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Abstract

A new machine learning system is presented in this paper. It is called
INNER and induces classification rules from a set of training examples.
The process followed by this system starts with the random selection of
a subset of examples that are iteratively inflated in order to cover the
surroundings provided that they are inhabited by examples of the same
class, thus becoming rules that will be applied by means of a partial
matching mechanism. The rules so obtained can be seen as clusters of
examples and represent clear evidence to support explanations about their
future classifications, and may be used to build intelligent advisors. The
whole algorithm can be seen as a set of elastic transformations of examples
and rules, and produces concise, accurate rule sets, as is experimentally
demonstrated in the final section of the paper.

1 Introduction

Let us consider a set of training examples described by attributes with different
kinds of values: symbolic (or literal) and numerical. Once we have attached a
category label or class to every example, a supervised learning algorithm tries
to build a collection of simple classification procedures able to guess the class
from the attribute values of a given, unseen example.

A useful means of describing these machine learning tools is to consider
the attribute space (the set of all possible examples) from a metric view-point.
Here, examples are points and classification procedures, usually called rules,
can be depicted by regions usually limited by borders parallel to the axes with
an endowed class label: respectively, the rule body and conclusion. Hence, to
classify a new example we need only to observe which region its coordinates
belong to; its class label will be the classification returned.
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This classification mechanism can, however, be relaxed; when the coordinates
of an example do not exactly belong to any rule body, we can use the nearest
one instead [11]. In this case, we no longer need to have large rule bodies:
certain strategically placed decision regions can play the same role [25, 29, 24].
We can even have a collection of paradigmatic examples to classify new cases
[1, 2, 10, 31, 12].

One of the alleged advantages of exact classification systems (those where
points always belong to at least one rule body) such as the paradigmatic C4.5
[22] is the explicitness of their solutions, but they may fail when decisions borders
are not parallel to the axes. On the other hand, minimum distance classifiers
may be adapted to a wavy geometry but may produce heavily implicit solutions.

The RISE system [13] tries to exploit the best of both worlds, and produces
a collection of rules whose bodies range from points to large regions parallel to
the axes. The classification accuracy of these rules is very high, but the number
of rules needed is sometimes too high to tag their solutions as explicit.

In this paper, we present a set of elastic transformations of learning objects:
training examples and decision rules. These objects are allowed to inflate their
frontiers to become more general, explicit, ground classification areas. During
this expansion process, some regions may blend together like bubbles to give
rise to a single, stronger rule; the maxim is to make implicitness explicit in
classification areas.

The achievement of this elasticity is that a set of training examples can
lead us to a small, explicit, accurate set of rules to be evaluated by means a
nearest-neighbor (or partial matching) strategy. The machine learning system
thus obtained is presented here. We call it INNER: an approximate acronym of
the process description, given that the system advances by INflatiNg Examples
to obtain Rules. There are a number of techniques [7] concerned with reducing
the size of the knowledge induced from a set of training examples. What we
would like to emphasize is that in addition to its reduced size, the classification
knowledge induced by INNER is highly intuitive since we only allow our rules to
grow while they have enough training examples in the surroundings to support
their generalization. The reward is that the explanations that can accompany
INNER classifications (the mention of the rule used) look very much like a repre-
sentative evidence cluster. The very small sizes of rule sets obtained add more
credibility to the eventual explanations of INNER.

The generalization device employed is heavily inspired by Kohonen’s self-
organizing maps [18], and is based on the definition of distances between learning
objects: examples and rules [3, 19, 20, 21]. After a Section devoted to giving an
overview of our system, we spell out the metrics used throughout the paper. We
have to deal with numeric as well as symbolic differences. The core idea is that
we can learn to measure differences at the same time as we learn how to classify
new cases. The result is a metric that takes into account local peculiarities of
relevant regions of the attribute space.

In order to illustrate INNER’s performance, we close the paper with a report
of some experimental results obtained from a set of well-known learning datasets
[16, 28] taken from the UCI repository [5]. In this final section, we compare the



accuracy, number and size of rules induced by C4.5, RISE and our system.

2 Overview

Our learning system starts from a collection of training examples and is able
to induce classification rules described by two parts. The left-hand side or
conclusion is given by the name of a class; the right-hand side or body of the
rule is a conjunction of conditions or antecedents. We will use the following
syntax:

C «— Atr, € [$1,$2]/\At7"2 S {’Ul,vg,...}/\...

where Atry is an attribute with numeric values, while Atro has symbolic values
instead. Examples fulfilling these rules should have values of attribute Atry
between 1 and x, and a symbolic value of A¢ry belonging to the set {vy,vs, ...},
etc. However, we are going to allow slightly different values to apply the rule
and conclude that the class must be C. The tolerance threshold will depend
of the remaining available rules, since our evaluation principle is based on the
nearest neighbor rule.

In fact, the evaluation procedure guides INNER’s induction mechanism. The
overall description of the algorithm (see Figure 1) can be seen as a variant of the
separate-and-conquer family [14]. The main difference is that we do not dispose
of covered examples to generate new classification rules; instead, we propose a
kind of iterate-and-conquer. In each cycle of the main loop, we randomly choose
a small set of training examples of every class by means of FINDBESTRULES.
Considered as point rules, their descriptions are generalized (by inflating them;
see Figure 2) in an attempt to improve their classification accuracy, while at
same time aiming at making their correct classification areas explicit.

If e is a training example, its point rule version is simply

CLASSOF(e) «— al € [eq1,€q1] A a2 € {eq2} A ...

where CLASSOF(e) is the class of our example, ai are attribute names, and
the body of the rule is a conjunction where we have singleton sets formed by
the example values attached to each attribute; e,; is the value of example e on
attribute ai.

The rules obtained by inflating these point rules are saved and used to com-
pute which training examples are now explicitly covered (this is the function
of COVERAGE); the next iteration will inflate a new set of uncovered examples.
The stopping criterion is related to the number of training examples covered by
the rules generated so far, since the goal is to cover the regions to be classified
explicitly. By default, we require at least 95% of the training examples of each
class to be covered. However, the maximum number of cycles allowed is 5.

Notice that we use two sets of examples: the original training set, and the
collection of uncovered examples. Thus, if we do not obtain high quality rules
in one iteration, we may try again by picking up better starting points whose



Function INNER (Ezamples) : Set Of Rules

Theory=()

UnCovered=Examples

while not(STOPCRITERION (UnCovered)) do
Rules=FINDBESTRULES ( Ezamples, UnCovered)
Theory=Theory U Rules
Covered=COVERAGE ( Theory, Ezamples)
UnCovered=Examples\ Covered

end while

Theory=P0OSTPROCESS ( Theory, Examples)

return (Theory)

Figure 1: INNER’s main loop.
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Figure 2: The generalization process consists of inflating rule descriptions as far
as possible while the classification quality is maintained or improved.

generalizations may overlap the inappropriate rules. Finally, once we have gath-
ered a set of classification rules in our Theory, we try to improve the whole set
of rules in a POSTPROCESS step. Here we dispose of unnecessary or erroneous
rules and we try to join neighboring, coherent decision areas. In a certain sense,
we make rules to play the role of individual examples in the inflating mechanism;
see Figure 11 in Section 5.

3 Metrics used during the learning process

Most of INNER’s skill is in its inflating procedure, which is based on an original
way of measuring distances between learning objects. In fact we are not going
to deal with a metric in the mathematical sense of the word. Instead we will
have heuristics able to judge the utility of a rule growing in the direction of a
given training example.

