
>VT-2013-01408.R1 < 

 

1 

 

Abstract—A new approach to equivalent circuit models for 

LiFePO4 batteries is presented in this paper. The proposed 

battery model is a semi-physical nonlinear dynamic model with 

variable effective capacity. Fuzzy logic has been used to capture 

the nonlinear behavior of the battery in combination with 

continuous time differential equations. Fuzzy logic blocks are 

embedded in a state-space dynamic model as nonlinear 

constructive blocks. The proposed model has been validated for 

three different LiFePO4 batteries. The model provides an 

intuitive physical analogy between charging LiFePO4 batteries 

and filling a semi-rigid tank, useful for explanatory purposes. 

 
Index Terms—LiFePO4 batteries, Effective capacity, modeling 

 

I. INTRODUCTION 

A high specific energy density makes Li-ion batteries the 

best option for electric vehicles (EV) and hybrid electric 

vehicles (HEV), in particular the LiFePO4 battery due to its 

intrinsic safety, low toxicity, high cycle-lifetime, high power 

capability, reliability, large availability of materials, low cost 

and flat voltage profile. The main drawbacks of this 

technology are its relatively low energy density, poor lithium 

diffusion and poor electronic conductivity [1], [2]. However, 

several approaches are being pursued to overcome the first 

two issues, such as the use of nanostructured materials in its 

chemistry composition and carbon coating [3]. 

Battery management systems (BMS) are used in EV and 

HEV applications to ensure the optimal use of batteries.  Some 

key tasks of BMS are to control the charge process and 

determine the State of Charge (SOC), State of Health (SOH) 

and remaining runtime of the battery. The SOC, SOH and 

remaining runtime cannot be directly measured; they have to 
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be inferred from model algorithms.  This is not an easy task 

due to the nonlinear behavior of batteries. Thus, the correct 

performance of BMS depends on the use of battery models 

that can describe battery dynamics [4]-[8]. 

The following effects in battery behavior can be observed 

when charge/discharge cycles are carried out at different rates: 

a) Major changes in the battery slope when the battery is near 

the empty or full states; b) Less charge can be stored in the 

battery when the charge current is increased; c) Less charge 

can be drawn from the battery when the discharge current is 

increased, although the remaining charge will be available 

after a resting period; d) Hysteresis of the charge/discharge 

process; and e) Changes in battery voltage during resting 

periods, when no current flows through the battery  

A wide variety of models have been developed to reproduce 

battery behavior. They may be classified as first principle 

models, equivalent circuit models and black-box models. First 

principle models [9]-[12] are based on a description of the 

electrochemical, thermodynamic and transport phenomena 

that take place in the battery. They consist of partial 

differential equations and ordinary differential equations and 

are suitable for understanding electrochemical reactions in the 

battery. Although they are likely to be the most accurate and 

most reliable models, they depend on constructive parameters 

not provided by battery manufacturers. These models are best 

suited for optimizing the physical aspects of electrodes and 

electrolyte. Black box models [13]-[16] have no physical 

meaning, being based on measured data and statistical 

approaches. However, there are concerns regarding their 

capability for extrapolating to cases not provided in the 

training data. They are suitable when very complex models are 

difficult to solve using existing modeling methods. Equivalent 

circuit models (ECM) [17]-[29] are situated midway between 

first principle models and black box models. They use 

electrical circuit elements to describe battery behavior. ECM 

are based on a theoretical background, but are simpler than 

first principle models and do not depend on constructive 

parameters.  

A new ECM is proposed in this paper which reproduces all 

the aforementioned effects of battery behavior in addition to 

enabling determination of the stored charge. The model 

combines non-linear black boxes with equations describing 

battery behavior. Although this methodology was first 

described in [30], it has not been previously applied to battery 

modeling. These black boxes, inserted in the differential 

equations as constructive blocks, are fuzzy rule-based systems 

(FRBS). 

The paper is organized as follows. The model is presented in 
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Section II and a physical analogy is used to explain how it 

works. The mathematical formulation is developed in Section 

III. Section IV describes the testing procedure and the 

experimental setup, while the experimental results are 

presented and discussed in Section V. Finally, Section VI 

presents the conclusions of the paper. 

II. MODEL OPERATION 

 

Different types of ECM are used for Li-ion batteries. 

According to [17], most ECM fall into three basic categories: 

runtime-, impedance- and Thevenin-based models. 

