in benchmarking analysis of 
electric utilities. They find that the most commonly used inputs in studies of electric 
                                                
19 Another model that also satisfies this property is the so-called scaled Stevenson (SS) model introduced 
by Alvarez et al. (2006). In this model, both the mean and the variance of the pre-truncated normal 
depend on the environmental variables but the coefficients of the environmental variables in the mean and 
variance of u in (2.5) are the same, i.e. δ=γ. We will not provide the parameter estimates of this model in 
Section 2.5 because it collapsed to the KGMHLBC. 
20 The original dataset was collected by the members of the EPRG and it includes information of 
electricity and gas utilities in the US from 1994 to 2009 and also contains information on non-US firms 
from other countries for a shorter period. Following Ofgem’s (2011, p. 20) report, non-US transmission 
firms were not included in the analysis due to data limitations. Despite the initial proposal on international 
benchmarking in that report, so far, these data have not been used. In this chapter the sample was reduced 
to the last 9 years because labour costs in the electric power transmission industry are only available from 
2001 to 2009. We have removed observations with missing and implausible values. We have also 
dropped a few isolated observations and maintained firms with (at least three) consecutive observations in 
order to minimize changes in our estimates when we change the specification of our model. It should be 
noted that this procedure does not give us a balanced panel, as we do not have the same number of 
observations per firm. Our final sample is an unbalanced panel data set of 402 observations without 
discontinuities across time. 
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utilities are operating costs, number of employees, transformer capacity, and network 
length. Regarding the outputs, the most included variables are units of energy delivered, 
number of customers, and the size of service area. 

As we have mentioned in Section 2.3, our cost variable is Totex. This variable is 
the sum of Opex, which includes operation and maintenance expenses incurred by the 
company over one year, and Capex, which is the sum of annual depreciation on capital 
assets and the annual return on the balance of capital. Both Opex and Capex (and hence 
also Totex) are measured in 2000 dollars.21 

Following the basic economic theory of production and the literature on 
electricity networks, we use as explanatory variables of total cost: three types of 
outputs, a variable that measures the system size, labour and capital price, a set of 
regional dummies and a time trend. Our output variables are: Peak Load (PL), 
Electricity Delivered (DE) and Total Capacity of Substations (CS). While the first one 
is the maximum peak load of the year during 60 minutes and it might reflect 
transmission investment requirements given a fixed transmission capacity, the second 
one is the total annual energy delivered by the system which may imply an incremental 
effect in operating cost due to a greater use of electricity transmission assets. Due to a 
large amount of missing values in the data about voltage levels, we have introduced the 
CS as a proxy for the transmission capacity of the system. It is calculated as the sum of 
the total capacity of all substations in the transmission network. 

In Figure 2.2 we show the evolution over time of the output variables divided by 
Totex, which can be interpreted as partial and observable productivity (efficiency) 
measures.22 We can see in this figure a clear negative trend of the peak loads and the 
total capacity of substations given the total expenditure of each firm. In the case of 
electricity delivered, the temporal pattern of this variable is not so clear. These graphs 
give us a first idea about the negative evolution of the efficiency in our sample as the 
output level per dollar of cost, decreases, or in other words, the total unit cost per 
output, increases over time. 
 

Figure 2.2. Annual evolution of outputs divided by Totex 
 

 
 

                                                
21 RTO costs are included in the total costs. For more information about the calculation of Totex and the 
rest of variables, see the Appendix. 
22 As we have an unbalanced panel of 59 firms, to depict this figure we have selected those firms that are 
observed during the whole sample period, i.e. 28 firms. This avoids comparing different sets of firms in 
different periods. 
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Network length (NL) is usually viewed as one of the most important cost drivers 
of an electricity network (Jamasb and Pollitt, 2001). To measure the network length we 
have used pole miles. This variable measures the total sum of all transmission lines in 
miles regardless of the number of power cables on each power line so it is essentially a 
measure of the geographic spread of each company. We thought about using circuit 
miles instead pole miles, but the problem of circuit miles is that this variable refers to 
the number of power cables on each line multiplied by the distance between two points, 
but it does not take into account the capacity of the cable so it is an unreliable measure 
of the physical infrastructure. 

Regarding input prices, we include in the cost function a Labour Price variable 
(LPR) defined as the average annual wage for the electric power transmission and 
distribution industry by state. As in the case of Totex, this variable is also measured in 
2000 dollars.23 Regarding the Capital Price variable (KPR), we have finally used a 
producer price index for power transmission as a proxy for capital price.24 The source of 
these two variables is the Quarterly Census of Employment and Wages from the Bureau 
of Labor Statistics. 

Taking into account the importance of controlling for differences in business 
environment from the perspective of corporate structures after US market liberalization, 
we have also included seven regional dummies that represent the regional reliability 
councils of the NERC in which the transmission utilities of our sample are located: 
SERC Reliability Corporation (SERC), Southwest Power Pool (SPP), Western 
Electricity Coordinating Council (WECC), Northeast Power Coordinating Council 
(NPCC), ReliabilityFirst Corporation (RFC), Midwest Reliability Organization (MRO) 
and Electric Reliability Council of Texas (ERCOT). We expect that these regional 
dummy variables are capturing (jointly with the other variables included in the model) 
most of the unobserved differences between transmission companies’ tasks, such as 
transportation of electricity, scheduling and dispatching of the plants, investment and 
maintenance of transmission assets, etc.25 

Regardless the introduction of these variables, we think that there are three 
issues that should be mentioned related to the business environment as they might make 
a difference to transmission system efficiency in theory. The first is the presence or 
absence of incentive regulation in transmission. We have not included information 
about incentive regulation in our cost function as we do not have data on it. This is 
partly because each state is different and indeed each firm may have a different 
arrangement with its regulator. Identifying the arrangement for the transmission 
business as separate from the distribution business would be hard and a time series of 
the regimes would be needed for analysing this point. However we think this issue 

                                                
23 Unfortunately this information is not available at firm-level. Although it would be preferable to use 
firm-specific prices instead of state-level prices, as firm-level price data are not available in our 
application for both labour and capital, we have used the information that we found from statistical 
agencies. Clearly input prices do vary significantly across the US and it would be wrong not to adjust for 
them. In addition, we do not think there is much of a multi-state issue as the interesting thing is that 
transmission lines in the US are in fact mainly within one state. 
24 We have estimated our models using several indices and variables calculated with financial information 
of the companies. Their coefficients were not statistically significant or they even had unreasonable 
magnitudes from an economic point of view. 
25 Another option to deal with this issue is using a model with fixed effects (see Greene, 2005a, 2005b, 
and more recently Wang and Ho, 2010). However, this estimation strategy does not easily deal with rarely 
changing variables, i.e. variables with little within or temporal variation such as network length or energy 
delivered. For a discussion on this issue, see Greene et al. (2011). 
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should not affect the soundness of our results as it is not altogether clear what difference 
these things might actually make. Furthermore a detailed investigation of incentive 
regulation on efficiency is clearly out of the scope of this chapter. 

The second issue is the introduction of nodal pricing into the RTO which might 
sharpen the pressure on transmission businesses to make lines available. However we 
have estimated a model including dummy variables that reflect the belonging to a 
certain RTO and this model is rejected in favour of our preferred model, which 
incorporates regional dummies for the NERC regions. Therefore our estimates suggest 
that once heterogeneity is controlled, the belonging to a certain RTO has a negligible 
impact on firms’ efficiency. This may be because transmission systems have 99%+ 
availability, and hence the introduction of nodal prices may not have affected firms’ 
performance. Furthermore RTOs do not ‘regulate’ total transmission revenue, so it is 
not clear why RTO membership should affect cost efficiency. This is because often it is 
overall revenue of a transmission business that is regulated and poor revenue 
performance due to low availability on one line may lead to increased charges 
elsewhere. 

Lastly, the third issue is the degree of vertical integration. Vertical integration 
might be independently significant, simply because of cost allocation issues and fixed 
costs being spread. Our preferred model does not contain any vertical integration 
variables (in particular backward integration into generation and the forward integration 
into distribution), because they were only significant for the 3% of the observations in 
our sample.26 

Regarding the stochastic part of our cost function, we use 9 variables that are 
expected to affect firms’ performance and, hence, they are included as efficiency 
determinants. In particular, we include the following variables: another time trend, three 
weather variables (minimum temperature, wind and precipitation), the Capex/Opex ratio 
and two variables which measure the growth of the demand. 

Our weather variables have been obtained from the surface daily weather 
information collected by the National Climatic Data Center for the 2001–2009 period. 
The files are available for around 3,000 weather stations located in the US and contain 
information about: mean, maximum and minimum temperatures, precipitation amount, 
wind speed, number of days with snow, hail, tornadoes, etc. Given the high correlation 
among several weather variables, we decided to include one variable for each one of 
these categories: Temperature (TMIN), Precipitation (PRCP) and Wind (WIND). The 
temperature variable is the annual minimum temperature in Fahrenheit degrees, wind 
speed is the average of the daily mean wind speeds in knots, and precipitation is the 
average of the daily precipitation in inches. These weather variables are measured at 
state-level, not at firm-level. In order to obtain a unique value of each variable per state 
and year, we have taken the average among the weather stations within a particular state 
except for the case of the temperature variable which is the minimum value measured 
by any of the above stations along the year. Then, each utility was associated with the 
weather of the state where its principal office is located.27 We hereafter assume that 
more adverse conditions appear when wind speed and precipitation are high and 
minimum temperature is small. These weather variables have also been introduced in 

                                                
26 To examine this issue we have applied a modified version of the ‘zero inefficiency stochastic frontier 
model’ recently introduced by Kumbhakar et al. (2013).  
27 We recognise that this is a limitation especially when transmission companies may cover more than one 
state. 
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the cost function as determinants of the technology, i.e. of the frontier cost function, in 
some of our estimated models. 

As utilities may adapt their operating and investment practices over time to 
prevent power interruptions and to reduce the effect of adverse weather conditions, we 
interact our weather variables with the mean of the ratio of Capex and Opex (COR) for 
each firm i over the Ti available observations for this firm. We expect a negative 
coefficient if investing in Capex is a better strategy rather than incurring additional 
operational and maintenance costs in dealing with adverse weather conditions. 

Finally we have included two variables that measure the average Growth in 
Demand for each firm over time. We distinguish between positive growth (POSGR) and 
negative growth (NEGR). The coefficients of these two variables should not be 
statistically significant if there are no adjustment costs and all inputs can be adjusted 
(without cost) from one year to the next. However, as the electricity industry is highly 
intensive in capital with much of the assets becoming sunk cost upon investment, we 
expect significant coefficients for POSGR and NEGR. In particular, we expect a 
positive effect of POSGR on inefficiency indicating that utilities tend to anticipate 
future increases in the demand by investing in capital that is expected to be efficiently 
used in the future, but not in the present.28 We expect a negative coefficient NEGR if 
there is a negative trend in demand and reducing quasi-fixed input levels is expensive 
due to the existence of adjustment costs. 

The descriptive statistics of all monetary, physical and environmental variables 
used in the stochastic cost frontiers are shown in Table 2.1. 
 

Table 2.1.Descriptive statistics 
 

 Variable Units Mean Max. Min. Std. Dev. 
Totex Cost US$ 145,111,000 667,127,000 20,713,600 120,627,000 
Peak Load Output MW 6,208 23,111 380 5,539 
Electricity Delivered Output MWh 6,279,730 74,584,700 56,730 8,872,920 
Tot. Cap. of Subs. Output MVA 27,821 120,115 1,327 22,720 
Network Length Network Miles 4,073 16,292 1,087 3,263 
Annual Salary Input Price US$ 62,144 94,005 34,024 10,531 
Producer Price Index Input Price Index 179.21 222.40 155.00 21.35 
SERC Dummy - 0.40 1 0 0.49 
SPP Dummy - 0.22 1 0 0.41 
WECC Dummy - 0.26 1 0 0.44 
NPCC Dummy - 0.04 1 0 0.21 
RFC Dummy - 0.25 1 0 0.43 
MRO Dummy - 0.14 1 0 0.35 
ERCOT Dummy - 0.04 1 0 0.21 
Minimum Temp. Weather °F -10.35 19.90 -59.80 16.57 

Continued on next page 

                                                
28 As Jamasb and Pollitt (2007) note, achieving long-term efficiency improvements can involve short-
term increases in Capex or Opex that may not generate immediate efficiency improvements. In fact, 
increases in short-term expenditure can deteriorate the firms’ short-term relative performance. This might 
in turn discourage firms from efficiency-improving investments that have long-term gains. 
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Continued from previous page 
 Variable Units Mean Max. Min. Std. Dev. 
Wind Speed Weather Knots 6.83 9.60 4.63 1.01 
Precipitation Weather Inches 0.07 0.16 0.01 0.03 
Capex/Opex Other Ratio 1.18 5.90 0.13 0.70 
Growth in Demand Other % 0.03 244.11 -74.96 17.77 

 

2.5. Empirical results 
We estimate a Translog cost function that can be interpreted as a second-order 

approximation to the companies’ underlying cost function.29 All the variables are 
included in the model in logarithms, except the regional dummies and the time trend. 
Each explanatory variable is measured in deviations with respect to its mean, so the 
first-order coefficients can be interpreted as the cost elasticities evaluated at the sample 
mean. As usual, homogeneity of degree one in prices is imposed by normalizing cost 
and labour price with capital price. Thus, the estimated equation can be written as 
follows: 
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 (2.6) 

where for notational ease, the vector y stands for outputs and network length, i.e. y=(PL, 
DE, CS and NL). 

As our results about firms’ efficiency might depend on the empirical strategy 
followed to allow for inefficiency determinants, we first carry out several model 
selection tests to select the best specification supported by the data. Table 2.2 shows the 
LR tests for nested models, where the second model presented in each line is nested in 
the first model. Firstly we can see that the ALS model is rejected in favour of the 
RSCFG model due to the inclusion of environmental variables in the variance of the 
heteroscedastic inefficiency term. This latter model is in turn rejected in favour of the 
RSCFG-μ, indicating that the inefficiency term does not follow a half normal 
distribution. Table 2.2 also displays the Vuong test for the non-nested RSCFG-μ and 
KGMHLBC models. A positive value indicates that the first model is preferred to the 
second one. In this case we can see that the preferred model is the RSCFG-μ model. 
Lastly, the LR tests in Table 2.2 again indicate that the GEM clearly outperforms both 
RSCFG-μ and KGMHLBC models. Based on these comparisons, we will use the GEM 
model to examine in detail the estimated levels of cost efficiency. 

In addition to the frontier parameters that are discussed later on, Table 2.3 
displays the coefficients of the inefficiency term that have been estimated using the 
standard homoscedastic ALS model, and the heteroscedastic models presented before: 
RSCFG, RSCFG-μ, KGMHLBC and GEM. Although the environmental variables in 
the GEM model are included both in the mean and the variance of the inefficiency term, 
                                                
29 The more restricted Cobb-Douglas specification was always rejected in favour of the Translog 
specification. 
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their main effect is through the variance. Indeed, whereas most of the coefficients of the 
variables included as determinants of the variance of the inefficiency term are 
statistically significant, the estimated coefficients for the mean are not significant 
(except for the time trend which is negative and significant at a 90% confidence level). 
This is in line with our finding that the coefficients of these variables in the RSCFG and 
RSCFG-μ models are also significant, but not in the KGMHLBC model. The latter 
model clearly shows that the mean of the inefficiency is not able to capture the effect of 
the environmental variables on firms’ inefficiency. Thus, we will focus our comments 
on the variance of the inefficiency term. 

 
Table 2.2. Model selection tests 

 
Comparison of nested models 
(LR test) Test value D.o.f. Preferred 

model 
 

RSCFG vs. ALS 74.052 *** 9 RSCFG 
RSCFG-μ vs. RSCFG 37.137 *** 1 RSCFG-μ 
GEM vs. RSCFG-μ 18.163 ** 9 GEM 
GEM vs. KGMHLBC 101.802 *** 9 GEM 

     
Comparison of non-nested models 
 (Vuong test) Test value  

Preferred 
model 

 

RSCFG-μ vs. KGMHLBC 1.830 **  RSCFG-μ 

     
Significance code: * p<0.1, ** p<0.05, *** p<0.01 

 

Regarding the inefficiency variance, our results indicate that weather is an 
important issue in this industry. 30 Wind speed and precipitation have a positive and 
significant coefficient indicating that more adverse conditions generate higher levels of 
inefficiency. The negative sign for the minimum temperature also suggests, although it 
is not significant, that lower minimum temperature slightly increases cost due to higher 
levels of firms’ inefficiency. Obviously firms cannot adjust their performance by 
modifying their weather conditions as weather is an uncontrollable factor. Our results 
simply indicate that managing firms operating in regions with bad weather is more 
difficult than other firms enjoying better conditions. Therefore, policy measures aiming 
to improve managerial skills become more appropriate in firms operating in adverse 
conditions. In this sense, the introduction of the average ratio of Capex and Opex 
(COR) interacting with the weather variables allows us to catch an idea about the best 
strategy to deal with adverse weather conditions. The estimated coefficients have the 
opposite sign to those obtained for the isolated weather variables, indicating that, as 
expected, more capital-intensive utilities (e.g. with higher capital-to-opex ratios) are 
able to mitigate better the effect of unfavourable weather conditions. They are, ceteris 
paribus, more efficient than those utilities using a higher proportion of operating inputs. 

 

                                                
30 Note also that the coefficient of the time trend is positive, showing that the effect of time is different in 
both parts of the inefficiency. 
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Table 2.3. Parameter estimates of the Translog cost function 
 

  ALS  RSCFG  RSCFG-μ  KGMHLBC  GEM 
 Parameters Est.  Est./s.e.  Est.   Est./s.e.  Est.  Est./s.e.  Est.  Est./s.e.  Est.  Est./s.e. 
                     Frontier Intercept 13.208 *** 169.471  13.391 *** 231.108  12.573 *** 83.435  13.394 *** 65.985  13.294 *** 202.786 
 ln PLit 0.508 *** 8.148  0.523 *** 11.160  0.452 *** 11.161  0.616 *** 11.249  0.545 *** 12.233 
 ln DEit 0.057 *** 2.808  0.060 *** 3.527  0.024 ** 2.002  0.040 * 1.853  0.061 *** 3.945 
 ln CSit 0.138 ** 2.034  0.164 *** 2.896  0.349 *** 6.917  0.056  0.884  0.140 ** 2.517 
 ln NLit 0.145 *** 3.918  0.135 *** 4.296  0.016  0.583  0.064 * 1.776  0.145 *** 4.841 
 ln (LPRit/KPRit) 0.582 *** 3.722  0.528 *** 4.399  0.448 *** 4.398  0.422 ** 2.502  0.497 *** 4.113 
 ½ (ln PLit)2 -0.057  -0.288  -0.037  -0.223  -0.248 ** -1.999  0.271  1.308  0.044  0.292 
 ½ (ln DEit)2 0.038  1.415  0.040 ** 2.198  0.032 ** 2.021  0.017  0.639  0.044 ** 2.338 
 ½ (ln CSit)2 0.167  0.526  0.109  0.422  0.077  0.372  0.304  0.825  0.119  0.536 
 ½ (ln NLit)2 0.270 ** 2.077  0.247 *** 2.962  0.380 *** 6.213  0.196 * 1.677  0.253 *** 3.278 
 ½ (ln (LPRit/KPRit))2 0.121  0.183  -0.139  -0.278  -0.319  -0.852  -0.159  -0.235  -0.012  -0.026 
 ln PLit · ln DEit -0.005  -0.085  -0.032  -0.764  0.009  0.273  0.037  0.619  -0.021  -0.540 
 ln PLit · ln CSit 0.015  0.060  0.077  0.368  0.240  1.507  -0.346  -1.220  -0.002  -0.013 
 ln PLit · ln NLit 0.061  0.482  0.182 ** 2.098  0.182 *** 2.837  0.002  0.019  0.155 * 1.800 
 ln PLit · ln (LPRit/KPRit) -0.152  -0.500  -0.085  -0.323  0.084  0.401  -0.277  -0.978  -0.160  -0.697 
 ln DEit · ln CSit -0.028  -0.455  0.013  0.258  -0.030  -0.827  0.004  0.077  -0.001  -0.020 
 ln DEit · ln NLit -0.042  -1.114  -0.082 *** -2.818  -0.046 * -1.941  -0.052  -1.159  -0.093 *** -3.549 
 ln DEit · ln (LPRit/KPRit) 0.100  1.239  0.084  1.279  0.086  1.396  0.162 ** 2.035  0.091  1.394 
 ln CSit · ln NLit -0.050  -0.313  -0.165  -1.528  -0.313 *** -3.947  0.167  1.045  -0.091  -0.781 
 ln CSit · ln (LPRit/KPRit) 0.056  0.165  0.051  0.182  -0.263  -1.127  0.013  0.038  -0.004  -0.013 
 ln NLit · ln (LPRit/KPRit) 0.057  0.295  -0.212  -1.274  -0.013  -0.099  0.194  0.956  -0.168  -1.050 
 SERC -0.372 *** -5.889  -0.367 *** -7.050  -0.392 *** -9.280  -0.488 *** -7.050  -0.372 *** -7.291 
 SPP 0.154 ** 2.206  0.152 *** 3.101  0.190 *** 4.367  0.193 ** 2.246  0.213 *** 4.049 
 WECC -0.185 *** -2.584  -0.060  -1.071  -0.031  -0.554  -0.178 ** -2.021  0.013  0.202 
 NPCC 0.130  0.923  0.106  0.870  0.251 *** 3.014  0.163  1.103  0.153  1.299 
 RFC -0.127 * -1.848  -0.161 *** -2.901  -0.151 *** -4.123  -0.068  -0.783  -0.081  -1.298 
 MRO 0.051  0.585  0.060  0.778  0.040  0.680  0.046  0.446  0.145 * 1.909 
 ERCOT 0.242 ** 2.277  0.235 *** 2.849  0.248 *** 3.306  0.377 *** 3.467  0.236 *** 3.081 
 t 0.000  -0.033  -0.029 *** -4.097  -0.014 ** -2.533  0.004  0.534  -0.025 *** -3.731 
                      Continued on next page 



24 
 

Continued from previous page 

 
ALS RSCFG RSCFG-μ KGMHLBC GEM 

 
Parameters Est. Est./s.e. Est. Est./s.e. Est. Est./s.e. Est. Est./s.e. Est. Est./s.e. 

 
  

                   Noise term ln (σv
2) -1.946 *** -19.879  -1.825 *** -35.791  -2.185 *** -25.317  -1.558 *** -22.185  -1.918 *** -35.928 

                                          Inefficiency Intercept         -0.165  -0.966  -4.420  -0.946  -5.525 * -1.732 
term t             -0.338  -1.256  -0.310 * -1.735 

(mean) TMINit             0.125  0.911  0.141  1.353 
 WINDit             -0.936  -1.080  -1.510  -1.357 
 PRCPit             7.659  0.425  0.725  0.045 
 TMINit · CORi             -0.117  -0.626  -0.188  -1.086 
 WINDit · CORi             0.560  0.414  -1.405  -0.716 
 PRCPit · CORi             7.852  0.214  19.679  0.517 
 POSGRi             0.077  1.011  0.033  0.069 
 NEGRi             0.166  0.363  0.104  0.269 
                                          Inefficiency Intercept -1.261 *** -12.217  -3.871 *** -7.650  -2.767 *** -12.197  -3.984  -0.312  -3.965 *** -8.248 

term t     0.285 *** 5.860  0.097 *** 3.341      0.285 *** 6.006 
(variance) TMINit     -0.015  -1.245  -0.001  -0.067      -0.013  -1.114 
 WINDit     0.286  1.618  0.340 ** 2.546      0.502 *** 2.733 
 PRCPit     27.643 *** 4.001  15.809 *** 3.680      29.302 *** 4.251 
 TMINit · CORi     0.062 ** 2.362  0.037 * 1.868      0.078 *** 2.955 
 WINDit · CORi     -0.323  -0.831  -0.678 ** -2.238      -0.139  -0.386 
 PRCPit · CORi     -23.963 ** -2.178  -38.825 *** -4.227      -30.327 *** -2.682 
 POSGRi     0.042 *** 3.601  0.071 *** 8.647      0.038 *** 3.212 
 NEGRi     0.029  0.626  0.091 * 1.710      0.025  0.600 
                                           Obs. 402  402  402  402  402 
 Log-likelihood 41.179  78.204  96.772  54.953  105.854 

Significance code: * p<0.1, ** p<0.05, *** p<0.01 
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This result suggests therefore that investing in equipment is a better strategy than 
incurring additional operating costs in mitigating the effects of unfavourable weather 
conditions. 

The last set of efficiency determinants has to do with growth in demand. We get 
a positive, and significant, coefficient for POSGR, indicating that utilities are more 
efficient when the demand is unchanging as they do not need to anticipate investments 
to meet future demand. However, the coefficient of NEGR is not significant in most of 
the models, indicating perhaps that reducing quasi-fixed inputs is not expensive for the 
companies or that maintaining the underused network is not very costly when there is 
negative trend in the demand growth. 

In Figure 2.3 we depict the histogram of estimated levels of cost efficiency. The 
average efficiency in our sample is 88% using our preferred model. Pollitt (1995) using 
1990 data found an average efficiency of 80% for the total of the companies in his 
sample and 88.3% for larger firms. The latter value is very similar to the one that we 
have found with our preferred model. This seems to indicate that the performance of the 
electricity transmission utilities has not experienced a significant improvement from one 
period to the next. 

 
Figure 2.3. Histogram of efficiency scores for the firms using the GEM 

 

 
 

We show in Figure 2.4 the temporal evolution of our efficiency scores using the 
GEM model.31 The graph shows that the average level decreases over time, starting at 
93.9% and finishing at 82.2%, and hence the negative sign of the coefficient for the time 
trend through the mean of u in our model seems not to offset its positive value through 
the variance. Our preferred model also indicates an increasing divergence in firms’ 
performance over time. Overall, the estimated evolution in performance and the lack of 
convergence in firms’ inefficiency scores seem to suggest that there is scope for 
improvements in the performance of the US electricity transmission system. 
 
                                                
31 Except for the RSCFG and the RSCFG-μ models which exhibit a similar evolution of the efficiency 
(not shown), the rest of the estimated models present clear differences with respect to the GEM, our 
preferred model. These differences might be taken as an anecdotal evidence of the biases that might 
appear in an empirical application when inefficiency determinants are not taken into account or are 
misplaced in the specification of the model. 
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Figure 2.4. Annual evolution of the efficiency in electric power transmission 
 

 
 

We next focus our discussion on the estimated frontier parameters, also shown in 
Table 2.3. In general, all models perform quite well as most of the first-order 
coefficients have the expected sign and their magnitudes are quite reasonable from a 
theoretical point of view. Certainly, the coefficients of the three outputs and network 
length are always positive and mostly statistically different from zero when measuring 
the incremental costs associated with either higher maintenance and operational costs or 
the need for new capital. A similar statement can be made about the coefficients on 
input prices, which are also positive and statistically significant. The coefficients on 
many of the dummy variables for the NERC regions are also significant indicating that, 
regardless of the rest of firms’ features, regional differences exist. The coefficient on the 
time trend is negative (nonetheless it is not significant in some of the models), which 
indicates that costs decrease over time, i.e. there is technical change. 