Instance-based learning systems are usually concerned with distances from
examples to examples; a simple generalization leads us to consider distances
from rules to examples, and even more so from rules to other rules. In INNER,
we will have rules and examples in the inflating stage, but only rules in the
final rule set improvement step. In the following, we present and discuss some



distance functions to compute distances between examples which will be later
generalized to be used with rules.

Our system is able to handle both numeric and symbolic values within the
same case, so we need some kind of heterogeneous function measure. An initial
candidate is a function similar to the one used by Aha’s IBx algorithms [1, 2]
called the Heterogeneous Euclidean-Overlap Metric [30] defined by

HEOM(z,y) = /S0, du(ra. ya)? (1)
1, if x4 or y, are missing
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where x and y are examples described by m attributes, and max, and min, are
respectively, the highest and the lowest values observed in the training set for
attribute a.

The main defect of HEOM is the use of overlap to decide symbolic differ-
ences. Instead, we might try to take advantage of any additional information
available on training examples that may become relevant for classification pur-
poses. So, for instance, it may happen that the colors green and red appear
in similar proportions in all classes, while the occurrence distribution of blue is
quite different; then it is reasonable to assume that green and red are near (from
a metric view-point) values but far from blue cases when we are classifying. This
idea is stressed by the so-called virtual difference metric, VDM [27], later de-
veloped into several variants such as HVDM, IVDM or WVDM, introduced in
[30] or SVDM [13].

Our system incorporates a version of HEOM called KC-HEOM, since it is
heavily inspired by the ideas involved in Kohonen’s self-organizing maps. Given
that our training stage has to decide which values to incorporate into rule con-
ditions, we will deal in the symbolic case with a kind of membership function
for each rule and condition. Since our symbolically-valued attributes have a fi-
nite number of possible values, real number vectors can codify the membership
functions, where there must be one component for each possible value; we call
these vectors difference tables.

To give the formulas of our K-HEOM, let us consider an example e (described
by m attributes) and a rule with difference table T, attached to a generic at-
tribute a; for each individual value e, of a, T,[e,] stores the difference from the
rule. Then, we define

K-HEOM(Rule, ¢) = /S, dx(Ruleq ,)? (5)

where Rule, is the set attached to attribute a in the Rule’s body.



1, if e, is missing

dic(Ruleg,eq) = Dy (Ruleg, e,), if ais a symbolic attr. (6)
Ex(Ruleg, eq), if ais a continuous attr.
0, if Tyleq] <0

Di(Ruleg,eq) = 1, if T,leq] >1 (7)
T,leq], otherwise
0, if e, € Rule, = [x1, 2]

E Rulea, €a = min{|z;—e To—e . 8

e ) { {‘m;%il?’n‘iia “‘}, if e, € Rule, = [x1, 23] (8)

During the training stage, difference tables will be modified in an attempt
to adapt their values to a successful classification role. Hence, some individual
differences may fall outside the interval [0,1], as shall be explained in the next
Section. So, in order to compute distances with Dy, we will consider negative
values as 0 and values above 1 in the table as 1.

Once we have induced a set of classifying rules, in order to classify a case
we will find the nearest rule and return the conclusion class of that rule. In
other words, we use a partial matching strategy. The metric used to evaluate
test examples is not K-HEOM. Instead, a simple HEOM is sufficient, since all
metric knowledge is already included in our rules. However, we did investigate
the effects of extending the use of X-HEOM during the evaluation stage, and in
Section 6 we discuss the results obtained in this way in a version of our system
that we call K-INNER. The difference in accuracy is not significant.

Finally, in the POSTPROCESS step, we need to measure distances from rules.
The formulas used are simply a generalization of K-HEOM, and can be found
in Appendix A.

4 Instance generalization

The core stage of INNER is described in this Section. Here the task is to obtain a
set of reasonable classification rules starting from a collection of randomly chosen
training examples called seeds. The algorithm used can be seen in Figure 3.

First of all we select a small number of uncovered examples of each class. By
default, we need 10 per class unless there are classes with few representatives or if
we have covered all the available examples of a given class in previous iterations.
We then reduce the number of selected uncovered seeds or we choose already
covered examples. The cumbersome details about the election of examples to
be generalized are explained in Appendix B.

The selected seeds are converted into punctual rules, as mentioned in Sec-
tion 2. The problem arises when we find missing values in the examples. We
must then write some credible values instead. For numerically valued attributes,
we use the average of the attribute in the same class as our example. On the
other hand, when missing values appear in a symbolically valued attribute a,
we need a plausible difference table. Thus, for each possible value v of attribute



Function FINDBESTRULES ( Ezamples, UnCovered) : Set Of Rules
RuleSet=0
for each class C' mentioned in Ezamples do
CUnCovered Exs=EXAMPLESOFCLASS (C, UnCovered)
if CUnCoveredExs # () then
RuleSet=RuleSet U INITEXSASRULES (CUnCoveredExs)
else
RuleSet=RuleSet U INITEXSASRULES (EXAMPLESOFCLASS (C, Ezamples))
end if
end for
RuleSet=GENERALIZEINSTANCES (RuleSet, Examples)
RuleSet=PRUNECONDITIONS (RuleSet, Examples)
return (RuleSet)

Function GENERALIZEINSTANCES (RuleSet, Examples) : Set Of Rules
for each time from 1 to M do
/* M is the number of times that we repeat the examples; it is
the minimum integer that guarantees 3000 presentations */
Ezamples=RANDOMLYSORT (Ezamples)
for each Ej€ FExamples do
Rule=NEARESTRULE (RuleSet, Ej)
Rule=GENERALIZERULE (Rule, Fj)
if ISTIMETOREGULARIZE (j) then
RuleSet=REGULARIZE (RuleSet, Examples)
end if
end for
end for
return (RuleSet)

Figure 3: INNER’s instance generalization procedure. Training examples are
presented several times (M) to a small set of starting seeds that inflate their
descriptions according to the stimuli so received. This is repeated (no more
than 5 times) until the rules obtained cover a significant part of the training

examples. A final generalization process returns the induced rule set.



a, we define
Tolv] =1 = P(v|C); (9)

where P(v|C) is the probability of finding the value v on attribute a in a training
example of class C.

To illustrate the generalization mechanism of our system, we generated 1,000
examples described by 3 attributes: 2z with numeric values in [2.0,8.0]; flavor,
symbolic, with possible values {sweet, salty}; and color with values in {red,
green, blue}. These were artificially labeled with a class tag according to the
following rules:

class A «— 2 <6.5A flavor € {sweet} A color € {red}
class A «— 1z <6.5A flavor € {salty} A color € {blue, green}

class B « in all other cases

Additionally, 58 randomly selected examples were misclassified to add some
noise to the training data.

Let us suppose that we start with 4 examples to be generalized: 2 of class A
and 2 of class B (see Table 1). These are considered as punctual rules and inter-
nally represented, endowed with the corresponding difference tables (Table 2).

Class X flavor  color

A 3.932 salty red
A 2.582 salty green
B 2.502  salty red
B 2.450 sweet  blue

Table 1: Salad data set. Starting seeds to be generalized by INNER. Observe
that according to the given class definition, the first example is a noisy one: its
class should be B instead of A, or its flavor should be sweet, or its color should
be blue.

Continuing with the general case, we need to inflate our recently-built punc-
tual rules, trying to make explicit their implicit and correct decision areas. To
do this iteratively, we present each training example and modify the nearest
rule. The influence of the example over the rules depends on the example’s
class and the distance from the example to the rule. The overall idea is that
rules concluding the same class as the example should grow, trying to shorten
their distance, while we should enlarge distances when classes are different. The
magnitude of the movement of rule frontiers will be inversely proportional to
the distance between example and rule.