Runtime-based models are used to simulate de runtime of a 

battery. These models use a complex circuit network to 

simulate battery runtime and DC voltage response for a 

constant discharge current. Inaccuracy increases as the load 

current varies [18], [19]. These models are mainly used in 

SPICE-compatible simulators. 

Impedance-based models are derived using an 

electrochemical impedance spectroscopy (EIS) measurement 

to obtain the AC response of a cell over a broad range of 

frequencies [20]-[22]. These models consist of a voltage 

source, which varies with the SOC, and a complex circuit 

network of resistors, capacitors, inductors, constant-phase-

elements and Warburg impedances. This network can then be 

related to the behavior of the battery observed via EIS 

measurements. EIS is still a laboratory technique that cannot 

be easily used in embedded systems, so this kind of model is 

not suitable for real time applications. 

 
 

Fig. 1.   Thevenin equivalent circuit model. 

 

Thevenin-based models are good at capturing transients, but 

cannot predict battery runtime [23]-[26]. In their basic form, 

they consist of a SOC-dependent voltage source, a series 

resistor and an RC parallel network: see Fig. 1. The parallel 

capacitance, CP, and the parallel resistance, RP, are used to 

characterize the transient response of the battery resulting 

from diffusion and charge transfer, as well as effects related to 

the electric double layer capacitance at the interface between 

the electrolyte and the active materials. The series resistance, 

RS, represents the ohmic impedance on the contacts, 

electrodes, electrolyte and separator. The source voltage is the 

open circuit voltage (OCV) of the battery at equilibrium, 

which depends on the SOC and temperature. The OCV 

quantitatively represents the SOC. RSelfdischarge is used to model 

the self-discharge process in the battery, although it is not 

represented or used in most cases. This kind of ECM is the 

most widely applied to LiFePO4 batteries [23]-[26].  

The combination of these ECM, in particular the Thevenin 

and run-time models, can exploit the positive attributes of 

each [17], [27]-[29]. However, none of these types of ECM is 

able to reproduce the changes in the open circuit voltage of the 

battery when a current is not circulating through it. A new 

model, which takes into account this effect, is proposed in this 

paper: see Fig. 2. The series resistance, R1, represents the 

ohmic impedance of the battery and is used to characterize the 

charge/discharge losses in the battery. The capacitor, Ceff, 

represents the effective capacity of the battery. The stored 

charge in this capacitor is the stored charge in the battery. 

Small capacities (double layer capacity) are not relevant on the 

time scale of the model. Resistance R2 is used to model the 

self-discharge process of the battery during long rest periods. 

 

 
 

Fig. 2.   Proposed equivalent circuit model. 

 

A physical analogy is used to provide a better understanding 

of how the model works. Think of the battery as the water tank 

in Fig. 3. The main input/output flow rate to/from the water 

tank is related to the charge/discharge current, the height of 

water in the tank is the battery voltage, the volume of water in 

the tank is the stored charge in the battery and the area of the 

base of the tank is the effective capacity of the battery, i.e., the 

quotient between the stored charge and the battery voltage. A 

drainpipe is used to represent ohmic losses. Water is assumed 

to flow through the drainpipe only when the battery is being 

charged or discharged. Drainpipe flow is zero during rest 

periods. 

 

 
Fig. 3.   Physical analogy with constant effective capacity. 

 

When studying the behavior of this physical analogy, it can 

be seen that battery behavior is not well reproduced: a) If the 

input/output flow rate is constant, the height of water 

increases/decreases at the same rate, regardless of whether the 

tank is almost empty, half full or almost full. The voltage 
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slope of the battery will hence be constant. b) The total 

volume of water that can be stored in/extracted from the tank 

is always the same, regardless of the input/output flow rate. 

That is, charge stored in/extracted from the battery is always 

the same, irrespective of the value of the charge/discharge 

current. c) If the tank is being filled or emptied, the height of 

water is the same for the same volume of water inside the 

tank, regardless of whether the tank is being filled or emptied. 

Thus, the model cannot reproduce the battery voltage 

hysteresis that takes place when the battery is charged and 

discharged. d) Once the primary flow rate is zero, the height of 

water does not vary, i.e., the battery voltage does not vary 

during rest periods. 

 

 
 

Fig. 4.   Physical analogy with constant effective capacity and variable OCV, 

equivalent to the electrical circuit in Figure 1 

 

This physical analogy, which explains how the model works, 

cannot reproduce battery behavior because the area of the base 

of the tank is constant, i.e., the effective capacity of the model, 

Ceff, is considered constant. 

