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Abstract

The validity of the official SEUROP bovine carcass classification to grade light carcasses by means of three well reputed Artificial
Intelligence algorithms has been tested to assess possible differences in the behavior of the classifiers in affecting the repeatability of
grading. We used two training sets consisting of 65 and 162 examples respectively of light and standard carcass classifications,
including up to 28 different attributes describing carcass conformation. We found that the behavior of the classifiers is different

when they are dealing with a light or a standard carcass. Classifiers follow SEUROP rules more rigorously when they grade stan-
dard carcasses using attributes characterizing carcass profiles and muscular development. However, when they grade light carcasses,
they include attributes characterizing body size or skeletal development. A reconsideration of the SEUROP classification system for

light carcasses may be recommended to clarify and standardize this specific beef market in the European Union. In addition, since
conformation of light and standard carcasses can be considered different traits, this could affect sire evaluation programs to
improve carcass conformation scores from data from markets presenting a great variety of ages and weights of slaughtered animals.
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1. Introduction

Carcass conformation assessment is aimed at facil-
itating the relationships between market operators and
supplying markets with quality products to satisfy con-
sumer demands. Since the CEE 390/81, CEE 1208/81,
CEE 2930/81 and CEE 1026/91 regulations, the Eur-
opean Union has set up a standard bovine carcass con-
formation assessment system, known as the SEUROP
system, to be applied throughout the EU. This grading
system is expected to be useful for bovines from 300 Kg
live weight, regardless of sex, age or management condi-
tions of the animal. To be applicable for such a range of
products, the SEUROP system is described very broadly.
The description of conformation classes ranges from
‘exceptional’ to ‘poor’ muscular development and from
‘extremely’ convex to ‘very’ concave profiles.

In applying such a broad classification system, it is
not surprising that classifiers need a complex training
procedure before carrying out commercial classifications
in order to avoid substantial individual differences in
assessments. However, the repeatability of grading tends
to be low, thus affecting the market’s confidence. Carcass
classification by line-graders can give errors that can reach
15% (George et al., 1996). This situation is more evident
in markets such as Northern Spain, Portugal and in Italy,
where there exists a significant proportion of light car-
casses. Usually, it is accepted that the conformation score
tends to increase with age and carcass weight (Kempster,
Cook, & Southgate, 1988; More O’Ferral, & Keane,
1990). However, most studies have been made with car-
casses aged between 14 and 24 months. In this age range,
the animals have reached a sufficient degree of physi-
ological maturity to be considered young adults, but light
carcasses come from animals showing only the earlier
stages of puberty. The shapes of the body and carcasses of
these young animals cannot be easily compared with those
of physiologically mature animals. Thus, since carcasses
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are graded by comparison with the standard carcass
model, the application of the SEUROP system to light
carcasses can be problematic.
To avoid errors in carcass grading, there have been

attempts to develop automatic classifiers of carcass
conformation (Belk, Scanga, Tatum, Wise, & Smith,
1998; Cannell et al., 1999; Goyache, Bahamonde et al.,
2001) using analysis of digital images. However, assess-
ments carried out by expert line-graders continue to be
essential for carcass classification in practical terms. In
fact, there are no standard instruments to replace
human graders, in part because these instruments would
be required to predict both carcass composition and
palatability of the cooked product (Smith, 1999).
The aim of this paper is not to propose an automatic

assessment system to replace the human grader. We are
concerned with testing the validity of the assumptions of
the official SEUROP conformation classification system
for light carcasses, identifying, by means of Artificial
Intelligence (AI) techniques, the major factors affecting
conformation grading of light compared with standard
carcasses.
We use AI systems to synthesize the knowledge

required to accomplish useful tasks from a sample of
intelligent behavior; in other words, we use Machine
Learning (ML) algorithms. This methodology has been
successfully applied in animal production and the food
industry (Goyache, del Coz et al., 2001; Goyache,
Bahamonde et al., 2001). Expert classifiers perform the
SEUROP system by means of a kind of knowledge that
can be computationally represented. Recently, we have
shown the possibility of using AI techniques to clone the
behavior of bovine carcass classifiers to obtain sound
assessments (Goyache, Bahamonde et al., 2001). But AI
can be used more broadly than the production of com-
puter routines to be used in an industrial environment.
We will use the ability of AI algorithms to explain the
knowledge learned, in order to gain an insight into the
major features affecting the performance of the present
classification system for bovine carcass.