To modify the nearest rule, we consider each attribute included in its con-
dition list, changing the respective difference tables for symbolically valued at-
tributes; in the numerical case, we move the extremes of the intervals. For
both types of attributes, modifications are made by means of a Kohonen-like



External representation Associated difference tables

A — 2 €[3.932,3.932] A flavor color
A flavor € {salty} A sweet salty red green blue
A color € {red} 1 0 0 1 1
A — 1 €[2.582,2.582] A flavor color
A flavor € {salty} A sweet salty red green blue
A color € {green} 1 0 1 0 1
B — z € [2.502,2.502] A flavor color
A flavor € {salty} A sweet salty red green blue
A color € {red} 1 0 0 1 1
B «— z € [2.450,2.450] A flavor color

A flavor € {sweet} A sweet salty red green blue
A color € {blue} 0 1 1 1 0

Table 2: Salad data set. The examples of Table 1 now considered as punctual
rules with their associated difference tables.

formula, where constants are empirically obtained default values; the results are
not highly dependent on these values. Equations (10) to (13) show the way we
modify the extremes of a numerical antecedent.

Ext = Ezt+h,(D,t)-d, (10)
ho(D,t) = an(t) - Su(D) (11)
an(t) = 075 (1+ &) (12)
Su(D) = tremos (13)

Here, Ext is the nearest extreme to the value of the considered attribute in
the example being presented, provided this value is not in the interval; in which
case, the numerical interval will not be changed. The extreme will be modified
as a percentage of d,, the distance to the attribute’s value of the example. This
percentage is computed by (11) depending on the learning rate «,(t), a value
that decreases linearly as long as examples are presented (M is the number of
times that we repeat the examples), and the neighborhood function S, (D), a
sigmoid used to smooth changes depending on D, the distance between the rule
and the example.

In the symbolic case, we obtain the same effect by modifying the difference
tables in a similar way. As Equation (14) shows, for a symbolic antecedent
corresponding to attribute a, we will modify the entry in its difference table T,
whose index is e,, the attribute’s value in the example.



External representation Associated difference tables

A — 2€[3.93,3.93] A flavor color
A flavor € {salty} N sweet salty red green blue
A color € {blue} 0.92 -1 0.58 1 -1
A — z€[2.000,6.122] A flavor color
A flavor € {sweet,salty} A sweet salty red green blue
A color € {green} -1 -1 1 -1 1
B«— z€[2.026,7.970] A flavor color
A flavor € {salty} N sweet salty red green blue
A color € {red} 1.02 -1 -1 1 1
B «— z € [2.055,7.973] A flavor color
A flavor € {sweet} A sweet salty red green Dblue
A color € {blue} 0 1 1 1 0

Table 3: Salad data set. The initial punctual rules of Table 2, after being
inflated. Notice that the first rule now classifies according to the specification
of this data set even though the rule seed was a noisy training example.

as(t) = 0.675-(1— ) (16)
S:(D) = irgo=s (17)

Notice the use of (T,[es] + 1) in (14), which gives the system the ability
to modify the difference to an initially covered example (an example for which
Tu.les) = 0). This leads to a self-organizing procedure whose benefits can be
appreciated in the salad data set introduced above. Thus, the initial punctual
rules (Table 2) become the rules represented in Table 3, where the first rule has
modified the color of its condition de facto from red to blue. Thus, the rule is
now responding to the specification of a correct classification of this data set.
The unpleasant consequence of this equation is that it can lead us to obtain
difference values lower than 0 or higher than 1, as was anticipated in Section 3.
The range of differences is actually [—1, 00), though it is trimmed to [—1, 2].

From time to time (see function ISTIMETOREGULARIZE in Figure 3), we
proceed to fix the frontier movements of our rules; we call this process regular-
ization. The criterion is quite simple: we consolidate rule shapes whenever their
classification quality has improved since the last control; otherwise, no changes
are made. Regularization is applied only once for symbolic antecedents, just
when the learning process has finished, to decide which values should be in-
cluded in the conditions established by every antecedent.

To quantify the classification quality of rules, we cannot use a minimal dis-
tance criterion to apply rules, since we have not yet determined the final rule
set. Therefore given a rule R, we must only consider training examples lying
inside rule frontiers. Hence, we could have applied the so-called Laplace cor-
rection, LAP, to the proportion of successful classifications, as in the CN2 [9]
version described in [8]. This heuristic is given by the quotient of the number of
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successes (#success) plus one, and the number of applicable training examples
(n = #success+ # failures) plus the number of classes (#classes); in symbols,

#success + 1
Lap(R) = 18
() #success + # failures + #classes (18)

This measure faithfully reflects the consistency of a rule, but in our case
we are in a nearest-neighbor environment concerned with discovering densely
populated regions of examples of the same class within the attribute space.
So, we need to add more requirements to our heuristic: it should also include
completeness. It may be argued that Domingos used the Laplace correction in
RISE [13], but this algorithm does not necessitate worrying about completeness,
since RISE starts with the whole training set as the rule set to be improved (in
consistency) if possible.

Hence, in order to quantify the classification quality of rules, we use the
impurity level [23, 24], a measure that tries to combine the consistency and
the completeness of a rule. It was originally presented with a machine learning
system, FAN| designed in our laboratory, and then used in [19, 20, 12, 21]. Tt is
inspired by Aha’s criterion for selecting suitable paradigmatic exemplars in IB3
[1, 2].

To formulate the impurity level, we first need to compute the confidence
interval of success probability of a rule (p = #success/n) by means of [26, p.
162]:

CONFICENCEINTERVAL(p, n, 2) = 2n - an? (19)

where z, according to the confidence level, « (by default 95%), can be found in
a normal distribution table.

Finally, given a rule R concluding class C, we first compute the confidence
interval of the rule: [left(R),right(R)]. Then we compute this interval for the
so-called random rule of a class C} i.e. the rule concluding C without conditions:
[left(C), right(C')]. Thus, we define

right(C') — left(R)
right(R) — left(R)

In other words, we are measuring the percentage of the confidence interval
of the rule classification success that is overlapped by the confidence interval of
the random rule of a class (see Figure 4). So, a negative impurity level means
that the confidence of a successful classification is better than the unconditional
classification in the same class.

The last function to be applied to a rule set generated by inflating a set of
training example seeds is PRUNECONDITIONS (see Figure 3). Here each rule
description is optimized by deleting those conditions that increase the impurity
level of the whole rule [23, 24, 4, 6].

IMPURITYLEVEL(R, Examples) = 100 -

(20)

11



C— Ant A Ant, ...

I
0] 1&t(c) IftR)  right(C) rightR) 11

Figure 4: Impurity level. In boxes, we represent confidence intervals of successful
classification of rules C' < Ant; AAnts ... and the random rule of class C (C ).
The overlapping region of both intervals measures the impurity level of the first
rule.

5 Rule sets generalization

Once we have enough inflated training examples to become rules, INNER starts
a pruning process to optimize the whole rule set thus obtained. The overall
algorithm is described in Figure 5. The main operation is the extension of one
rule towards another of the same class taking for granted that they are near;
the resulting rule improves the classification quality measured by means of the
impurity level. The idea is sketched graphically in Figure 6.

During the inflating cycles, INNER has built a number of draft rules that
should be generalized by merging their classification domains. This happens
when two close seeds of the same class are fighting to gain classification space in
the same iteration, or when in different cycles we obtain several versions which
are only slightly different from one another (see Figure 7).

The procedure for making rule extensions can work under two conditions.
In the first stage, we do not allow extensions of a rule that would produce new
intersections with rules of different classes; we only accept this possibility in the
final phase, which implies the definition of application priorities.

To explain the details of rule extensions, let us recall that the formulas used
to measure distance between rules are generalizations of -HEOM, and can be
found in Appendix A.