As the selection of the output set is often quite contentious, we have carried out 
several LR tests to fully justifying the explanatory variables that were included in our 
cost frontier function. Table 2.4 shows several tests where our specification of the GEM 
model is compared to more restricted specifications where one of the outputs is 
excluded from the output set. As it can be seen all the output variables that were 
introduced in the model, and primarily peak load (PL) and network length (NL), are 
relevant cost drivers and should be taken into account in the analysis. We also test in 
this table the inclusion of dummy variables that reflect the belonging to a certain RTO 
or alternatively to a certain NERC region. In both cases the LR test values indicate that 
the model that is rejected is the one that does not include any regional dummy.32 

Next, we will use our preferred model, GEM, to examine some characteristics of 
the estimated technology. Like in previous papers, the estimated elasticities allow us to 
measure economies of scale and density, but in this case using more recent data. Figure 
2.5 depicts the elasticity of total cost with respect to peak load, delivered electricity, 
total capacity of substations and network length estimated for each observation, sorted 
in increased order at observation-level. Peak load seems to be the most important cost 
driver with an average elasticity equal to 0.54. This figure also allows us to examine the 
reliability of our estimated elasticities when we move away from the sample mean. 
Although the first derivative of our cost function just provides a first-order 
                                                
32 Moreover, a Vuong test not shown in Table 2.4 indicates that the model which includes RTO dummies 
is rejected in favour of our preferred model, which incorporates regional dummies for the NERC regions. 
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approximation to the underlying elasticity at the sample mean, most observation-
specific elasticities are in a reasonable order of magnitude, except for the negative 
values on the left in three of the curves. In these cases, our estimates should be viewed 
with caution as they correspond to some observations which are far away from the 
sample mean.33 

 
Table 2.4. Significance of variables in the frontier 

 
 Variables Log LF D.o.f. LR Test 
  GEM 105.854 - - 
Output PL 7.666 6 196.376 *** 
Excluded DE 78.116 6 55.476 *** 
 CS 98.580 6 14.548 ** 
  NL 91.307 6 29.094 *** 
 GEM (w/o Reg. Dum.) 54.151 - - 
Regional NERC 105.854 7 103.406 *** 
Dummies RTO 79.782 6 51.261 *** 

Significance code: * p<0.1, ** p<0.05, *** p<0.01 
 

Figure 2.5. Elasticities of cost for outputs and network 
 

 
 

Adding the first-order coefficients of the three outputs we find that the elasticity 
of density evaluated at the sample mean is quite similar in all models, varying from 0.70 
to 0.75. These values suggest the existence of important economies of density in the 

                                                
33 For most functional forms (e.g. the Translog function) there is a fundamental trade-off between 
flexibility and theoretical consistency. For instance, maintaining global monotonicity (e.g. positive 
elasticities and marginal costs) is impossible without losing second order flexibility. For example, Barnett 
et al. (1996) show that the monotonicity requirement is by no means automatically satisfied for most 
functional forms, and that violations are frequent. However to show the robustness of our estimates we 
have tested the monotonicity conditions using the well-known Wald test. We only find statistically 
negative values for 0.25% of the observations in the case of electricity delivered, 4.98% for the network 
length and zero for the other outputs. The small number of negative elasticities found gives us confidence 
about the fulfilment of the monotonicity conditions on outputs and hence about the suitable properties of 
the estimated cost function. 
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electricity transmission industry. That is, given network infrastructure, electricity 
transmission networks exhibit natural monopoly characteristics. 

To analyse economies of scale, which involve expansions in both output and 
network, we need to add the cost elasticity of the network length to the elasticity of 
density. The elasticity of scale evaluated at the sample mean in the GEM model is 0.89. 
Figure 2.6 compares both elasticities. More than a half of the firms in our sample 
exhibit increasing returns to scale. These results suggest that electricity transmission 
networks still exhibit natural monopoly characteristics when network is expanded to 
meet the extra demand. Using data for 1990, Pollitt (1995) finds different degrees of 
economies of scale depending on firms’ size for the US transmission utilities. In 
particular, he finds that decreasing returns to scale are more common in small utilities 
while increasing returns to scale are more common in medium and large companies. 
This seems to be consistent with the results obtained here, as in our sample we mainly 
have large firms. Dismukes et al. (1998) also show that all the NERC reliability regions 
in the US exhibit significant economies of scale for the transmission companies, while 
Huettner and Landon (1978) find that of six expenses categories, only sales expenses 
exhibits increasing returns to scale over the whole of the observed output range. 

 
Figure 2.6. Elasticities of scale and density 

 

 
 

Finally, as we mentioned in the introduction section, one of the most interesting 
issues in benchmarking is the question of whether firms are using environmental 
conditions as excuse for bad performance and whether their costs should be or not 
adjusted accordingly by the regulator. As pointed out by Nillesen and Pollitt (2010) for 
the case of US electricity distribution, firms’ cost should be adjusted if there is a direct 
(frontier) effect of weather on cost, but not when the effect is indirect (i.e. through a 
larger inefficiency). In our case, the use of a LCSFM structure allows us to carry out an 
observation-by-observation analysis of this important issue, which may be missed in a 
cost model that only includes the weather variables in one part of the model. 

To achieve this aim, we propose estimating a modified version of the so-called 
zero inefficiency stochastic frontier model introduced by Kumbhakar et al. (2013) to 
examine differences in performance (i.e. inefficiency). Here we have adapted this 
framework to capture differences in technology. Our LCSFM allows estimating two 
different cost frontiers: with and without weather variables. Like in the zero-inefficiency 
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model, the other parameters of our model are assumed to be the same in both groups 
(classes).34 If most firms belong to the class with no weather variables as determinants 
of the cost frontier, we then can conclude that our original cost frontier is already 
capturing their direct effect on firms’ costs. The assigning of the firms to a particular 
group is performed by the model using class-membership probabilities, without any 
prior assumption by the researcher about the classification of the firms. Those firms 
with a large probability of belonging to the group where the cost frontier include 
weather variables can then use the weather conditions to justify (at least partially) their 
larger costs. 

Table 2.5 shows the proportion of observations that are located in either the 
group with or without weather variables as relevant cost frontier drivers. In both cases, 
we have used our preferred specification of the inefficiency term, i.e. the GEM. It 
should be first pointed out that the discriminatory capacity of the LCSFM to allocate 
firms in different classes is quite robust as the posterior class probabilities are very 
large. The numbers in this table reflect that only 1% of the observations would be 
assigned to the class that include weather variables in the frontier (class 2).35 Similar 
percentage is also obtained when we add the interactions of the weather variables with 
the variable measuring firms’ cost structure. These results suggest that only the costs of 
a small number of firms could be adjusted downwards due to the negative influence of 
the bad weather in order to treat them fairly. 
 

Table 2.5. Modified LCSFM 
 
Basic LCSFM (Weather) 
 
Sample allocation 

Class 1 
(No weather variables) 

Class 2 
(With weather variables) 

Number of observations 397 5 
Percentage of observations 98.76% 1.24% 
Posterior class probability 99.55%  87.81% 
   
Extended LCSFM (Weather + Weather · COR) 
 
Sample allocation 

Class 1 
(No weather variables) 

Class 2 
(With weather variables) 

Number of observations 397 5 
Percentage of observations 98.76% 1.24% 
Posterior class probability 98.95%  90.97% 
   
 

                                                
34 In particular, while the cost frontier of one group is simply lnC=lnC(X, ), the cost frontier of the 
second group includes weather (i.e. z) variables and can be written as lnC=lnC(X, )+z´ψ. Moreover, the 
frontier parameters associated to non-weather variables (), and the parameters describing the distribution 
of v and u(z) are imposed to be the same in both classes. Therefore, the issue here is to identify the set of 
firms with ψ=0 or not. As the value of ψ is not available to the econometrician, class membership 
probabilities should be estimated simultaneously alongside the other parameters of the model. See next 
chapter for more details about these models. 
35 These five observations come from 4 different firms and all of them, except one, show large posterior 
probabilities (higher than 90%) of belonging to class 2. 
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We have not been able to find a direct (or frontier) cost effect associated with (or 
“attributable to”) different weather conditions, which may appear somewhat 
counterintuitive. However, this result would be expected if other explanatory variables, 
especially the regional dummy variables, were actually capturing the frontier effect of 
weather on firms’ costs. We have checked this and have found (using a multinomial 
logit model) that our set of NERC regional dummies is jointly correlated with the set of 
weather variables. Moreover, some of the output variables (such as PL) and 
technological variables included in the cost frontier are also correlated with the weather 
variables. These correlation analyses indicate that any frontier effect of weather on 
firms’ costs is already captured by the model, a result which indicates that the 
environmental factors are already taken into account in the design of networks, as 
pointed out by Jamasb et al. (2012). Therefore, it seems that advance planning has 
reduced the need to undertake corrective expenditure in response to outages caused by 
adverse weather conditions. 

Overall, the above discussion suggests that the effect of weather on firms’ costs 
estimated here is not actually capturing a direct (i.e. frontier) cost effect. Their indirect 
nature corroborates our main finding, i.e. most firms should not use unfavourable 
weather conditions as an excuse for their poor performance, and hence they should not 
demand that the regulators purge their cost data of weather effects. 

 

2.6. Conclusions 
The electricity industry in most developed countries has been restructured in 

recent decades with the aim of reducing costs, improving service quality and 
encouraging electricity utilities to perform efficiently. The remaining regulated 
segments (i.e. transmission and distribution) provide the infrastructure for the 
competitive segments and represent an important share of the total price paid by final 
customers. Despite the fact that electricity transmission is an essential part of the 
electricity supply sector there is a lack of empirical studies that analyse both economic 
characteristics of the technology and firms’ inefficiency in electricity transmission. 

To fill this gap in the literature we have analysed firms’ performance in the US 
electricity transmission industry for the period 2001-2009. The analysis of the economic 
characteristics of the technology and inefficiency of US utilities relies on the estimation 
of several stochastic cost frontiers, which in turn are estimated using more recent data 
than in previous papers. The estimated coefficients provide useful information about 
firms’ performance with both policy and managerial implications. For instance, we have 
found that, given network infrastructure, electricity transmission networks exhibit 
natural monopoly characteristics in most cases. This result provides support for the 
continuing regulation of electricity transmission. Moreover, our results indicate that 
efficiency in the US electricity transmission industry has declined (and diverged) over 
the period 2001-2009, suggesting that regulatory benchmarking techniques can identify 
room for improvement in performance of the US electricity transmission system. 

Our stochastic frontier models also allow us to identify the determinants of 
firms’ inefficiency in this industry. In particular, as determinants of firms’ inefficiency, 
we have included several variables capturing weather conditions, companies’ cost 
structure, and energy demand growth. The results indicate that more adverse conditions 
generate higher levels of inefficiency. As weather is an uncontrollable factor and firms 
cannot adjust their performance modifying weather conditions, our findings simply 
point out that it is more difficult to manage a firm operating in a region with bad 
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weather, and hence policy measures aiming to improve managerial skills become more 
important in firms operating in adverse conditions. 

We have also found that investing in capital is a better strategy to deal with 
adverse weather conditions rather than incurring additional operating costs. This might 
suggest a regulatory framework that favours capital investments to deal with 
unfavourable weather conditions. Finally we have found that, as expected, firms’ 
performance gets better when demand tends to be steady as firms cannot adjust their 
inputs without cost over time. This result, combined with the previous finding on the 
importance of capital expenditure to deal with weather conditions, suggests that 
regulators should also take into account that achieving long-term efficiency 
improvements can involve short-term increases in both capital and operational costs 
and, hence, a deterioration in firms’ short-term relative performance. 

One of the most interesting issues in benchmarking is whether firms are actually 
using environmental conditions as an excuse for bad performance and whether their 
costs should be or not adjusted accordingly. Regulators should purge the data when 
environmental conditions are part of the technology, but not when they have an indirect 
effect through inefficiency. Unlike previous papers in electricity transmission, we 
examine this issue using a latent class (stochastic frontier) model. Our findings indicate 
that only the costs of a small number of firms should be adjusted downwards due to the 
negative influence of the bad weather. For the remainder firms, the environmental 
conditions mainly have an indirect effect on their costs by means of a higher 
inefficiency. Therefore, most firms of our sample might then be using unfavourable 
weather conditions as a simple excuse for their poor performance. 
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2.7. Appendix 
Table A1. Variables and definitions from FERC FORM No. 1 

 
Variable  Definition FERC pages FERC account names/notes 
 AK Allocation key (wages) SWTR / (SWTT-SWAG)  
 SWTR  354-21b Salaries and wages (transmission) 
 SWTT  354-28b Salaries and wages (total) 
 SWAG  354-27b Salaries and wages (admin. and general) 
OPEX   Operational expenditure 100 * (TTE + AK * (TAGE - EPB - RCE - GAE)) / CPI   
 TTE  321-112b Total transmission (op. and main.) expenses 
 TAGE  323-197b Total administrative and general expenses 
 EPB  323-187b Employee pensions and benefits 
 RCE  323-189b Regulatory commission expenses 
 GAE  323-191b General advertising expenses 
CAPEX  Capital expenditure 100 * (DEP + IR * KBAL) / CPI   
 DEP Depreciation DETP + AK * (DEPGP + DEPCP)  
 DEPTP 336-7b Depreciation (transmission plant) 
 DEPGP 336-10b Depreciation (general plant) 
 DEPCP 336-11b Depreciation (common plant) 
 KBAL Capital balance OCK – ADEP  
 OCK Original cost of capital BTP + AK * BGP  
 BTP  207-58g Balance end of year (total transmission plant) 
 BGP  207-99g Balance end of year (total general plant) 
 ADEP Accumulated depreciation ADTTP + ADTRP + AK * ADTGP  
 ADTTP 219-25c Accumulated depreciation total (transmission plant) 
 ADTRP 219-27c Accumulated depreciation total (regional plant) 
 ADTGP 219-28c Accumulated depreciation total (general plant) 

Continued on next page 
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Continued from previous page 

Variable  Definition FERC pages FERC account names/notes 
TOTEX  Totex OPEX + CAPEX  
PL  Peak Load 401b (d) Peak load (MW) 
DE  Electricity Delivered 401a-17 (b) MWh (total) 
CS  Total Capacity of Substations 427 (f) Capacity of substation in service (MVA) 
NL  Network Length 422 (f) + (g) Length of transmission lines (miles) 
COR  Capex / Opex CAPEX / OPEX (average over time for each firm)  
GROWTH  Growth in Demand [(TE current year - TE previous year ) / TE previous year] * 100  

 
Table A2. Variables from other sources 

 
Variable  Definition Source 

LPR  Annual Salary Data Quarterly Census of Employment and Wages 
   (from the US Bureau of Labor Statistics) 

KPR  Producer Price Index US Bureau of Labor Statistics 

NERC dummies  Regional dummy variables North American Electric Reliability Corporation (NERC) 

TMIN  Minimum Temperature National Climatic Data Center (NCDC) 

WIND  Average Wind Speed National Climatic Data Center (NCDC) 

PRCP  Average Precipitation National Climatic Data Center (NCDC) 

CPI  Consumer Price Index International Labour Organisation - LABORSTA (Base Year = 2000) 

IR  Interest rate (6%) Nillesen and Pollitt (2010), p.63 
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Chapter 3 
 
Using the latent class approach to cluster firms in 
benchmarking: An application to the US 
electricity transmission industry 
 
 
3.1. Introduction 

Electricity networks are often regulated by implementing incentive-based 
regulation schemes that use some types of benchmarking, i.e. a comparison of utilities’ 
performance with best-practice references. As shown by Zhou et al. (2008), the 
nonparametric DEA has become a very popular tool in energy and environmental 
studies, especially for benchmarking electric utilities. Unlike the econometric SFA that 
requires the specification of a particular functional form for the cost or production 
functions to be estimated, DEA imposes fewer assumptions on the shape of firms’ 
technology and it allows regulators to address traditional convergence problems and the 
well-known ‘wrong skewness problem’ in the SFA literature. 

A key issue that is sometimes not taken into account by regulators (and 
researchers) is the heterogeneity or unobserved differences among firms, although 
utilities are usually quick to mention this issue to the regulators. This concern underlies 
the negotiations between regulators and utilities, where utilities wield uniqueness as a 
reason to avoid being compared with their peers. However, it is often assumed in this 
setting that the whole set of benchmarked firms share the same technology, and hence 
differences in behaviour are attributed to inefficient use of factors that are under the 
control of the companies. Possible differences among utilities associated with different 
technologies are either overlooked or are addressed using simple sample selection 
procedures, mostly based on factors that may affect performance such as geographic 
location or utilities’ size. Therefore, the efficiency scores obtained from these analyses 
might be biased and some firms might be penalized (or rewarded) in excess if their 
underlying technology is less (more) productive than the technology used by other firms 
operating with more (less) advantageous conditions. This is particularly important in the 
case of incentive regulation and benchmarking of electricity networks where the results 
of efficiency analysis have important financial implications for the firms. 

In this chapter we examine whether we should (a) split the sample arbitrarily on 
the basis of a single size variable, or (b) use a comprehensive statistical procedure to 
control for technological differences, before carrying out a traditional efficiency 
analysis of regulated electricity networks. We advocate using an LCM approach that 
allows us to split the electricity networks into a number of different classes, where each 
class is associated with a different technology. We advocate this approach for several 
reasons. First, LCM clusters firms by searching for differences in production or cost 
parameters, which is exactly what regulators are looking for. Second, our approach can 
be viewed as a “supervised” method for clustering data as it takes into account in the 
first stage the same (production or cost) relationship that is analysed later, often using 



35 
 

nonparametric frontier techniques. Indeed, the literature on data dimension reduction 
uses this expression for those methods that not only use the information contained in the 
explanatory variables to be aggregated, but also the information of the dependent 
variable that will be predicted later on. And third, our approach is not more “technical” 
than other clustering methods as it can be implemented using standard software and 
using the same variables that will be used to get efficiency scores in a later stage. 
Having practicality in mind, we have proposed some simplifications such as the use of 
simple specifications for both the deterministic (e.g. Cobb-Douglas) and stochastic (e.g. 
normal distribution) parts of the model to facilitate its application. The use of the same 
variables in both the latent class stage and the second, DEA, stage also contributes to 
simplify the use of the proposed procedure. 

The same idea is currently being developed by Agrell et al. (2013) in a very 
recent study where they use the LCM approach to control for technological differences 
in an application to Norwegian power distribution firms. Our research reinforces the 
approach from both a theoretical and an empirical point of view. In particular, we carry 
out a simulation analysis to examine whether the latent class approach outperforms 
other more arbitrary and less robust procedures for splitting a sample of observations -
such as the k-means clustering algorithm or simply using the median of some relevant 
variables. The simulation exercises confirm our expectations and show that the 
proposed approach outperforms alternative sample selection procedures. We illustrate 
this procedure with an application to the US electricity transmission firms examined in 
the previous chapter. We find two statistically different groups of firms that should be 
compared or treated separately. In order to confirm the results from the simulation 
exercise, we compare the partition of the sample obtained through this method with 
those from alternative clustering procedures. 

This chapter is organized as follows. Section 3.2 introduces the two-stage 
procedure that is proposed to control for unobservable differences in firms’ technology 
(environment) in energy regulation. Section 3.3 introduces the simulation analysis 
performed and its main outcomes. Section 3.4 uses data from the US electricity 
transmission industry to compare the relative performance of our approach and 
alternative procedures. Section 3.5 concludes. 

 

3.2. A two-stage procedure to address unobserved heterogeneity in utility 
regulation 

As Haney and Pollitt (2009) pointed out in a recent survey, regulators have been 
using several statistical methods to determine the performance of energy utilities. 
Obtaining reliable measures of firms’ performance requires dealing with controllable 
factors and monitoring for the different environmental conditions under which firms 
operate. However, both regulators’ reports and academic studies do not usually deal 
with these technological differences. Statistical methods have recently been developed 
to address this issue. In most of these methods, heterogeneity is understood as an 
unobserved determinant of the production/cost frontier, while inefficiency is interpreted 
as the ‘distance’ to the frontier once heterogeneity has been taken into account. 

Following Greene (2005a, 2005b) in the parametric (SFA) literature, we can 
basically distinguish two types of models that allow us to achieve our aim, namely the 
so-called True Fixed Effects (TFE) and True Random Effects (TRE) models introduced 
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by this author, and the LCM36, also known as finite mixture models, which have been 
broadly used in several fields of research (see Beard et al., 1991; or Gropper et al., 
1999, for simple applications; and Battese et al., 2004; or O’Donnell et al., 2008, for 
more comprehensive applications that aim to examine technological gaps using a 
metafrontier approach). Both approaches have their own strengths and weaknesses. In 
the TFE/TRE models, unobserved heterogeneity is captured through a set of firm-
specific intercepts that are simultaneously estimated with other parameters. Hence, this 
approach assumes that there are as many technologies as firms. However, as it imposes 
common slopes for all firms, all of them share the same marginal costs, economies of 
scale and other technological characteristics. 

In contrast to the TFE/TRE models, the LCM approach allows the estimation of 
different parameters for firms belonging to different groups. This can be easily seen if 
the general specification of a cost function in this framework is expressed as follows: 

ln lnit j j it it j
X Y v        (3.1) 

where i stands for firms, t for time and j = 1,…, J for class. Xit is a measure of firms’ 
cost, Yit is a vector of explanatory variables, and the random term vit follows a normal 
distribution with zero mean and variance σv

2. As both αj and βj, are j-specific 
parameters, the technological characteristics vary across classes. 

Letting θj denote all parameters associated with class j, the conditional 
likelihood function of a firm i belonging to class j is LFij(j). The unconditional 
likelihood for firm i is then obtained as the weighted sum of their j-class likelihood 
functions, where the weights are the probabilities of class membership, Pij. That is: 
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where θ = (θ1,…,θj), δ = (δ1,…,δj) and the class probabilities are parameterized as a 
multinomial logit model: 
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where qi is either an intercept or a vector of individual-specific variables. Therefore, the 
overall likelihood function resulting from (3.2) and (3.3) is a continuous function of the 
vectors of parameters θ and δ, and can be written as: 

        1 1 1
ln , ln , lnN N J

i ij j ij ji i j
LF LF LF P     

  
      (3.4) 

Maximizing the above maximum likelihood gives asymptotically efficient 
estimates of all parameters. A necessary condition to identify the whole set of 
parameters is that the sample must be generated from at least two different technologies 
or two noise terms. 

Several comments are in order. First, in this framework each firm belongs to one 
and only one class.37 Therefore, the probabilities of class membership just reflect the 
                                                
36 More specifically the model proposed by this author (LCSFM) includes inefficiency in the error term. 
However, in this chapter we consider the use of a standard LCM since the efficiency scores are obtained 
in the second stage. 
37 This does not mean that a specific firm is going to be always in the same class. The clusters are created 
without taking into account the panel structure of the data, i.e. a particular firm can be in different clusters 
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uncertainty that researchers or regulators have about the true partition of the sample. 
The estimated parameters can be used to compute posterior class membership 
probabilities using the following expression: 

     
   1
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    (3.5) 

These posterior probabilities of membership can then be used to allocate each 
firm to a particular class, e.g., each firm is allocated to the class with the higher 
posterior probability. 

Second, only between-groups and not individual heterogeneity is controlled 
using a latent class model because all firms belonging to a particular group share the 
same technology. This situation is possible in energy economics if firms operating in 
areas with different environmental conditions must choose between a limited number of 
technical standards38 to expand and maintain their networks. If firms have similar 
technologies, the estimated differences in technology (i.e. parameters) are likely to be 
capturing heterogeneity in operating environments.39 Therefore, the differences in 
parameters between classes can be interpreted either as differences in technology or 
differences in environmental variables that might be unobserved. 

Third, the number of classes J should be chosen in advance by the researcher or 
regulator. Selecting the number of classes is a key issue of the proposed approach, and 
is common to other clustering methods. Fortunately there are several statistical tests that 
are commonly used and accepted in the finite mixture models literature to choose the 
appropriate number of classes. For instance, the Akaike Information Criterion (AIC) or 
the Bayesian Information Criterion (BIC) are frequently used in the LCM literature. 
These criteria involve minimizing an index that balances the lack of fit (too few classes) 
and overfitting (too many classes) as it includes a penalty that increases with the 
number of parameters. Models with lower AIC or BIC are generally preferred. The BIC 
considers a greater penalty for overfitting than AIC and, hence, BIC tends to favour 
more parsimonious models, which in turn help to estimate model coefficients with more 
precision (see Verbeek, 2008, p.61). Many authors (see for instance Koehler and 
Murphree, 1988) observed that the traditional AIC criterion and some of their variants 
tend to overestimate the correct number of classes. For those criteria that tend to overfit 
and favour more comprehensive models, it is very useful to examine a graph of the 
values of the computed statistic as the classes increase and look for the natural bend or 
break point where the curve flattens out. The number of data points till the “break” (i.e., 
including the point at which the break occurs) can be used as the number of classes to 
select. This method (labelled a “scree test”) is often used in principal components or 
factor analyses to select the number of factors and it is described and pictured in every 
textbook discussion of factor analysis (see, for instance, Costello and Osborne, 2005, 
p.2-3). 

Finally, it should be noted that the random term in (3.1) follows a symmetric 
distribution because it does not include a traditional one-sided inefficiency term. In 
                                                                                                                                          
over time. It has been done in this way to give more flexibility to our model by allowing changes in firms’ 
technology along the sample period. Moreover this type of approach usually yields similar results to those 
obtained if the belonging to a certain class is imposed for the whole sample period. 
38 These standards are either proposed by the International Electrotechnical Commission or the Institute 
of Electrical and Electronics Engineers. 
39 We are grateful to a reviewer for pointing this out. 
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other words, we advocate using a simple normal distribution in the first stage of our 
procedure and obtaining the efficiency scores later. There are three reasons for this. 
First, ignoring the asymmetric error term traditionally associated with inefficiency 
prevents the appearance of convergence problems in practice when estimating a latent 
class model, which by nature is highly non-linear. This facilitates replication of the 
procedure when researchers or regulators compare different specifications of the 
underlying technology. Second, this empirical strategy allows us to compute efficiency 
scores using more flexible representation of firms’ technologies if nonparametric 
techniques such as DEA are employed. Finally, DEA is the method mainly used by 
regulators (see Haney and Pollitt, 2009). 

The main advantage of using an LCM approach to cluster firms is that it allows 
us to control for environmental factors (i.e. contextual z-variables) that are not 
observable, difficult to measure accurately or even unknown in some cases. The LCM-
DEA approach also allows the inclusion of z-variables to identify groups of comparable 
firms that share similar environmental or technological features (for a discussion on this 
topic in the DEA and SFA literature, see for instance Johnson and Kuosmanen, 2011, 
2012). Thus it is more sophisticated than simply including z-variables without 
clustering. In this sense, our approach is consistent with the idea of benchmarking, 
which is based on the existence of comparable firms. However it extends this by 
avoiding the need for arbitrary clustering, which is often undertaken by researchers and 
regulators. Under arbitrary clustering larger samples are often split into sub-samples to 
be analysed separately on the basis of a single size metric (such as number of 
customers) or using subjective value judgement. 

In a second stage DEA is separately applied for each class. DEA is a type of 
efficiency analysis which involves mathematical programming to construct a frontier of 
best performing companies.40 Farrell (1957) was the first to propose this type of frontier 
analysis and since then there have been many authors who have developed and applied 
different models which have enlarged the literature in DEA methodology (see Coelli et 
al., 2005). 

In this chapter, we will use an input-oriented DEA model as we assume that the 
output level cannot be modified by firms. This is a reasonable assumption for a network 
utility required to provide network capacity to service ultimate demand which is largely 
out of its control. Technical inefficiency can be then viewed as a proportional reduction 
in input usage or cost while maintaining the output levels constant. In our simulation 
exercise we impose constant returns to scale (CRS) as similar results are obtained if this 
assumption is relaxed. The optimization problem in this case can be represented as: 

                                                
40 Although DEA is a rather flexible method that does not impose implicitly the same ‘parameters’ on the 
whole sample of firms, we would like to point out, however, that obtaining different marginal products 
(elasticities) at different points of the sample does not mean in economics that we have estimated 
different technologies. From the engineering point of view, the term “technology” is often associated with 
a particular production process. Nevertheless in microeconomic theory, technology is more broadly 
defined as the set of processes technically feasible and available for firms in a moment of time, and 
movements along the frontier just represent different production processes within a certain technology. 
The differences in technology across firms (or over time) are captured in economic analysis by shifts of 
the production frontier. Thus, only differences in production processes are controlled when a single 
frontier is estimated either using DEA or SFA. 
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where λ is a vector of constants and θ is a scalar calculated for each observation which 
represents the efficiency score for the i-th firm. yi and xi are the vectors of outputs and 
inputs for the i-th firm respectively, while Y and X are the output and input matrices for 
all I firms. This linear programming problem must be solved I times and gives an 
efficiency score θ equal or lower than one for each firm. In our empirical application we 
do not assume that all the firms exhibit constant returns to scale as electricity 
transmission firms are natural monopolies and increasing returns to scale were obtained 
in many applied studies.41 A variable returns to scale (VRS) specification only requires 
adding the convexity constraint I1’λ=1 to the minimization problem in (3.6). I1 is a 
vector of ones, and multiplying by the vector of weights λ ensures that firms are only 
compared with firms of a similar size. 

As pointed out by one reviewer, we are using a two-stage procedure that 
combines parametric and nonparametric techniques. Although it is unlikely that both 
techniques are fully compatible, we do not have to deal with the inconsistency problem 
that appears in the traditional two-stage DEA procedure. This problem arises in a 
different situation, when DEA is undertaken first and parametric analysis is then 
performed on the DEA results. Simar and Wilson (2007) have shown that applying a 
parametric regression in a second stage using the estimates obtained in a first stage 
through DEA is not consistent because firms’ inefficiency is a relative measure and, 
hence, the nonparametric efficiency scores are serially correlated. As the order is 
reversed, this problem does not emerge in our case. Moreover, none of the variables 
used in our second stage are predicted or estimated variables. 