2. Materials and methods

2.1. Data

The input data for learning algorithms are called
training sets, i.e. collections of examples of the behavior
that we would like to learn to repeat. In our case, each
example is described by means of attributes that
numerically represent the traits of the carcasses con-
sidered. Additionally, the examples are given the con-
formation score assigned by one of our experts; we will
refer to this score as the class of the example.
Our training set is a representative subset of the

examples used previously (Goyache, Bahamonde et al.,

2001), and includes the hot carcass weight and conforma-
tion score from a total of 97 bovine carcasses. Carcasses
were graded individually, following the SEUROP system,
by three expert classifiers of EASA, the control organiza-
tion of the Quality Beef Program ‘‘Carne de Asturias’’.
These carcasses were selected to have a representative
sample of the actual distribution of sexes, conformation
classes and weights existing in the entire beef market in
Asturias (Northern Spain). It should be noted that most
of the beef production in this region is based on well-
conformed ‘‘Asturiana de los Valles’’ animals (Goyache,
Bahamonde et al., 2001). To improve the accuracy of
classification, the signs + or � could be added to each
conformation grade (Kempster, 1986). The SEUROP
grades were numerically codified from 1 (P) to 6 (S); the
signs + and � were computed as +0.25 or �0.25 con-
formation points, respectively (Goyache, Bahamonde et
al., 2001). Each classifier graded most carcasses: the first
one classified 78 carcasses, the second 74, and the third 75
giving 227 classification events, which make up the train-
ing set as independent training examples.
To capture carcass traits, our experts photographed

each carcass in three different positions: (a) lateral, (b)
medial and (c) dorsal. The digital pictures were then
processed by marking (with mouse clicks) 21 key points
and five curve arcs (see Fig. 1) to calculate up to 28
attribute values numerically representing the features or
traits mentioned in SEUROP specifications. This meth-
odology was successfully used previously (Goyache, del
Coz et al., 2001; Goyache, Bahamonde et al., 2001). The
attributes used are listed in Table 1. Our techniques are
not only useful for assessing carcass dimensions, as
occurs with traditional methodologies (De Boer,
Dumont, Pomeroy, & Weniger, 1974), but also for esti-
mating differences in muscular development and carcass
profiles. We included a metric reference in each photo
so as to be able to measure lengths from the pictures.
Single anatomical traits were easily calculated by means
of the distance between key points (Fig. 2). Ratios and
volumes (to estimate muscular development) were cal-
culated combining some single anatomical traits.
Representation of profiles was obtained by fitting, using
minimal least squares, a 4th degree polynomial to each
profile EC1, EC2, LC1, LC2, LC3. Then, the curvature
at a point is computed from the first and the second
derivative, as stated in Formula 1 of Fig. 2. Finally, we
summarize the convexity of the profile by calculating the
average of the curvature at a sequence of equidistant
points placed over the arc that follows the profile (see
Figs. 1 and 2 and Goyache, Bahamonde et al., 2001, for a
more detailed description of the computation).
The blockiness index, calculated as the ratio between

carcass weight and carcass length was included in the
training set. Despite this trait not being properly inclu-
ded in the SEUROP rules, it was considered in our
study because this attribute has been found to be rele-
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vant to give an accurate carcass classification (Goyache,
Bahamonde et al., 2001; Vallejo et al., 1992). However,
to differentiate the influence of the blockiness index on
ML algorithms, all the computations were carried out
using two different initial training sets: with and without
this attribute to describe the carcasses. Thus, the initial
training sets respectively included 28 and 27 attributes
describing carcass conformation.
Each initial training set was split into two subsets for

light and standard carcasses. Light carcasses were con-
sidered those weighing less than 220 kg, following the
commercial practice carried out in the most important
Spanish beef markets, such as Binefar and Lleida. These
markets are considered as a reference for the whole Span-
ish beef market. The light carcass subset included data
from 29 carcasses and 65 training examples, while the
standard carcass subset included data from 68 carcasses
and 162 training examples. Descriptive statistics of the
attributes defining our training sets are listed in Table 1.
Each training subset, including the blockiness index or not,
was used as an independent input to ML algorithms.