But distances cannot be the sole condition to be taken into account for as-
sessing the convenience of a prudent extension of a rule. For instance, Figure 8
shows three quite different situations of rules at the same distance. Only the
leftmost situation should yield an extension; in the other two cases, extensions
would be too different from the original rules and so could easily become over-
generalizations. In fact, given two near rules, we will only extend one rule
towards another in the direction of some attributes, i.e. dimensions of the at-
tribute space. To determine the extensible attributes of a rule in the vicinity of
another, we use the degree of inclusion of attribute values defined as follows.

12



Function POSTPROCESS (RuleSet, Examples) : Set Of Rules

RuleSet=GENERALIZERULESET (RuleSet, Examples, without Intersections)

RuleSet=SELECTION (RuleSet, Ezamples)

RuleSet=GENERALIZERULESET (RuleSet, Examples, with Intersections)

if COVERAGE (RuleSet, Examples) # Examples then // Still some uncovered examples
RuleSet=GENERALIZEINSTANCES ( RuleSet, Examples)

end if

return (RuleSet)

Function GENERALIZERULESET (RuleSet, Examples, Intersect?) : Set Of Rules
for each class C' do
let DistancesList be the list of distances of all near pairs of RuleSet
elements ordered by increasing distance and below a given
threshold (Ss(threshold) = 0.95, see Equation (17)).
for each [Rp, Rq; Distance] € DistancesList do
if EXTEND (Rp, Rq, Examples, Intersect?) then
if Rq C Rp then RuleSet=RuleSet - {Rq} end if
DistancesList=UPDATE ( DistancesList)
/* Notice that updating distance lists implies that extended
rules can be considered for further extensions */
end if
end for
end for
return (RuleSet)

Function EXTEND (Rp, Rg, Ezamples, Intersect?) : Boolean Value
/* Returns true if Rp can be extended in the direction of Rg, in
which case Rp is modified; otherwise this function returns false */
Extensible=EXTENSIBLEATTRIBUTES (Rp, Rq)
if Extensible=( then return (FALSE)
else/* there are attributes of Rp extensible towards Rg */
Body=TRUE
for each antecedent A of Rp do
if A€ Extensible then Body=Body A A extended towards Rq
else Body=Body N A
end if
end for
if in the extension rules are allowed to Intersect? OR
"CLASSOF (Rp)«—Body’ does not intersect rules of other classes then
if IMPURITYLEVEL ("CLASSOF (Rp)« Body’, Ezamples)<
IMPURITYLEVEL (Rp, Ezamples) then
Rp="CLASSOF (Rp)«— Body’
return (TRUE)
end if
end if
return (FALSE)
end if

Figure 5: INNER’s post-processing procedure. Inflated training examples are
extended trying to cover the body of near rules of the same class. Redundant
or ineffective rules are then deleted and some final touches complete this rule
generalization mechanism.
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Figure 6: Extension of rules. R, and R, are near rules of the same class. In the
figure, R, is extended towards R, in the direction of the horizontal attribute.
This process will be applied whenever the classification quality of the result is

improved.
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Figure 7: The effect of GENERALIZERULESET. To illustrate the work carried
out by this function, let us consider a data set of points of a square classified as
in or out depending on whether they are inside a cross or outside its limits. The
left-hand side shows the rules concluding class out after some training examples
were inflated. The function GENERALIZERULESET will transform the situation
to obtain 4 rules, as depicted on the right-hand side of the figure.

Given the rules

R, : C—...Na€(Rpg .-
R, : C—...Na€e(Ry)q ...

we are going to define the degree of inclusion I" or (Ry), in (Ry)e. The idea is
to measure to what extent (R,), is included in (Ry),; hence, this is not at all
a symmetric measure. On the left-hand side of Figure 3, the vertical attribute
exhibits a complete degree of inclusion of its values in R, inside those in R,
but this is not the case of R, and R,. Moreover, there is no coincidence of
values between these rules in the horizontal attribute. The result is that we will
recommend the extension of R, towards R, in the direction of the horizontal
attribute so as to obtain the situation depicted on the right hand side of Figure 6.
Therefore, if a is a continuous attribute, (R,), = [z}, 28], and (R;)q = [z, 23],
we define
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Figure 8: The distance between rules is not enough to determine which rules
should be extended. Only the leftmost situation seems adequate to try an
extension. In the other cases, the extended rules would be an overgeneralization.

min{azg,xgifmqax{wf@(f}7 if (Rp)a n (Rq)a 7é 0
F(<Rp)aa (Rq)a) = s i (21)
0, if (Rp)a N (Rg)a =0

For symbolic attributes we use the difference tables, but first we reduce their
values to a number in [0,1]. To do so, we trim the differences below —0.7 and
above 2.0 and then normalize the original values. The thresholds —0.7 and 2.0
were determined experimentally as typical bounds for differences. In symbols,
if TP and T are their respective difference tables, we define

e, 9(TTed]) - G(Td[ea))

F((Rp)aa (Rq)a) - Z Q(Tf[e ]) (22)
where
1, if x <-0.7
Gxz) = <0, ifz>2 (23)
%, otherwise

In general, extensible attributes can be either all the attributes of a rule
(they all have inclusion degrees higher than 0.9) or only one (the only one that
has an inclusion degree below 0.9); see Figure 9. However, the extended rules
can be extended again starting from their new shape.

The key to extending a rule towards another is the extension of one an-
tecedent A towards a rule R. The idea is to compute a kind of union between
the set of values of A and the corresponding values in R. Thus, in the numeric
case, the extension is the smallest interval containing the union of two intervals.
In the symbolic case, we must act on the difference tables of the correspond-
ing attributes: we build the union table with the minimum difference for each
individual value.

Once an initial extension of the whole rule set has been carried out as in
the previous Section with the function PRUNECONDITIONS, there is a kind of
counterpart in the function SELECTION. It deletes redundant rules from the final
rule set as well as those that cause more misclassifications than their absence.
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Figure 9: Selection of extensible attributes. The left-hand side shows a typical
situation where rules should be merged in all possible directions: all the at-
tributes are extensible. The right-hand side shows the case where there is only
one attribute; the horizontal should be used to extend R, towards R,.

Thus, rules are sorted by their impurity level, and we then sequentially consider
removing those with a higher impurity level than a certain threshold; the number
of classification failures in training examples decides the best rule set [23, 24].

As a part of the final selection process, when all the attributes are symbolic,
we make an additional simplification of the rule set. Notice that now, when we
have a case at a greater distance than zero from all available rules, the evaluation
procedure assigns the class of a rule following a legal but unnatural algorithm.
To avoid this, we include a default rule; i.e. a rule to be applied to those cases
not explicitly covered by any other rule. This is a rule with no conditions and
the lowest priority. Then the minimum distance criterion to apply rules is only
formally present: all cases will have some rule at distance zero. Additionally, the
rules of the default class are unnecessary if they have no intersection with rules
of other classes or have a lower priority than these. This is hence a powerful
simplification mechanism in the number of final rules.

Notice that when numeric attributes are present, a default rule would destroy
the essence of distance evaluation. In fact, cases at a positive distance from all
rules would be classified according to the geometrically nearest rule. There is
not a privileged class, as happens in the symbolic case. Thus, data sets with
some numeric attribute will never include a default rule.