Furthermore it should be mentioned that the DEA approach can be used as a 
clustering method. There is an evolving literature on this topic from Po et al. (2009), 
Krüger (2010) and Amin et al. (2011). However, Moazami Goudarzi and Jaber Ansari 
(2012) find that this approach, which is based on the piecewise production functions 
obtained from DEA models for clustering the data, faces several problems. Firstly, it 
may have alternative optimal solutions and hence the clusters produced are not unique. 
Secondly, they find that it is possible not to achieve any strictly positive multiplier 
weight for inputs and outputs in evaluating all firms. And finally, some of the obtained 
clusters may have overlapping units. 
 

3.3. Simulation analysis 
In this section we carry out a simulation exercise to examine whether a latent 

class approach is a good procedure to find groups of comparable companies within a 
sample when we aim to apply a benchmarking with DEA, commonly used in regulatory 
processes. It should be pointed out that the LCM is compared with other clustering 
methods as a point of comparison. However, the main objective in our simulation is to 
test the discriminatory power of the LCM under different scenarios when technological 

                                                
41 See for instance Huettner and Landon (1978), Pollitt (1995), Dismukes et al. (1998) and the previous 
chapter of this thesis. 
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and output differences arise, which as far as we know has not been performed before in 
the efficiency analysis literature. 

The simulation exercise can be summarized as follows. Firms’ costs are 
calculated using simulated data and following the normalized linear specification 
proposed by Bogetoft and Otto (2011) for the regulation of electrical Distribution 
System Operators in Germany. This functional form allows us to easily introduce 
heteroscedasticity in our data generation process. Following this specification, our cost 
function can be expressed as follows: 

2
1 2

1 1

i i
i i

i i

X Y u v
Y Y

          (3.7) 

where Xi is our cost, while β1 and β2 stand for the marginal costs of the outputs Y1 and 
Y2 and define our technologies. Although we are imposing constant returns to scale in 
(3.7) to prevent size effects when comparing our sample separating methods, the use of 
variable returns to scale in the simulation produces the same partition of the sample and 
slightly larger efficiency scores. 

In the papers in which simulations are carried out, the choice of the approach 
used in the Data Generation Process (DGP) is frequently quite contentious (see for 
instance Kuosmanen et al., 2013). However, the way in which our DGP is defined here 
is not uncommon in efficiency analysis papers and can be found both in the SFA 
literature (see for instance Wang and Schmidt, 2002; or Kim and Schmidt, 2008) and in 
the DEA literature (see for instance Ruggiero, 1998; or Muñiz et al., 2006). 

Inefficiency levels are obtained assuming that the inefficiency term, u+, is a 
positive half-normal distribution with zero mean and σu

2 variance. Random noise is 
simulated assuming that the noise term v follows a normal distribution with zero mean 
and σv

2 variance. We impose 2 2
u v     equal to 1, which, given the specification 

that we have chosen, implies that the size of the random term in our function is 
relatively low, i.e. our levels of generated efficiency are quite high. We also fixed γ = 
σu

2 / (σu
2 + σv

2) equal to 0.5, which implies that the weights of inefficiency and noise in 
the function are the same. Given the previous values, this implies that σu = σv = 0.71, 
and therefore is equivalent to generating a value of λ = σu / σv equal to 1.42 

We randomly generate 1,000 observations of two hypothetical outputs (Y1,Y2) 
using a uniform distribution between 0 and 1. We have chosen this distribution instead 
of the normal distribution because these variables cannot take negative values, and 
outputs in DEA must be positive. As the random noise term takes both positive and 
negative values, we impose on all technologies that (β1 + β2) = 10 to obtain positive 
costs. Technologies thus differ in relative marginal costs, i.e. the relative weight of each 
β. In particular, we have simulated three possible technologies: 

- Technology A:   β2 = β1           ,    (β1 = 5,  β2 = 5) 
- Technology B:   β2 = 2β1        ,    (β1 = 10 / 3,  β2 = 20 / 3) 
- Technology C:   β2 = 4β1        ,    (β1 = 2,  β2 = 8) 

Both coefficients are the same in technology A, while marginal costs are 
increasingly different in the other two technologies, B and C. Although these 

                                                
42 Although the values of these parameters have been arbitrarily chosen, the results obtained from the 
simulation are consistent with respect to changes in them as long as we keep the underlying efficiency at 
‘normal’ levels. 
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differences in parameters between classes are associated with different technologies, we 
have already mentioned before that they can be interpreted either as differences in 
technology or differences in environmental variables. Next, we will examine the 
robustness of our results by adding differences between outputs. In particular, we 
modify the original statistical distribution of the second output by doubling 
(Y2~2·U(0,1)) and quadrupling (Y2~4·U(0,1)) its range of values. 

Taking into account that we always apply the technology A to the first 500 
observations and then B or C to the following 500 observations, and that we have three 
output distributions, 6 possible scenarios are obtained. In Table 3.1, we show the 
scenarios and the percentage success in predicting the underlying class membership 
using different clustering methods. Percentages of success can be obtained through the 
identification of the groups, which is possible after comparing the real β-ratios with 
those obtained using group-specific OLS (Ordinary Least Squares) regressions. The 
estimated ratios that are also shown in Table 3.1 give an idea about how well each 
procedure is able to identify the underlying, but different, technologies. 

The first empirical exercise has to do with the case in which DEA is applied 
using the real separation of our data. By construction, the percentage of success in this 
case is 100%. For this reason, this exercise is used as a benchmark to study the 
performance of four sample separation methods: the median of the cost, the k-means 
clustering algorithm considering the outputs, the k-means clustering algorithm including 
both outputs and cost, and the latent class model (that involves both output and cost 
information). Looking at the percentages of success and the β-ratios we can confirm that 
the LCM is the method that better allocates observations to specific technologies. It is 
also the best clustering method at identifying the relationship between technologies 
represented by the β-ratios. As we move to a different scenario where there are more 
uneven features among groups, we observe that there is a clear divergence in the 
behaviour of the procedures: whereas the LCM improves its percentage of prediction 
success,43 the alternative procedures only slightly improve their performances. 

We show in Table 3.2 the average efficiencies that are obtained after DEA is 
applied separately to each group of firms. The last column shows the sum of squared 
differences (SSD) with respect to the real separation case. The SSD is calculated as the 
total sum of squared differences of the predicted efficiency with respect to the value of 
the underlying efficiency of each observation. The smallest SSD value allows us to 
identify the best individual predictor procedure, i.e. the clustering method that better 
predicts the ‘real’ efficiencies. Leaving aside the real separation case where SSD is zero 
by construction, LCM provides by far the smallest SSD in all scenarios. As LCM is the 
procedure that gives the closest efficiency levels to the real separation case, it is the best 
at predicting individual efficiencies. 
 

 
 

 
 

 
                                                
43 The estimated probabilities for the most likely latent class also increase, so the LCM not only improves 
its prediction capacity but also the precision with which each observation is assigned. 
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Table 3.1. First stage simulation results: percentage success in identifying technologies 
 
Simulation Procedure % Success 

  
Underlying technology 

Group 1 (β1 / β2) Group 2 (β1 / β2) 
A&B Simulation - 1.000 0.500 
(OD 1) Real separation 100.00 1.080 0.597 
 Median (C) 49.60 0.890 0.756 
 Cluster (Y1, Y2) 46.50 0.849 0.815 
 Cluster (Y1, Y2, C) 49.30 0.894 0.763 
 LCM 65.70 1.063 0.555 
     
A&C Simulation - 1.000 0.250 
(OD 1) Real separation 100.00 1.080 0.331 
 Median (C) 50.20 0.678 0.575 
 Cluster (Y1, Y2) 46.50 0.646 0.642 
 Cluster (Y1, Y2, C) 49.90 0.684 0.593 
 LCM 79.20 1.162 0.337 
     
A&B Simulation - 1.000 0.500 
(OD 2) Real separation 100.00 1.077 0.597 
 Median (C) 55.00 0.834 0.799 
 Cluster (Y1, Y2) 54.00 0.822 0.812 
 Cluster (Y1, Y2, C) 55.10 0.822 0.802 
 LCM 79.30 1.110 0.596 
     
A&C Simulation - 1.000 0.250 
(OD 2) Real separation 100.00 1.077 0.331 
 Median (C) 57.20 0.723 0.562 
 Cluster (Y1, Y2) 54.00 0.656 0.609 
 Cluster (Y1, Y2, C) 58.30 0.714 0.529 
 LCM 87.90 1.099 0.337 
     
A&B Simulation - 1.000 0.500 
(OD 3) Real separation 100.00 1.076 0.598 
 Median (C) 57.40 0.868 0.765 
 Cluster (Y1, Y2) 53.90 0.833 0.785 
 Cluster (Y1, Y2, C) 57.80 0.863 0.754 
 LCM 90.60 1.097 0.583 
     
A&C Simulation - 1.000 0.250 
(OD 3) Real separation 100.00 1.076 0.331 
 Median (C) 60.60 0.779 0.493 
 Cluster (Y1, Y2) 53.90 0.674 0.576 
 Cluster (Y1, Y2, C) 61.80 0.772 0.486 
 LCM 94.70 1.102 0.328 
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Table 3.2. Second stage (DEA) simulation results: predicted vs. underlying efficiency 
 

Simulation Procedure Av. Eff. (%) Sum of Squared Differences 
A&B Real separation 76.73 - 
(OD 1) No separation 67.15 135,252 
 Median (C) 73.29 118,885 
 Cluster (Y1, Y2) 70.38 108,590 
 Cluster (Y1, Y2, C) 72.91 118,993 
 LCM 73.35 40,268 
    
A&C Real separation 75.16 - 
(OD 1) No separation 54.70 533,029 
 Median (C) 65.26 322,549 
 Cluster (Y1, Y2) 61.65 379,683 
 Cluster (Y1, Y2, C) 64.65 338,483 
 LCM 78.93 139,993 
    
A&B Real separation 83.61 - 
(OD 2) No separation 73.28 151,038 
 Median (C) 76.75 121,264 
 Cluster (Y1, Y2) 75.93 119,387 
 Cluster (Y1, Y2, C) 76.22 124,400 
 LCM 85.75 51,232 
    
A&C Real separation 83.14 - 
(OD 2) No separation 63.22 507,703 
 Median (C) 69.29 372,090 
 Cluster (Y1, Y2) 68.14 386,773 
 Cluster (Y1, Y2, C) 68.32 389,718 
 LCM 85.87 45,663 
    
A&B Real separation 89.26 - 
(OD 3) No separation 78.75 180,309 
 Median (C) 80.36 158,268 
 Cluster (Y1, Y2) 79.99 160,646 
 Cluster (Y1, Y2, C) 80.20 159,799 
 LCM 90.76 29,598 
    
A&C Real separation 89.24 - 
(OD 3) No separation 70.49 511,481 
 Median (C) 73.45 429,212 
 Cluster (Y1, Y2) 72.86 446,596 
 Cluster (Y1, Y2, C) 72.95 438,210 
 LCM 90.15 16,511 
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When we move from a model with only one class to a model with two classes 
and unobserved heterogeneity is somehow taken into account (or ‘removed’) in a first 
stage, larger efficiency scores are obtained when carrying out a traditional DEA 
analysis. The computed efficiency improvements are partially caused by the fact that the 
number of peers necessarily decreases when a model with two classes is used,44 
regardless of the clustering method. However, our simulation exercise shows that these 
efficiency increases have also to do with the selection of a specific clustering method. In 
particular, Tables 3.1 and 3.2 (and Figure 3.1 below) indicate that the better the partition 
is, the larger the average efficiency scores are. Moreover, this result happens regardless 
of whether we carry out either traditional DEA or SFA (not shown) analyses in the 
second stage of our procedure. 

Figure 3.1 shows the positive correlation that exists between efficiency and 
success in assigning observations to technologies using the LCM approach. This figure 
allows us to examine the discriminatory power of the model when there are either larger 
differences between technologies (illustrated as the shift from the blue to the red line) or 
between output data generation processes (illustrated as movements along the red and 
blue lines). As expected, the percentages of success are much larger when the two 
technologies differ notably in their characteristics. It is worth mentioning that this 
increase in percentages of success is especially important when there is no separating 
information on the output side, i.e. when both outputs are similarly generated. When 
outputs provide additional information to split the sample, both efficiency levels and 
percentages of success increase, regardless of whether the technologies are similar or 
diverse. On the other hand, Figure 3.1 also shows that as inequalities between groups 
rise, the average efficiency score obtained using LCM as a sample separation method 
even exceed the average efficiency score from the real separation case. This shows that 
an imperfect assignment of firms to groups can lead us to obtain higher levels of 
efficiency. In other words, making a good partition of the sample does not necessarily 
imply obtaining larger efficiencies. 
 

Figure 3.1. Average efficiency and percentage of success for the LCM 
 

 
                                                
44 This does not necessarily happen when we move from 2 to 3 classes (and so on) because there is a 
reallocation of the observations into the different classes. Indeed, as a larger partition of the sample does 
not imply that one class is divided into two separable classes, some observations might have “new” peers 
and, hence, their (relative) efficiency might be less than before. 
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In summary, the above results clearly indicate that LCM deals with unobserved 
heterogeneity much better than the other clustering methods. We attribute this better 
performance to the fact that LCM splits the data taking into account the objective of the 
second stage, where a relationship between outputs and inputs (or costs) is estimated in 
order to compute inefficiency scores. In this sense, and borrowing the terminology used 
for dimension reduction, this approach can be interpreted as a ‘supervised’ method to 
split the data. 

From a regulation point of view, the above results suggest that, given a number 
of classes, regulators could use this statistic (i.e. the mean efficiency) to compare the 
relative performance of several clustering methods in a real case in which they do not 
have information about the ‘underlying partition’ of the sample. Our proposed 
procedure thus can be labelled as a conservative approach. However, using a method 
that provides conservative efficiency estimates is common among regulators. For 
example, in Germany, the regulator assesses the performance of each firm using both 
DEA and SFA efficiency scores and chooses the larger of the two estimates (Agrell and 
Bogetoft, 2007). Here we provide an additional reason, based on simulation results, that 
justifies the use of a conservative approach when, and only when, clustering methods 
are used in benchmarking. 
 

3.4. Application to the US electricity transmission industry 
3.4.1. Data, sample and variables 

We next illustrate the proposed procedure with an application to the US 
electricity transmission industry. As we have mentioned in Chapter 1, benchmarking of 
electricity transmission utilities is a challenging task due to the small number of 
transmission utilities that usually operate in the jurisdiction of a particular regulator. 
This likely explains why there are few empirical papers published on efficiency analysis 
of electricity transmission firms and moreover, none of these articles deal with 
unobserved heterogeneity or technological differences.45 

The database used here is the same as in the previous chapter and contains 405 
observations on 59 US electricity transmission firms for the period 2001-2009. 
Following the literature, we specify a standard cost function with four outputs where 
our cost variable is Totex, defined as before. The four outputs are: Peak Load (PL), 
Electricity Delivered (DE) and Network length (NL), which are again defined as in 
Section 2.4, and Total Energy (TE), which stands for the total energy of the system, 
including total net own generation, total purchases from others, net exchanges in the 
system (received-delivered), net transmission for others and transmission by others.46 
The four outputs considered (explanatory variables) and the cost variable (dependent 
variable) will be used later on in the DEA stage. 

To analyse robustness, we extend the standard model by adding four time-
invariant environmental variables to split the sample of transmission utilities. Three of 

                                                
45 On the contrary there is an extensive literature in electricity distribution (see for instance, Jamasb and 
Pollitt, 2003, for a European survey) and there are many articles that address the issue of heterogeneity 
including environmental factors in this sector (see for instance, Yu et al., 2009, Nillesen and Pollitt, 2010, 
Jamasb et al., 2012, or Growitsch et al., 2012). 
46 In this chapter we incorporate an additional output, Total Energy, instead of the Total Capacity of 
Substations. The flexibility of the Translog models estimated in the previous chapter prevented the 
inclusion of this variable due to multicollinearity problems and it was substituted for a capacity variable. 
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these are the weather variables: TMIN, WIND and PRCP. The last environmental 
variable is the Growth in Demand (GDEM) for each firm over time. The descriptive 
statistics of the full set of variables are shown in Table 3.3. 

 
Table 3.3. Descriptive statistics 

 
  Variable Units Mean Max. Min. Std. Dev. 

Totex Cost US$ 144,602,000 667,127,000 20,713,600 120,324,000 
Peak Load Output MW 6,173 23,111 380 5,533 
Electricity Delivered Output MWh 6,280,310 74,584,700 56,730 8,839,980 
Total Energy Output MWh 34,557,900 116,415,000 2,339,000 26,752,600 
Network Length Output Miles 4,064 16,292 1,087 3,253 
Minimum Temp. Weather °F -10.35 19.90 -59.80 16.51 
Wind Speed Weather Knots 6.84 9.60 4.63 1.01 
Precipitation Weather Inches 0.07 0.16 0.01 0.03 
Growth in Demand Other % 0.03 244.11 -74.96 17.72 

 

3.4.2. Empirical results 
As above mentioned, we should initially use a simple specification of the cost 

function to split the sample in order to facilitate the replication of the procedure and to 
avoid convergence problems when more comprehensive models are estimated. In this 
sense, we use a Cobb-Douglas (or logarithm) specification of the cost function due to its 
widespread use and acceptance in previous empirical studies. Convergence problems 
prevented us from estimating the LCM for more than two classes with the linear 
specification that we used in our simulation exercise. However, these problems did not 
appear using the Cobb-Douglas functional form. As we do not know the true number of 
underlying technologies, this is an interesting advantage of the logarithm specification 
of the model. The coefficients for the Cobb-Douglas specification are shown in the 
Appendix (Section 3.6). 

In Table 3.4 we show the descriptive statistics of the efficiency scores obtained 
using DEA as the number of classes is increased, and the number of observations (as a 
percentage) that improve their efficiency scores as we move from one class to two 
classes and so on. As expected, the average efficiency score for the so-called non-
separation model, which can be considered as a model with one class, is 64.84%, much 
lower than the average efficiency obtained from the model with two classes, 77.03%. 
The most comprehensive model that is estimated is a LCM with 9 classes. Although the 
average efficiency score for this model goes up to 87.4%, the largest change in 
efficiencies occurs when we move from one class to two classes. We can also see that 
most observations have higher efficiency scores when more comprehensive models are 
estimated. This is compulsory for the 100% of the observations when we move from a 
model with one class to a model with two classes as the number of peers necessarily 
decreases in this case. This does not necessarily happen when we move from 2 to 3 
classes (and so on) because there is a reallocation of the observations into the different 
classes and some observations might have “new” peers.47 
 
                                                
47 See footnote #44. 
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Table 3.4. Efficiencies with the LCM-DEA procedure 
 

Number of classes Average efficiency  % Obs. improv. 
1 64.84 - - 
2 77.03 12.20 100.00 
3 79.55 2.51 93.09 
4 80.36 0.81 97.28 
5 84.31 3.95 76.30 
6 82.64 -1.66 56.79 
7 86.71 4.06 69.14 
8 87.51 0.80 61.23 
9 87.41 -0.10 62.72 

 
The choice of the number of classes is a key issue in any clustering method. The 

AIC and BIC model selection criteria and some of their variants are commonly used to 
choose the appropriate number of classes in the LCM literature. The general form of 
most information criteria can be written as follows: 

2ln LF Penalty       (3.8) 

where the first term is twice the negative logarithm of the maximum likelihood which 
decreases when the number of classes (complexity) increases. The penalty term 
penalizes too complex models, and increases with the number of parameters of the 
model. Thus, these criteria involve minimizing an index that balances the lack of fit (too 
few classes) and overfitting (too many classes). Models with lower values of (3.8) are 
generally preferred. 

Several information criteria are shown in Figure 3.2 to illustrate robustness. The 
figure includes the traditional AIC and BIC criteria and some of their variants, the 
modified AIC criterion (AIC3), the corrected AIC (AICc), the so-called AICu, and the 
consistent AIC (CAIC) that can be considered either an AIC or BIC variant. For more 
details about these criteria and the associated penalty functions, see Fonseca and 
Cardoso (2007). All of them show a remarkable improvement in fitness-parsimony 
when we move from just one class to a model with two classes. While the traditional 
AIC criterion and some of their variants (AIC3, AICc, and AICu) show little 
improvements when more classes are added, the BIC and CAIC clearly deteriorate their 
performance with more than two classes.48 Generally speaking, the abovementioned 
tests allow us to conclude that a reasonable and practical trade-off between good 
description of the data and complexity is provided by a model with two classes. We 
therefore choose this model as our preferred model. 

 
 

 
 

 
                                                
48 The same happens if we use a criterion (not shown in Figure 3.2) that penalizes poorly separated 
classes in LCMs with two or more classes, such as the so-called Complete Likelihood Classification 
(CLC) and the Integrated Classification Likelihood-BIC (ICL-BIC). 
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Figure 3.2. Choice of the number of classes 
 

 
 

We also should expect notable differences in the composition of the two groups 
of firms if, instead of the LCM-based procedure, we use other procedures to split the 
sample. To give a sense of what difference this makes to the sample selection, we can 
pay attention to the percentage of observations for which this approach gives higher 
efficiencies than other methods. LCM provides not only the largest average efficiency 
score in the second stage, but also the majority of the observations obtain a higher value 
under this approach than from the others. More than 70% of observations are in an 
equal or better situation under LCM compared to the median of the network or cost and 
any cluster application. Thus, as discussed in the simulation section, the LCM approach 
provides the more favourable framework to benchmark firms. In addition, cluster-based 
separation procedures provide much more uneven sample partitions than the LCM 
approach. While in LCM there are 129 observations in a group and 276 in the other, 
under the two cluster applications the division is as follows: 49/356 when network is 
used as separating variable and 72/333 when also cost is included. This indicates the 
potential value to regulators of our LCM approach in reducing the need to rely on the 
small samples that can arise while using arbitrary approaches to sub-sample creation. 

As a result of the above allocation, the alternative sample separation procedures 
provide different efficiency scores for each utility. The estimated efficiency levels are 
shown in Table 3.5. In accordance with the simulation results, the lowest levels are 
obtained not only when there is no separation of firms but also when we use cluster 
procedures using either network size or firms’ cost as separating variables.49 On the 
other hand, the largest efficiency scores are obtained when the LCM is used as a 
statistical tool to account for unobserved differences among firms. It is worth noting 
that most clustering procedures produce rather low efficiency scores for some 
observations. It should be noted, however, that this result has to do with application of 
DEA in the second stage. If we instead use an SFA approach, larger efficiencies would 
be obtained. This always happens because part of the measured inefficiency using DEA 
is now captured by the noise term of the model. 

 Using the median of cost as a sample-separating variable not only produces 
larger efficiency scores, but also a minimum efficiency (about 32%) that is much larger 
than in other clustering methods (including the LCM). This result is caused by the fact 
                                                
49 The sample partition is the same when we take into account all the outputs and cost, or network size 
and cost together. 
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that we have used the same variable to both split the sample and measure firms’ 
inefficiency. If we use the median of cost to split the sample we are falsely minimizing 
the differences in costs within each group. For instance, some very inefficient small 
firms (with relatively high costs) might be allocated with large firms, and some very 
efficient large firms (with relatively low costs) might be allocated with small firms. The 
consequence of these movements is both a balance of the average efficiencies of both 
classes, and an increase of the minimum efficiency level as the small (large) firms 
allocated with large (small) firms will become more efficient because the lack of peers 
with similar output levels. Generally speaking, the above discussion highlights the fact 
that we should not split the sample using a variable that is also being used to measure 
firms’ inefficiency. 

 
Table 3.5. Efficiencies obtained with different clustering methods 

 

Procedure Mean Std. Dev. Max. Min. 

DEA (No separation) 64.84 21.87 100.00 9.15 
LCM - DEA 77.03 19.22 100.00 9.39 
Cluster (N) - DEA 65.52 22.45 100.00 9.15 
Cluster (N, C) - DEA 67.05 21.23 100.00 11.77 
Median of network - DEA 69.54 21.31 100.00 10.42 
Median of cost - DEA 74.40 20.12 100.00 31.70 

 
To give some intuition about the heterogeneity between classes that has been 

disentangled using the LCM procedure, we show in Table 3.6 the descriptive statistics 
of each one of the two groups that were found.50 It can be seen that the average value of 
the cost and all the outputs is higher in class 1 than in class 2 so the largest companies 
are mainly located in the first class. However the standard deviations in class 1 for these 
variables are in general larger than in 2, indicating that there are more differences of 
size between firms in this class. Maybe this dissimilarity in the scale is because these 
firms operate in similar environments as it can be inferred from the smaller standard 
deviations of their environmental variables. The main difference on the average of these 
variables is observed for the temperature, indicating that in general firms of class 1 are 
located in colder regions, and the growth of the demand, which is mainly positive for 
firms in class 1 and negative for firms in class 2. These reasonable differences illustrate 
the nature of the heterogeneity that is controlled in our model. Clearly we could have 
arbitrarily allocated firms to two subsamples using a temperature threshold, however the 
LCM has allowed us to identify the number of subsamples to be analysed separately and 
then allocated firms between them in a statistically robust way. 
 

 
 

                                                
50 To confirm the point made in footnote #37, we have checked the number of observations that freely 
change between classes in our model for the sample period. It can be observed that about 90% of our 
firms’ observations remain in the same cluster from one year to another and hence no erratic changes are 
observed between classes over time. 
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Table 3.6. Descriptive statistics of the classes found with LCM 
 

CLASS 1 (129 observations) 

Variable Mean Max. Min. Std. Dev. 
TOTEX 224,218,000 667,127,000 20,713,600 166,005,000 
PL 7,730 23,111 380 6,708 
DE 6,376,580 39,484,700 82,304 7,948,270 
TE 40,417,200 115,685,000 2,339,000 30,081,500 
NL 5,078 16,292 1,088 4,733 
TMIN -13.04 19.00 -59.80 14.05 
WIND 6.81 9.22 4.63 1.05 
PRCP 0.07 0.15 0.02 0.03 
GDEM 0.80 62.59 -40.35 11.68 

 
CLASS 2 (276 observations) 

Variable Mean Max. Min. Std. Dev. 
TOTEX 107,391,000 309,969,000 25,559,800 63,868,300 
PL 5,446 22,054 427 4,730 
DE 6,235,310 74,584,700 56,730 9,240,720 
TE 31,819,300 116,415,000 2,886,900 24,629,500 
NL 3,591 10,451 1,087 2,099 
TMIN -9.09 19.90 -59.80 17.43 
WIND 6.85 9.60 4.76 1.00 
PRCP 0.07 0.16 0.01 0.03 
GDEM -0.33 244.11 -74.96 19.94 

 
3.4.3. Robustness analyses 

We next introduce some additional tables in which we show the results obtained 
from alternative approaches or specifications that help us to analyse the robustness of 
the proposed clustering procedure based on LCM. 

We first show in Table 3.7 the results we get when we introduce three weather 
variables and demand growth as sample-separating variables in the first stage of our 
procedure. Table 3.7 shows that both LCMs give us larger efficiency scores than 
extended k-means procedures that include environmental variables (alone or with 
information about the cost function). Based on our simulation results, we could then 
conclude that LCM also outperforms other sample separating methods when 
information about firms’ environmental conditions is available. On the other hand, the 
estimated coefficients of the sample-separating variables (see Appendix) are statistically 
significant, which implies that they have helped to better split the sample. Despite this, 
our sample partition does vaguely change when we try to control for environmental 
variables as the percentage of coincidence in allocating observations is quite high 
(88%). This means that the between-class differences in estimated parameters are 
already capturing heterogeneity in firms’ operating environment. In other words, a 
simple latent class model is able to control for those differences without explicitly 
including environmental variables that regulators might find it very difficult or 
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expensive to collect. To examine better this issue, we have carried out an auxiliary 
regression (not shown) where an environmental variable composite interacts with the 
rest of explanatory variables of the frontier function. As we cannot reject that these 
coefficients are statistically significant, we can conclude that the parameter differences 
identified in a LCM model are, at least partially, capturing differences in environmental 
conditions. 
 

Table 3.7. Clustering methods including environmental variables 
 

Procedure Mean Std. Dev. Max. Min. 
LCM (W, D) - DEA 77.03 20.40 100.00 9.39 
Cluster (W, D) - DEA 69.98 22.83 100.00 9.24 
Cluster (W, D, N) - DEA 65.52 22.45 100.00 9.15 
Cluster (W, D, N, C) - DEA 67.05 21.23 100.00 11.77 

 
Regarding the specification of the functional form, Table 3.8 provides a brief 

comparison of both Cobb-Douglas and Translog results. Again, the parameter estimates 
are shown in the Appendix. The correlation of Cobb-Douglas and Translog efficiency 
scores is very high (about 93%) and the overlap between classes is also remarkable 
(almost 84%). Furthermore, the model selection analysis indicates that the best trade-off 
between fitness and complexity for the Translog specification is provided once more by 
a model with two classes. A Cobb-Douglas specification is still preferred on the 
grounds of simplicity and because, in our case, the way in which the technology is 
modelled is not very relevant. 