2.2. Machine learning algorithms

Different kinds of ML algorithms may perform differ-
ently in a given situation. Thus, we need to use several

ML algorithms to evaluate both the difficulty of the
learning process and the usefulness of the acquired
knowledge. At the same time, the representation of the
induced knowledge may be quite different, and so we
can appreciate new aspects of a given classification
problem when we use ML algorithms of different
families. A detailed description of AI principles and
methods and of the main characteristics of several kinds
of ML algorithms can be found in Goyache, del Coz et
al. (2001) and Goyache, Bahamonde et al. (2001) and in
the references cited therein.
Sometimes, approaches to applying ML procedures to

carcass and meat research employ Artificial Neural
Networks (ANNs) (Hill, Jones, Robertson, & Major,
2000). Unfortunately, ANNs need a previous definition
of the layout and other parameters prior to performing
the learning process. Thus, we cannot always know with
certainty whether a possible failure in the learning pro-
cess is a consequence of deficiencies in the customization
process or in the learning ability of training sets. For this
reason, we did not use learning algorithms based on
ANNs. Thus, we are concerned with the use of ML algo-
rithms able to make accurate predictors with only the
input of the training sets.
The topics highlighted above led us to use the follow-

ing ML algorithms in the present analysis:

Fig. 1. Each carcass was photographed in three positions: lateral (a), medial (b) and dorsal (c). An operator then manually marked 21 relevant

points and five curve arcs. Single anatomical traits were easily calculated by means of distances between key points (i.e. belly depth=distance

between I4 and I5 or carcass length=distance between I2 and I7 in picture b). To represent profile convexities, we consider the curve arc that bor-

ders the profile as a variable real function f. We can then compute the curvature at each point (x, y=f (x)) by means of Formula 1. We approximate

the derivates using the values of f in the environment of each point of the profile. So we divide the arc by means of a sequence of points {xi} in [0,a]

that divide the interval into a given number (the same in all cases) of equal length subintervals. Then f 0(xi) and f 00(xi), the first and second derivative,

are approached using Formula 2 and Formula 3. Finally, to summarize the convexity of the whole arc in the interval [0,a], we compute the average

of the curvature (xi) for all {xi}.
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� Cubist (2000). This is a ML algorithm inducing a
set of regression rules, i.e. constructs of the form:

if some conditions about the traits are fulfilled
then to compute the SEUROP conformation

score use a given linear function

� Safe (System to Acquire Functions from Exam-
ples) (Quevedo & Bahamonde, 1999). This ML
algorithm also returns a set of regression rules,
like Cubist. However, the conditions of their
rules do not cover all the possible values of the
attributes, so when they are asked to classify a
case that does not fulfill any of the rule condi-
tions, the predicted score for that case will be
computed by interpolating (inversely to their
distance to the case) the values provided by the

nearest rules. This evaluation procedure is
usually called partial matching or fuzzy evalua-
tion.

� BETS (Best Examples in Training Sets) (Baha-
monde, de la Cal, Ranilla, Alonso, J., 1997; Del
Coz et al., 1999; Luaces et al., 1999) is a ML algo-
rithm of another family. It selects the most repre-
sentative instances of the training set and considers
that these examples are useful for classifying the

Table 1

Description of the attributes used to represent bovine carcass conformation grading in 25 carcasses building the light carcasses training set and in 82