In order to reproduce these features of battery behavior, the 

equivalent circuit in Fig. 1 introduces the voltage source, 

OCV, which depends on the charge. This amounts to 

introducing a piston that changes the height of water, as 

depicted in Fig. 4, partly solving effects (a), (b) and (c), but 

not (d). 
In the proposed equivalent circuit model, the voltage source 

is removed and a variable effective capacity, Ceff, is added. Ceff  

will be modeled as a function of the stored charge, Q, as well 

as of the sign of the battery current.  

Returning to the physical analogy, this needs to be modified 

to incorporate a variable effective capacity. A semi-rigid tank 

with the shape shown in Fig. 5 is now assumed. Let us see 

how the model now reproduces the battery behavior. 

The top and bottom of the tank have been tapered. The 

height of water, which represents the battery voltage, will 

increase faster when the tank is almost full or almost empty, 

while the variation in water height is slower in the central part 

of the tank. Thus, changes in the battery voltage slope are 

reproduced when the battery is almost full or almost empty. 

The effective capacity is smaller in these cases. 

As the tank is now semi-rigid, it is able to expand when 

being filled. This means that the effective capacity varies 

when the battery is being charged. The tank is wider when 

full. However, the expansion of the tank is not instantaneous, 

as the expansion rate is lower than the filling rate, unless the 

filling rate is extremely low. The height of water increases 

slowly if the input flow rate is low and increases faster if the 

input flow rate is high. The tank expands as it is filled; when 

the input flow rate is low, the tank has more time to expand 

before the water reaches the maximum permissible height. 

More water can be stored in the tank when it is filled at a low 

flow rate than when it is filled at a high flow rate. The higher 

the filling rate, the smaller the effective capacity. Thus, the 

electric charge that can be stored in the battery is now a 

function of the charge current. 

 
 

Fig. 5.   Physical analogy with variable effective capacity. 

 

As already mentioned, the expansion rate of the tank is 

lower than the filling rate, so the tank continues to expand 

after the input flow stops. If the tank continues expanding 

once the input flow stops, as the volume of water remains 

constant, the height of water will decrease. That is, the battery 

voltage now decreases during the rest period following a 

charging period. 

The voltage hysteresis during the charge/discharge cycles, as 

well as other nonlinearities depending on the sign of the 

battery current, are modeled by means of different laws of 

expansion and contraction of the tank during the filling and 

emptying processes. These laws are included in the model via 

a function, ))(,( BisignQ , which depends on the stored 

charge in the battery, Q , and the sign of the battery current 

)( Bisign . The function ))(,( BisignQ  will be approximated 

by a FRBS. 

III. MODEL FORMULATION 

The dynamics of the tank can be reproduced by means of the 

equivalent circuit in Fig. 2, provided that the capacity, Ceff, 

depends nonlinearly on its stored charge. A standard set of 

nonlinear state-space differential equations will be used to 

model this behavior: 
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))(),(()( tutxftx                  (1) 

))(),(()( tutxgty                 (2) 

 

where x(t) is a vector of the state variables, y(t) is a vector of 

the outputs, and u(t) are the inputs. In this problem, the state 

variables are the capacity, Ceff, and the capacitor voltage, effCv

The output variable is the battery voltage, Bv , and the input is 

the charging current, Bi . Therefore: 

 

)),,((),( BCeffeffCeffeff ivCfvC             (3) 

)),,(( BeffCeffB ivCgv               (4) 

Dividing the vector state equation (3) in two parts and solving 

(4), the system equations are: 

 

),,(1 BCeffeffeff ivCfC               (5) 

),,(2 BCeffeffCeff ivCfv               (6) 

CeffBB vRiv 1                 (7) 

 

It is proposed that the nonlinear dependence between the 

capacity, Ceff, and the capacitor charge,
effCeff vCQ , 

possesses a noticeable inertia, which is expressed by means of 

the first-order system: 

 

))(,( BCeff
Ceff

isignQv
v            (8) 

 

where  is the exponential decay constant and the term 

 

))(,( BisignQ
                 (9) 

 

is the forcing function. The intuitive meaning of this last 

equation is that, for small charging currents, in the long term 

the voltage of the capacitor,
effCv , is a function, ,of its 

charge Q: i.e., is the shape of the tank. The same occurs for 

small discharge currents, although the shape of the tank is 

assumed to be different. Lastly, the decay constant, , 

measures how fast the capacity can change in the absence of a 

charging current, i.e., how rigid the tank is. 