 
Table 3.8. Cobb-Douglas vs. Translog using LCM-DEA 

 

 Without including environmental variables 

 Number of obs. Av. eff. 

 CD Translog CD Translog 
Class 1 129 102 66.83 63.61 
Class 2 276 303 81.80 81.35 
Both 405 405 77.03 76.88 

     
 Including environmental variables 

 Number of obs. Av. eff. 

 CD Translog CD Translog 
Class 1 174 117 69.09 62.78 
Class 2 231 288 83.01 82.25 
Both 405 405 77.03 76.63 

 

Although this chapter does not attempt to contribute to the current debate about 
the suitability of parametric and nonparametric approaches for purposes of benchmark 
regulation, we now try to compare the relative performance of our procedure that 
combines LCM and DEA and two fully parametric procedures based on LCM, using 
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both Cobb-Douglas and Translog specifications for the cost function. Besides the LCM-
DEA approach, Table 3.9 provides results for the LCM-ALS model in which the 
traditional ALS model is applied in the second stage as done in Agrell et al. (2013). The 
third model, LCSFM, is the one-stage Latent Class Stochastic Frontier Model 
introduced by Greene (2005b) that adds an inefficiency term to the LCM. Several 
interesting remarks are in order. First, when ALS is applied after the partition of the 
sample, the average efficiency for the whole sample is 100% because the estimated 
value of σu is equal to zero. This awkward result is often known as the ‘wrong skewness 
problem’ in the SFA literature, and might occur even when the model is correctly 
specified (Simar and Wilson, 2010). DEA likely became a very popular tool for 
benchmarking electric utilities because it allows regulators to address this issue. Second, 
LCSFM provides very similar partitions of the sample than the proposed procedure 
based on a non-frontier specification of the random term. For instance, the percentage of 
coincidences is about 98% when a Cobb-Douglas specification is used. This similarity 
is caused by the presence again of the ‘wrong’ skewness problem as the inefficiency 
term or σu (ignored in the proposed procedure) tends to vanish when a LCSFM is 
estimated. Therefore, it seems that a LCM model without a frontier specification and 
DEA is the best option to obtain proper efficiency levels in our application. 
 

Table 3.9. 1 stage vs. 2 stages LCM clustering methods 
 

  Class 1 Class 2 
Specif. Procedure Number of obs. Av. eff. σu Number of obs. Av. eff. σu 

CD 
LCM-DEA 129 66.83 - 276 81.80 - 
LCM-ALS 129 100.00 0.00 276 100.00 0.00 

LCSFM 138 87.28 0.32 267 100.00 0.00 

Translog 
LCM-DEA 102 63.61 - 303 81.35 - 
LCM-ALS 102 100.00 0.00 303 100.00 0.00 

LCSFM 67 77.21 0.52 338 100.00 0.00 
 

Finally, although the chapter is focused on clustering methods, we also try to 
compare the relative performance of our proposed procedure and two non-clustering 
methods broadly used in the literature to take into account unobserved heterogeneity: 
the TFE and TRE models introduced by Greene (2005a, 2005b). As shown in Figure 
3.3, most of our earlier model selection criteria indicate that our empirical strategy 
based on estimating a LCM model provides a better fit than any of the stochastic 
frontier models introduced by Greene. This happens whether we use a Cobb-Douglas or 
Translog specification for the cost frontier. Our results seem to indicate that the 
underlying heterogeneity is better captured by a finite number of technologies rather 
than assuming that there are as many technologies as firms, but with the same marginal 
costs, economies of scale and other technological characteristics. 
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Figure 3.3. Clustering vs. Non-clustering model selection 
 

 
 

 
 

3.5. Conclusions 
Electricity networks are often regulated by implementing incentive-based 

regulation schemes based on a comparison of utilities’ performance with best-practice 
references. A key issue that is sometimes not taken into account is the heterogeneity or 
unobserved differences among firms associated with different technologies or 
environmental conditions. As in Agrell et al. (2013), in this chapter we propose using a 
latent class approach as a statistical clustering method to split the sample into groups of 
more comparable firms before carrying out a traditional efficiency analysis using DEA, 
the most common frontier analysis technique used by regulators in utility 
benchmarking. 

We advocate this approach for several reasons. First, latent class models are 
specifically designed to cluster firms by searching for differences in production or cost 
parameters, which is exactly what regulators are looking for. Second, our approach can 
be viewed as a “supervised” method for clustering data as it takes into account the same 
relationship that is analysed later, often using nonparametric frontier techniques. And 
third, our approach is not more “technical” than other clustering methods as it can be 
implemented using standard software. The use of the same variables in both the latent 
class stage and the DEA stage and the use of simple model specifications contribute to 
simplifying the proposed procedure. We have demonstrated through a simulation 
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exercise that the latent class approach better allocates observations into different classes 
than alternative clustering procedures and better predicts the underlying efficiency of 
each observation. The discriminatory capacity and the assignment success of the 
proposed clustering method increase when large differences between technologies or 
output distributions arise. This, in turn, yields a convergence of estimated efficiency 
levels to the true underlying levels. Moreover, the better the partition is, the larger the 
average efficiency scores are, whether we carry out either parametric or nonparametric 
efficiency analyses in the second stage of our procedure. From a regulation point of 
view, this outcome indicates that, given a number of classes, regulators could use the 
average efficiency level to compare the relative performance of several clustering 
methods in a real case in which they do not have information about the ‘underlying 
partition’ of the sample. In this sense, our simulation exercise justifies the use of a 
method that provides conservative efficiency estimates in benchmarking when, and only 
when, clustering methods are used. 

Finally, we illustrate the proposed method with an application to a sample of US 
electricity transmission firms for the period 2001-2009. Several model selection tests 
allow us to conclude that a reasonable and practical trade-off between good description 
of the data and complexity is provided by a latent class model with two classes. In this 
sense, we also find that the largest change in efficiency scores occurs when we move 
from a one-class model (without any partition of the sample) to a model with only two 
classes. In line with our earlier simulation results, the largest efficiency scores are 
obtained when the LCM is used as a statistical tool to account for unobserved 
differences among firms. 

We have also found that a simple latent class model is able to control for 
heterogeneity in firms’ operating environment without explicitly including 
environmental variables that regulators might find it very difficult or expensive to 
collect. Our results seem to indicate that the underlying heterogeneity is better captured 
by a finite number of technologies (identified by a clustering method) than by using 
non-clustering methods that, in contrast, assume that there are as many technologies as 
firms, but with the same technological characteristics. 
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3.6. Appendix 
Table A3. Parameter estimates of the LCM using the US electricity transmission data 

 Cobb-Douglas Translog  
Variable Coeff. t-ratio Coeff. t-ratio Coeff. t-ratio Coeff. t-ratio 
Class 1         

Intercept 18.686 326.6 18.668 383.3 18.586 185.5 18.634 209.0 
ln PLit 0.808 4.853 0.800 4.907 0.554 1.692 0.445 1.276 
ln DEit 0.044 1.900 0.042 1.457 0.040 0.492 0.087 1.170 
ln TEit -0.261 -1.357 -0.237 -1.300 0.048 0.133 0.176 0.579 
ln NLit 0.184 2.038 0.182 2.085 0.047 0.212 0.004 0.022 
½ (ln PLit)2     0.347 0.148 -0.754 -0.727 
½ (ln DEit)2     0.049 0.783 0.098 1.170 
½ (ln TEit)2     1.086 0.344 -0.894 -0.769 
½ (ln NLit)2     0.362 0.513 0.183 0.294 
ln PLit · ln DEit     0.521 2.002 0.327 1.295 
ln PLit · ln TEit     -0.678 -0.258 0.849 0.850 
ln PLit · ln NLit     0.015 0.024 -0.412 -0.731 
ln DEit · ln TEit     -0.567 -1.803 -0.485 -2.025 
ln DEit · ln NLit     0.055 0.413 0.100 0.795 
ln TEit · ln NLit     -0.142 -0.174 0.322 0.497 
Sigma 0.380 22.982 0.381 22.078 0.356 15.218 0.332 15.719 
Class 2     
Intercept 18.385 1664.0 18.390 1649.0 18.227 1186.4 18.201 1164.2 
ln PLit 0.144 3.109 0.166 3.881 0.273 6.622 0.423 8.491 
ln DEit 0.054 5.258 0.060 5.823 0.048 5.113 0.043 4.069 
ln TEit 0.415 7.817 0.401 7.785 0.295 5.794 0.106 1.754 
ln NLit 0.136 6.192 0.123 5.133 0.164 9.013 0.182 8.158 
½ (ln PLit)2     0.440 2.403 1.519 5.569 
½ (ln DEit)2     0.066 6.968 0.024 2.071 
½ (ln TEit)2     0.017 0.060 1.624 3.870 
½ (ln NLit)2     0.487 9.009 0.471 7.533 
ln PLit · ln DEit     -0.142 -3.626 -0.126 -2.734 
ln PLit · ln TEit     -0.177 -0.796 -1.457 -4.398 
ln PLit · ln NLit     0.182 3.035 0.324 4.064 
ln DEit · ln TEit     0.090 1.789 0.093 1.649 
ln DEit · ln NLit     -0.041 -2.606 0.006 0.308 
ln TEit · ln NLit     -0.165 -2.127 -0.371 -3.318 
Sigma 0.119 11.332 0.111 11.382 0.109 12.219 0.117 15.357 
Class membership probabilities 

Intercept   -0.088 -0.416   -0.881 -3.524 
TMINi   -0.065 -3.001   -0.074 -3.255 
WINDi   -0.373 -2.153   0.974 3.215 
PRCPi   11.910 1.535   31.827 3.268 
GDEMi   0.092 1.744   -0.086 -1.582 
Prior class prob. 0.444 0.556 0.479 0.521 0.351 0.649 0.292 0.708 

Log-likelihood -39.666 -26.726 34.342 54.986 
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Chapter 4 
 
A latent class approach for estimating energy 
demands and efficiency in transport: An 
application to Latin America and the Caribbean 
 
 
4.1. Introduction 

Since the 1970s oil crisis, the measurement and control of energy efficiency has 
become an essential goal of the economic and energy policies of a large majority of 
countries, especially in those that import energy. This interest subsequently arose in the 
late 1980s as a result of the growing awareness of global warming. A key issue in the 
strategy of the countries that aim to reduce their energy consumption and mitigate their 
greenhouse gas emissions is the adoption of measures that improve the efficiency of 
energy use in all economic sectors and especially in those that are energy intensive, 
such as transport. 

Figure 4.1 shows that transport is the sector with the highest energy consumption 
in Latin America and the Caribbean. In recent decades, this sector used, on average, 
43% of the total energy consumption, followed by manufacturing at 37%, household 
consumption at 14% and the service sector at 6%. The ECLAC (2010) indicates that the 
transport of passengers and goods will increase in the future. Combined with the 
dissociated manner in which public policy on infrastructure and transport has been 
conducted, this will result in an increase in the future use of energy, which implies a 
significant amount of oil derivatives consumption in the near future. Nevertheless, little 
published information on the transport sector in Latin America and the Caribbean is 
available. It is thus necessary to conduct studies focused on the energy consumption of 
this sector that can help to mitigate the environmental sustainability issues that are 
mentioned in the “Millennium development goals” proposed by ECLAC (2005). 

Per capita energy consumption in Latin America and the Caribbean is currently 
low in comparison with other world regions. However, since the 1990s, it has 
experienced significant growth, as shown in Figure 4.2. This low per capita 
consumption does not necessarily indicate high efficiency in the use of energy, as a 
significant part of the population of these countries lack the funds to have access to a 
private car. In this context, the rapid development of the region in the medium term 
might lead to unsustainable increases in the energy consumption of the transport sector 
and to the associated emissions of greenhouse gases. For example, between 1990 and 
2007, the vehicle fleet that was used in Brazil, Mexico, Chile and Colombia increased 
by 53 million vehicles (the amount tripled), with 40% of this increase concentrated 
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between 2003 and 2007. Therefore, it is crucial to elaborate orderly development 
strategies that favour public transport51 and promote energy efficiency. 
 

Figure 4.1. Final energy consumption by activity sector (average for Latin America and 
the Caribbean in the 1990-2010 period) 

 

 
 

Figure 4.2. Energy consumption in toe per capita in transport (average for Latin 
America and the Caribbean in the 1990-2010 period) 

 

 
 

Figure 4.3 shows the change in energy price in the transport sector between 1990 
and 2010. This price is a transitive multilateral index that the current authors have 
elaborated. It adds the weighted prices of the different types of energy that are 
consumed in transport (See Appendix in Section 4.6). The scenario of low energy prices 
in the 1990s contrasts with the inflationary process that was experienced in the first 
decade of the 21st century. This process also led many Latin American countries, 
especially those that were net importers of energy, to adopt programs to improve energy 
efficiency. These measures aim, on the one hand, to modernize public transport to 

                                                
51 The lack of public services can lead to inefficient individual consumption decisions. The deficit (in 
quantity, quality or both) in the public transport services, for example, incentivizes private transport, 
which may generate high costs for the user and cause contamination and congestion in the cities. 
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incentivize its use, renovate the vehicle fleets, introduce biofuels as alternatives to oil, 
promote the use of hybrid and electric vehicles, and promote the use of trains and 
subways in certain activities. On the other hand, the infrastructure network should be 
improved in tandem with logistical solutions to the provision of services, such as the 
adoption of intelligent measures that optimize transport routes and favour intermodality 
(ECLAC, 2010). 
 

Figure 4.3. Price index for energy in the transport sector (average for Latin America 
and the Caribbean in the 1990-2010 period) 

 

 
 

An additional issue that should be addressed is the review of subsidy policies on 
transport and on products derived from oil, with the aim of transmitting adequate 
signals to the economy and achieving improvements on energy efficiency. This goal has 
frequently clashed with the pressure that has been exerted by consumers from various 
countries who rally against increases in energy prices. In that sense, Latin American 
countries should introduce a fiscal, incentive and environmental regulations system 
similar to the ones that exist in other parts of the world, such as the European Union and 
the United States (Barros and Prieto-Rodríguez, 2008; Chavez-Baeza and Sheinbaum-
Pardo, 2014). 

To help achieve the goal of reducing energy consumption, various quantitative 
indicators that are related to the energy efficiency of each country have been developed 
and have been used in international comparisons. There is no single definition totally 
accepted for the concept of energy efficiency, both in terms of the economy as a whole 
or specifically the transport sector. However, Ang (2006) and Stead (2001) indicate that 
the most common practice has been to link this idea with some thermodynamic, 
physical-based and monetary-based indicators that relate energy consumption to 
measurements of the economic activity or energy services derived from this 
consumption. The most commonly used indicator is the ratio of energy consumed to 
GDP. This measure of energy intensity has the advantage of simplicity in its calculation 
and easy interpretation, thus leading to its continued use in international statistics of the 
International Energy Agency (IEA), the World Bank and the World Energy Council. 
Decreasing levels of this indicator represent, on average, a reduction in the energy that 
is required to generate a unit of national production. Therefore, energy intensity is 
simply the inverse of the energy productivity indicator. Nonetheless, the value of energy 
intensity can vary significantly over time due to the changes in the structure of GDP, 
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which are difficult to assimilate into the concept of energy efficiency.52 Furthermore, 
these types of measures are not “relative”, i.e. do not allow cross-country comparisons 
for countries with better practices or the calculation of potential energy savings. 

The main goal of this chapter is to adapt the methodological proposal of 
Filippini and Hunt (2011, 2012), for energy consumption in the transport sector of Latin 
America and the Caribbean. This adaptation is performed to obtain a relative measure of 
energy efficiency that overcomes the weaknesses of other indicators and can serve for 
international comparisons that are consistent throughout time. The measures of energy 
efficiency that are obtained are bounded and allow for the determination of potential 
energy savings given the characteristics of a country. Furthermore, the current study 
estimates various functions of frontier demand using a latent class approach. This type 
of approach takes into account the potential existing heterogeneity among the countries 
analysed, obtaining different demands that are associated with specific price and income 
elasticities for different country groups. To the best of our knowledge, this study is the 
first to apply this type of methodology for both the transport sector and the Latin 
American countries.53 

This chapter is organized as follows. In Section 4.2, we define the general 
demand for energy in the transport sector by providing a brief review of the existing 
literature. Additionally, we propose the use of a Stochastic Frontier Analysis (SFA) 
approach and the application of a latent class model. In Section 4.3, we present the 
database and the econometric specification of our models. The results of the estimations 
are presented in Section 4.4 and finally, Section 4.5 ends the chapter with a summary 
and the presentation of conclusions. 

 

4.2. Energy demand of the transport sector 
Transport demand is derivative in nature, as the goal of moving goods and 

people is not to perform the journey but to reach a certain destination. In other words, 
demand is derived from the mobility of passengers and goods. This mobility, in turn, 
leads to energy or fuel demand, which is necessary for transport. 

The previous research in the literature on the modelling of energy consumption 
for transport can be clustered into works that apply econometric techniques, those that 
use artificial intelligence approximations, those that use multi-criteria analysis and those 
that employ simulation methods (see Limanond et al., 2011 or Suganthi and Samuel, 
2012 for a review). The first group includes multiple linear regression models 
(Limanond et al., 2011), partial least square regressions (Zhang et al., 2009) and the 
analysis of time series and cointegration (Samimi, 2003; Galindo, 2005; Sa’ad, 2010; 
Hao, 2011). The second group includes studies of artificial neural networks (Dreher et 

                                                
52 The IEA (2014) recognises that the use of energy intensity as a proxy for energy efficiency can 
generate untrustworthy results. Despite significant interest in the measurement of energy efficiency, its 
calculation for the transport sector is a difficult task. This organization proposes indices of energy 
intensity for the sector that are calculated using various disaggregated indicators that are obtained from 
large quantities of information. Due to this requirement, it is impossible to calculate this measure for all 
Latin American and Caribbean countries. 
53 The scarcity of empirical analyses in this context has been conditioned by the availability of statistics. 
In fact, in many Latin American countries, there is no formal link between institutions that are in charge 
of providing information on energy and transport. Consequently, in this chapter, all variables that are 
relative to energy consumption are based on the author’s own work on the data provided by the Latin 
American Energy Organization (OLADE in Spanish). 
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al., 1999; Murat and Ceylan, 2006; Limanond et al., 2011) and harmony search 
algorithms (Haldenbilen and Ceylan, 2005; Ceylan et al., 2008). Some studies have 
even combined the analysis of time series and fuzzy logic (Al-Ghandoor et al., 2012). In 
the prediction of energy consumption for vehicles, the use of multi-criteria analysis 
should be noted, such as in the works of Lu et al. (2008) and Lu et al. (2009). Lastly, 
the most prominently used simulation model has been the Long-range Energy 
Alternatives Planning System (LEAP), which allows planning alternative scenarios for 
energy demand in the transport sector. The works that utilized this method include 
Bauer et al. (2003), Manzini (2006), Pradhan et al. (2006) and Islas et al. (2007). 

Therefore, there is an extensive body of literature on the economics of transport 
that estimates various functions of energy consumption or the respective functions of 
fuel use for different types of vehicles. These studies have typically aimed at predictive 
purposes. The current study belongs to the line of econometric approximations of 
energy demand from the transport sector that calculates the price and income elasticities 
that are related to energy consumption (see, for example, Dahl, 1995). In their literature 
review, Graham and Glaister (2002) observe that, as a general rule, price elasticities that 
are obtained in the short term are commonly between -0.2 and -0.3 and that those 
obtained in the long term are between -0.6 and -0.8. For the case of the income 
elasticities, they find that are often greater than one (between 1.1 and 1.3) in the long 
term and between 0.35 and 0.55 in the short term. The papers that are included in their 
review generally analyse Organization for Economic Cooperation and Development 
(OECD) countries. Wohlgemuth (1997) presents elasticities for several countries that 
are not OECD members. In terms of Latin America and the Caribbean, the elasticities 
for Mexico54 and Brazil are presented. In the long term, the income elasticities for 
Mexico are between 0.99 and 1.72 and the price elasticities are between -0.04 and -0.21. 
For the case of Brazil, the income elasticities are between 0.88 and 1.10 and the price 
elasticities are between -0.10 and -0.26. 

In general, in the traditional transport literature, energy demand is understood as 
a standard demand function. As previously mentioned, in the proposal that is presented 
below, a stochastic frontier function, which is similar to the production/cost functions 
that are commonly estimated in efficiency and productivity studies, is considered. 

 
4.2.1. A stochastic frontier approach for energy demand in transport 

A generic function of energy demand, which positively depends on income and 
inversely depends on prices, can be presented in the logarithmic form as follows: 

ln ln ( , , , )q f P Y X        (4.1) 

where q represents the quantity of the demanded energy, P is the price of energy, Y 
represents income, X refers to other control variables, β are the parameters that are 
associated with the variables that are included in the model and can be directly 
interpreted as elasticities, and ε is the random error, which is commonly assumed to 
follow a normal distribution with a mean of zero and constant variance, σε

2. 

This assumption for the stochastic part of the function indicates that the 
researcher assumes that any deviation in energy demand that is predicted by the 
deterministic part of the model is a result of random shocks such as measurement errors 
                                                
54 Although in the paper of Wohlgemuth (1997) Mexico is included in the group of countries that are not 
members of the OECD, this country was already a member since May 18, 1994. 



61 
 

or uncertainty. Therefore, this model can be estimated using the usual OLS estimator, 
which allows for consistent and unbiased estimates of the model parameters under 
certain assumptions. 

Although this approach has traditionally been used in empirical work, it does not 
provide direct information on one of the main issues of interest in the field of energy 
consumption in recent decades, i.e., energy efficiency. As stated in the previous section, 
there has been debate about the definition and measurement of this concept. In essence, 
this concept attempts to capture the relation between energy consumption and the 
production or service that is derived from this consumption. It should be measured in 
such a way that an improvement in the indicator implies a lower use of energy to 
produce a certain amount of output in a given economy. 

However, in contrast to the research in the energy economics literature, the 
production economics field has developed various approaches that allow for the 
inclusion of efficiency in the activities of companies (or countries) within the random 
part of the model, without the need to add new variables or rely on other indicators. 
Based on the efficiency and productivity literature, Filippini and Hunt (2011, 2012) 
suggest the use of an SFA approach to estimate aggregate energy demand functions that 
are derived from a cost function in the provision of energy services. In this cost 
function, energy is an input and thus, following Shephard’s lemma and deriving the 
function based on the price of energy, the demand function of this input can be 
obtained. The main goal of those authors is to obtain measures of energy efficiency that 
can be used as alternatives to the typical indicators of energy intensity. These efficiency 
measures are based on the comparison of the energy consumption of the countries with 
respect to the minimal energy consumption predicted by the frontier, which takes into 
account the optimizing behaviour of companies and individuals. 

The basic model that is estimated by those authors is the standard ALS model, 
but they also estimate other models developed in the efficiency and productivity 
literature, such as the TRE presented by Greene (2004, 2005a, 2005b) or the 
formulation of Mundlak (1978) that was proposed for an estimator of random effects by 
Farsi et al. (2005). The ALS model can be presented for the case of energy demand as 
follows: 

ln ln ( , , , )q f P Y X v u       (4.2) 

where the random term can be decomposed in v, which is a normal distribution that is 
analogous to that represented by ε in equation (4.1), and u, which is an asymmetric error 
that follows a half-normal positive distribution to capture the inefficiency of energy 
demand. As we have seen in the first chapter, in the SFA literature it is typically 
assumed that u is a negative half-normal (or truncated normal) if the function that is 
estimated is a production function with a maximum achievable production and positive 
if the estimated function is a cost function with an achievable minimum cost. In the case 
of a frontier demand, such as the proposed by Filippini and Hunt (2011, 2012), efficient 
energy demand represents a minimum feasible consumption. Thus, the approach that is 
used is the same as that for a cost function. 

Based on the conditional mean of the inefficiency term proposed by Jondrow et 
al. (1982), the efficiency level for each observation can be obtained by applying the 
following expression: 
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where qit
* represents the aggregate energy demand of the country i in period t on the 

frontier, i.e., the minimum level of energy necessary for this economy to produce its 
output level; qit is the aggregate energy demand that is actually observed in this country; 
and EFit, is thus a measure of efficiency that is bounded between zero and one. The 
difference between 1 and this measure of inefficiency shows the amount of energy 
consumption that could be reduced in this country (expressed as a decimal fraction) 
while maintaining the same level of transport services. Therefore, these are relative 
measures that, in contrast to energy intensity indicators, allow for direct comparisons 
between countries throughout time. 

To explain the concept of stochastic frontier in a demand context, in Figure 4.4, 
we compare various approaches that could be used in the econometric estimation of 
energy demand functions. The blue line shows the energy demand function that is 
proposed in Equation (4.1) as estimated using OLS. With this approach, we obtain a 
function with a negative slope in relation to the prices that pass through the mean of the 
observed values. A basic frontier model that would allow the identification of countries’ 
efficiency would simply assign the whole estimated error (i.e. ̂ ) that was obtained 
from applying OLS to the inefficiency. This simple approach does not allow the 
separation of inefficiency from noise because, by definition, a deviation from the 
minimum possible consumption that can be achieved is attributed to inefficiency. This 
type of frontier is typically known as deterministic frontier and can be obtained by 
moving the intercept of the OLS estimation until all observations are to the right of the 
estimated frontier. This form of frontier attainment is known as Corrected Ordinary 
Least Squares (COLS). In other words, it allows for the attainment of a function that 
envelops all observations. In the current case, it is represented by the blue dashed line. 
Although Filippini and Hunt (2011, 2012) do not represent it graphically, the demand 
that is estimated when an SFA approach is used, is a function such as that represented 
by the green line. The use of this type of methodology allows for certain observations to 
be to the left of the estimated frontier due to the existence of negative random shocks, 
although the majority of observations are to the right of the frontier due to the 
inefficiency effect. 

Figure 4.5 represents the type of frontier that is estimated when using the SFA 
approach to obtain energy demand and how the Overall Random Error (ORE), i.e., the 
stochastic part of the model (v+u), can be decomposed into inefficiency and noise55 in 
the various possible cases. As shown for observation 1, an observation lies only at the 
frontier that we have presented graphically when the inefficiency term compensates the 
negative value of the noise term (or both are equal to zero). By estimating a stochastic 
frontier demand, it is assumed that the majority of observations will be located to the 
right of the frontier. This can be due to an effect either of inefficiency or noise (if it is 
positive and inefficiency is equal to zero), as in observation 2, or to both of these effects 
together, as is the case in observation 3 (in which both are positive) and 4 (in which 
only one part of the inefficiency is compensated by the negative value of the noise 
                                                
55 The random component v includes events which cannot be controlled by transport companies or the 
individuals who use the private vehicle, such as those caused by the weather or natural disasters. Thus, by 
considering for Latin American countries the average amount of days per year when their transport 
infrastructure (roads, bridges, etc.) is cut off due to these causes, a deviation greater than (lower than) this 
value in a given year would produce a positive (negative) shock. 
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term). Nevertheless, as this is not a deterministic frontier, some observations can lie to 
the left of the estimated frontier, indicating that these countries use less energy than is 
predicted by the frontier for a specific price. Observation 5 is to the left of the estimated 
frontier because there is no inefficiency and the error term is negative. In observation 6, 
even with the existence of inefficiency, the negative noise term exceeds the value of u 
and thus, this observation is “super-efficient”. 
 

Figure 4.4. Approaches in the estimation of energy demand functions 
 

 
Figure 4.5. Decomposition of the random error term in a stochastic frontier demand 

 

 
4.2.2. Treating unobserved heterogeneity with a latent class model 

As we have seen in the first chapter, from the influential work of Aigner et al. 
(1977), a broad body of literature has been developed to attempt to precisely measure 
the efficiency of the studied individuals (firms, countries, etc.) with various 
methodological proposals that allow for solving specific problems that affect the 
obtained results. One of the main weaknesses of the basic model that is proposed in 
equation (4.2) is that despite the fact that its specification allows to control for random 
noise, the presence of unobserved heterogeneity between the studied individuals can 
bias the efficiency measures (see Greene, 2005a, 2005b). 
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In Chapter 2 we have mentioned that this heterogeneity is typically considered 
an unobserved determining factor of the estimated production or cost frontier, and 
inefficiency is interpreted as the distance to the frontier once heterogeneity has been 
taken into account. Multiple empirical strategies, each with specific advantages and 
drawbacks, have been developed to solve this problem. A first approach that can be 
applied, is the use of a specification that includes individual effects (fixed or random), 
as is the case for the TFE and TRE models proposed by Greene (2004, 2005a, 2005b). 
These models include a series of country-specific intercepts that are simultaneously 
estimated with remaining parameters of the model and allow the distinction between 
unobserved heterogeneity (which does not change over time) and inefficiency. In this 
approach, unobserved heterogeneity additionally enters the model as an individual-
specific intercept and, therefore, is a neutral or parallel movement of the function that 
maintains the remaining common parameters for all individuals. In the case of energy 
demand, as estimated in the current chapter, this implies that specific characteristics of 
this demand, such as their price and income elasticities, are the same for all countries 
analysed. This assumption is difficult to justify for such a heterogeneous region as Latin 
America and the Caribbean. If there are different groups of countries in the sample with 
different demand characteristics, i.e., different parameters that are associated with the 
variables, we should estimate a model that allows us to take this feature into account. 