carcasses building the standard carcasses training set

Light carcasses Standard carcasses

Mean SD Mean SD

Carcass weight* 188.52 24.86 290.27 64.34

Thigh width* 26.54 3.41 30.28 7.64

Thigh length* 43.44 3.025 46.88 3.05

Thigh ratio (width/length) 0.61 0.067 0.64 0.18

Hind limb length* 64.12 4.71 66.95 6.68

Shoulder length* 40.01 4.63 42.72 4.93

Shoulder width 33.40 3.52 38.06 11.98

Lateral shoulder height* 3.74 1.35 5.33 2.04

Shoulder area* 1342.00 243.20 1609.00 575.40

Shoulder volume* 5151.00 2460.00 9462.00 10,911.00

Round profile �0.020 0.008 �0.019 0.009

Shoulder profile �0.014 0.010 �0.017 0.010

Topside profile �0.025 0.008 �0.023 0.011

Back length* 53.08 10.84 60.43 17.64

Front width of back* 10.72 4.33 12.48 3.90

Rear width of back 11.22 3.85 13.69 4.38

Back width ratio (front/rear) 0.93 0.26 0.90 0.30

Lateral back width at hip* 12.32 2.61 14.60 2.43

Lateral back width at chest* 13.98 2.32 15.43 2.80

Lateral back width ratio(hip/chest) 0.90 0.21 0.95 0.18

Back volume 7527.00 6384.00 13,344.00 18,182.00

Hips profile �0.026 0.058 �0.032 0.046

Thigh profile �0.023 0.009 �0.027 0.023

Neck profile 0.33 1.72 �0.016 0.013

Carcass length* 108.95 11.43 116.73 14.10

Chest depth* 41.59 4.71 44.96 5.99

Belly depth* 31.50 5.13 34.20 5.55

Blockiness index* 1.74 0.22 2.51 0.55

Conformation score 3.54 1.12 3.90 1.14

Attributes are described in cm for distances between two given key points, cm2 for areas and cm3 for volumes; profiles and ratios are described in the

corresponding units; carcass weight is in kg. The symbol * as a superscript expresses significantly different means (P<0.05). Conformation score was
obtained following SEUROP methodology; classifiers may added signs + or �to each conformation grade; SEUROP grades were numerically

codified ranging from 1 (P) to 6 (S); the signs + and �were computed as +0.25 or �0.25 conformation points, respectively.

Fig. 2. Formulas used to compute the curvature of a profile described

by an arc of a curve y=f (x). The sequence (xi, i=1, . . ., n) are equi-

distant points in the x axis of the arc considered.
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elements of the domain. To predict the numeric
value of an unseen case q, Bets searches for the
two nearest remembered instances and then
returns a score inversely related to the distance
from q of the values attached to the nearest
neighbors. From a conceptual point of view,
Bets induces regression rules where linear func-
tions are always constant, and conditions are
defined by intervals with only one point. In
straightforward terms, Bets’ regression rules are
simple examples selected from the training set
where the attribute values considered irrelevant
are omitted.

The accuracy of the performance of each ML algo-
rithm was estimated through a cross validation system.
Each training set was divided into 10 folders. Each of
these folders was successively used as a test set while the
other nine were used for training. The prediction func-
tion obtained by the ML algorithm from the other nine
folders was then applied to each example from the test
folder, and then the average absolute difference with
respect to the class of the example was computed. The
experiment was run 5 times, finally returning the aver-
age of the differences thus computed. This procedure
gives a good estimation of the accuracy of the classifi-
cation function learned from the whole training set
when we apply it to unseen cases. This particular feature
is very useful when discussing the results of the present
study.
Another important issue in Machine Learning is the

number of functions or prototypes (examples remem-
bered for future classifications) needed to explain the
computer assessments. When we use learners that return
sets of regression rules, the number of such rules is a
good measure of the linearity of the assessing task. In
the case of Bets, the number of prototypes selected with
respect to the total is also reliable evidence about how
non-linear the assessing task is.
In addition to the ML algorithms mentioned above, we

used classical linear regression to make sure that the
accuracy of the results from the carcass classification
would not be affected by bias due to the learning method.

2.3. Relevancy

Frequently, we do not know what the most important
attributes are in order to solve problems concerning
knowledge. In fact, ML techniques are often used when
the factors affecting a process are not well known. This
is the case with the classification of light or standard
bovine carcasses. We can describe bovine carcasses
using a broad list of attributes. Of course, not all the
attributes have the same weighting to grade SEUROP
conformations. Sometimes their contribution is only
redundant or negligible information. It is clear that if it

were possible to ascertain the most discriminate attri-
butes affecting a problem, its solution would not only be
easier, but also more accurate and generally applicable.
Thus, when we are trying to induce knowledge, the