From another perspective, 
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and, solving the system defined by (8) and (11): 
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Thus, the proposed system equations (5), (6) and (7) become: 

 

2

)) 1(,(1

R

v
i

v
C

v

isignQ
C

Ceff
B

Ceff

eff

Ceff

B
eff
    (13) 

))(,( BeffC

effC

isignQv
v            (14) 

CeffBB vRiv 1                 (15) 

 

These equations depend on the following unknowns: 

- The ohmic values of resistors R1 and R2 

- The nonlinear function ))(,( BisignQ  

- The decay constant  

The numerical values of these parameters can be estimated 

from experimental data using computational intelligence 

techniques. As already stated, FRBS are used to approximate 

the function ))(,( BisignQ . The numerical values of R1, R2 

and , along with the fuzzy rules defining , are numerically 

optimized to minimize the deviation between the predictions 

of the model and the available data [31]. 

IV. TESTING PROCEDURES 

All tests were carried out at an ambient temperature of 23ºC. 

Testing-machine adjustments were performed to improve the 

reliability and accuracy of the measurements. The LFP cells 

were subjected to the battery testing procedures shown in Fig. 

6. The first stage was commissioning, during which the battery 

was identified and weighed, and the OCV was measured.  

 

 
 

Fig. 6.   Flow diagram of the testing procedure.  
 

The conditioning stage began after commissioning. The 

conditioning test sequence was performed according to the 

USABC [32]. It consisted of three different constant current 

discharge cycles. The standard charging method provided by 

the manufacturer was used to charge the cell. This consists of 

a constant current (CC) stage at C until the cell reaches the 

charging cut-off voltage, followed by a constant voltage (CV) 

stage until the current decreases to 0.05 C. After the capacity 

had stabilized, a full charge/discharge cycle was performed at 

a rate of C/25. The results of the C/25 measurements provide a 
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practical capacity reference with minimal kinetic effects which 

is close to the maximum capacity attainable by the cell [33]. 

Once the conditioning of the cell was completed the cycling 

procedure commenced. Cycling consisted of a series of 

continuous full charge and discharge cycles at different rates. 

The cell charging method consisted of a CC stage at 0.3 C 

until the cell reached the charging cut-off voltage followed by 

a CV stage until the current decreased to 0.05 C. Stressful or 

mixed cycling is possible. The battery was subjected to 

discharges at C/3, C/2 and C. Discharging was carried out at 

CC until reaching the discharging cut-off voltage 

recommended by the manufacturer. There was an inactivity 

period of more than one hour after each charge or discharge 

until the temperature of the battery fell below 26ºC. 

Reference tests were performed every 300 cycles. This test 

sequence included two standard charges at C with CC 

discharges at C and C/3, and a final CC charge and discharge 

at C/25. This set of reference tests was used to characterize the 

degradation that occurs during the life of the subject test unit 

and to measure the cell’s maximum achievable capacity 

V. COMPUTATIONAL INTELLIGENT TECHNIQUES 

The numerical experiments justifying the selection of 

numerical algorithms and other numerical computational 

aspects are detailed in [34]. 

A. Fuzzy Systems 

0-th order TSK rules were used, in which the antecedent is 

an AND-combination of statements and the consequent is a 

real number. The inference procedure is chosen so that the 

output of the FRBS is functionally equivalent to a spline 

network [35]. Rules have the following form: 

 

If Q is LOW and iB is positive then, p  = 2.91 

 

where all linguistic terms are triangular fuzzy sets and form 

strong fuzzy partitions [36]. Three terms were used to describe 

the current (“POSITIVE”, “ZERO” and “NEGATIVE”), while 

six terms were used to describe the state of charge (“FULL 

DISCHARGE”, “VERY LOW CHARGE”, “LOW 

CHARGE”, “MEDIUM CHARGE”, “HIGH CHARGE”, and 

“FULL CHARGE”). 

B. Distal Learning 

Standard methods for learning fuzzy rules from data cannot 

be applied in this context because there are no input-output 

pairs of the function , although this function is embedded in 

the differential equations defining the model. The proposed 

learning is similar to that known as distal learning in neural 

networks, in which the feedback of the error is obtained after 

recursive simulations of the model [37]. 