An alternative approach to control for unobserved heterogeneity that seems to be 
adequate for the current context is the LCSFM, such as the proposed by Orea and 
Kumbhakar (2004) and Greene (2004, 2005b). This model allows for estimation of 
different parameters for countries that belong to distinct groups and share similar 
characteristics. The characteristics of the countries in each group differ and thus, given 
that the countries that belong to the same class share the same set of parameters, this 
approach controls for the existing heterogeneity between the groups. In other words, the 
latent class procedure allows us to control for heterogeneity in the slopes (the 
coefficients of the estimated variables), which is unobserved and associated with 
country groups. The estimation of a model of this type implies the existence of J groups 
of countries, which demonstrate differences between themselves in terms of their 
behaviour function: 

 ln ln , , ,it it it it j it itj j
q f P Y X v u      (4.4) 

where the subindex j = 1,…,J refers to class, βj is the vector for the parameters that are 
estimated for class j, and the random term, as in prior models, is composed of 
vit|j~N(0,σv

2|j) and uit|j ~N+(0,σu
2|j), which are also specific for each class. The estimation 

of this model implies the maximization of the overall likelihood function from Equation 
(4.4), which is the sum of the likelihood functions at each point of the sample weighted 
by the probability of belonging to each class. This, in turn, is parameterized as a 
multinomial logit model. Additional variables can be included in the probabilities of 
class membership. If such variables are not included, the model uses the goodness of fit 
of each class to identify the distinct groups. The estimation procedure of latent class 
models and usual model selection criteria have been presented in the previous chapter. 

After the model estimation, the posterior probabilities can be obtained to assign 
each country to a specific class and calculate the efficiency measures. One strategy to 
assign countries is assuming that the country belongs to a class to which it may belong 
with the highest probability. Therefore, only one of the demands is taken as the 
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reference frontier to obtain the (in)efficiency measure for each country.56 An alternative 
method, as Greene (2005b) proposes, is to take all classes into account when calculating 
country efficiency, i.e., adding the specific efficiencies of belonging to each of the 
classes weighted by the probability of belonging to them. However, here, as in Chapter 
2, we use the first approach with the understanding that groups of countries actually 
have different demands. 
 

4.3. Data and econometric specification 
This section presents the data and the econometric specification of the models to 

be estimated that were presented above. Incomplete panel data are used, for the 1990-
2010 period, from the following 24 countries in Latin America and the Caribbean: 
Argentina, Barbados, Bolivia, Brazil, Chile, Colombia, Costa Rica, Ecuador, El 
Salvador, Granada, Guatemala, Guyana, Honduras, Jamaica, Mexico, Nicaragua, 
Panama, Paraguay, Peru, Dominican Republic, Suriname, Trinidad and Tobago, 
Uruguay and Venezuela.57 The econometric specification of the basic model (ALS) is 
the following: 

0
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DEN it t tt it it
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DEN t t v u

    

  

     

   
  (4.5) 

where q, Y, P, v, u and β are defined as in the prior equations. Analogously to Filippini 
and Hunt (2011, 2012), we include other explanatory control variables such as POP, 
which represents the population; ST, which is the share of the transport sector in the 
economy; DEN, population density; and t, the time trend, which is also introduced 
squared.58 

Table 4.1 shows the descriptive statistics of these variables. It should be 
mentioned that the dependent variable, q, represents the final energy consumption of the 
transport sector, expressed in thousands of toe. It is obtained by adding the total of the 
energy consumption in internal transport59 for each country for both passengers and 
goods. The types of energy that are included in this aggregate are natural gas, liquid gas, 
electricity, gasoline (which includes biofuel), kerosene (jet fuel), diesel oil and fuel oil. 
Y, is the GDP of each country and is measured in millions of 2005 US dollars at 
Purchasing Power Parity (PPP). In international analyses, the use of this exchange rate 
                                                
56 In this chapter, we estimate the models assuming a panel data structure, i.e. the probabilities of 
belonging to each class are constant over time for each country. Therefore, each country is assigned to a 
single group throughout the sample period. 
57 The sample is composed of a total of 503 observations. The observation for Barbados in 2010 is not 
included because it is unavailable. Of the 27 country members of OLADE, Belize and Haiti are not 
included due to lack of information. Furthermore, Cuba is not included in the sample, as the inclusion of 
this country in the analysis does not allow for the convergence of estimates in some models because the 
estimated function does not fulfil the convexity property and, in other models, the obtained values for 
efficiency are practically zero. Due to these results, the observations for this country are considered to be 
outliers and, thus, we exclude them from the sample. 
58 However, in our model, we do not include meteorological variables because we analyse energy demand 
in the transport sector and such variables do not play a relevant role as in the modelling of total energy 
demand or the residential sector of a country. However, possible persistent meteorological differences 
would be controlled for in the latent class model, which precisely allows the treatment of unobserved 
heterogeneity. 
59 Internal transport includes domestic aviation, domestic shipping, roads and railways and excludes 
international maritime and air transport. 
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is indispensable for adequately comparing the GDP across countries. POP is the mean 
population for each country, as measured in thousands of inhabitants. P is an energy 
price index in the transport sector, calculated as the weighted sum of mean prices of the 
types of energy used in the sector. Because OLADE and other energy international 
agencies do not provide any price index for the total of the countries of Latin America 
and the Caribbean, we have calculated a transitive multilateral price index that allows 
for consistent comparisons between countries throughout the sample period (see 
Appendix in Section 4.6). ST is the ratio of Gross Value Added (GVA) in transport and 
the total GVA for each economy, and it is expressed in percentage. Lastly, DEN reflects 
the ratio between the population in thousands of inhabitants and the area of each country 
in km2. This variable and per capita income (Y/POP) are also included in the LCSFM 
model within the class membership probabilities to help with the segmentation of the 
sample.60 Concerning the data sources, the variables q, P and POP are derived from the 
Energy-Economic Information System of the OLADE. The variables ST and DEN are 
obtained from ECLAC. The variable Y is obtained from the data in the Penn World 
Table (PWT 7.1) presented by Heston et al. (2012). 
 

Table 4.1. Descriptive statistics 
 
Variable Units Mean Std. Dev. Max. Min. 
q Thousands of toe 6,141 12,434 69,384 18 
Y Millions of US Dollars (2005) 164,968 339,168 1,800,000 713 
POP Thousands of inhabitants 20,517 38,114 195,498 91 
P Index 174.56 108.64 850.66 3.76 
ST % 4.02 1.59 12.74 1.07 
DEN Thousands of inhabitants / km2 0.10 0.14 0.63 0.00 
 

If we pay special attention to the quantity and price of the consumed energy (i.e., 
the most relevant variables in a demand analysis apart from income), significant 
differences between countries can be observed. Figure 4.6 shows that energy 
consumption in transport for Latin America and the Caribbean evidenced a significant 
dynamism during the period analysed, with an average annual growth of 4.1%, which is 
more than double that of the growth in the UE-25 (1.3%) for the same period. 
Nevertheless, the growth rates were quite different among countries, with Jamaica and 
Suriname displaying the highest growth and Argentina and Colombia presenting the 
lowest growth for the period of analysis. 

In Figure 4.7, we represent the time evolution of the price index for the group of 
countries that evidenced the greatest differences in 2010. It should be noted that during 
the years analysed, Venezuela persistently maintained the lowest prices. Furthermore, it 
is noteworthy to mention the low cost of energy in Ecuador and Mexico. By contrast, 
the highest prices are found in Colombia, Bolivia, Brazil and Argentina. Furthermore, 
we observe that the price index that is used in this chapter does not require that its own 
value be equal for all countries in a base year, which is required when standard indices 

                                                
60 The lack of homogenous information or a sufficient timeframe on the transport infrastructure, stock of 
vehicles, distances travelled or goods and passenger traffic indicators, impedes the inclusion of these 
types of variables in the estimated demands. 
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such as Laspeyres or Paasche are applied. As discussed in the Appendix, this facilitates 
a better fit of the estimated energy demand functions. 
 

Figure 4.6. Average annual growth rate of energy consumption in transport for Latin 
America and the Caribbean, 1990-2010 (percentage) 

 

 
Sources: ECLAC and EUROSTAT 

 

Figure 4.7. Transitive multilateral price index of energy in the transport sector for Latin 
America and the Caribbean, 1990-2010 
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4.4. Estimates and results 
Table 4.2 shows the results of the basic ALS model estimation. As previously 

mentioned, the model assumes the existence of a single demand and, therefore, does not 
allow for different elasticities for the various countries in the sample. All of the 
variables that are included in the models are statistically significant at 99% (except the 
time trend squared) and have the expected signs. The values of the income and price 
elasticities are 0.81 and -0.23, respectively. These elasticities are found within the value 
ranges that are obtained in the energy demand in transport papers, as discussed in 
Section 4.2. The coefficient of the population variable has a positive sign, which 
indicates (as expected) that a population increase leads to, ceteris paribus, an increase in 
the energy demand. A similar interpretation can be made for the share of the transport 
sector in the economy, which can be understood as a proxy for the degree of transport 
development. It can be expected that a more developed sector results in greater welfare 
for society, which is achieved through greater energy consumption. However, density 
presents a negative sign, indicating (as expected a priori) that the countries that are more 
densely populated have, ceteris paribus, lower transport energy demand due to the 
smaller average distances that companies and individuals travel. After controlling for 
the remaining variables in the estimation, the positive sign of the time trend shows that 
energy consumption increased throughout the sample period (as shown in Figure 4.2), 
which may indicate technical regress in the sector.61 The mean value of efficiency is 
87.4%. Nevertheless, great variability is found among the observations, with minimum 
and maximum values of 66.2% and 94.7% respectively.62 

Table 4.3 shows the results of the LCSFM models for two and three classes63, 
which include separating variables in the probabilities of class membership. If we 
analyse the prior probabilities of the two-class model, the separating variables (income 
per capita and density) are not statistically significant. Thus, this model is equivalent to 
a model that does not include separating variables. However, these variables are 
significant in the three-class model. The signs and values of the variables indicate that 
countries with higher income per capita and lower population density tend to be 
assigned to class 1 and, to a lesser degree, to class 2. 

Figure 4.8 shows the different information criteria that are used as selection tests 
to choose the preferred model. As previously mentioned, all of these criteria are based 
on the maximum value of the likelihood function, which is obtained by estimating each 
model. These criteria only differ in that they penalize the increased number of 
parameters that are estimated for each model with different weights. The model with the 
best fit is that with the lowest criteria value. All of the presented criteria show a clear 
improvement in the fitness of the estimates when unobserved heterogeneity is addressed 
in the model through a latent class approach. Although a great improvement can be 
                                                
61 This model has alternatively been estimated by including a set of time dummies that capture the non-
linear evolution of energy consumption over time. Nevertheless, we prefer the inclusion of a time trend 
and its square, as it allows the estimation of a latent class model without renouncing the inclusion of the 
time effect in the model. 
62 A reviewer’s suggestion that the inefficiency in our model might include a behaviour that would be the 
consequence of low energy prices in certain countries led us to estimate a heteroscedastic model of the 
type proposed by Reifschneider and Stevenson (1991), Caudill and Ford (1993) and Caudill et al. (1995). 
The coefficients that are estimated with such a model for the variables in the frontier are practically 
identical to those obtained in the ALS model, and the price is not statistically significant in the 
inefficiency term. The values of the efficiencies that are obtained in this heteroscedastic model are similar 
to those obtained in the ALS model, with a 96% correlation between the two measures. 
63 Models with higher numbers of classes do not converge. 
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observed when moving from the ALS model to the LCSFM model with two classes (all 
criteria present a lower value), this heterogeneity is captured to an even greater extent 
by a three-class model. For the case of LCSFM models, the criteria values are also 
shown when these models are estimated without the inclusion of separating variables, 
although the estimated parameters are not presented in this chapter. In the model with 
two classes, no improvement is observed when separating variables are included. By 
contrast, in the model with three classes, these variables have a relevant influence. This 
three-class model is the one that fits best to the characteristics of our data and, thus, we 
consider it to be the preferred choice. 

Table 4.3 shows that the majority of variables in these models are significant and 
have the expected signs, as in the ALS model. The preferred three-class model shows 
large differences in the coefficients between the classes for most of the variables. For 
example, the population variable coefficient varies between 0.247 and 0.742, the share 
of the transport sector in the economy is only significant for class 1, population density 
positively affects64 energy consumption in group 2 and negatively affects it in group 1, 
and although all of the classes demonstrate a positive time trend, this growth in energy 
consumption is increasing in class 2 and decreasing in class 3 according to the sign of 
the square term in both cases. 
 

Table 4.2. Standard frontier demand model 
 

 ALS model 
Variable Coeff.  t-ratio 
Intercept 7.098 *** 405.450 
ln Yit 0.810 *** 39.720 
ln POPit 0.182 *** 8.834 
ln Pit -0.229 *** -15.138 
STit 0.047 *** 7.103 
ln DENit -0.096 *** -12.031 
t 0.013 *** 6.960 
½ t2 -0.001  -1.537 

    σ  0.257 *** 590.578 
λ  0.886 *** 7.411 
σv 0.192   
σu 0.170   
    
Log-likelihood 52.689 

Significance code: * p<0.1, ** p<0.05, *** p<0.01 

 

                                                
64 As previously mentioned, a negative coefficient for DEN is expected because this variable mainly 
captures the effect of greater energy consumption as the territory of a country increases given its 
population. However, the coefficient of this variable is positive in class 2 of the latent class model. This 
result does not invalidate our intuition on this variable, as this ratio simply includes population divided by 
area and does not incorporate the degree of urbanization or whether the population is distributed 
homogeneously in the territory, a circumstance that may condition this result for this class. 
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Table 4.3. Frontier demands with latent class including separating variables 

 
 LCSFM with two classes  LCSFM with three classes 
 Class 1 Class 2  Class 1 Class 2 Class 3 
Variable Coeff.  t-ratio Coeff.  t-ratio  Coeff.  t-ratio Coeff.  t-ratio Coeff.  t-ratio 
Intercept 7.180 *** 271.915 6.903 *** 371.389  7.367 *** 195.898 7.091 *** 192.733 6.894 *** 522.491 
ln Yit 0.784 *** 24.069 0.637 *** 35.489  0.566 *** 22.754 0.179 *** 3.687 0.649 *** 35.921 
ln POPit 0.188 *** 5.491 0.280 *** 17.498  0.431 *** 16.176 0.742 *** 16.154 0.247 *** 11.754 
ln Pit -0.188 *** -17.045 -0.175 *** -5.417  -0.161 *** -13.869 -0.288 *** -13.057 -0.407 *** -10.379 
STit 0.094 *** 8.745 0.037 *** 7.048  0.044 *** 4.966 0.002  0.307 -0.008  -0.811 
ln DENit -0.067 *** -5.137 -0.046 *** -6.349  0.007  0.714 0.125 *** 6.868 -0.030 *** -4.016 
t 0.006 *** 2.774 0.016 *** 8.642  0.009 *** 4.985 0.042 *** 16.986 0.030 *** 12.527 
½ t2 0.000  0.426 -0.003 *** -5.835  0.000  -0.505 0.003 *** 5.718 -0.001 *** -2.720 
 

   
             

σ 0.246 *** 12.009 0.171 *** 11.022  0.166 *** 7.336 0.112 *** 5.391 0.135 *** 12.703 
λ 2.961 *** 2.974 2.320 *** 3.147  1.003 * 1.932 0.999   1.401 3.040 *** 3.937 
σv 0.079   0.068    0.117   0.079   0.042   
σu 0.233   0.157    0.118   0.079   0.128   
                 
Class membership probabilities              
                 
Intercept 0.236  0.507 - - -  1.036  1.237 0.736  0.870 - - - 
ln (Y/POP) it 0.639  0.674 - - -  4.293 ** 2.250 3.082 * 1.770 - - - 
ln DENit -0.543  -1.397 - - -  -2.090 ** -2.485 -1.005  -1.387 - - - 
                 
Prior Prob. 0.559 0.441  0.477 0.354 0.169 
Log-likelihood 281.782  398.356 

Significance code: * p<0.1, ** p<0.05, *** p<0.01 
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Figure 4.8. Model selection tests 
 

 
 

The most relevant variables in demand analysis are income and price. As 
previously mentioned, the latent class model allows us to identify three classes with 
elasticities that clearly differ. The most inelastic demand for income can be found in 
class 2 (0.179), followed by class 1 (0.566) and finally, the most elastic class is 3 
(0.649). The differences in price elasticities of the demand are also evident if we 
represent the data from the sample without performing any type of estimation and only 
use the partition of the sample that is generated by the preferred three-class model, as 
can be shown in Figure 4.9.65 This figure shows that the demand of class 1 has the 
steepest slope and corresponds to the group with the lowest elasticity (-0.161) in the 
estimates. This group includes Argentina, Brazil, Chile, Ecuador, Guyana, Mexico, 
Paraguay, Suriname, Trinidad and Tobago and Venezuela. The demand of class 2 
corresponds to the group of intermediate elasticity (-0.288) and is composed of 
Barbados, Bolivia, Colombia, Costa Rica, Jamaica and Panama. Finally, class 3, with 
the flattest slope in the graph, is the most elastic in the estimates (-0.407) and includes 
El Salvador, Granada, Guatemala, Honduras, Nicaragua, Peru, the Dominican Republic 
and Uruguay. This figure also represents the single demand that would be obtained if 
we did not take into account the heterogeneity between countries, thus obtaining a 
biased demand with an intermediate slope between class 2 and class 1, which would 
correspond to the price elasticity value obtained from the ALS model (-0.229). 

The mean efficiencies that are obtained in each class are around 95%, and the 
minimum value is consistently greater than 80%. These results indicate that the groups 
are more homogenous than when one single demand is estimated. These results reflect 
that more efficient countries can reduce their energy consumption up to 5% and that the 
less efficient countries have a margin of up to 20%.66 The estimation of this latent class 

                                                
65 In this figure, we present price to energy divided by income. This consideration allows us to 
“relativize” the weight of income and isolate, to a certain degree, the price effect on demand, which is 
what we want to represent. On the other hand, logarithms in the units of both axes are calculated to reduce 
the measurement scale and facilitate the representation of the demand. 
66 These potential savings are however obtained without taking into account possible “rebound effects”. 
This phenomenon basically captures the idea that part of the savings from increases in the efficiency level 
in the use of energy can be offset by increases in the demand for energy services derived from the 
marginal cost reduction of those energy services. This concept has recently received great attention in 
energy studies and especially in transportation (see for instance, Greene et al., 1999b; Small and Van 
Dender, 2007; or Hymel et al., 2010). 
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model allows us to identify the most efficient countries in each class (on average for the 
period considered). The remaining countries in each group, given their similar 
characteristics, should attempt to imitate these most efficient countries’ energy policies. 
The two countries with the greatest energy efficiencies are Brazil and Mexico in class 1, 
Barbados and Colombia in class 2, and El Salvador and Guatemala in class 3.67 

 
Figure 4.9. Linear demands obtained on the basis of observed values 

 

 
 

As mentioned in the introductory section, energy indicators are typically used to 
measure energy efficiency in countries. The most commonly used indicator of energy 
intensity is the ratio of energy consumption to GDP in a country. Table 4.4 shows the 
value of this indicator for the transport sector of each country and presents a ranking of 
“energy intensity”. The countries with a lower ratio of energy consumed in transport to 
GDP are identified according to this indicator as those that are the most energy efficient. 
The table also shows the mean efficiencies that are obtained for each country with a 
frontier demand such as the estimated demand.68 The correlation coefficients of both 
measures for each country are in some cases, such as the Dominican Republic (-0.982) 
and Trinidad and Tobago (-0.986), quite high and negative. This result indicates, as 
expected, that energy efficiency improvements are associated with decreases in the 
energy intensity indicators. Although the correlation of these measures is high, on 
average, it is low in some countries (such as Brazil and Colombia). Furthermore, it is 

                                                
67 The reference countries for each of the demands seem to correspond to the countries that, according to 
ECLAC (2010), have adopted distinctive measures for the improvement of public transport in their cities. 
In this report, it is highlighted the Rapid Transit Bus (RTB) system implementation in Curitiba (Brazil). 
This system was started in 1972 as part of a general policy of urban planning. Other noted examples are 
the RTB TransMilenio, which has been developed since 2000 in Bogota (Colombia). The innovations of 
this system have made it the most solid RTB of the world and have led it to develop an extension plan of 
this system to seven additional cities. In Mexico City (Mexico), an RTB system has been implemented, 
named Metrobús, as a complement to the extensive subway system of the city. In Guatemala City 
(Guatemala), a trans-urban system was developed in 2009 with the aim of improving efficiency and 
reducing contamination indices of the transport sector in the city. 
68 For the comparisons with the rankings that are obtained based on energy intensity to make sense, the 
efficiency values that are shown in this table are obtained using the ALS model, as this is the only 
estimated model that assumes the existence of a single frontier. 
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positive in two countries (Chile and Venezuela), indicating that the evolution of energy 
intensity indicators is associated with circumstances other than energy efficiency. Using 
the Spearman’s rank correlation coefficient, we observe that although the rankings that 
are obtained by alternatively applying the criterion of energy intensity and efficiency of 
an energy demand model can differ (for example, Barbados and Trinidad and Tobago 
fall by 10 places, and Panama moves from 15 to 3 when estimating a frontier model), on 
average these rankings are similar, with an approximately 70% correlation between 
them. In summary, these results seem to confirm that the efficiency measures that are 
derived from the estimation of energy demand frontier models are more appropriate 
than those that are provided by energy intensity indicators. 
 

Table 4.4. Country ranking using energy intensity and energy efficiency 
 

Country 
Indicator 

(Energy/GDP) 
Frontier demand 

Correlation 
(EI Vs Eff.) EI Ranking Eff. Ranking 

Argentina 0.037 14 0.845 19 -0.897 
Barbados 0.019 1 0.885 11 -0.938 
Bolivia 0.042 19 0.869 15 -0.883 
Brazil 0.034 12 0.872 14 -0.241 
Chile 0.044 20 0.844 20 0.161 
Colombia 0.032 8 0.896 7 -0.061 
Costa Rica 0.032 9 0.875 13 -0.720 
Ecuador 0.055 22 0.828 22 -0.962 
El Salvador 0.026 5 0.902 5 -0.931 
Granada 0.029 7 0.877 12 -0.807 
Guatemala 0.024 2 0.910 4 -0.952 
Guyana 0.066 24 0.846 18 -0.956 
Honduras 0.033 10 0.890 9 -0.925 
Jamaica 0.038 16 0.813 24 -0.914 
Mexico 0.040 18 0.861 17 -0.814 
Nicaragua 0.040 17 0.888 10 -0.946 
Panama 0.037 15 0.914 3 -0.893 
Paraguay 0.054 21 0.815 23 -0.951 
Peru 0.025 3 0.933 1 -0.763 
Dominican Rep. 0.026 4 0.898 6 -0.982 
Suriname 0.035 13 0.891 8 -0.906 
Trinidad and Tobago 0.033 11 0.834 21 -0.986 
Uruguay 0.028 6 0.924 2 -0.706 
Venezuela 0.062 23 0.868 16 0.153 
      

Spearman’s rank correlation coefficient between both rankings 0.701 
Note: EI stands for Energy Intensity and Eff. is the abbreviation of Efficiency 
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4.5. Conclusions 
In this chapter, we estimate stochastic frontier demand functions to measure the 

level of energy efficiency of the transport sector in Latin America and the Caribbean by 
using panel data from 24 countries for the 1990-2010 period. The adopted approach 
constitutes a novel contribution to energy demand studies of the sector in this region, 
conferring great importance to the presented results. Due to the different types of energy 
that are used in the transport sector, it is necessary to employ an index that aggregates 
the set of energy prices for the estimation of these demands. International energy 
agencies do not provide a price index for all of the countries in the sample. Thus, we 
construct a transitive multilateral index, which allows for consistent comparisons of 
energy price among countries throughout time. The construction of this price index is a 
relevant issue often avoided in these studies. 

The estimated models are a basic stochastic frontier and diverse latent class 
models that lead to obtaining differentiated demands. These models allow us to identify 
the reference countries in international comparisons of energy efficiency. The results 
indicate that the specification that best fits an energy demand is a model in which three 
classes are estimated using income per capita and population density as class-
identifying variables. In this model, important differences in income and price 
elasticities are observed. Specifically, countries with higher income per capita and lower 
population density have a higher probability of having a more inelastic demand in terms 
of price. The estimation of the latent class model allows us to identify countries that 
have successfully implemented programs of improved public transport in some of their 
cities. The remaining countries of each class should follow the example of these 
countries and perform the extension or adaptation of the national transport sector 
policies implemented in the most efficient areas of the region, with the aim of 
improving energy efficiency and reducing the levels of urban contamination. 
Furthermore, general improvements in fuel efficiency and the transfer from private 
vehicle use to public transport ought to be additionally considered. 

On the other hand, this chapter shows that the commonly used indicators of 
energy intensity cannot consistently be used as a reasonable reference for energy 
efficiency in the transport sector. Using efficiencies that are obtained through the 
frontier approach, we find that although the mean efficiency is relatively high, there is a 
margin for energy consumption savings and, thus, for a reduction of greenhouse gas 
emissions. Some measures that can be adapted for this purpose are as follows: correctly 
assign energy prices, plan the infrastructure and land use jointly to minimize distances, 
balance the modal distribution, establish fiscal incentives for the use of lower 
consumption engines, develop fuels with reduced levels of carbon and implement 
awareness programs that focus on the transformation of transport use toward rational 
and environmentally sustainable habits. 

Finally, according to the “Jevons Paradox”, it is possible that increases in energy 
efficiency do not involve a reduction in energy consumption and hence the energy 
savings predicted in the current model are not possible to reach. That situation, also 
called “back-fire”, is a particular case of the phenomenon known as “rebound effect”. 
This concept states that part of the savings from increases in the efficiency level in the 
use of energy can be offset by increases in the demand for energy services derived from 
the marginal cost reduction of those energy services. In other words, the increased 
efficiency in the use of a resource does not necessarily indicate a directly proportional 
decrease of total consumption. The rebound effect concept should be considered (as in 
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next chapter) in future research that uses frontier approaches for the estimation of 
energy demands. 
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4.6. Appendix 
Construction of the price index 

 

The OLADE provides information on the prices and quantities consumed of the 
different types of energy that are used in the transport sector of Latin America and the 
Caribbean. The categories that appear in their database are as follows: natural gas, 
liquid gas, electricity, various types of gasoline, kerosene, diesel oil and fuel oil. 
However, this agency does not provide a general price of energy for these countries. 
Thus, to estimate aggregate energy demand in transport, it is necessary to obtain an 
indicator or index that accounts for the distinct components in the energy consumption 
of the sector. In general, a compound price index can be defined as follows: 
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where PI0t measures the change in value of the total of the M energy components 
between the base period 0 and final period t. In this type of index, it is difficult to 
distinguish between the changes that only occur in prices and the change in consumed 
quantities. The two indices that are most commonly used in practice and calculated by 
international agencies for total energy consumption, such as those calculated by the 
IEA, are Laspeyres and Paasche. In the former, the quantities that are consumed in the 
base year (qm0) are used as weights both in the numerator and in the denominator. Thus, 
this index isolates the change in prices without accounting for changes in consumption 
patterns. The second type of index uses energy quantities from the current period (qmt) 
as weights, thus simultaneously including variations in prices and quantities. These two 
indices, therefore, represent two extreme cases and only coincide when relative prices 
do not experience any variation (i.e., pmt/pm0 is constant). 

However, there are alternatives that combine both approaches to address this 
issue, such as the Fisher and Törnqvist indices. Nevertheless, all of these indices present 
the same problem. Specifically, they allow for comparisons of a country with itself 
throughout time and comparisons between countries measured in price changes (if the 
same base year is imposed for all countries in the sample), but they do not allow for 
comparisons of price levels between countries throughout time. 

Studies that use international data must employ an index that overcomes this 
difficulty. The solution to this problem involves obtaining transitive multilateral 
comparisons (as named in the literature on index numbers) between countries, as 
proposed by Elteto and Koves (1964) and Szulc (1964). This method, known as EKS, 
was used by Caves et al. (1982) to obtain transitive Törnqvist indices. The formula, in 
line with Coelli et al. (2005), is as follows: 
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where ωmi represents the importance held by component m in the energy expenditure of 
the transport sector of the country i and m  is the arithmetic mean of these expenditure 
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amounts. Furthermore, ln mp  represents the average price of the energy component m 
for the set of countries. 