study of the relevancy of the attributes that describe the
examples is a core issue. Many ML algorithms include
some type of mechanism to select the major attributes
affecting the studied classification issue. In all cases, the
underlying idea is to be able to estimate the prediction
quality of the attribute or attribute values in order to
make a classification decision. Thus, the algorithms
used to study relevancy are usually based on learners
used to estimate the accuracy in different attribute
arrangement assumptions; see, for instance (Blum &
Langley, 1997; Kira & Rendell, 1992; Wettschereck,
Aha, & Mohri, 1997).
In our study, the training sets initially included 28

attributes; 27 if we exclude the blockiness index of the
carcasses. As stated above, our aim was to find the best
combination of attributes presenting the best ratio
between the prediction error in what was learned and
the number of attributes used to learn. This search is
very costly in computational terms and is carried out
following a kind of heuristic search.
To accomplish this stage, a combination of tools suc-

cessfully implemented previously (Goyache, Baha-
monde et al., 2001) was used to estimate the relevancy
of the attributes involved in the description of the car-
casses. So, as a side effect of BETS’ learning process, we
can numerically obtain the degree to which the value of
a given attribute can help to identify a given class. Then
it is possible, using these results, to obtain an ordering
of the relevancy of the attributes. A differentiation was
made with this ordering between relevant and irrelevant
attributes. The less informative attributes should then
be removed. To do so, a second tool called FA
(Goyache, Bahamonde et al., 2001; Quevedo, del Coz,
& Dı́ez, 2001) was applied. This tool removes the less
relevant attribute and, in a subsequent step, checks the
usefulness of the obtained training set (smooth screen-
ing). This check is made by a cross-validation metho-
dology using the nearest-neighbor algorithm (the
number of neighbors to be used is calculated as a func-
tion of the number of examples). This process is repe-
ated iteratively, removing the attributes one by one,
with the exception of the most relevant one. FA will
select the training set made by the combination of
attributes producing the least error. If the least error
were obtained using the initial training set, this would
be selected. Sometimes, however, the selected training
set is still too complex to be easily managed, so FA can
carry out a more rigorous screening of the attributes,
accepting in this case a small increase in the error
obtained by the resultant training set after removing the
less relevant attributes (hard screening). The permitted
increase in error can be a user-defined parameter; in this
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paper we allowed a maximum error of 0.50, which is the
numerical gap between the signs + and � for each con-
formation grade.

3. Results

Table 1 presents descriptive statistics of the training
sets of light and standard carcasses. Average carcass
weight was 188.5 kg for light carcasses, and 290.3 kg for
standard carcasses. Standard carcasses were approxi-
mately 8 cm longer and 3.5 cm deeper at the chest than
light carcasses and back and thigh lengths were about 7
and 3.5 cm greater for standard carcasses. Attributes
describing carcass size and body measurements present
significant differences between the carcass types. How-
ever, it should be noted that the means of the con-
formation score and the curvature of profiles were not
significantly different between light and standard car-
casses. Major attributes in carcass muscular development
description, such as thigh ratio, shoulder width or back
volume, did not present significant differences. We addi-
tionally found that standard carcasses were significantly
more compact than light carcasses (+0.77 units).

Table 2 shows the results of the learning process using
three ML algorithms, together with the results obtained
using classical linear regression. Average absolute errors
were found by means of cross validation; this guaran-
tees that they are sound estimations of the absolute
value of the difference in carcass conformation scores
between the predicted value and the average of our
human experts. We thus found that the results obtained
by means of linear regression are higher than those
obtained using ML algorithms, especially when hard
screening substantially reduces the number of attributes
used as input to classify carcass conformation. Regard-
less of the inclusion or not of the blockiness index in the
training sets, errors obtained with the lower number of
attributes used to classify light carcasses are lower than
those obtained for standard carcasses under the same
conditions, ranging between 0.365 and 0.447 and
between 0.436 and 0.468, respectively. Bets obtained
the best results for light carcasses (0.365) and Safe for
standard carcasses (0.445) when we include the blocki-
ness index in the training set. When this attribute is not
taken into account, Bets and Cubist gave similar
results for both light (0.40) and standard carcasses
(around 0.44).