The last two steps in the post process of INNER to produce a final rule set
are a new generalization of the whole set of rules and a new inflating if there are
still some uncovered examples. However, there is a difference between previous
generalization and inflating processes: in these final steps we allow intersections
between rules of different classes. The possibility of overlapping rules has been
a matter of controversy. In [29], the authors conclude that a major source of
problems in NGE [25] is the creation of overlapping rectangles. We think that
these problems may be caused by the peculiar criterion used to resolve prior-
ities. However, INNER’s position in this sense is quite different; its algorithm
for deciding priorities is more similar to the policy followed in RISE [13], given
that both are based on measurements of the classification quality of the rules.
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Figure 10: The final inflation of rules allows intersections of rules of different
classes. In drawing (a) we see a data set where two rules are being inflated, one
for each class; the result being shown in (b). Only when we allow intersections
can R, go below R, to reach all the examples of its class (c).

To handle overlapping rules, INNER explicitly assigns relative application prior-
ities to the rules involved. The criterion for defining priorities is based on the
impurity level of the intersection.

In the case of the final inflating of rules, the algorithm used is the one previ-
ously described in Figure 3. However, in order to regularize the modified rules,
we take into account the effective impurity level. Given a rule R, its effective
impurity level is computed as described in Equation (20) but considering only
the examples covered by R and not covered by any other rule with higher priority
than R. In this way, our rules can reach regions impossible to cover without
intersections due to the strict application of the impurity level; see Figure 10.

Finally, Figure 11 presents the transformations described in this section for
INNER rules induced from a very well known data set, namely iris flowers, whose
examples are described by four numeric attributes: petal and sepal length and
width. They are classified into 3 classes: setosa, virginica, and versicolor. These
drawings show only petal attributes, since it is known that these measurements
are the most relevant ones for classifying irises. The first snapshot (a) shows
the rule set generated by INNER after inflating some iris training examples.
Snapshot (b) represents our rule set after the action of PRUNECONDITIONS
(see Section 4), the first GENERALIZERULESET, and the SELECTION. The last
snapshot (c), depicts the final rule set. We can observe how our rules have been
inflated to cover most of the training examples of their classes, especially for iris
versicolor and iris virginica. Worthy of note is the concise and accurate final set
of rules obtained; only three rules are needed, one for each class.

6 Evaluation of the system

In this section we present a detailed study of the results obtained with INNER.
We shall discuss the accuracy and size of the knowledge induced as well as its
usefulness, a subtle term that depends not only on the accuracy achieved but
also on the kind or quality of the solution induced. This could be thought of
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Figure 11: Iris data set. Three snapshots of rule generation. The final rules,
represented in (c), are:

setosa  «— Petal Length € [1.0,1.9]

versicolor « Petal Length € [3.0,4.9] A Petal Width € [1.0, 1.6]

virginica « Petal Length € [4.8,6.9]



as a weighted combination of accuracy and complexity of the solution. The
weightings can be different depending on the problem. Thus, for some problems
a less accurate but simpler solution might be preferable to one that is more
accurate but humanly unreadable. We will emphasize the ability of learning
solutions to endow classifications with a sound explanation of the reasons that
led us to conclude a given class.

With respect to the kind of solution, symbolic rules are in general more
readable than other representations, but we have to differentiate two main ap-
proaches when using symbolic rules to classify:

e Applying a rule whenever an example fulfills the rule antecedents. This
approach implies that rules must cover the whole attribute space in order
to classify all the examples and unseen cases.

e Applying the closest rule to a given example. The metric used to measure
distances is of crucial importance to correctly find the appropriate rule.
Rules do not have to cover the whole attribute space.

Although the former approach is a particular case of the latter, where the
distance is always 0 from any example to one or more rules, the difference of these
approaches is very important when trying to explain a classification decision, as
we will discuss later.

Throughout this section we show estimations in different senses of the quality
of INNER’s solutions, comparing them with those found using two other systems,
RISE and C4.5 in its rule generation version (C4.5R); both using their default
parameter settings. We used these two systems mainly for the following reasons:

e Both are rule induction systems, like INNER.

e C4.5R exemplifies the paradigm of algorithms producing rule sets that
cover the whole attribute space and has a very well-established reputation
in machine learning, so we consider it to be an obligatory reference for
comparison.

e The core idea used in INNER to induce rules is similar to that used in
RISE. In fact, we also unify, in the way stated in [13], the use of instances
and rules. Both INNER and RISE apply their rules using a minimum
distance criterion. In addition, RISE has proven itself to be a very accurate
algorithm, so its precision is a good reference for any new system.

The first two subsections report the empirical study carried out with bench-
mark datasets. We then discuss the features of INNER’s solutions in order to
provide explanations of the classifications. In another subsection, some vari-
ants of the original algorithm are studied to clarify how the final results are
concerned with the most striking aspects of INNER: the use of L-HEOM, the
coverage threshold, and the initial instances selection. Finally, we examine the
theoretical time complexity of our system, accompanied by a table of the aver-
age running time consumed by the compared algorithms during the empirical
study detailed in Section 6.1.
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6.1 Experimental results with Holte’s and Monk’s prob-
lems

When selecting some datasets for validating a machine learning algorithm, an
author may (unconsciously) select suitable problems to exploit some features
of his or her algorithm; this selection would probably be inadequate due to its
lack of generality. To avoid this pathology, we have used Holte’s problems, a
well known set of 16 datasets used in [16] to compare the results of his 1R
system versus C4.5, and to justify the fact that the accuracy of systems tested
against these datasets will be similar in real-world problems, since their number
and diversity indicates that they represent a class of problems that often arises.
Because INNER employs an original method to deal with symbolic attributes,
we carried out some additional experiments with another well known set of
problems, the Monk’s problems [32]. Discussion of the results obtained in these
problems will permit us to justify some of the benefits provided by X-HEOM, the
metric used by INNER. All datasets used in our experiments were downloaded
from the machine learning repository [5] hosted by the University of California
at Irvine (UCI).

Experimental results on Holte’s problems were obtained by performing a
stratified cross-validation with 10 folds. This means that every dataset was
randomly divided in 10 partitions, maintaining the same proportion of classes
as in the original dataset. Every partition is used as a test set for one experiment
in which the system is trained with the other 9 partitions, giving 10 (different)
results; this process was repeated 5 times, yielding 50 train/test experiments for
each dataset.

In order to avoid undesirable effects due to randomness in the partitioning
of each dataset and to make a fair comparison, all the experiments were carried
out using tools from MLC++ [17]. This library allowed us to obtain exactly
the same folds for every system whenever we used the same initial random
seed in every cross-validation. Since INNER uses a random generator for some
operations, it was also always initialized with a fixed seed. Additionally, all the
experiments were carried out on the same machine.

Table 4 shows the average error 4+ sample standard deviation obtained in the
experiments for each system under comparison. In general, INNER’s accuracy is
similar to that of C4.5R and slightly lower than RISE’s.

However, Table 5 shows a notable difference between INNER and the other
systems in the size of the induced knowledge. This table contains the average
number of rules and rule conditions obtained by each system in the domains
studied.

Domingos reports [13] that RISE can considerably reduce the size of its
outputs if rules that do not classify any training examples are discarded, while
the decrease in accuracy is minimized; in all Tables we refer to this release by
RISE(p). However, even using this pruning method, the size of the resulting rule
sets is still much larger than the size of INNER’s rule sets, as can be appreciated
in the corresponding column of Table 5.