The intuitive interpretation of equation (4.7) is that to compare the price indices 
of two countries, each of them is compared to the average country and then the 
differences from this mean are calculated. Logically, as opposed to other indices, when 
an observation is added or subtracted from the sample, all values should be recalculated 
due to changes in the mean of the sample. 

It should be mentioned that in the current empirical application, the use of an 
approach such as the proposed by Caves et al. (1982) in the construction of the price 
index significantly improves the quality of fitting that is obtained when estimating the 
models. If a Paasche- or Laspeyres-type index is used rather than a transitive 
multilateral index, the logarithm of the likelihood function falls sharply and achieves 
negative values. The use of these simpler indices in practice implies the assumption that 
each country has a specific individual effect. In this case, we artificially introduce 
heterogeneity into the model. Thus, the model must be estimated by including 
individual effects, as in the TFE and TRE models. 
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Chapter 5 
 
A new approach to measuring the rebound effect 
associated to energy efficiency improvements: An 
application to the US residential energy demand 
 
 
5.1. Introduction 

As we have commented before, reducing energy consumption and emissions is a 
key policy objective for most governments across the globe and the promotion of 
energy efficiency policies is seen as a key activity to achieving this goal. In practice, the 
achievement of savings in energy consumption depends on two issues. First, it is vital 
that policy makers be able to clearly measure the relative energy efficiency across states 
and over time. Second, the actual savings in energy consumption might not coincide 
with the expected savings due to the so-called rebound effect, a phenomenon associated 
with the consumption of energy and energy services. When the production of an energy 
service becomes more efficient, then the cost per unit of this service decreases. This cost 
reduction can produce an increase in the consumption of the energy service that might 
(at least partially) offset the expected savings in energy consumption derived from the 
energy efficiency improvements. Measuring the rebound effect is thus crucial in order 
to properly evaluate the effectiveness of any energy policy instrument that aims to 
promote energy efficiency improvements. 

Regarding the first issue, Filippini and Hunt (2011, 2012) point out that defining 
and measuring energy efficiency and creating statistical measures as descriptors is a 
challenging task. They propose the use of an SFA approach to control for characteristics 
such as the structure of the economy that might bias the usual energy efficiency 
indicators. These authors illustrate their proposal by estimating an aggregate energy 
demand frontier model for the total energy consumption of a sample of OECD countries 
and for the residential energy consumption of the US states. The SFA approach allows 
them to obtain a “pure” measure of the inefficient use of energy (i.e. ‘waste of energy’) 
for each country or state. 

Concerning the second issue, there is a large number of empirical studies that 
use econometric methods to estimate the rebound effect. In their review of the literature, 
Sorrell and Dimitropoulos (2008) have found a lack of consensus with regard to a 
consistent method to measure the rebound effect. In principle, it could be directly 
obtained from the elasticity of demand for energy services with respect to changes in 
energy efficiency. However, relatively few studies follow this approach because data on 
either energy services or energy efficiency are unavailable or are limited in terms of 
accuracy. As a consequence the rebound effect is often indirectly measured through the 
estimate of different elasticities that are considered measures of energy efficiency 
elasticities of the demand for energy, such as the own-price elasticity of the demand for 
energy. 
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The main contribution of this chapter is to link the energy demand frontier 
approach with the estimation of the rebound effect. We first bring attention to the fact 
that the frontier model introduced by Filippini and Hunt (2011, 2012) that has been 
applied in the previous chapter, also provides a direct measure of the rebound effect. 
However, we point out that a traditional specification of this model implicitly imposes a 
zero (or more accurately, constant) rebound effect, which contradicts most of the 
available empirical evidence. We next suggest estimating a more comprehensive model 
to relax the zero rebound effect assumption and examine the compliance with some of 
the restrictions used in previous studies focused on estimating the rebound effect using 
econometric techniques. 

The chapter is organized as follows. The next section defines the rebound effect 
and provides a brief review of the empirical literature on measuring it using 
econometric models. Both standard and extended energy demand frontier models and 
the econometric specification of our model are introduced in Section 5.3. The data and 
results of the estimates are presented in Section 5.4 with a summary and conclusions in 
the final section. 
 

5.2. Measuring the rebound effect: a short review of the empirical literature 
The rebound effect is a phenomenon associated with energy consumption. This 

concept has to do with the idea that an increase in the level of efficiency in the use of 
energy decreases the marginal cost of supplying a certain energy service and hence may 
lead to an increase in the consumption of that service. This consumer reaction might 
therefore partially or totally offset the predicted reduction in energy consumption 
attributed to energy efficiency improvements using engineering models. Measuring the 
rebound effect is thus crucial in order to properly evaluate the effectiveness of any 
energy policy instrument that aims to promote energy efficiency improvements. This 
issue is particularly relevant for the US residential sector since it accounts for 37% of 
the national electricity consumption, 17% of greenhouse gas emissions and 22% of 
primary energy consumption (International Risk Governance Council (IRGC), 2013). 

The definition of the rebound effect encompasses different mechanisms that may 
reduce potential energy savings derived from the improvements in energy efficiency. 
Frequently, three types of rebound effect are distinguished in the specialized literature. 
The first one is the direct rebound effect, which measures the increase in the use of the 
product or service that has experienced the efficiency gain. For instance, a homeowner 
may employ a portion of the energy savings from using an efficient heater to use the 
heater for longer periods during the winter to warm the house. The second type is the 
so-called indirect rebound effect and measures the reallocation of energy savings to 
spending on other goods and services that also require energy. For instance, the savings 
derived from the use of energy-efficient appliances at home can be spent on travel 
holidays which may lead to an increase in energy consumption and greenhouse gas 
emissions. The third type is the economy-wide rebound effect and captures the structural 
changes in the economy due to the variation of prices of goods and services as a 
consequence of energy efficiency improvements. These changes may produce a new 
equilibrium in the consumption of goods and services (including energy) in the 
economy. 

There is an extensive literature on the concept and measurement of the rebound 
effect and several approaches have been applied with the aim of quantifying this 
phenomenon. For instance, in their report for the UK Energy Research Centre, Sorrell 
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and Dimitropoulos (2007) find a wide range of methods that have been applied to 
measure the direct rebound effect. They identify at least four empirical approaches - 
single equation models, structural models, discrete/continuous models, and household 
production models - and several estimation techniques including ordinary least squares, 
instrumental variables or maximum likelihood. In addition, several empirical strategies 
have also been used to indirectly measure this rebound effect. An outline of these 
approaches can be found in Table 5.1. This table shows three theoretical relationships 
between two elasticities. The left-hand side elasticity is the energy efficiency elasticity 
of the demand for energy, which is used to calculate the clearest and most direct 
measure of the rebound effect (see Saunders, 2000, and Section 5.3 below). The lack of 
accurate data on energy services or energy efficiency typically precludes a direct 
measurement of the rebound effect based on this elasticity, so that its estimation is 
usually carried out using the right-hand side of the equations in Table 5.1. 

 
Table 5.1. Approaches for measuring the direct rebound effect 

 
Approach 1     1E Eq S    

Approach 2     1E Pq S     

Approach 3     1
qE Pq q     

Notes: Letters in parentheses stand for elasticity numerators and subscripts for elasticity denominators.  
E: energy efficiency; q: Energy; S: Useful work; PS: Energy cost of useful work; Pq: Energy price. 

 
The first empirical approach relies on estimating the energy efficiency elasticity 

of the demand for energy services or useful work that is often available in personal 
transportation studies. For this reason, this engineering-based approach is generally 
used to measure the direct rebound effect associated with travelling by private cars (see 
for instance Greene et al., 1999b; or Small and Van Dender, 2005). More studies follow 
the second empirical strategy, based on an estimate of the energy cost elasticity of the 
demand for useful work. This approach has been advocated by Khazzoom (1980), 
Greene et al. (1999a), Berkhout et al. (2000) and Binswanger (2001) and, unlike the 
first approach, it provides a way to estimate the magnitude of the rebound effect even 
when the available data provides little or no variation in energy efficiency. However, 
the validity of this approach relies on the assumption that consumers respond in the 
same way to decreases in energy prices as they do to improvements in energy efficiency 
(and vice versa). As Sorrell and Dimitropoulos (2008) pointed out, this assumption is 
likely to be flawed in many cases. These two approaches require accurate measures of 
the demand for useful work. This restriction has biased research studies towards 
personal transportation and household heating, where data about energy services can be 
easily calculated, e.g., vehicle kilometres in the case of transportation. 

It is also possible to estimate the direct rebound effect from the own-price 
elasticity of the demand for energy, i.e., the third approach. While obtaining measures 
of useful work can be difficult, data on energy demand is more commonly available. 
The main advantage of the third approach over previous approaches is that data on 
either useful work or energy efficiency is not required. This explains why the approach 
based on the own-price elasticity of the demand for energy is the most popular empirical 
strategy to measure the rebound effect in other energy commodities or sectors (see for 
instance Zein-Elabdin, 1997; Berkhout et al., 2000; Roy, 2000 and Bentzen, 2004). 
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However, Sorrell and Dimitropoulos (2008) pointed out that this empirical strategy 
might also yield biased estimates for the rebound effect if energy efficiency is not 
explicitly controlled for.69 In this chapter, we propose another approach based on the 
estimation of an energy demand frontier function. In this framework, the rebound effect 
is directly estimated from the elasticity of the demand for energy with respect to 
changes in the level of energy efficiency. 

There is a huge variety of estimated rebound effects in the literature not only 
because different methodological/empirical approaches have been used but also because 
they have been used to analyse the rebound effect for different energy commodities, 
sectors, countries or different levels of data aggregation. Since this chapter is focused on 
residential energy demand, we pay attention mainly to the results of papers on 
household energy demand. Sorrell and Dimitropoulos (2007) find that for household 
heating the rebound effect usually ranges from 10% to 58% in the short-term and from 
1.4% to 60% in the long-term.70 Household energy demand is dominated by the use of 
fuel and electricity for heating space. Focusing specifically on papers in which the price 
elasticity of total household electricity demand is estimated, the estimated values 
suggest an upper bound for the short-term rebound effect in the range of 20% to 35% 
and between 4% and 225% for the long-term rebound effect. Regarding other household 
energy services, the reviewed studies suggest a rebound effect up to about 26% for 
space cooling. Other studies produce rather different results. For instance, Guertin et al. 
(2003) estimate long-term rebound effects for both water heating and 
appliances/lighting and obtain values between 32% and 49%. 

A recent survey can be found in a report on energy efficiency carried out by the 
IRGC (2013). This survey is based on the reviews of Greening et al. (2000), Sorrell 
(2007) and Jenkins et al. (2011) and summarises the large variety of results obtained 
from papers that measure rebound effects in the residential sector. This report shows 
that while for residential lighting there is a narrow range of results of the rebound effect 
from 5% to 12%, in the rest of energy services there is a wider range of values: for 
space heating the range goes from 2% to 60%, for space cooling from 0% to 50%, for 
water heating from less than 10% to 40%, and for other consumer energy services from 
0% to 49%. As it can be seen, this more updated survey shows very similar values to the 
report previously mentioned. 

However it should be noted that in this chapter we estimate a demand function 
aggregated at state-level for the US residential energy. Therefore our estimated rebound 
effect captures an overall effect composed of the sum of direct and indirect effects and 
hence the ideal lower and upper bounds for our estimates are not entirely clear. The 
literature has identified large positive as well as negative values for the indirect rebound 
effect, as found in Thomas and Azevedo (2013) for the household case. There are some 
papers that exhibit large direct rebound effects, such as Mizobuchi (2008) where a 
rebound effect of about 27% is found for Japanese households although the effect 
increases to 115% when capital costs are ignored in the analysis. Indirect rebound 
effects are usually larger than direct rebound effects and it is less ‘uncommon’ to find 
indirect rebound effects larger than 100%. Some examples can be found in Lenzen and 
Dey (2002) with an indirect rebound effect of 123% for Australia, Alfredsson (2004) 
                                                
69 In particular, this approach relies on the assumption that energy efficiency is unaffected by changes in 
energy prices. 
70 These rebound effects indicate percentage (expressed in relation to the predicted energy saving) by 
which the actual energy consumption is larger than the predicted energy consumption after an efficiency 
improvement. The measuring of the rebound effect is explained in detail in the next section. 
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with an indirect rebound effect up to 300% in Sweden or Brännlund et al. (2007) with 
an indirect rebound effect between 107-115% in CO2 emissions in a simulation of an 
efficiency improvement in heating and transport sectors. In some cases this rebound 
measures can reach extremely large values, as in Druckman et al. (2010) who found 
indirect rebound effects up to 515% for the case of the UK. 

 

5.3. Measuring rebound effects using energy demand frontier models 
In this section, firstly we summarize the aggregate energy demand frontier 

model proposed by Filippini and Hunt (2012) to measure the level of “underlying 
energy efficiency” in the US residential sector. Subsequently, we link this model to the 
literature on the rebound effect and we introduce a more comprehensive model that 
allows estimating ‘non-zero’ rebound effects using an SFA approach. Once the 
econometric specification of the model is presented, we finally discuss new econometric 
issues that appear when the more general SFA approach is used to estimate rebound 
effects. 

 
5.3.1. The standard energy demand frontier model 

This approach treats energy as a production factor used in combination with 
other inputs to produce energy services, and attempts to measure inefficiency in the use 
of input energy as (positive) deviations from an energy demand frontier function that 
can be estimated for the whole economy or for a given sector. In general terms, the 
aggregate energy consumption can be written as follows: 

 , , , , vq F Y P X E e     (5.1) 

where q is the aggregate energy consumption, Y is the real income, P is the real energy 
price, β are parameters to be estimated, and X is a set of control variables such as 
population, average household size, heating degree days, cooling degree days, the share 
of detached houses, or time dummy variables. While v is the conventional noise term, E 
is the level of energy efficiency of a particular state. Since the energy efficiency level is 
not observed by the researcher, Filippini and Hunt (2012) made use of two assumptions 
in order to estimate equation (5.1). Firstly, they implicitly assumed that the energy 
demand function is separable in the sense that  , , , ,F Y P X E   in (5.1) is decomposed 
into a function that does not depend on energy efficiency and an energy-efficiency 
function, that is: 

   , , ,F f Y P X h E     (5.2) 

where h(E) is in turn assumed to be equal to 1/E. The second assumption is that the 
unobserved energy efficiency term is bounded (i.e. 0≤E≤1). These two assumptions 
allow using the stochastic frontier approach as the model to be estimated can now be 
written in logs as: 

        ln ln , , ,q f Y P X v u       (5.3) 

where u=-ln E≥0. The error term in (5.3) thereby comprises two independent parts. The 
first part, v, is the classical symmetric random noise, often assumed to be normally 
distributed, i.e. v~N(0,v

2). The second part, u, is a one-sided error term capturing the 
level of underlying energy inefficiency that can vary across states and over time. 
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Following Aigner et al. (1977) it is often assumed to follow a half-normal distribution, 
i.e. u~N+(0,u

2). The identification of both random terms in this model relies on the 
asymmetric and one-sided distribution of u. If the inefficiency term could take both 
positive and negative values, it cannot be distinguishable from the noise term, v. 

Equation (5.3) is the basic specification of the energy demand frontier that is 
estimated in Filippini and Hunt (2011, 2012) in order to get state-specific energy 
efficiency scores.71 In the case of an aggregate residential energy demand function, 
 , , ,f Y P X   reflects the demand of the residential sector of a state that has and uses 

fully efficient equipment and production processes. If a state is not on the frontier, the 
distance from the frontier measures the level of energy consumption above the 
minimum demand of reference, i.e. the level of energy inefficiency. Nevertheless, from 
an empirical perspective, the aggregate level of energy efficiency of US residential 
appliances is not observed directly, and therefore has to be estimated simultaneously 
with other parameters of the model. For this reason Filippini and Hunt (2011, 2012) use 
the expression ‘underlying energy efficiency’.72 
 

5.3.2. The (implicit) rebound effect in the standard energy demand frontier model 
Although the basic concept of the rebound effect is not controversial, several 

mathematical definitions of this effect have been employed in the literature according to 
the availability of price and efficiency data.73 Here we use the definition mentioned by 
Saunders (2000) which, in our opinion, provides one of the clearest and most direct 
measurements of the rebound effect. Following this author, the rebound effect is 
obtained as: 

1 ER        (5.4) 

where E  is the elasticity of energy demand with respect to changes in energy 
efficiency, i.e. ln lnE q E    . Table 5.2 shows the different rebound effects that we 
can find in a particular empirical application. The actual saving in energy consumption 
will only be equal to the predicted saving from engineering calculations when this 
elasticity is equal to minus one and hence there is no rebound effect (R=0). The rebound 
effect would be positive (R>0) if actual savings in energy consumption are less than 
expected, i.e. 1 E  . The rebound effect could be larger than one (R>1) if 
improvements in energy efficiency increase energy consumption and hence the 
elasticity of energy demand with respect to changes in energy efficiency is positive, i.e. 

0E  . This somewhat counterintuitive outcome is termed ‘backfire’ in the literature 
(Saunders, 1992). In practice, negative rebound effects (R<0) can also be found for 
some observations if the improvements in energy efficiency produce larger decreases in 
energy use than predicted, i.e. 1E   . Saunders (2008) labelled this - also rather 
counterintuitive - outcome as ‘super-conservation’.74 

                                                
71 The estimation of (5.3) can be performed using either cross-sectional or panel data as in Filippini and 
Hunt (2011, 2012). They also propose to use a relatively simple log-log functional form. 
72 Filippini and Hunt (2011, 2012) advocate using panel data techniques to control for potential 
endogeneity problems caused by omitted variables or unobserved heterogeneity, an issue that is briefly 
discussed later on. 
73 See, for instance, Sorrell and Dimitropoulos (2008). 
74 For a more extended definition and some examples about this counterintuitive phenomenon see 
Saunders (2008). 
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Table 5.2. Possible values for the rebound effect and the energy efficiency elasticity 
 

R > 1 Backfire 0E   
R = 1 Full rebound 0E   
0 < R < 1 Partial rebound 1 0E    
R = 0 Zero rebound 1E    
R < 0 Super-conservation 1E    

 
As the one-sided error term in (5.3) is measuring the level of underlying energy 

inefficiency, the elasticity of energy demand with respect to changes in energy 
efficiency is simply lnE q u     . Given the rebound effect definition provided by 
equation (5.4), we can then conclude that any energy demand frontier model that 
includes an inefficiency term as an explanatory variable implicitly provides a direct 
measure of the rebound effect. However, since E  in (5.3) is equal to –1, the standard 
SFA energy demand frontier model implicitly imposes a zero rebound effect, which 
contradicts most of the available empirical evidence surveyed in Section 5.2. 

So far we have shown the implications of the standard SFA energy demand 
frontier model on the measurement of rebound effects. Next we will discuss the 
implications of the rebound effect story on both identification and measurement of the 
underlying energy efficiency. A key conclusion that one can get from the extensive 
literature focused on measuring the relationship between energy efficiency and energy 
demand is that the rebound effect tends to attenuate, exacerbate, or even reverse the 
effect of improvements in energy efficiency on energy consumption.75 Therefore, the 
rebound effect issue can be introduced in an energy demand application of the SFA 
approach as a correction factor (1–R) that interacts with the energy inefficiency term (u) 
that is appended to the stochastic energy demand frontier. That is: 

   ln ln , , , 1q f Y P X v R u       (5.5) 

where again u=-ln E≥0. In this model, the effect on energy consumption is not 
necessarily proportional to the reduction in u; its effect is attenuated when the rebound 
effect is partial (i.e. when 0<R<1), exacerbated in case of super-conservation outcomes 
(i.e. when R<0), or reversed in case of extremely large rebound effects or backfire 
outcomes (i.e. when R>1). 

Another interesting conclusion that can be inferred from the above equation is 
that any effort to improve energy efficiency of the current set of appliances (or their 
use) would not produce any change in energy consumption if consumers’ reaction 
completely offset the potential energy savings, and hence the rebound effect is full. This 
implies that, in an energy demand setting, the underlying level of energy efficiency 
cannot be identified and estimated if R=1, since the energy demand model only have 
one (and symmetric) error term in this case. The other way around, this discussion 
                                                
75 It is not easy to find a similar phenomenon in production economics where SFA models have 
traditionally been applied. In that literature any improvement in firms’ efficiency is assumed to have a 
proportional effect on firms’ performance (outputs, cost, etc.). Just to conjecture an example, a sort of 
rebound effect might appear in public firms where employees’ salary is not linked to their productivity. In 
this case, an employee who works efficiently could become “lazy” after a salary improvement since his 
earnings do not depend on his effort. 
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suggests that it only makes sense to estimate a stochastic energy demand frontier model 
when we believe that the rebound effect is not 100%. 
 

5.3.3. A frontier energy demand model with non-zero rebound effects 
Let us move to the estimation of a frontier energy demand model with non-zero 

rebound effects. To achieve this objective we should deal with several practical issues. 
The first one has to do with R in (5.5) that, like the energy inefficiency level, is not 
observed by the researcher because it is linked to the demand for energy services, ES, 
again a latent variable. To deal with this issue R can be approximated with a set of 
determinants of the demand for energy services, such as income and energy prices, i.e. 
z=(Y,P). This seems to be reasonable as most of the literature on the rebound effect 
associates the rebound effect with energy prices, and the theory often predicts that the 
rebound effect declines with income.76 

If we replace the rebound effect variable R by a rebound-effect function,  R z  , 
the model that can be estimated in practice is: 

    ln ln , , , 1q f Y P X v R z u            (5.6) 

where γ are new parameters to be estimated. Several interesting remarks should 
be made regarding this specification. First, if the rebound-effect function does not 
depend on any covariate, our model simply collapses to the basic stochastic frontier 
demand model used in Filippini and Hunt (2011, 2012) that imposes zero (i.e. constant) 
rebound effects. In contrast, if  R z   varies across observations or states, the above 
equation allows us to get state-specific rebound effects that can be used for further 
analyses. Interesting enough, if z includes income and energy prices, the estimated γ can 
also be used to test whether both income and price elasticities of energy demand depend 
on energy efficiency.77 

Second, unlike in production economics where a similar correction factor to our 
R function is often treated as part of firms’ inefficiency, we point out in this chapter that 
 R z   is also -or mainly- capturing a rather different in nature phenomenon, i.e. the 

rebound effects associated to improvements in energy inefficiency. 

Third, several specifications of  R z   can be used in a particular empirical 
application. Saunders (2008) recommends using extremely comprehensive (flexible) 
functional forms such as the Gallant and Fourier forms, which can depict the full range 
of rebound values. These forms are however intractable in our framework as they would 
                                                
76 Wang et al. (2012) point out, for instance, that the marginal utility of energy service consumption will 
decline as household income increases. Thus, energy efficiency improvements may not induce people to 
consume as much energy services as before. This means that the direct rebound effect might decline with 
the increase in household income. This is also confirmed in a limited number of studies, e.g. Small and 
Van Dender (2007) and Wang et al. (2012) that have found evidence of a negative relationship between 
the rebound effect and income. 
77 Indeed, both elasticities can be respectively written as: 
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interact with the stochastic part of the model and, hence, the maximum likelihood 
function would be highly non-linear in parameters. In this sense, as the choice of a 
particular function in this setting is limited by both methodological and practical issues, 
we propose exploring two simple rebound-effect functions: 

  1z

z

eR z
e








       (5.7) 

 
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z

z

eR z
e






 


     (5.8) 

Whereas the rebound-effect function in (5.7) can depict any value from full 
rebound to super-conservation (SC) outcomes (i.e. R1), the rebound-effect function in 
(5.8) precludes this somewhat counter-intuitive outcome as it only allows for partial 
(PA) rebounds-effects (i.e. 0R1). In both cases, a positive (negative) value of  
indicates that the rebound effect increases (decreases) with z. It is worth noting that the 
SC and PA functions are respectively equal to 0 and 0.5 when ’z=0. This might occur 
when either all  parameters are zero, or when R does not include a constant term and 
z=0.78 

It should be noted that both specifications (5.7) and (5.8) of the rebound effect 
preclude the existence of backfire outcomes. This is not a coincidence as we must 
impose the restriction R<1 to our rebound-effect functions in order to distinguish 
inefficiency from noise. Otherwise, the second error term in equation (5.6) would no 
longer have a one-sided distribution and then we would not be able to take advantage of 
the asymmetric distribution of u to decompose the overall error term into two different 
stochastic components. 

Other specifications have been examined in previous versions of this chapter, 
such as the simple cumulative density function of a standard normal variable, , which 
like the PA function lies between zero and one, or the ratio /(1-), which allows for 
super-conservation outcomes as does the SC model. The results of these models are not 
shown here as they are very similar to those obtained with the proposed models. 

Finally, equations (5.6) with specification (5.7) or (5.8) for the rebound-effect 
function cannot be estimated if R includes a separated intercept and we assume that 

0
u e  , as in the ALS model. This can be easily seen in the case of the SC function. In 

this case, we can rewrite (1–R) as 0 ze     . A detail that is important here is that the 
estimated intercept of the rebound-effect function is biased because it also captures the 
parameter ߜ଴ that measures the standard deviation of the energy inefficiency term, u. 
That is, 0 0 0̂    , and hence 0  and 0  cannot be estimated simultaneously.79 A 
simple empirical strategy is proposed to deal with this issue. This strategy relies on the 
assumption that our energy inefficiency term follows the same distribution in both 
equations (5.3) and (5.6), so that the ALS estimate of 0  is used to adjust the estimated 
intercept of (1–R) accordingly. 
                                                
78 Most explanatory variables are centred at the sample mean to attenuate convergence problems when 
estimating the model using maximum likelihood techniques. Hence, z=0 for the representative 
observation. 
79 It is worth mentioning that this issue is not important in production economics as both options would 
yield exactly the same results when modelling overall firm inefficiency. However, if we estimate an 
energy demand frontier function, it matters as we would be either magnifying or diminishing the rebound 
effect. 
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5.4. Data and results 
Our empirical application is based on a balanced US panel data set for a sample 

of 48 states over the period 1995 to 2011. That is, we have added four years to the data 
set used in Filippini and Hunt (2012). For the purposes of this chapter attention is 
restricted to the contiguous states (i.e. Alaska and Hawaii are excluded) except Rhode 
Island because of incomplete information: The District of Columbia is included and 
considered as a separate ‘state’. The dataset is based on information taken from three 
sources. Residential energy consumption quantities and prices are provided by the 
Energy Information Administration (EIA). Population and real disposable personal 
income are from the Bureau of Economic Analysis of the US Census Bureau and the 
heating and cooling degree days are obtained from the National Climatic Data Center at 
NOAA. The number of housing units comes from the US Census Bureau and the share 
of detached houses for each state is based on the year 2000 census also obtained from 
the Census Bureau. Descriptive statistics of the key variables are presented in Table 5.3. 

 
Table 5.3. Summary statistics of variables 

 
Variable Description Mean Std. Dev. Min. Max. 

q Energy consumption 229.60 209.42 19.02 932.92 
Y Real disposable personal income 92,620 105,635 6,072 654,780 
P Real price of energy 16.86 5.11 8.22 35.18 

POP Population 5,977 6,407 485 37,692 
HDD Heating degree days 5,134 2,007 555 10,745 
CDD Cooling degree days 1,147 805 128 3,870 
AHS Average household size 2.33 0.17 1.83 2.99 
SDH Share of detached houses 62.27 9.74 13.20 74.00 

 
If we assume a Cobb-Douglas demand function, the econometric specification of 

the model can be written as: 

           0ln ln ln ln 1it Y it P it X it it it itq Y P X R u v            (5.9) 

where subscript i stands for state, subscript t is time, vit ~N+[0,v], and uit~N+[0,u]. Our 
dependent variable (qit) is each state’s aggregate residential energy consumption for 
each year in trillion BTUs. The income variable (Yit) is each state’s real disposable 
personal income for each year in million 1982 US$. The price variable (Pit) is each 
state’s real energy price for each year in 1982 US$ per million BTUs. The set of control 
variables Xit includes Population (POPit), the heating and cooling degree days (HDDit 
and CDDit), the average size of a household (AHSit) obtained by dividing population by 
the number of housing units, and the share of detached houses for each state (SDHi). 

Regarding the rebound-effect function, it is modelled as a function of potential 
economic determinants of households’ demand for energy services, such as household 
size, per capita income, and the price they must pay for energy. That is, z   is specified 
as: 

 0 ln ln lnY P it A ititY POP P AHS         (5.10) 
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If we impose that the rebound-effect function does not depend on any covariate, 
we get the standard energy demand frontier model estimated in Filippini and Hunt 
(2011, 2012). Since the PA rebound-effect function prevents unlikely rebound effect 
outcomes, it is our preferred model. However the specification allowing for super-
conservation outcomes, i.e. the SC model, is also estimated for robustness purposes. All 
models are estimated by maximum likelihood. 