Table 2

Average absolute errors and number of functions (or prototypes) selected to make predictions on unseen cases for three machine learning algorithms

in light or standard carcass conformation classification. Results obtained by cross validation of 10 folders repeated five times over the light and

standard carcasses training sets described in the text. The errors were computed as the deviation from the human experts’ average assessment

Number of attributes used Linear regression BETS SAFE Cubist

Error Error Prototypes Error Functions Error Functions

With blockiness index

Light carcasses subset

28 0.58 0.38 9.76 0.37 1.26 0.43 4.08

12a 0.34 0.32 10.80 0.34 1.80 0.39 1.80

11b 0.34 0.32 10.44 0.36 1.84 0.37 1.82

4c 0.50 0.37 9.50 0.40 4.34 0.41 4.58

Standard carcasses subset

28 0.45 0.44 24.98 0.42 3.28 0.42 5.16

9a 0.49 0.39 24.84 0.42 7.00 0.46 4.20

8b 0.49 0.40 25.00 0.43 6.28 0.46 3.64

6c 0.49 0.39 24.42 0.42 6.74 0.40 5.88

3c 0.56 0.47 23.66 0.45 8.06 0.46 6.46

Without blockiness index

Light carcasses subset

27 0.58 0.38 9.58 0.37 1.34 0.40 3.54

11a 0.34 0.35 10.30 0.34 1.72 0.37 2.22

10b 0.33 0.32 11.04 0.35 1.96 0.36 1.92

3c 0.57 0.40 9.40 0.45 4.32 0.40 4.58

Standard carcasses subset

27 0.45 0.44 24.06 0.43 3.06 0.42 5.58

8a 0.51 0.42 22.60 0.47 5.92 0.45 5.52

7b 0.53 0.44 23.78 0.46 6.54 0.44 6.00

a Smooth screening.
b Hard screening.
c Subsequent harder screenings.
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Safe and Cubist need around two linear functions
when they classify light carcasses with a large number of
attributes, but when the number of attributes involved is
reduced, the learned classification mechanism becomes
non-linear, using at least four regression rules. The
number of linear functions used to classify standard
carcasses is slightly higher, ranging from 3 to 8,
depending on the number of attributes used. On the
other hand, in all cases Bets selects around the 16% of
the training instances to be used as models for classify-
ing unseen cases.
The application of techniques to assess the relevance

of the attributes on carcass classification has quite a
different influence on light or standard carcass subsets.
The application of smooth screening using FA (Que-
vedo et al., 2001) produces a dramatic reduction (60%)
in the number of attributes used to learn how to classify
carcasses. However, it is necessary to carry out at least
two consecutive hard screenings to obtain a substantial
reduction in the number of attributes used without
exceeding the maximum error admitted in our analysis
(0.50). Thus, there are a large number of attributes that
are taken into account or rejected together. This is more
evident for standard carcasses: harder screening, in two
consecutive steps, succeeds in reducing the attributes
from 8 to 3 when the blockiness index is taken into
account; while when this attribute is not considered, we
must use seven attributes to obtain a sound classifica-
tion. To reduce the number of attributes, we would have
to allow average absolute errors in classification perfor-
mance higher than 0.50.
The smallest number of attributes used to learn how

to classify bovine carcasses in each training subset are
listed in Table 3. The blockiness index seems to be very
informative, regardless of the type of carcass; when this
attribute is included, it is always selected as relevant.
Its inclusion enables a reduction in the number of
attributes required to obtain sound assessments of
standard carcasses. To classify light carcasses, our

classifiers considered muscular development (thigh
width and thigh ratio) and body development (belly
depth). To classify standard carcasses, however, classi-
fiers basically use attributes characterizing muscular
development (shoulder width) and muscular profiles
(topside profile). The other attributes used to classify
standard carcasses affect muscular development of the
back and, to a lesser extent, of the thigh (thigh length).