The second block of comparisons used the Monk’s problems|[28], three datasets
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Domains C4.5R RISE RISE(p) INNER
BC 29.64 + 1.10 26.70 £ 0.90 27.25 + 0.87 26.57 £ 0.90
CH 0.96 £+ 0.08 1.95 £ 0.11 2.02£0.12 6.30 £ 0.30
G2 2272 +£1.34 20.66 £ 1.43 21.13 +£1.47 23.53 £ 1.38
GL 30.73 £1.27 2728 £1.31 2821 £1.41 3449 +£1.22
HD 2334 £ 1.10 1892 £0.98 1879 £ 1.02 17.68 £ 0.85
HE 19.41 £ 1.17 21.00 £ 1.48 21.26 £ 1.44 19.88 + 1.22
HO 16.30 £ 0.78 14.94 + 0.90 1542 £0.92 15.92 + 0.92
HY 0.91 £+ 0.06 1.84 £ 0.11 1.84 £0.10 3.58 £0.19
IR 493 +£0.73 441 +£075 454 +£0.72 440 £ 0.62
LA 14.60 £1.92 9.60 £2.05 954 £1.84 11.27 £ 1.55
LY 22.96 + 1.39 18.23 £1.28 18.09 + 1.40 24.09 £ 1.65
MU 0.03 £0.02 0.00£0.00 0.00 £ 0.00 1.47 £ 0.06
SE 2.36 £ 0.11 3.58 £0.12  3.74 £ 0.12 7.27 £0.25
SO 290+ 1.03 0.00£0.00 0.00=£0.00 2.10 £ 0.90
V1 10.34 £ 0.60 11.22 £ 0.53 10.76 £ 0.54  9.88 £ 0.57
VO 446 +£0.45 4.79+0.39 488 +0.40 4.78 +0.43
Average 12.91 11.57 11.72 13.33

Table 4: Average error + standard error in 5 times 10-fold stratified cross-
validation experiments.

that were specially devised to evaluate the performance of different machine
learning techniques when they are acting on training examples described by
symbolically valued attributes.

These datasets are composed of examples whose attributes represent some
characteristics of a robot, for example, the color of its jacket, if it is smiling or
not, etc. A robot can be good or bad depending on the relation of attributes
and values defined for every problem.

Since Monk’s problems have well defined train/test sets, a cross-validation
is not appropriate, so we made a simple experiment with C4.5R and RISE.
However, taking into account the fact that INNER’s results depend on the order
of examples presented, we carried out 50 different experiments by giving different
initial random seeds to our system. The average results together with the results
of C4.5R, RISE and RISE(p) are shown in Tables 6 (accuracy) and 7 (size of
the solutions).

We added this set of problems to the comparative study to show that -HEOM
handles symbolic attributes satisfactorily. There are several datasets in Holte’s
problems with only symbolic attributes, but the main difference with the Monk’s
problems is that the correct solution is known in the latter. This knowledge of
the domain allows us to notice, for instance, that INNER correctly solves Monk’s
1 in the 50 different experiments, yielding the rules that exactly represent the
relation to be learned.

In contrast with -HEOM, the metric used by RISE, SVDM, encounters
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Domains C4.5R RISE RISE(p) INNER

Monk’s 1 0.00 £0.00 13.40 +1.64 17.10 £ 1.81 0.00 £ 0.00
Monk’s 2 31.94 £ 2.25 30.60 £ 2.22 31.20 £ 2.23 31.53 £+ 2.24
Monk’s 3 3.70 £ 0.91 720 £125 5.60+£1.11 2.34 £ 0.65

Average  11.88 17.07 17.97 11.29

Table 6: Error + theoretical standard deviation for the Monk’s problems. Values
for INNER are the average of 50 different experiments varying the initial random
seed.

C4.5R RISE(p) INNER

Rules Cond.
Domains Rules Cond. Rules Cond. Av. St. Dv. Av. St. Dv.

Monk’s 1 13.00 25.00 45.00 216.00 5.00 0.00  7.00 0.00
Monk’s 2 11.00 27.00 44.00 187.00 26.90 2.71 9234 11.52
Monk’s 3 13.00 25.00 33.00 134.00 3.26 0.44  2.58 1.00

Average 12.33  25.67 40.67 179.00 11.72 33.97

Table 7: Size of the induced knowledge for the Monk’s problems. These results
were obtained with a simple train/test experiment, as defined for every prob-
lem, except for INNER, the results of which were obtained as the average of 50
experiments with different random seeds. The data under RISE(p) correspond
to the size of the solutions induced by RISE with the pruning suggested by
Domingos [13], which reduces the sizes to 30% of the original, approximately.

some problems in solving Monk’s 1, a fairly easy problem for most of the rule
induction algorithms. The relation to be learned in Monk’s 1 is jacket_color =
RED V (head_shape = body-_shape). The difficulty for SVDM lies in capturing
the equality of shape values, since the probability distribution is the same for
every possible value in both attributes. This peculiarity puzzles SVDM when
it is searching for the nearest adequate rule to a given example, probably the
most important task to learn and classify in distance-based algorithms.

In order to carry out an in-depth analysis of these peculiarities from the point
of view of K-HEOM and SVDM, we modified the original Monk’s 1 problem.
The first modification was the elimination of jacket_color = RED from the
defined relation. This simplification does not help SVDM. Instead, the new
relation to be learned depends only on the problematic part of the original
relation. We made this modification on the original test set that contains all
possible (432) combinations. Thus, the experimental method was a typical
cross-validation of 10 folds repeated 5 times. The scores obtained with the
new problem showed an increase in the error made by RISE from 7.63% up to
11.13%, while INNER’s error remained at 0%.

Realizing that when we increase the number of possible values for one at-
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C4.5R vs. INNER RISE vs. INNER  RISE(p) vs. INNER
Acc. Rules  Cond. Acc. Rules  Cond. Acc. Rules Cond.

t-test ns 945 91.3 ns 99.2 973 ns 99.9 99
Wilcoxon ns 96.5 98.2 90.8 100 100  90.8 100 100

Table 8: Significance tests. Confidence levels at which the difference with IN-
NER’s scores are significant using one-tail t and Wilcoxon tests; values below
90% are considered non significant and marked ns.

tribute we are modifying the probability distribution of its values, we added 5
new values to attribute head_shape. A new cross-validation obtained an error of
1.34% with RISE; INNER’s error again remaining at 0%. The last modification
was the addition of 5 new values to body_shape, but not coincident with the
values added to head_shape; in this case RISE’s error decreased to 0.37%, while
INNER’s still remained at 0%.

Returning to the standard datasets, Monk’s 2 can be considered a difficult
problem since the relation to be learned is quite complex to represent using the
rule syntax of these systems. The relation defined in Monk’s 3 is similar to that
in Monk’s 1 but has a 5% of noisy examples, which adds an extra difficulty to the
learning task. This difficulty seems to be harder for SVDM than for -HEOM,
according to the scores in Table 6.

To complete the comparative study of this section, we carried out a number
of statistical tests to measure the significance of the differences between the
means of accuracy and size obtained by the algorithms in the datasets used.
Table 8 presents the results of the one-tail t and Wilcoxon tests. There is no
significant difference in accuracy between C4.5R and INNER, and the difference
is only very low with respect to the RISE versions if we are using the Wilcoxon
test. However, the differences in size of the induced knowledge, number of rules
and number of conditions, are statistically significant in favor of INNER.

6.2 Explanations

As we pointed out at the beginning of this Section we consider that the possibil-
ity of building a useful explanations device is a consequence of inducing a small
set of compact and sound classification rules. INNER offers a kind of solutions
suitable to this purpose due to a number of reasons that we shall discuss in what
follows.

First of all, the size of INNER’s solutions (the number of rules and its condi-
tions) is significantly smaller than those found by other systems, and it is easier
to understand a classification mechanism if it can be characterized by a few
rules.