We show in Table 5.4 the estimation results of our preferred frontier energy 
demand models. The standard ALS model that imposes a zero rebound effects is also 
shown for comparison grounds. Simple LR tests indicate that both the PA and SC 
models outperform the ALS model. In general, both models perform quite well as most 
coefficients have the expected sign and almost all are statistically significant at the 5% 
level. This indicates that the results in terms of the estimated coefficients tend to be 
robust across the two different specifications of the rebound effect. 

 
Table 5.4. Parameter estimates (models with time dummy variables) 

 

  ALS PA SC 

 Parameters Est. Std. E. Est. Std. E. Est. Std. E. 
Frontier          
 Intercept 5.012 *** 0.022 5.043 *** 0.018 5.042 *** 0.018 

 ln Yit 0.364 *** 0.037 0.238 *** 0.046 0.236 *** 0.046 

 ln Pit -0.101 *** 0.025 -0.117 *** 0.030 -0.114 *** 0.030 

 ln POPit 0.670 *** 0.038 0.797 *** 0.047 0.799 *** 0.047 

 ln AHSit -1.117 *** 0.053 -1.480 *** 0.086 -1.469 *** 0.088 

 ln HDDit 0.373 *** 0.013 0.347 *** 0.013 0.348 *** 0.013 

 ln CDDit 0.084 *** 0.007 0.080 *** 0.008 0.080 *** 0.008 

 SDHi 0.005 *** 0.001 0.005 *** 0.001 0.005 *** 0.001 
Noise term          
 ln (v) -2.633 *** 0.120 -2.554 *** 0.036 -2.555 *** 0.037 
Rebound-effect        
 Intercept    4.281 *** 0.714 4.124 *** 0.670 

 ln (Y/POP)it    -7.014 *** 2.242 -6.148 *** 2.034 

 ln Pit    1.577 * 0.862 1.446 * 0.769 

 ln AHSit    -14.283 *** 3.640 -12.187 *** 3.165 
Inefficiency term (homoscedastic)        
 ln (u) -2.530 *** 0.258 
Log-likelihood 842.183 875.919 874.951 

Significance code: * p<0.1, ** p<0.05, *** p<0.01 
 

Regarding the energy demand frontier, the estimated coefficients can be directly 
interpreted as elasticities as most of the variables are in logarithmic form. The estimated 
magnitudes of both price and income elasticities are quite reasonable from a theoretical 
point of view. The estimated frontier coefficients suggest that US residential energy 
demand is price-inelastic, with estimated elasticities of -0.10, -0.12 and -0.11 for the 
ALS, PA and SC models respectively. The results also suggest that US residential 
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energy demand is income-inelastic, with an estimated elasticity of around 0.36 for the 
ALS model but only about 0.24 for the models allowing for non-zero rebound effects. 

The positive coefficient on population obtained in all models suggests that 
energy consumption increases with population, given the total amount of disposable 
income in a particular state. For weather, the estimated cooling degree day elasticities 
for all three models are rather high, whereas the estimated heating degree day 
elasticities are much lower. The estimated coefficient of average household size 
suggests that as family size increases there is a tendency to use less energy, indicating 
that there are economies of scale with an estimated elasticity larger than unity in 
absolute terms. For the share of detached houses, the results suggest that there is only a 
marginal positive but significant influence on US residential energy demand.80 

Table 5.5 provides descriptive statistics of the estimated energy efficiency for all 
US states. The ALS values are obtained directly using the Jondrow et al. (1982) 
formula. For the PA and SC models, the efficiency scores are computed dividing the 
estimated value of the overall one-sided term, i.e. (1–R)u, by (one minus) the estimated 
values of the rebound-effect function. We show three types of results in Table 5.6 in 
accordance with different adjustments of the intercept in the rebound-effect function. 
The first set of efficiency scores is obtained assuming that equation (5.10) has “no 
intercept” (i.e. 0 0  ) and hence u contains the whole estimated intercept. The second 
set of efficiency scores labelled “ALS-adjusted” follows the empirical strategy that uses 
the ALS estimate to adjust the estimated intercept of equation (5.10). The third 
efficiency scores are obtained following the opposite strategy to the first one, so in this 
case the rebound-effect function is “not adjusted” as it is assumed here that u does not 
contain an intercept. 

 
Table 5.5. Energy efficiency scores using the PA and SC models 

(models with time dummy variables) 
 

 Mean Std. Dev. Min. Max. 
ALS     
 0.939 0.025 0.831 0.977 
PA     
   No intercept (γ0 = 0) 0.964 0.040 0.703 0.989 
   ALS-adjusted (γ0 = 1.833) 0.911 0.041 0.651 0.958 
   Not adjusted (γ0 = 4.281) 0.455 0.078 0.202 0.847 
SC     
   No intercept (γ0 = 0) 0.987 0.003 0.974 0.997 
   ALS-adjusted (γ0 = 1.593) 0.938 0.013 0.880 0.987 
   Not adjusted (γ0 = 4.124) 0.455 0.079 0.200 0.848 
 

Table 5.5 shows that the estimated average efficiency is between 45.5% and 
98.7%. However, this wide range of results is due to the models that consider that the 

                                                
80 As in Filippini and Hunt (2012), the estimated coefficients of the time dummies (not shown) are 
significant in all models and although the overall trend in the coefficients is generally negative, they do 
not fall continually over the estimation period, reflecting the ‘non-linear’ impact of technical progress and 
other exogenous variables. 
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intercept may either be in the rebound-effect function or in the inefficiency term. If we 
focus on the ALS-adjusted results, the values obtained with the PA and the SC models 
are much more reasonable (91.1% and 93.8% respectively). Similar results were 
obtained by Filippini and Hunt (2012) using several specifications of the homoscedastic 
model. It is worth mentioning that the ALS model produces similar efficiency scores to 
those obtained when the intercept is properly adjusted. The efficiency scores clearly 
decrease when the intercepts of the PA and SC rebound-effect functions are not 
adjusted. By contrast, the largest efficiency scores are obtained when no intercept is 
considered in the rebound-effect function. These two cases define the lower and upper 
bound in the efficiency score estimates. 

Regarding the rebound-effect function, recall from Table 5.4 that the coefficients 
of both income per capita and price are always statistically significant. The theory on 
rebound effects often predicts that they should decline with income, and the coefficient 
of this variable is negative in both models. This implies that the states with larger 
income levels have larger energy efficiency elasticities in absolute values, and therefore 
their rebound effects are lower. This seems to confirm the aforementioned hypothesis 
and is in line with the little available evidence on this issue in the empirical literature 
measuring rebound effects. On the other hand, the positive coefficient obtained for the 
price variable suggests that energy-inefficient states have more elastic energy demands. 
This result is expected in theory as energy-inefficient states tend to spend a larger share 
of their income on energy ceteris paribus, and hence the so-called income effect is more 
intense. 

Our comprehensive frontier model of energy demand allows us to examine the 
compliance with some of the restrictions often assumed in previous studies devoted to 
estimating rebounds effects, but with different econometric techniques. For instance, 
most studies estimate the own-price elasticity of the demand for energy to get an 
indirect measure of the rebound effect. The validity of these papers hinges upon the 
assumption that consumers respond in the same way to decreases in energy prices as 
they do to improvements in energy efficiency. In particular, most of the empirical 
literature on rebound effects assumes that: 

1E P         (5.11) 

We label this restriction as the assumption of equivalence in responses. Previous 
papers assume that equation (5.11) is fulfilled for all observations. As our model 
provides elasticities for both energy prices and energy efficiency, it allows us to 
examine (or even test) this issue in a very simple way. Thus, let us rewrite equation 
(5.11) as follows: 

              ,      1P Ea b a b          (5.12) 

Testing that 1a b    in an auxiliary regression allows us to examine the 
fulfilment of this assumption. In the Appendix (Section 5.6) we show that if we use a 
PA specification of the rebound-effect function, it is possible to directly test this 
assumption. In this sense, the Wald test carried out using the estimated parameters of 
our model suggests that energy and price elasticities are statistically different in our 
case. As a consequence, the absolute value of the elasticity of price in the frontier 
cannot be used for measuring the rebound effect as suggested by equation (5.11). 

On the other hand, Sorrell and Dimitropoulos (2008) pointed out that the 
estimated price elasticities in previous studies might be biased if energy efficiency is not 
explicitly controlled for. The nature of this endogeneity problem is clear in our 
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framework if the rebound-effect function depends on the energy price and efficiency is 
ignored because the overall error term in this case would include R and hence it would 
be correlated with the energy price in the frontier. In this sense, our extended frontier 
model clearly shows that it makes sense to follow Filippini and Hunt (2012) and 
estimate a standard energy demand model using the empirical strategy proposed by 
Mundlak (1978) to control for potential endogeneity problems. 

We have also estimated our energy demand model including the Mundlak’s 
adjustment but this adjustment does not affect our estimated rebound effects.81 This is 
an expected result because our specification of the rebound-effect function already 
controls for potential endogeneity problems that would appear if we ignore that R is 
correlated with some of the energy demand drivers. The robustness of our results might 
also indicate that, given our specification of R, there are not significant traces of 
endogeneity associated to the inefficiency term, u, and hence there is no need to further 
extend our model to deal with this extra and cumbersome difficulty.82 

Table 5.6 provides descriptive statistics for the overall US estimated rebound 
effects using the PA and SC models. It should be recalled that there are no values larger 
than unity in the PA model because its specification prevents backfire outcomes. In 
addition to the “ALS-adjusted” specification, for comparative purposes we show the 
estimated rebound effects that are obtained if the rebound-effect functions do not 
contain an intercept or if the estimated intercept is not adjusted (i.e. it completely 
belongs to the rebound-effect function). This table shows that the average rebound 
effect is 79% when our preferred PA model is used and the intercept is adjusted using 
the standard deviation of u of the ALS model. It decreases to 56% when the SC model 
is used. 
 

Table 5.6. Rebound effects using the PA and SC models (models with time dummy 
variables) 

 

 Mean Std. Dev. Min. Max. 
PA     
   No intercept (γ0 = 0) 0.505 0.269 0.033 0.982 
   ALS-adjusted (γ0 = 1.833) 0.791 0.208 0.177 0.997 
   Not adjusted (γ0 = 4.281) 0.966 0.052 0.713 1.000 
SC     
   No intercept (γ0 = 0) -1.178 3.131 -17.866 0.969 
   ALS-adjusted (γ0 = 1.593) 0.557 0.637 -2.835 0.994 
   Not adjusted (γ0 = 4.124) 0.965 0.051 0.695 1.000 
 

Generally speaking, our rebound effects tend to be larger than those obtained in 
the empirical literature using micro-data on the direct rebound effects of household 
energy demand (see our discussion in Section 5.2). Two different issues can partially 
                                                
81 Only a couple of the estimated coefficients lose statistically significance. 
82 This additional source of endogeneity could be addressed if we allow u to depend on a set of covariates 
(such as income and energy price). Actually, we have tried to estimate some versions of this model 
without success. This can be taken as evidence of the lack of additional endogeneity problems, but it also 
might be caused by the fact that the resulting likelihood function is much more complex (i.e. non-linear) 
than when u is homoscedastic. 
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explain this result. First, note that our estimated rebound effects involve more than one 
energy service, and hence they are not only capturing direct but also indirect effects. In 
addition, it should be pointed out that our results are even lower than those obtained in 
several papers - such as Lenzen and Dey (2002), Alfredsson (2004) or Mizobuchi 
(2008) - that also get large direct and indirect rebound effects, even reaching effects 
larger than 100%, i.e. backfire outcomes. A second reason has to do with the curvature 
of the estimated rebound-effects functions. In Figure 5.1 it is shown that the proposed 
rebound-effect functions are concave, at least when the value of z   in (5.7) and (5.8) 
tends to be positive, as happens in our case due to the positive value of the intercept and 
the fact that all variables have been centred with respect to the sample mean. Thus, our 
rebound effect estimates are likely to be upwardly biased because the curvature imposed 
on our R functions “forces” the rebound effect to increase rapidly when we move away 
from the zero value. Research devoted to finding more flexible yet still simple rebound-
effect functions that relax this curvature would be desirable in the near future. 
 

Figure 5.1. Curvature of the estimated rebound-effect functions 
 

 
 

 
 

On the other hand, it is worth mentioning that the estimated rebound effects in 
Table 5.6 is about 97% in both models when it is assumed that the estimated intercept 
completely belongs to R. Hence, contrary to what happens in the efficiency estimates 
this procedure gives an upper bound for the rebound effect. These extremely large 
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values probably suggest that R is upward biased, so that the estimated u is also upward 
biased (i.e. the true u is likely less than 1). Assuming, by contrast, that the rebound-
effect function does not contain an intercept, the estimates produce an average rebound 
effect of about 50% for the PA rebound-effect function (and negative for the SC model). 
This outcome is, however, due to the fact that all variables have been centred with 
respect to the sample mean, and thus we are imposing that R=0.5 for the average state. 
These results thus point out the importance of adjusting the estimated intercepts when 
computing rebound effects using an SFA approach. 

Regarding the issue of allowing or not for super-conservation outcomes, Figure 
5.2 shows the relationship between the ALS-adjusted rebound effects obtained using 
our proposed models. This figure reveals that the rebound effects in which super-
conservation outcomes are not restricted (SC model) are in practice monotonic 
transformations of the rebound effects obtained using models that only allow for partial 
rebound effects (PA model). In other words, allowing for super-conservation outcomes 
only has an effect on the magnitude of the rebound effects, but not on the relative values 
across observations. Overall, these results indicate that the ranking of rebound effects 
tend to be robust across different specifications of the R function. 
 

Figure 5.2.Rebound effects with and without super-conservation outcomes (ALS-
adjusted intercepts) 

 

 
 

In Table 5.7 we show the parameter estimates of both the PA and SC models 
when they are estimated without time dummies for robustness analysis. These models 
are presented to check the sensitivity of the approach proposed to measure rebound 
effects, as these dummies are likely to be capturing - among other common temporal 
effects - technological improvements in the energy efficiency of households’ equipment 
and appliances over time. 

Again, both models perform quite well as most coefficients have the expected 
sign and almost all of them are statistically significant. Secondly, the income per capita 
and price variables of the rebound-effect function again have the expected signs and 
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temporal dummies) in order to obtain unbiased estimates of the price and income 
elasticities. This may be a significant problem especially in those analyses aiming at 
estimating rebound effects through the own price elasticity. Moreover, in the rebound-
effect function the coefficient of the price variable is positive and the coefficient of the 
income variable is negative, indicating that well-off states have lower rebound effects. 
In Table 5.8 we can see that both efficiency scores and rebound effects hardly change, 
indicating that the specification of technical progress in our model does not affect our 
results. As we have seen previously, the rebound-effect function without adjustment and 
the rebound effect without an intercept show the lower and upper bounds respectively 
for both the efficiency score estimates and the rebound effect estimates. Encouragingly, 
these results indicate that, overall, the estimated efficiencies and rebound effects tend to 
be robust to the different specifications of the technical progress in the frontier. 
 

Table 5.7. Parameter estimates (models without time dummy variables) 
 

  ALS PA SC 

 Parameters Est. Std. E. Est. Std. E. Est. Std. E. 
Frontier          
 Intercept 4.937 *** 0.009 4.992 *** 0.008 4.990 *** 0.008 

 ln Yit 0.259 *** 0.033 0.114 *** 0.042 0.113 *** 0.041 

 ln Pit -0.207 *** 0.017 -0.198 *** 0.021 -0.196 *** 0.021 

 ln POPit 0.776 *** 0.035 0.921 *** 0.043 0.923 *** 0.043 

 ln AHSit -1.113 *** 0.058 -1.430 *** 0.080 -1.422 *** 0.081 

 ln HDDit 0.353 *** 0.013 0.326 *** 0.012 0.326 *** 0.012 

 ln CDDit 0.079 *** 0.007 0.070 *** 0.007 0.069 *** 0.007 

 SDHi 0.004 *** 0.001 0.004 *** 0.001 0.004 *** 0.001 
Noise term          

 ln (v) -2.738 *** 0.108 -2.518 *** 0.036 -2.520 *** 0.037 
Rebound-effect        

 Intercept    4.014 *** 0.585 3.881 *** 0.539 

 ln (Y/POP) it    -6.855 *** 1.930 -5.979 *** 1.720 

 ln Pit    1.326 * 0.743 1.190 * 0.651 

 ln AHSit    -12.592 *** 3.101 -10.719 *** 2.696 
Inefficiency term (homoscedastic)        

 ln (u) -2.239 *** 0.117       
Log-likelihood  804.455 839.947 839.194 

Significance code: * p<0.1, ** p<0.05, *** p<0.01 
 

Finally, our results might help policy makers to design more effective energy 
saving schemes. For instance, Figure 5.3 shows the overall relationship between energy 
efficiency and the rebound effect using our preferred model, the PA specification. If we 
sort the US states according to their average efficiency scores and then check their 
average rebound effects, we can get an idea about the correlation between these two 
measures. The average energy efficiency of the states in the fourth quartile is 86.3%. As 
usual in a frontier analysis framework, energy savings are potentially larger in those 
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states with lower efficiency scores. Unlike standard SFA models, our models allow us 
to know whether the potential reductions in energy inefficiency are passed on entirely to 
final energy savings. As the states of the fourth quartile have also the lowest rebound 
effect (56.7%) we have more reasons to encourage energy efficiency improvements in 
these states. On the other hand, it is worth mentioning that although efficiency and 
rebound effects tend to increase as we move down the quartiles, the gap between both 
measures decreases and reaches a minimum difference in the first quartile where the 
most energy-efficient states (93.3%) are also those with the largest rebound effect 
(90.9%). This result indicates that as the efficiency of US states increases, households 
are less sensitive to changes in efficiency and they do not reduce their energy 
consumption as much as would be expected if we are swayed by what happens to the 
states with lower levels of efficiency. 
 

Table 5.8. Energy efficiency scores and rebound effects using the preferred PA model 
(model without time dummy variables) 

 

 Mean Std. Dev. Min. Max. 
Energy Efficiency Scores     
   No intercept 0.957 0.044 0.671 0.985 
   ALS-adjusted 0.886 0.046 0.603 0.955 
   Not adjusted 0.456 0.083 0.150 0.861 
Rebound effects     
   No intercept 0.506 0.258 0.042 0.970 
   ALS-adjusted 0.805 0.190 0.224 0.995 
   Not adjusted 0.961 0.054 0.708 0.999 
 

Figure 5.3. Average energy efficiency scores and rebound effects using the PA model 
 

 
 

Focusing on the minimum rebound effects on Table 5.6, we can see that 
although the rebound effect is large on average, some US states have very small 
rebound effects compared to others. It can be seen in Figure 5.3 that there is a clear 
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correlation between energy efficiency and rebound effects, but this does not mean that 
large energy efficiencies necessarily imply large rebound effects. Figure 5.4 reveals the 
heterogeneity that exists in our US sample. Those states with low energy efficiency 
(below the median) and a low rebound effect (also below the median) are highlighted in 
dark orange. These states are identified here as priority targets for energy policies, since 
improvements of energy efficiency in these states may yield large reductions in energy 
consumption (and probably greenhouse gas emissions).83 On the other hand, those states 
marked in the lightest orange have large energy efficiencies as well as large rebound 
effects and therefore they should be labelled as the lower-priority targets. The 
intermediate orange highlights those states that have either low energy efficiency or a 
low rebound effect and hence cannot be identified as priority objectives. In summary, a 
sound policy would be not only focused on the most inefficient states but also on those 
with low rebound effects where the policy would have a greater overall effect over 
energy consumption. 
 

                                                
83 It should be stressed that if the average value is used instead the median to classify the states, just seven 
(Connecticut, Illinois, Maryland, Massachusetts, New Jersey, New York and Utah) would be below the 
average value of both efficiency and rebound effect, and hence only these would be primary targets. 
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Figure 5.4. Map of US states in which priority targets to reduce energy consumption are identified 
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5.5. Conclusions  

This chapter highlights that the energy demand frontier model applied in the 
previous chapter and originally proposed by Filippini and Hunt (2011, 2012) to get 
country-specific energy efficiency scores, is closely linked with the so-called rebound 
effect, a phenomenon widely examined in the literature on energy economics. In 
particular, we have shown that the standard specification of the energy demand frontier 
model basically imposes a rebound effect equal to zero, something that clashes with the 
empirical evidence obtained in the literature on the rebound effect. 

Based on the stochastic frontier approach, a new empirical strategy is proposed 
in this chapter to measure the rebound effect associated to energy efficiency 
improvements. Our more comprehensive energy demand frontier model avoids the 
‘zero’ rebound-effect assumption through the estimation of a rebound-effect function 
that regulates the final effect of potential efficiency improvements on energy 
consumption. Two specifications for the rebound-effect function that preclude backfire 
outcomes are presented here. While the SC model allows for super-conservations 
outcomes, the PA model only allows for partial rebound effects. We however advocate 
using the latter model because it avoids obtaining too large (negative) rebound effects 
for some observations that are difficult to justify in economic terms. 

We illustrate the approach proposed to measuring rebound effects with an 
empirical application of US residential energy demand data for 48 states over the period 
1995-2011. The coefficients of the variables included in the models are highly 
significant, show the expected signs and have a quite reasonable magnitude regardless 
of the specification of the rebound-effect function used. Regarding the efficiency scores 
there is not much variation between estimated (PA and SC) models and they do not 
change much in response to the different options used to obtain the intercept of the 
rebound-effect function. 

In relation to the rebound effects, values that are too large and too low are 
obtained if we ignore or do not adjust the estimated intercept of the rebound-effect 
function. Although the estimated rebound effects vary with the functional form, the 
position of each observation does not change as the SC rebound effects is a monotonic 
transformation of the rebound effects obtained with the PA model. This is an important 
result as the relative position of each state in terms of both energy efficiency and 
rebound effect rankings permits the identification of states where the enforcement of 
policies with the aim of promoting energy efficiency would be more effective. 
Compared to those analyses aiming at estimating rebound effects through the own price 
elasticity, our empirical approach suffers less from biases when technical progress is 
ignored. 

To finish up, we would like to insist that this is the first attempt to use the 
stochastic frontier framework to measure rebound effects associated to energy 
efficiency improvements. In this sense, we have identified a few number of research 
areas that can be explored by other researchers in the next future in order to better 
estimate the rebound effects using a similar empirical strategy than the proposed here. 
This likely would imply the use of more sophisticated techniques than those proposed in 
this chapter.  

For instance, a key issue is the identification of the true intercept of the rebound-
effect function. We have proposed a simple empirical strategy to split the estimated 
intercept into its two components but other alternative approaches could be used to deal 
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with this problem. A promising strategy could be treating the correction factor as an 
additional one-sided random term and, hence, estimating a model with two 
multiplicative one-sided random terms. Another issue has to do with the concavity 
problems of the proposed rebound-effect functions, which tend to overestimate the 
rebound effect. Although this is likely an issue related to our data set, future research 
will be likely focused on the use of alternative parametric specifications of the rebound 
function. In this sense, it should be also explored the potential use of semiparametric 
regression methods to relax the current concavity constraints. We also encourage 
specific research focused on the lack-of-backfire assumption used in our energy demand 
frontier model. 
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5.6. Appendix 
Testing the assumption of equivalence in responses 

 

Let us assume that the demand function is Cobb-Douglas and we use the SC 
rebound-effect function. In this case, the price elasticity of energy demand can be 
written as: 

 1 lnP P P R E         (5.13) 

where P  is the frontier price elasticity and P is the coefficient of ln P in the SC 
rebound-effect function. As  1E R    , equation (5.13) can be rewritten now as 
follows: 

 lnP P P EE         (5.14) 

In summary, equations (5.12) and (5.14) jointly indicate that the equivalence of 
responses assumption will be satisfied in our model if we cannot reject the following 
null hypothesis: 

0
ˆ ˆ: ln 1P PH E        (5.15) 

Testing this hypothesis is difficult as energy efficiency varies across states and 
over time. An alternative way to test the equivalence of responses assumption is to test a 
sufficient (but weaker) condition for the fulfilment of the above hypothesis evaluated at 
the estimated mean of the energy inefficiency term: 

 0
ˆ ˆˆ: 0P PH E u        (5.16) 

As we assume that u=-ln E follows a half-normal distribution, the expected 
mean in (5.16) is simply a function of u and hence the sufficient condition in (5.16) can 
be finally expressed as follows: 

0
ˆ ˆ ˆ: 2 0P P uH         (5.17) 

If instead we use the PA rebound-effect function, the sufficient condition in 
(5.16) becomes: 
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Chapter 6 
 
Conclusions and future research 
 
 

This thesis is formed by four chaptered essays that cover different topics in 
energy economics. In these essays, efficiency analyses that mainly involve the 
estimation of stochastic frontier models are applied to deal with energy-related issues in 
diverse sectors of the economy. 

The first two essays are specifically focused on the efficiency analysis of 
electricity transmission firms. In the first essay, the effect of potential determinants of 
firms’ efficiency, primarily weather conditions, is studied through the estimation of 
heteroscedastic models. In the second essay, a latent class model is proposed to deal 
with technological and environmental differences as a first step to carry out standard 
benchmarking. In the remaining essays, energy demand frontier models are estimated to 
obtain information about energy efficiency, i.e. the potential reduction in energy 
required to provide products and services, and the so-called rebound effect in energy 
consumption. In the third essay, a latent class model is applied again, but in this case 
with the aim of finding distinct energy demand functions across countries for the 
transport sector in Latin America and the Caribbean. The last essay merges two 
literatures and proposes the use of the stochastic frontier approach to directly measure 
the magnitude of the rebound effect, and applies this model to the US residential energy 
sector. 

In Chapter 2, the economic characteristics of the technology and the managerial 
efficiency of 59 US electricity transmission firms for the period 2001-2009 are 
analysed. The main contribution of this work is to study the effect of weather on costs 
of the electricity transmission grid. The estimated set of heteroscedastic models allow us 
to conclude that weather adversely affects electricity transmission costs primarily 
through inefficient management and not through the technology. That is, the estimated 
costs of a fully efficient firm are not going to be increased because of adverse weather 
conditions; an issue that must be taken into account when the costs of these firms are 
analysed by regulators. 

This essay allows us to study economic features of firms’ technology such as the 
economies of scale and density. In particular, the empirical model that is estimated 
allows us to state that most electricity transmission networks exhibit natural monopoly 
characteristics. We have also found that, despite the US regulator’s effort aiming to 
improve firms’ performance, the average efficiency level in this industry has decreased 
over the period analysed, showing however an increasing divergence among firms. This 
essay analyses the potential effect of certain variables such as weather conditions on 
firms’ efficiency. In this sense, we have found that more adverse conditions generate 
higher levels of inefficiency which may indicate that it is more difficult to manage firms 
that operate in regions with unfavourable weather. 
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The estimation of a latent class model allows us to perform a case-by-case 
analysis to identify if weather conditions have a direct effect on firms’ costs or if they 
indirectly affect those firms through inefficiency. The results suggest that only the costs 
of a small number of firms could be adjusted downwards by the regulators due to the 
influence of bad weather. Firms should therefore not use unfavourable weather 
conditions as an excuse to demand that the regulators purge their cost data. 

There are natural extensions of the first chapter than could be carried out in the 
next future. Since weather can be understood as a ‘single phenomenon’ that is 
composed by a set of different events, the analysis could be extended by using some 
type of aggregates or composites that would include a much larger list of events that 
may affect firms’ performance. Moreover, since the effect of weather variables on 
firms’ cost can be complex and non linear, their inclusion may require abandoning the 
parametric framework and using a more flexible empirical approach. This will probably 
imply the application of semi-parametric models similar to the SPSCM introduced by Li 
et al. (2002) and extended by Sun and Kumbhakar (2013), or the StoNED method 
recently proposed by Johnson and Kuosmanen (2011) and Kuosmanen (2012). 

In Chapter 3, the use of a latent class model approach is advocated to segment 
samples of energy firms into homogeneous groups before carrying out a standard 
benchmarking analysis using DEA, the most widely technique applied in energy 
regulation to measure firms’ performance. Through a simulation exercise, it is shown 
that combining the latent class model and DEA outperforms other, less robust and more 
arbitrary, procedures to split samples of firms. A practical application of this method to 
the US electricity transmission sector is presented. 