4. Discussion

The measurements and weights shown in Table 1 are
typical for the beef market in Asturias (Northern
Spain). The significant differences estimated between
attributes describing carcass size, such as carcass weight,
carcass length or thigh and back measurements, are not
surprising. The threshold we used to build our different
subsets, based on the accepted practice of major Span-
ish market operators, reflects an actual break in con-
tinuity between light and standard carcasses in the
analyzed database. The lack of significant differences
between curvature of profiles and conformation scores
for both types of carcasses may be more surprising. The
conformation score is expected to increase with age and
carcass weight (Kempster et al., 1988; More O’Ferral &
Keane, 1990) during fattening, as conformation is a
visual assessment of the thickness of muscle and fat in
relation to the size of the skeleton. The lack of sig-
nificant differences in the present study may be
explained by the origin of the animals. The beef market
in Asturias consists mainly of pure bred Asturiana de los
Valles animals. This breed shows a high proportion of
double-muscled animals producing well-conformed
carcasses regardless of the age of the animals (Goyache,
Royo, Alvarez, & Gutiérrez, 2002; Gutiérrez &
Goyache, 2002). However, our results highlight the
possibility that classifiers give the same score to different
products. Of course, a general impression of the whole

Table 3

List of attributes used to learn how to classify light or standard carcasses for each of the subsets considered in the present paper after assessing their

relevancy by means of the FA tool (Quevedo et al., 2001). The list of attributes is ordered from less to more relevant. Attributes have been listed

when there were seven or less of them

Number of attributes Attributes used

With blockiness index

Light carcasses subset

4 Belly depth, Blockiness index, Thigh width, Thigh ratio

Standard carcasses subset

6 Rear width of back, Back length, Back width ratio, Topside profile, Blockiness index, Shoulder width

3 Topside profile, Blockiness index, Shoulder width

Without blockiness index

Light carcasses subset

3 Belly depth, Thigh width, Thigh ratio

Standard carcasses subset

7 Thigh length, Shoulder profile, Rear width of back, Back length, Back width ratio, Topside profile, Shoulder width
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carcass affects the grading. This is reflected by the rele-
vancy of the blockiness index in the training sets. How-
ever, the behavior of classifiers seems to be quite
different when they grade a light or a standard carcass.
Classifiers apply SEUROP rules more rigorously when
they classify standard carcasses. For this type of carcass,
our experts use only attributes characterizing muscular
development in shoulder, back and thigh and carcass
profiles. In this sense, despite the importance given by
the SEUROP rules to profile assessment, only two of
them (especially topside profile) are taken into account
in the classifiers decisions. Moreover, most muscular
development attributes, especially back attributes, have
a combined influence; they are taken into account or
rejected altogether (see Table 3). In addition, carcass
profiles seem to be of little importance when classifying
light carcasses. To reach accurate light carcass classifi-
cations, our experts do not match the SEUROP rules
exactly. To do this, they use attributes characterizing
muscular and body development.
The present results may be compared with those we

have recently reported (Dı́ez et al., 2001; Goyache,
Bahamonde et al., 2001), regardless of the type of car-
cass. In these previous papers, we reported average
absolute errors of four ML algorithms ranging between
0.45 and 0.49, while the average absolute errors of each
expert with respect to the average SEUROP scores of
the three experts were 0.41 for the first, 0.39 for the
second and 0.41 for the third. The errors obtained in the
present study are, in general, similar or slightly lower
than those reported previously when classifying stan-
dard carcasses, and substantially lower than reported
for light carcass classification. Despite the smaller num-
ber of examples, the light carcass subset is more homo-
geneous than the standard carcass subset, leading to a
better performance of ML algorithms.
In addition, the behavior of classifiers seems to be

quite different when dealing with a light or a standard
carcass. We reported previously (Dı́ez et al., 2001;
Goyache, Bahamonde et al., 2001) that carcass classifi-
cation presents highly non-linear behavior. Now we
know that this is true irrespective of the type of carcass.
However, the attributes used by our ML algorithms in
the present analysis are quite different for each carcass
type and contrast with those assessed as relevant for
grading carcass conformation regardless of its type. If
we try to classify carcasses over the whole available
range, we should use four (belly depth, blockiness index
and round and topside profiles) or five attributes (chest
depth, carcass length, topside profile, round profile and
belly depth), respectively, when the blockiness index is
included (Goyache, Bahamonde et al., 2001) or not
(Dı́ez et al., 2001) in the training set. Thus when classi-
fying the whole set of carcasses and regardless of whe-
ther we include the blockiness index, we can say that the
attributes characterizing body size or skeletal develop-