The first stage in the proposed learning of embedded FRBSs 

consists in discretizing the differential equations. A discrete-

time system is obtained that can be solved in order to obtain 

Ceff(t) and )(tv
effC given the values of the unknowns at time t-

Δt. As the sampling period in this study (5 seconds) is short in 

relation to the speed of the system, Euler’s implicit method 

[38] is thus sufficient. 

Given the input iB(t0+iΔt), i = 0…N, the initial values Ceff(t0) 

and )( 0tv
effC , the values of R1, R2, and the function p , 

recursive estimations of Ceff(t0+iΔt) and )( 0 titv
effC  are 

obtained. Therefore, given a sequence of size N of 

measurements of battery voltages 
N

i
true ttv

10 )( , learning 

this model requires determining the following 18 unknown 

parameters: 

 

- R1, R2 and  

- The consequents c1, …, c15 of the rules defining  

The best set of parameters is obtained by finding the 

minimum of the following error function: 

 

2
0

1

0

1512100

))()((

),...,,,,),(),((

ttvttv

ccRRtvtCE

true
N

i

B

Ceffeff

          (16) 

 

C. Metaheuristics for optimization 

The function E is multimodal, continuous and non 

differentiable. In addition to this, the parameters must fulfill 

the following constraints: 

 

a) R1 > 0, R2 >0, >0 

b) 1521 ccc   

 

An extension of Simulated Annealing hybridized with a 

direct search was applied to find the best set of parameters. 

This algorithm is based on reference [39] in which this search 

was shown to be faster than other metaheuristics. 

VI. EXPERIMENTAL RESULTS 

Three LiFePO4 batteries from different manufacturers, 

whose characteristics are shown in Table 1, were tested and 

used to check the proposed model. 

 
TABLE I 

TESTED BATTERIES 

Manufacturer MAN#1 MAN#2 MAN#3 

Capacity [Ah] 100 100 16 

Maximum I charge 3C 3C 5C 

Nominal Voltage [V] 3.2 3.2 3.2 

Charging cut-off 
voltage [V] 

3.65 3.6 3.65 

Discharging cut-off 

voltage [V] 

2.5 2.5 2 

Cell geometry Prismatic Prismatic Cylindrical 

Dimensions 

[mm]x[mm]x[mm] 

46x182x277 142x67x217,5 40Ø x159,9 

Weight[kg] 3.3 3.1 0.5 

 

Cycling test data was used for the identification and 

validation processes. The sampling frequency was 0.2 Hz. 

Table 2 shows the charge and discharge currents during 

cycling. Parameters were learned from tests at C/3 in all cases. 
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Tests at C/2 and C were used to validate the model. A model 

disregarding self-discharge, cycle ageing and temperature 

effects was obtained.  

The values of parameters , R1 and R2 are shown in Table 3 

for the different batteries, as well as the measured average 

internal resistance, Rint, of the batteries [32], [40]. 

 
TABLE 2 

CHARGING AND DISCHARGING CURRENTS DURING CYCLING 

Battery Capacity (Ah) I charge 

(A) 

I charge 

cutoff (A) 

I discharge  

C/3 – C/2 – C (A) 

MAN#1 100 30 5 33 – 50 - 100 

MAN#2 100 30 5 33 – 50 - 100 

MAN#3 16 4.8 0.8 5.33 – 8 - 16 

 

In the model’s present form, resistance R1 cannot be directly 

associated with the internal resistance, Rint, of the battery 

because the model was obtained using data sampled at 0.2 Hz 

from cycling tests, disregarding self-discharge, cycle ageing 

and temperature effects.  
TABLE 3 

PARAMETER VALUES OF THE TESTED BATTERIES 

Battery  [s] R1  [mΩ] R2 [kΩ] Rint [mΩ] 

MAN#1 855 2.24 3.85 0.97 

MAN#2 773 2.80 1.80 1.78 

MAN#3 848 2.14 0.69 13.12 

 

Considering the model as a complex impedance, at high 

frequencies, Ceff shortcuts R2 and R1 coincides with 

Rint. However, for small batteries with a low Ceff, the 

contribution of R2 to Rint may still be significant at the Nyquist 

frequency and, thus R1 in the model converges to a value 

lower than Rint. 

 

 
 

Fig.  7. Hysteresis cycle over the graph of ))(,( BisignQ , where 

effCeff vCQ , for the MAN#2 battery. The function ))(,( BisignQ has a 

similar shape for the other types of batteries. 
 