On the other hand, the existence of a rule in a certain region of the attribute
space depends primarily on the existence of an important mass of examples
belonging to the same class. When INNER uses a rule to classify a new case,
an explanation follows implicitly from the rule itself: a case belongs to class C
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C4.5 rules Inner rules

X >40NY <30 — GOOD X € [55,100]AY € [0,30] — GOOD
X <40ANY <30 — BAD X €[0,40] — BAD

Y > 30 -BAD Y € [60,100] BAD

Table 9: Rules for a hypothetical problem: from C4.5R, covering the whole
attribute space, and from INNER, covering just relevant regions. Although both
kind of rules can achieve the same accuracy, INNER’s rules describe the regions
characterized for belonging to a class better.

because it is in (or close to) a region where training examples usually belong to
that class C. Moreover, the region is defined by the antecedents or conditions of
the rule and here again, INNER requires fewer conditions to define a good rule,
which makes the validation of the classification easier for a human user.

One may argue that a k-NN algorithm can explain its classifications the
same way, but it cannot show the region which the example belongs to, because
k-NN does not handle regions, just representative exemplars. This difference
can be very important when offering a convincing explanation to a user, as can
be appreciated in the following hypothetic problem.

Let us suppose that a kind of industrial processes can be described by two
attributes, the integer values of parameters X and Y, and the class, indicating
whether the results are GOOD or BAD, where a GOOD result will be obtained
if X € [55,100] and Y € [0,30] and a BAD result will be obtained if X < 40 or
if X >55and Y > 60.

We built a training set of randomly generated examples according to the
preceding specifications, but adding some noise by changing the class values in
4% of the examples. The classification rules generated by C4.5R and INNER
are given in Table 9 and depicted graphically in Figure 12 together with the
training examples.

Given a case with X = 61 units and Y = 29 units, a previously trained
k-NN algorithm could say something like “this process will produce good results
since there are k processes in the surroundings of this one which are mostly
GOOD’. In the same situation, INNER could explain “this process will produce
good results since processes with values of parameter X within 55 and 100 units
and values of parameter Y within 0 and 30 units produce good results”. Notice
that INNER’s rule (X € [55,100] AY € [0,30] — GOOD) explicitly shows the
conditions required to obtain good results.

Another salient aspect of the solutions provided by our algorithm is that
rules are not induced to cover the whole attribute space, INNER just tries to
cover relevant and well situated regions. This characteristic allows an assistant
to indicate what to do to change a predicted undesirable result in order to get
a desirable one. To illustrate this capability, let us assume that we want to
predict the result of a running process whose parameters are X = 38 and Y =
45. C4.5R’s rules will predict BAD given that the case fulfills the rule ¥ >
30 — BAD. INNER will predict BAD too, because the case is classified by X €
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Figure 12: An hypothetic problem to show the explanation ability of INNER’s
rules against C4.5-like rules covering the whole attribute space. INNER’s rules
offer a more plausible explanation about the changes needed to vary the pre-
dicted class of an example.

[0,40] — BAD.

Now, if we want to know what to change in this situation to get a GOOD
result, we need to know how the values of X and Y must change to reach a
region of GOOD examples. If our explanation assistant uses C4.5R’s rules it
will recommend varying the value of X and Y (acting on a pressure valve, etc.)
till they become X = 41 and Y = 30, thus satisfying the conditions to be a
GOOD example. However, this seems to be a poor recommendation, since the
new situation is clearly more similar to BAD examples than to GOOD ones
(see Figure 12(a)). Advise based on INNER’s rules would be more appropriate,
because this would recommend changing X and Y to the new values X = 55
and Y = 30, if possible, as shown in Figure 12(b).

The appealing qualities of partial matching for providing useful advice de-
crease as the number of rules increases. So in this training set, for instance,
RISE produces 101 rules, 31 if the pruning process described in [13] is used,
which is much more than the 3 rules needed by C4.5R and INNER. In addition,
RISE suffers overfitting since it obtains an error of 3.1%, whereas there is 4%
of noisy examples, the error made by C4.5R and INNER.

6.3 Some variants of Inner

There are some points in our algorithm that can may lead the reader to suspect
they have a patent influence on the global behavior of the system. The most
important ones are the following:

e The use of difference tables to adapt distances of symbolic values solely
during the induction stage, but not in that of classification, when the
training has finished.

e The random selection of initial instances to be inflated.

e The coverage threshold used as the stopping criterion in the main loop.
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To clarify the importance of these elements, we made some modifications to
the original algorithm, giving rise to some variants that were used to conduct a
comparative study with the standard INNER.

The first modification is related to the role played by difference tables, giv-
ing rise to a variant called K-INNER. In fact, the only difference with respect to
the original system is that this release maintains the difference tables obtained
during the induction process and uses them to classify. Obviously, this involves
the use of K-HEOM instead of HEOM when classifying. Therefore, with this
version we check whether keeping the self-organized differences in the classifica-
tion, using some kind of fuzzy symbolic antecedents instead of crisp ones, would
improve accuracy. The results obtained confirm that there is just a slight im-
provement in some domains with symbolic attributes and, obviously, there is no
difference at all in domains described solely by continuous attributes. In turn,
induced knowledge is not as explicit as in the original system because the user
obtains rules plus the difference tables attached to every symbolic antecedent.

The second modification consists of providing well-situated initial instances
to be inflated instead of the random selection mechanism. So, we used a system
called BETs [12] that it is capable of selecting paradigmatic training examples
from a dataset. This variant, called B-INNER, achieved almost the same scores
as the original INNER, which allowed us to conclude that the initial selection of
instances is not of crucial importance. The reason is that the iterative mecha-
nism counteracts the lack of precision in discovering good initial instances, and
random selection is not as computationally expensive as the use of more so-
phisticated methods. However, B-INNER usually reaches high coverage values
in fewer cycles than INNER.

We conducted a third trial to study how important the coverage threshold
is. As stated previously, this parameter stops the main loop when 95% (default
value) of training examples of every class have been covered. Taking into account
the fact that we are looking for explicit rules covering as many cases as possible,
this parameter must obviously have a rather high value. Our experience indi-
cates that the coverage threshold should have values of around 90%-100%, but
it is not highly dependent on an exact value. In general, smaller values make
accuracy decreases notably, as expected.

6.4 Complexity and running time

In this Subsection we study the time consumption of our system. We will
proceed in two steps starting with the estimation order of the theoretical time
complexity in the improbable worst case. We then report a table with CPU
times used during the experiments discussed in this Section.

Let e be the number of training examples, a the number of attributes, and
¢ the number of classes. The algorithm followed by INNER (see Figure 1) has a
while loop that is repeated at most 5 times. The relevant function iterated here is
FINDBESTRULES, which has a complexity of the order O(c-(e+e-a+e?-a?+a?)).

After the loop, the rule set generated is modified by POSTPROCESS, whose
complexity (see Figure 5) is O(e - a - number_of _rules®). Given that num-
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C4.5R RISE RISE(p) INNER
BC 0.96” 0.88” 0.84” 4.09”
CH 10.95” 4’ 38.02” 3720.25" 1’ 42.49”
G2 0.55” 1.29” 1.27” 7.87"
GL 0.96” 1.62” 1.62” 10.46”
HD 0.90” 4.37 4.35” 7.44”
HE 0.43” 2.24” 2.20” 9.01”
HO 1.26” 13.53” 13.44” 11.8”
HY 8.18” 1h 17 31.64” 1h 19’ 38.49” 2’ 43.73”
IR 0.127 0.63” 0.63” 2.10”
LA 0.117 0.30” 0.30” 6.70”
LY 0.57” 0.68” 0.67” 8.56”
MU 24.627 6’ 53.52” 6’ 27.49” 4 12.62”
SE 13.88” 56" 0.85” 55 58.28” 3’ 0.85”
SO 0.09” 0.13” 0.13” 2.79”
V1 1.14” 2.70” 2.69” 5.64”
VO 0.67” 2.82” 2.827 5.05”
Monk’s 1 0.76” 0.84” 0.85” 2.40”
Monk’s 2 0.92” 0.90” 0.84” 5.70”
Monk’s 3 0.79” 0.80” 0.80” 1.86”
Average 3.57" 7’ 39.88” 7’ 40.95” 41.64”
w/o HY & SE 2.70” 42.66” 36.54” 26.27"

Table 10: Average running time during the experiments. These numbers indi-
cate the average time needed to complete every experiment in a 10-fold cross-
validation, except those for Monk’s problems, which indicate the time needed
to complete the train/test experiment defined for every problem.

ber_of-rules is bound by 5 - 10 - ¢ - a, the whole system is O(c- (e +e-a +
e?-a?+a?) + O(e-a®-c?). If we consider the number of classes as constant,
the theoretical time complexity of INNER is O(e? - a?) + O(e - a®).