ment, such as chest depth, carcass length, and belly
depth, acquire considerable importance overriding the
attributes characterizing muscular development, while
major profile attributes remain important.
The present results confirm the different underlying

behavior of conformation classifiers when dealing with
a given type of carcass. In fact, they consider different
attributes when grading different carcass classes under
SEUROP assumptions. The estimated differences
might, however, be considered to be a consequence of
sample error. To eliminate this possibility, we got the
rules induced by Cubist to classify light or standard
carcasses using the training subsets including the lowest
number of attributes when we use the blockiness index.
We then used the rules obtained in a given carcass
subset to reassess the examples of the other subset. The
error in standard carcass classification by means of
rules learned to classify light carcasses was 0.97. When
we classify light carcasses by means of the rules
obtained when classifying standard carcasses using
three or six attributes (see Tables 2 and 3), the error in
carcass classification reached 1.08 and 0.904 respec-
tively. These results are very illustrative, since the
errors reported in these tables, found by cross valida-
tion, are a good estimation of absolute differences for
unseen cases. Thus, if our ML algorithms learn how to
classify light carcasses and then try to grade con-
formation of standard carcasses, they will mistake not
only the degree within a conformation class but also
the class itself.
Additionally, our results strongly suggest that, as well

as different attributes, classifiers apply different criteria
when they classify different types of carcass. For
instance, when the blockiness index was included in the
training sets, this attribute was always taken into
account in the rules used to assess conformation for
each type of carcass. However, it seems as if the influ-
ence of this trait on classifiers would be different when
dealing with a given carcass type. Classifiers apply
SEUROP assumptions more rigorously when they clas-
sify standard carcasses. Our classifiers carry out light
carcass assessments with a high degree of uncertainty.
They cannot strictly follow SEUROP rules to obtain a
conformation grading useful to market operators when
they assess very young animals.

5. Implications

The aim of this paper was to test the validity of the
official SEUROP bovine carcass classification system
over the whole range of carcasses found in some impor-
tant markets in the European Union in which the ‘youth-
fulness’ of the beef is highly regarded. To do so, we made
use of the major advantages of employing AI techniques
(Goyache, del Coz et al., 2001; Goyache, Bahamonde et
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al., 2001): which a) do not need a linear relationship
between the major attributes affecting the process that
needs to be learned, and b) they can be used to ascertain
the major attributes affecting process performance.
We found that the behavior of classifiers is quite dif-

ferent when they grade light or standard carcasses. Of
course, carcass profiles and muscular development are
important when taking decisions with respect to both
types of carcasses (Goyache et al., in press), but the
degree of uncertainty of classifiers when grading a light
carcass is clearly higher than for standard carcasses.
SEUROP assumptions are easier to apply to carcasses
from animals that have reached a minimum degree of
physiological maturity. When the assessed animal has
not reached this degree of development, they need to
take into consideration attributes characterizing body
size or the degree of skeletal development. The
SEUROP system may be criticized if applied to car-
casses that do not come from ‘young adult’ animals. In
the range of ages of animals producing light carcasses,
we can find large differences in development and
maturity. To obtain a ‘SEUROP’ classification for light
carcasses, classifiers need to take into account attributes
that are not included in the SEUROP definition. Con-
sequently, we cannot expect the grades obtained for
each type of carcass to be comparable. This could affect
sire evaluation programs to improve carcass conforma-
tion scores that obtain data from markets presenting a
great variety of ages and weights of slaughtered ani-
mals. A reconsideration of the SEUROP classification
system for light carcasses is needed to clarify and stan-
dardize this specific beef market in the European Union.
Carcass classification has a significant importance in

itself, as it is an important component of price nego-
tiations between market operators. Since carcass shape
and muscular development can vary substantially with
the weight or age of the animals, methodologies to
assess carcass conformation should take this into
account. The European Mediterranean beef markets
like light carcasses, and such carcasses are also sig-
nificant in some northern European Union countries,
such as The Netherlands, Germany or Belgium. The
development of a specific methodology for grading
light carcass conformation may be of interest for all
the members of the European Union. The techniques
we describe in this paper can be used to obtain
objective information to adapt official conformation
classification requirements to specific beef markets,so
as to optimize market operations and consumer
information.
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