Bearing this in mind, the values of Rint and R1 were 

compared for the three types of batteries. The biggest 

difference is obtained for the 16 Ah battery. This is because 

the value of Ceff for the 100 Ah batteries is about 10 times 

higher than that for the 16 Ah battery. Thus, Ceff shortcuts R2 

at lower frequencies in the case of the 100 Ah batteries: that is 

the reason why R1 is more similar to Rint in the case of these 

batteries. 

The function ))(,( BisignQ , modeled by means of a FRBS, 

is shown for the MAN#2 battery. A cycle of hysteresis has 

been drawn over this graph; see Fig. 7. The voltage,
effCv , 

does not vary greatly for changes in charge, except when the 

battery is almost full or almost empty. As expected, the battery 

slope is high in these cases. The effective capacity, Ceff, ranges 

between 0 and 40000 F. 

 

 
 

Fig. 8.   Inputs and outputs of the battery model. 

 

 
Fig.   9.   Predicted and real voltages for the MAN#1 battery: a) Discharge at 

C/3. b) Discharge at C. 
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The model inputs are the initial stored electric charge, Q(0), 

which is given by Ceff(0) and )0(
effCv , and the battery 

current, iB(t). The model outputs are the battery voltage, vB(t), 

and the stored electric charge, Q(t). See Fig. 8. 

Fig. 9 shows real and predicted battery voltages for the 

MAN#1 battery at C and C/3 discharge rates. It can be seen 

that the predicted voltage reproduces the nonlinear behavior of 

the battery. The change in voltage slope at the end of the 

charge and discharge stages, the voltage hysteresis, the voltage 

changes during the rest periods and the voltage changes during 

the rest periods are all captured by the model.  

The simulation in Fig. 9 starts at the beginning of a charge 

stage. The battery had been fully discharged previously, so 

Q(0)=0. The charge current in both cases is 30 A. Mean square 

errors of the predicted voltage were obtained for currents C/3, 

C/2 and C. Table 4 shows these errors for the different 

batteries. 

 
Fig.   10.   Variation in stored charge and effective capacity during battery 

charge and discharge for the MAN#1 battery. a) Discharge at C/3. b) 

Discharge at C. 

 

Fig. 10 shows the effective capacity of the battery and the 

stored charge during a charge/discharge cycle. It can be seen 

that the stored charge is considered constant during the 

inactivity period, though the effective capacity is not. This fact 

explains why the battery voltage changes during the periods of 

inactivity between the charge and discharge stages, which is 

the main contribution of the proposed model. 

It should be noted that the voltage at the variable capacitor, 

effCv , is not the OCV at equilibrium as in the case of the 

Thevenin- and impedance based- models. 
effCv  is the OCV 

when no current flow through the battery, and 
effCv   is only 

the OCV at equilibrium after a long rest period when the 

battery reaches equilibrium.  

The product of the effective capacity multiplied by the 

capacitor voltage predicts the stored charge in the battery. The 

prediction of the stored charge in the MAN#1 battery is 

compared in Fig. 11 for three different discharge stages. The 

charge current in all cases is 30 A, although the discharge 

currents are respectively C/3, C/2 and C. 

 

 
Fig.  11.  Comparison of the extracted electric charge at C/3, C/2 and C 

discharges for the MAN#1 battery. 

 

As the charge current is the same in all three cases, the 

amount of stored charge during the charge processes is also 

the same. However, the charge extracted from the battery 

differs depending on the discharge current. The smaller the 

discharge current, the longer the discharge process and hence 

the greater the extracted electric charge. 

VII. CONCLUSIONS 

A reliable equivalent circuit model that captures the 

nonlinear characteristics of battery behavior has been 

proposed. The equivalent effective capacity of the battery has 

been used to capture nonlinearities in the battery, instead of 

the OCV. The most important property of the proposed model 

versus other equivalent circuits is its capacity to reproduce the 

changes in battery voltage during resting periods, when no 

current flows through the battery. 

Physical analogies have been used to explain how the 

proposed model works. A state-space nonlinear dynamic 
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model has been applied. A FRBS is embedded in the equations 

to model battery dynamics. Computational intelligence 

techniques are used to determine the unknown parameters of 

the model. 

A model disregarding self-discharge, cycle aging and 

temperature effects has been validated using LiFePO4 

batteries. The agreement between simulations and 

experimental results shows that the proposed model accurately 

predicts battery voltage. The model is also able to predict the 

electrical charge stored in the battery. 

Future developments will take into account the effect of 

temperature. Battery self-discharge and aging of the battery 

will also be incorporated in the model. 
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