A proper (and fair) measurement of firms’ performance in an incentive 
regulation framework is highlighted again in this chapter, but in this case it is 
emphasised that unobserved differences in technology or environmental conditions 
should be taken into account in energy regulation even though most of that 
heterogeneity is not observed by the regulator. The proposal of using a latent class 
model to deal with this issue is based on the theoretical advantages of using a sample 
separating procedure that precisely takes into account potential differences in 
technology or environmental conditions to split the sample of firms. The performed 
simulation analysis that plays with different degrees of technological differences and 
firms scale, confirms the theoretical advantage of the latent class model over other 
sample separating methods such as the widely used k-means cluster analysis. Compared 
to other simpler and ad-hoc methods, the proposed procedure is the best to identify the 
technological group each firm really belongs to, and the efficiency levels obtained using 
this procedure are the closest to real ones (i.e. those generated in the simulation). It is 
also shown that the discriminatory capacity and the assignment success of the latent 
class model increase when large differences in technologies and scale arise, a feature 
that is crucial for any sample separating method. 

The procedure is illustrated with an empirical application to the same database 
of electricity transmission firms analysed in the previous chapter. Two different groups 
or technologies are found using the latent class approach. Although consecutive 
increases in the efficiency scores are observed when we move from one class to two 
classes and so on, the largest change in efficiency scores arises when we move from a 
one-class model to a model with two classes, which is precisely the preferred model. 
Similar results are obtained when weather variables and the demand growth are 
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included as environmental factors that may influence the technologies adopted by the 
firms. 

Future extensions of this chapter will involve the use of alternative DGPs in the 
simulation, i.e. exploring the use of different approaches for generating the data with the 
aim of knowing more about the performance of the latent class models. Following 
Kuosmanen et al. (2013), in addition to the specific characteristics of the regulatory 
models, the observed features of empirical data will be taken into account to adjust the 
DGP. In that sense, the simulated scenarios will be extended trying to incorporate 
additional technologies, correlations between outputs and the influence of 
environmental factors. The outcome of these simulations will probably be interesting 
not only from an energy industry point of view but also to the analysis of unobserved 
heterogeneity in other fields of research. 

In Chapter 4, the stochastic frontier approach is used to estimate aggregate 
energy demand functions in the transport sector in a group of countries of Latin 
America and the Caribbean that represent the 43% of total energy consumption in this 
region. The use of these models to measure energy efficiency allows us to deal with 
some of the disadvantages of the energy intensity indicators commonly used in 
international comparisons. As far as we are aware, this is the first application of the 
stochastic energy demand frontier approach to measure energy efficiency in the 
transportation sector. This model is nested in a latent class structure to control for the 
likely large unobserved heterogeneity among these countries, and test for the existence 
of groups of countries with different demands associated to distinct price and income 
elasticities. 

The database used in this essay consists of a sample of 24 Latin American and 
Caribbean countries for the period 1990-2010. The energy price, which is, in addition to 
income, one of the most relevant variables in a demand analysis, is obtained using a 
transitive multilateral index that allows for proper comparisons across countries over 
time. Energy consumption in the transportation sector consists of several components 
and therefore, it is required to add each individual price to obtain an index of energy 
price. However, no index price is provided by any statistical agency for the total sample 
of countries and hence it has been calculated for this essay. 

Generally speaking the ranking of efficiency scores that is obtained when a 
single demand is estimated is strongly correlated (70%) with the ranking derived from 
the widely-used energy intensity indicators. The lack of correlation observed for some 
countries over time indicates, however, that variations in energy intensity indicators 
may be associated with circumstances other than changes in energy efficiency. On the 
other hand, three demands with quite different income and price elasticities are found 
using a latent class model. For instance, price elasticity goes from -0.16 for the most 
inelastic demand to -0.41 for the most elastic. However, when a single demand is 
estimated the price elasticity is the same for all countries and equal to -0.23. The class 
membership probabilities depend on income, area and population; and reflect that those 
countries with higher per capita income and lower population density tend to have the 
lowest price elasticity. The estimation of this model allows identifying the most energy 
efficient countries in each class that, in fact, coincide with those that have developed 
policies to improve public transport in recent years. 

Regarding futures lines of research, the existence of possible asymmetric effects 
on the energy demand with respect to changes in energy prices and income will be 
analysed through the decomposition of price and income used in papers such as Gately 
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and Huntington (2002), Adeyemi and Hunt (2007) or Adofo et al. (2013). Although the 
reversibility of prices has been previously analysed in the transport sector (see Dargay, 
1992; Gately, 1992; and Dargay and Gately, 1997) this will be the first time that this 
approach is applied in an energy demand frontier model. Furthermore, potential energy 
and greenhouse gas emissions savings derived from the estimates presented here will be 
estimated. Another line of research is the analysis of rebound effects using a model 
analogous to the suggested in the following chapter. The rebound effect has been 
broadly studied in the transport sector, but there is a lack of empirical evidence for the 
case of Latin America and the Caribbean, which would surely make these results 
appealing for researchers and practitioners. 

Finally, in Chapter 5, energy demand frontier models are estimated for the US 
residential energy sector, but in this case we have extended the traditional model to 
measure the so-called rebound effect that tends to attenuate the expected savings in 
energy consumption associated to improvements in energy efficiency. So far this issue 
has not been analysed using the stochastic frontier approach and hence the major 
contribution of this essay is just linking both literatures. Numerous studies have used 
different approaches to measure the different types of rebound effects. The most popular 
method relies on the estimation of price elasticities of the demand for energy, but it only 
provides an indirect measure of the potential rebound effect under strong assumptions 
about consumer behaviour. 

In this chapter, the standard energy demand frontier model and the implicit 
assumptions of this model are presented, and it is suggested the estimation of a model 
that allows obtaining non-zero rebound effects through a correction factor that mitigates 
or intensifies the effect of efficiency improvements on energy consumption. Two 
alternative specifications are proposed for the rebound-effect function, and also a 
strategy to deal with the identification of the intercept of this function. The 
specifications of these rebound-effect functions are related to the demand for energy 
services. 

The empirical application is based on a US panel data set for a sample of 48 
states over the period 1995-2011. The average rebound effect obtained is somewhat 
high (between 56 and 80%) compared with the values obtained in the literature, but it 
may be overestimated due to the concavity of the functional form assumed for the 
rebound-effect function. Despite of this, our models allow a robust identification of 
states in which policies to promote energy efficiency would be more successful. 
Furthermore, using the proposed model, the rebound effect measures are not altered by 
the way in which the effect of time is incorporated in the demand, which contrasts with 
the bias that arises when they are obtained through their own price elasticity estimates. 

Since this work is a first proposal of using a frontier approach to estimate 
rebound effects, future research on this topic must deal with different issues. Firstly, the 
identification of the true intercept of the rebound-effect function should be further 
analysed. A hopeful strategy is to consider the adjustment factor as an asymmetric 
random term and estimating the model including the product of two one-sided random 
terms, i.e. rebound effect multiplied by inefficiency. Secondly, flexible and tractable 
functional forms should be proposed in order to depict the full range of possible 
rebound effects in the results. The use of alternative parametric specifications of the 
rebound effect function could be deeply analysed. Continuing on from this, with the aim 
of relaxing the concavity restrictions on the rebound-effect functions proposed, the use 
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of alternative approaches, such as semi-parametric regression methods, also could be 
explored. 
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Resumen y conclusiones en español 
 
 

Esta tesis está formada por cuatro ensayos que tratan sobre diferentes temas 
encuadrados en la economía energética. En ellos se llevan a cabo análisis de eficiencia, 
generalmente a través de la estimación de fronteras estocásticas, con el objetivo de 
estudiar cuestiones relacionadas con la energía en distintos sectores de la economía. 

Los dos primeros ensayos están centrados en el análisis de la eficiencia de las 
empresas de transmisión eléctrica estadounidenses. En el primero, se estudia la 
influencia de diversos factores, principalmente condiciones meteorológicas, que pueden 
afectar a la gestión de estas empresas. En el segundo, se aplica un enfoque de clases 
latentes para controlar por diferencias tecnológicas y/o ambientales antes de realizar una 
evaluación comparativa entre empresas. En los ensayos restantes, se estiman funciones 
de demanda de energía frontera para obtener información sobre la eficiencia energética 
de los países y el llamado efecto rebote en el consumo de energía. En el tercer ensayo se 
emplea de nuevo un enfoque de clases latentes, en este caso con el objetivo de 
identificar distintas funciones de demanda de energía en el sector transporte de América 
Latina y el Caribe. En el último ensayo se propone la estimación de modelos frontera 
que incorporan en su especificación funciones de efecto rebote, lo que permite medir 
directamente la magnitud de este fenómeno, mostrándose una aplicación práctica para el 
caso del sector de energía residencial estadounidense. 

En el primer ensayo se analizan las características económicas de la tecnología y 
la eficiencia en la gestión de las empresas de transporte eléctrico en Estados Unidos. La 
principal contribución de este trabajo es estudiar el efecto de la meteorología en los 
costes de la red de transporte eléctrico. Los modelos heterocedásticos estimados 
permiten concluir que una meteorología adversa afecta a la red eléctrica a través de una 
gestión ineficiente de las empresas y no a través de la tecnología. En otras palabras, los 
costes de una empresa totalmente eficiente no se ven afectados por la meteorología, 
cuestión que debe ser tenida en cuenta cuando los costes de estas empresas son 
analizados por los reguladores. 

En este ensayo se presenta una visión general del proceso de reestructuración en 
la industria eléctrica que ha sido común a lo largo de las últimas décadas en gran parte 
de países. Estas reformas han tenido como consecuencia la desintegración vertical de 
este sector en diferentes segmentos que han recibido distintos tratamientos por parte de 
los gobiernos. La aplicación de métodos de evaluación comparativa tratando de 
incorporar diferentes factores ambientales, se ha convertido en una cuestión primordial 
con el objetivo de obtener mediciones fiables de la actuación de las empresas reguladas. 
Sin embargo, esta cuestión ha sido desatendida en el análisis económico de las redes de 
transporte eléctrico debido a la escasez de datos empíricos. El establecimiento de tarifas 
adecuadas en la red, es destacado frecuentemente como una cuestión clave debido a su 
influencia sobre el funcionamiento de toda la red eléctrica y plantea la necesidad de 
realizar comparaciones apropiadas entre empresas. En el ensayo se presenta un resumen 
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de los diversos modelos desarrollados dentro de los enfoques utilizados habitualmente 
en los análisis de eficiencia (paramétrico, no paramétrico y semi-paramétrico) que 
tienen en cuenta las condiciones ambientales. 

El modelo empírico que se presenta es una frontera estocástica de costes que 
incluye una serie de outputs, el tamaño de la red, los precios de los inputs, un listado de 
dummies regionales y una tendencia temporal. La estimación de los parámetros de este 
modelo permite estudiar características económicas de las empresas como economías de 
densidad y de escala. De forma adicional al tradicional modelo ALS, se presentan varias 
especificaciones de modelos heterocedásticos surgidos recientemente en la literatura de 
fronteras estocásticas para incluir el efecto de determinantes de la eficiencia: RSCFG, 
RSCFG-μ, KGMHLBC y GEM. Además de las variables incluidas en la función de 
costes, se incorporan como determinantes de la eficiencia, variables meteorológicas 
(temperatura, precipitaciones y viento), su interacción con la estructura de costes de las 
empresas y dos variables que miden el crecimiento medio de la demanda para cada 
empresa en el período analizado. 

La base de datos utilizada está compuesta por 59 empresas de transporte 
eléctrico estadounidenses para el período 2001-2009. Estos datos fueron obtenidos 
esencialmente de tres fuentes, el FERC form 1, el US Bureau of Labor Statistics y el 
National Climatic Data Center perteneciente al NOAA. A partir de las estimaciones, 
puede observarse que la mayor parte de las empresas analizadas exhiben características 
de monopolio natural y que la eficiencia en esta industria ha decrecido a lo largo del 
período analizado, apreciándose a su vez una creciente divergencia en la actuación de 
las empresas. Estos resultados sugieren que este segmento del sector eléctrico debería 
seguir siendo regulado y que existe un amplio margen para la intervención regulatoria 
con el fin de mejorar el funcionamiento de las empresas. En cuanto a los determinantes 
de la eficiencia, se observa que las condiciones meteorológicas adversas generan 
mayores niveles de ineficiencia, lo que quizá indique que es más difícil gestionar 
aquellas empresas que operan en regiones con condiciones meteorológicas 
desfavorables. Se observa también que invertir en capital es una mejor estrategia que 
incrementar los costes operativos para tratar de contrarrestar la influencia de la 
meteorología. Otro resultado destacable es que la actuación de las empresas es mejor 
cuando la demanda tiende a ser estable ya que las empresas no tienen que incurrir en 
costes de ajuste adicionales. 

Por otra parte, se estima un modelo de clases latentes que permite realizar un 
análisis caso por caso para identificar si las condiciones meteorológicas tienen un efecto 
directo sobre el coste de las empresas o si por el contrario estas condiciones afectan 
indirectamente a las empresas a través de la ineficiencia. Los resultados sugieren que 
únicamente los costes de un pequeño número de empresas podrían ser ajustados a la 
baja por los reguladores debido a la influencia del mal tiempo. La gran mayoría de 
empresas no debería por tanto utilizar la meteorología como excusa para exigir que los 
reguladores purguen o ajusten sus datos sobre costes. Debido a que la meteorología 
puede ser individualmente entendida como un conjunto de fenómenos, en el futuro se 
espera extender el análisis utilizando algún tipo de agregado que permita incluir una 
mayor lista de eventos que puedan influir sobre la actuación de las empresas. Además, 
como el efecto de la meteorología es complejo y probablemente no lineal, su inclusión 
en el modelo quizá requiera abandonar el marco paramétrico y utilizar un enfoque 
empírico más flexible. Esto probablemente lleve a la aplicación de modelos semi-
paramétricos similares al SPSCM presentado por Li et al. (2002) y extendido por Sun y 
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Kumbhakar (2013), o el método StoNED recientemente propuesto por Johnson y 
Kuosmanen (2011) y Kuosmanen (2012). 

En el segundo ensayo se propone el uso de un modelo de clases latentes para 
realizar segmentaciones de muestras de empresas energéticas antes de llevar a cabo 
evaluaciones comparativas de las mismas utilizando DEA, una técnica no paramétrica 
para medir la actuación de las empresas ampliamente utilizada en regulación energética. 
A través de una simulación, se muestra que este enfoque supera a otros procedimientos 
menos robustos y más arbitrarios de dividir muestras de empresas. Se presenta una 
aplicación práctica de este método para el sector de transporte eléctrico. 

La importancia de evaluar de forma justa la actuación de las empresas se 
menciona de nuevo en este ensayo, pero en este caso se enfatiza la necesidad de 
controlar por la heterogeneidad y las diferencias inobservables en la regulación 
energética. Si estas características no son tenidas en cuenta, posibles diferencias 
(vinculadas a distintos entornos o tecnologías) en la actuación de las empresas de 
servicios públicos, pueden ser erróneamente atribuidas a cuestiones que están bajo el 
control de las empresas y en consecuencia, los índices de eficiencia obtenidos de estos 
análisis pueden estar sesgados. En ese sentido, la propuesta de utilizar un enfoque de 
clases latentes para hacer frente a estas cuestiones se basa en las ventajas teóricas de 
este procedimiento para encontrar diferencias en el comportamiento de las empresas. 

Este enfoque agrupa empresas mediante la búsqueda de diferencias en los 
parámetros de producción o de costes, tiene en cuenta la misma relación entre inputs y 
outputs que se analiza con posterioridad en la segunda etapa, y no es mucho más 
sofisticado que otros métodos de segmentación, por lo que puede ser implementado 
utilizando software estándar. Otra cuestión que otorga sencillez a la aplicación del 
procedimiento propuesto para la regulación energética, es que pueden utilizarse las 
mismas variables tanto en el análisis de eficiencia como en la división previa de la 
muestra. El proceso de estimación del modelo de clases latentes en la primera etapa y el 
cálculo de los índices de eficiencia utilizando un modelo DEA orientado al input en la 
segunda etapa, son definidos en el ensayo. Se presentan además varios criterios de 
información estadística que son generalmente utilizados para seleccionar el número 
apropiado de clases en los modelos de clases latentes. 

Se lleva a cabo un análisis de simulación para identificar si el procedimiento 
propuesto es capaz de tratar la heterogeneidad inobservable de forma más adecuada que 
otros métodos de segmentar muestras y si predice mejor la eficiencia individual de cada 
empresa. Los resultados confirman la ventaja teórica del enfoque de clases latentes 
sobre otros métodos. En la simulación de datos, se asume la existencia de distintos 
grados de diferencias tecnológicas y tamaños de escala de las empresas. A través de la 
comparación del enfoque de clases latentes con otros métodos de dividir muestras, tales 
como los análisis clúster de k-medias o la mediana de ciertas variables, se observa que 
el método propuesto es el mejor para identificar a qué grupo tecnológico pertenece 
realmente cada empresa, y los niveles de eficiencia obtenidos son los más próximos a 
los generados en la simulación. Se muestra a su vez que la capacidad discriminatoria y 
el éxito en la asignación del modelo de clases latentes se incrementa cuando surgen 
diferencias en tecnología y escala. La correlación de eficiencias y éxito en la asignación 
parece sugerir que los reguladores podrían usar el nivel de eficiencia medio para 
comparar el rendimiento relativo de los diferentes métodos de segmentación en una 
aplicación real. 
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El procedimiento es ilustrado con una aplicación práctica a la misma base de 
datos de transporte eléctrico analizada en el ensayo previo. Se identifican hasta nueve 
tecnologías diferentes; sin embargo a través de los criterios estadísticos aplicados puede 
verse que el número de clases que debe ser seleccionado es dos. Los modelos de clases 
latentes permiten incluir variables separadoras que añaden información a la estimación 
y ayudan en la segmentación de la muestra. En este caso, las variables meteorológicas y 
el crecimiento de la demanda han sido incluidas como variables ambientales que pueden 
influir en la tecnología adoptada por las empresas. Las estimaciones adicionales 
incluidas para comprobar la robustez del método producen resultados similares a los 
obtenidos sin la inclusión de estas variables ambientales. Futuras extensiones de este 
trabajo implicarán el uso de procesos generadores de datos alternativos en la 
simulación, es decir, explorar diferentes mecanismos de generar datos con el objetivo de 
conocer más acerca del funcionamiento de los modelos de clases latentes. Siguiendo a 
Kuosmanen et al. (2013), además de los rasgos específicos de los modelos regulatorios, 
las características observadas de los datos empíricos serán tenidas en cuenta para 
calibrar el proceso de generación de datos. En ese sentido, los escenarios simulados 
serán extendidos tratando de incorporar tecnologías adicionales, correlaciones entre 
outputs y la influencia de factores ambientales. El resultado de esta investigación puede 
resultar interesante no sólo desde el punto de vista de la industria energética sino 
también para el análisis de la heterogeneidad inobservable en otros campos de 
investigación. 

En el cuarto ensayo se explora el uso de modelos de fronteras estocásticas para 
estimar funciones de demanda energética agregadas en el sector transporte de América 
Latina y el Caribe. El uso de estos modelos permite obtener medidas de los niveles de 
eficiencia energética en estos países que pueden ser consideradas alternativas a los 
tradicionales indicadores de intensidad energética utilizados comúnmente en 
comparaciones internacionales. La aplicación de este enfoque es novedosa en el sector 
transporte y es aplicada al caso de un grupo de países para los cuales existe poca 
investigación al respecto, a pesar de que el peso del sector suponga un 43% del 
consumo de energía total en la región. Debido a la posible heterogeneidad inobservable 
existente entre países, en este caso también se propone el uso de un enfoque de clases 
latentes, lo que permite comprobar la existencia de países con demandas diferenciadas 
que están asociadas a distintas elasticidades precio y renta. 

La preocupación por la medición y control de la eficiencia energética, 
especialmente en aquellos sectores más intensivos en el uso de energía, surge 
fundamentalmente a partir de la crisis mundial del petróleo de los años 70. En la sección 
introductoria del ensayo se resalta la importancia del sector transporte en América 
Latina y el Caribe a través de la presentación de datos del consumo energético y del 
precio de la energía en el sector durante las últimas décadas. Posteriormente se muestra 
una revisión de los diferentes enfoques que han sido utilizados para modelizar el 
consumo energético en transporte y se presenta la adaptación de un modelo de demanda 
de energía frontera al caso del sector transporte. Para tratar las diferencias entre países, 
se plantea el uso de un enfoque de clases latentes en este contexto, lo que permite 
obtener tantas demandas como grupos de países identificados. 

La base de datos utilizada en este capítulo consiste en una muestra de 24 países 
de América Latina y el Caribe para el período 1990-2010 y la información ha sido 
obtenida de CEPAL, OLADE y la Penn World Table (PWT 7.1). Se estima una 
demanda energética en la que la variable dependiente es el consumo energético y las 
variables explicativas son la renta, la población, el precio de la energía, la participación 
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del sector transporte en la economía, la densidad de población y una tendencia temporal 
(también incluida al cuadrado). El precio de la energía, que es junto a la renta, una de 
las variables más relevantes en un análisis de demanda, se obtiene a través de un índice 
multilateral y transitivo. El consumo total de energía en el sector transporte viene dado 
por el consumo de varios componentes energéticos (gas natural, gasolina, queroseno, 
etc.) y por tanto requiere agregar los precios individuales de estos componentes para 
obtener un índice del precio de la energía. Sin embargo, las agencias estadísticas 
internacionales no proporcionan ningún tipo de índice de precios para el total de países 
de nuestra muestra y por tanto ha tenido que ser calculado para este trabajo. El uso de 
un índice de precios multilateral y transitivo como el obtenido permite comparaciones 
apropiadas de los países a lo largo del tiempo. 

En términos generales, el ranking de países que se puede elaborar a partir de los 
índices de eficiencia obtenidos cuando se estima una demanda frontera, está 
notablemente correlacionado (70%) con la clasificación que se deriva de un indicador 
de intensidad energética (consumo de energía en transporte dividido por PIB). Sin 
embargo, la falta de correlación que se observa entre eficiencia e intensidad energética 
para algunos países a lo largo del tiempo, indica que las variaciones en los indicadores 
pueden estar asociadas a otras circunstancias distintas a cambios en la eficiencia 
energética. Esto sugiere que las medidas de eficiencia que se derivan de la estimación 
de demandas frontera son más apropiadas que las proporcionadas por estos indicadores. 
Por otro lado, a través del modelo de clases latentes en el análisis empírico se 
identifican tres demandas con elasticidades precio y renta claramente diferentes. Por 
ejemplo, la elasticidad precio va desde -0,16 para la clase más inelástica hasta -0,41 
para la clase más elástica. Si por el contrario se estima una única demanda sin tener en 
cuenta la heterogeneidad entre países, se obtiene una demanda sesgada con una 
elasticidad precio igual a -0.23. Las probabilidades de pertenencia a cada clase reflejan 
que los países con mayor renta per cápita y menor densidad de población tienden a 
tener demandas de menor elasticidad precio. La estimación de estas demandas permite 
la identificación de aquellos países con mayor eficiencia energética en cada clase, que 
precisamente coinciden con los que han desarrollado políticas para mejorar el transporte 
público en los últimos años. 

En cuanto a futuras líneas de investigación, la existencia de posibles respuestas 
asimétricas en la demanda de energía ante cambios en el precio y la renta, será analizada 
a través de la descomposición de precio y renta utilizada por Gately y Huntington 
(2002), Adeyemi y Hunt (2007) o Adofo et al. (2013). Aunque la reversibilidad de 
precios ha sido previamente analizada en sector el transporte (ver Dargay, 1992; Gately, 
1992; y Dargay y Gately, 1997) esta será la primera vez que este enfoque se aplique en 
un modelo de demanda de energía frontera. Además, se calcularán los potenciales 
ahorros energéticos derivados de las estimaciones presentadas en este trabajo y la 
consecuente reducción en emisiones de gases de efecto invernadero. Otra futura línea de 
investigación es el análisis del efecto rebote utilizando un modelo similar al que se 
presenta en el siguiente ensayo. El efecto rebote ha sido ampliamente estudiado en el 
sector transporte pero a través de enfoques convencionales. No obstante, no existe 
evidencia empírica para el caso de América Latina y el Caribe, lo que probablemente 
otorgue interés a los resultados que se obtengan. 

Finalmente, en el último ensayo, se estiman modelos de demanda de energía 
frontera para el sector energético residencial estadounidense, pero en este caso se 
incorpora en la parte estocástica del modelo, una función asociada a la demanda de 
servicios energéticos que proporciona información sobre el efecto rebote. Este concepto 
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no ha sido analizado de esta forma hasta ahora, por lo que se trata de una importante 
contribución en este particular campo de estudio. El efecto rebote es un fenómeno que 
refleja que tras una mejora en la eficiencia energética, el consumo energético no 
necesariamente disminuye de forma proporcional a la mejora en eficiencia 
experimentada. Esto se debe a que los consumidores perciben la mejora en eficiencia 
como un menor coste del servicio energético que demandan, lo que supone un 
incremento en la demanda de este servicio y por tanto el consumo energético no se 
reduce en la cuantía esperada. 

Numerosos estudios han utilizado diversos enfoques para medir este concepto. 
En este ensayo se presenta una clasificación de los diferentes tipos de efecto rebote y de 
los enfoques alternativos que han sido aplicados para su cálculo. Entre los diferentes 
métodos, el más comúnmente usado es obtener el efecto rebote a través de las 
elasticidades precio de las demandas de energía estimadas. Se presenta un resumen de 
los resultados empíricos obtenidos para el caso del consumo de energía en los hogares, 
donde los valores estimados por lo general se sitúan entre el 0 y el 60%. Sin embargo, 
se observan casos en la literatura en los que importantes efectos rebote (incluso por 
encima del 100%) han sido obtenidos. 

En este ensayo, se presenta el modelo estándar de demanda de energía frontera y 
los supuestos implícitos que se asumen en el modelo. Para obtener información sobre el 
efecto rebote, se sugiere la extensión de este modelo básico incorporando un factor de 
ajuste que mitiga o intensifica el efecto de las mejoras en eficiencia energética sobre el 
consumo de energía. Dos especificaciones alternativas se sugieren para este factor de 
ajuste (o función de efecto rebote), además de proponerse una estrategia basada en las 
estimaciones del modelo ALS para tratar el problema que surge en la identificación de 
la constante en esta función. 

La aplicación empírica está basada en el consumo de energía residencial de una 
muestra de 48 estados de EE.UU. para el período 1995-2011. Las fuentes de datos son 
el EIA, el US Census Bureau y el National Climatic Data Center de NOAA. Las 
variables incluidas para explicar el consumo de energía residencial son la renta, el 
precio, los días de frío, los días de calor, el tamaño medio de los hogares, la proporción 
de viviendas unifamiliares y un listado de dummies anuales. Para la función de efecto 
rebote, la cual está basada en la demanda de servicios energéticos, las variables que se 
incluyen son la renta per cápita, el precio de la energía y el tamaño medio de los 
hogares. El efecto rebote medio que se obtiene para la muestra es relativamente alto 
(56% y 80% para las dos especificaciones presentadas) comparado con los valores que 
se observan en la literatura, pero es posible que estos valores estén sobreestimados 
debido a la concavidad de la forma funcional asumida para las funciones de efecto 
rebote. 

Sin embargo, esto parece ser únicamente un problema de nivel, ya que a pesar de 
los diferentes efectos rebote que se obtienen a partir de ambas especificaciones, la 
clasificación ordenada de estados que se deriva es la misma. Esto es, nuestro modelo 
permite una identificación robusta de aquellos estados que tienen un alto o bajo efecto 
rebote comparado con el resto de estados analizados. Este resultado puede resultar 
interesante para el diseño de políticas energéticas, ya que permite la identificación de 
regiones en las que las políticas destinadas a promover aumentos en la eficiencia 
energética serían más exitosas. Además, a partir del modelo propuesto, las medidas de 
efecto rebote que se obtienen, no se ven alteradas por la forma en la que el paso del 
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tiempo es incorporado en la demanda, lo que contrasta con el sesgo que se observa 
cuando se estima el efecto rebote a través de la elasticidad precio de la demanda. 

Debido a que este trabajo es una primera propuesta de utilizar un enfoque 
frontera para estimar efectos rebote, futura investigación sobre este tema queda 
pendiente. En primer lugar, la identificación de la “verdadera” constante en la función 
de efecto rebote debería ser analizada de forma más exhaustiva. Una estrategia 
prometedora es considerar el factor de ajuste como un término aleatorio asimétrico y 
estimar el modelo incluyendo el producto de dos términos aleatorios de una sola cola, es 
decir, el efecto rebote multiplicado por la ineficiencia. En segundo lugar, deben 
proponerse formas funcionales flexibles y manejables que permitan poder representar 
toda la gama posible de efectos rebote en las estimaciones. El uso de especificaciones 
paramétricas alternativas en la función de efecto rebote debería ser analizado en 
profundidad. En este sentido, con el objetivo de relajar las restricciones de concavidad 
de las funciones que se han propuesto, también podría explorarse el uso de enfoques 
alternativos como el uso de métodos de regresión semi-paramétricos. 
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