Let us recall that the total time complexity of RISE [13] is O(e?-a?) or O(e?-
a?) depending on the stopping criterion used. On the other hand, the decision
tree building process of C4.5 is O(e - a?) when the examples are described by
symbolic attributes, but it is at least quadratic in e when continuous attributes
are involved. In general, the final pruning stage is worst than quadratic in e.

Table 10 shows the average running time of INNER, RISE, RISE(p) and
C4.5R for every dataset in the comparative study reported in this Section. The
values shown in this Table are calculated by dividing the total CPU time needed
to complete a full cross-validation by the number of single train/test experiments
carried out: 50 (5 times a 10-fold cross-validation) for Holte’s problems and only
one for Monk’s. All the experiments were carried out under the same conditions
using a 200 MHz. Intel Pentium Pro running Linux.
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7 Conclusions and future work

Simplicity in rule sets is usually upheld as a desirable quality of the induced
knowledge synthesized by Machine Learning algorithms [16]. The algorithm
presented in this paper, INNER, returns concise rule sets, applicable by means
of a minimum distance criterion, with high classificatory accuracy.

In this algorithm, each rule is a representative cluster of training examples
of the same class. So, when a rule is used to classify an unseen case, a natural
and solid explanation can back the suggested class. This quality is the main
achievement of INNER.

The previous Section showed the results of a number of experiments con-
ducted to compare the performance of INNER with two state-of-the-art algo-
rithms related to our system: C4.5R and RISE. These results let us conclude
that INNER generally induces a smaller set of rules while maintaining a high
level of accuracy, which reinforces the idea that simple solutions, i.e. small sets
of small rules, can achieve the same (and sometimes even higher) accuracy as
more complex ones. Moreover, given that users can more easily understand sim-
pler solutions, the sets of rules induced by our system can be greatly improved
with sound, clear explanations attached to their classifications. In this sense, we
have included a Subsection devoted to spelling out the advantages of using the
kind of rules induced by INNER, illustrating how it may become an intelligent
advisor by means of the cited explanations mechanism.

Possible future directions for research may be the adaptation of some of the
advantages of Kohonen’s SOM philosophy to INNER’s generalization mechanism.
We might, for instance, investigate how to extend the self-organizing principle,
already used for dealing with symbolic values, to continuous attributes.
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A Distance between rules

Rule set generalization is mainly a process that involves extension of some rules
towards others, but not all the possible combinations are tried; INNER uses some
criteria to restrict the possibilities to the most reasonable ones, as was explained
in Section 5. One of these criteria, the first one to be satisfied, establishes that
a rule should be close enough to another in order to attempt an extension
towards it. Hence, a way to measure distances between rules is needed. We use
a generalization of -HEOM called R-HEOM; equations (24) and (25) reflect
how INNER computes the distance from R, to R,.
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RHEOM(Ry, Ry) = /S0, dr((Ry)as (Ry)a)® (24)
0, if (Rq)q is true

Dr((Rp)a, (Rq)a)), if eq is symbolic (25)

Er((Rp)a; (Rq)a)), 1if eq is continuous

dR((Rp)aa (RQ)G))

In the symbolic case, if T? and T are their respective difference tables
Dr((Rp)as (Rg)a)) = mine, {F(T7]eq]) / F(T¢[ea]) = 0} (26)
where

F(r) =1-6G(z) (27)

In the continuous case, if (Ry), = [z, 23], and (R,)q = [24, 23], we define

0, if (Rp)aN(Rg)a #0
En((Rp)m(Rq)a)):{min{mf;xg|,|m§x‘;|} H (Fp)a 1 ()

maxrg—ming

(28)

otherwise

Obviously, the distance between rules depends on the distance between their
antecedents, which is calculated by means of dg. It is quite simple to calculate
the distance between two continuous antecedents: the normalized Euclidean
distance between the nearest extremes of the intervals is used, giving 0 if they
intersect.

However, the distance between symbolic antecedents deserves special at-
tention. The process of extending a rule towards another can be seen as the
effort that the rule should make to reach the other one. In this sense, we wish
to measure the minimum effort needed for a symbolic antecedent to reach its
counterpart in the second rule. So we will take the minimum value from its
difference table, looking only at the entries associated with symbols included in
the antecedent of the second rule (i.e. those whose value is below the threshold
—0.7). If we recall, values in the difference tables range from —1 to 2, so we
have to re-map the value returned to range from 0 to 1, depending on how far
the value is from the threshold of inclusion. The re-mapping is done by function
F used in equation (26).

In other words, if we wish to compute the distance from a symbolic an-
tecedent of R, to its counterpart in R, the algorithm re-maps the difference
tables of both antecedents using F. Then it returns the minimum re-mapped
value of the antecedent belonging to R,,, taking into account only those entries
whose re-mapped value in the antecedent of R, is 0.

This mechanism is not symmetric, since the effort needed to extend a rule
towards another is not necessarily the same as the one needed to extend the
second towards the first. In fact, what we are actually measuring is not the
distance between rules: we are measuring the distance from the rules to some
symbolic values and obviously, one rule may be closer than another to these
values.
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Figure 13: Maximum number of initial instances of every class to be generalized
in each cycle.

Additionally, dr should consider the fact that some antecedents of rule R,
may not be present in R,, no matter what type of antecedents these are. In this
case, the distance returned is 0, since a missing antecedent in R, is equivalent
to an antecedent including all the possible values of an attribute and therefore
intersects the antecedent of R,,.

B Initial instances selection

The instances generalization process starts from a set of uncovered examples
taken from the training dataset. By default, 10 randomly selected instances
per class are used, but the user can specify a different number, which will be
constrained by equation (29). In fact, 10 is the maximum number permitted; the
algorithm may choose a lower number of instances to be generalized, depending
on the number of examples in the smaller class (#sc). Figure 13 represents
equation (29) graphically.

#sc
Ipas = min (10, max (1, {eiwlogwb) (29)

The reason for limiting the initial number of instances to a maximum of 1,4,
is related to the part of the main algorithm that drops noisy rules, explained in
Section 5. The noise filter uses the number of examples of the smaller class to
decide which rules seem to be noisy and should therefore be eliminated.

Considering a uniform distribution of examples in the attribute space and
selecting I instances for each class C', we hopefully get a set of generalized in-
stances, i.e. rules, covering each of the N /I examples, where N¢ is the number
of examples belonging to class C. Obviously, as I increases, the number of cov-
ered examples per rule decreases and the noise filter may decide to eliminate
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most of the above mentioned rules, accuracy decreasing at the same time. In
short, we are facing the small disjuncts problem already observed by Holte in

[15].

Taking into account the way that INNER generalizes rules, a large number

of these would encumber one another, impeding adequate growth.
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