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Abstract

Nonlocal filters are simple and powerful techniques for image denoising. In this paper,
we give new insights into the analysis of one kind of them, the Neighborhood filter, by using
a classical although not commonly used transformation: the decreasing rearrangement of a
function. Independently of the dimension of the image, we reformulate the Neighborhood
filter and its iterative variants as an integral operator defined in a one-dimensional space.
The simplicity of this formulation allows to perform a detailed analysis of its properties.
Among others, we prove that the filtered image is a contrast change of the original image, an
that the filtering procedure behaves asymptotically as a shock filter combined with a border
diffusive term, responsible for the staircaising effect and the loss of contrast.
keywords: Neighborhood filters, decreasing rearrangement, denoising, segmentation

1 Introduction

Let Ω ⊂ Rd (d ≥ 1) be an open and bounded set, and consider a function u ∈ L∞(Ω). The
Neighborhood filter operator is defined by

NFh u(x) =
1

C(x)

∫
Ω

e−
|u(x)−u(y)|2

h2 u(y)dy, (1)

where h is a positive constant, and

C(x) =

∫
Ω

exp
(
−|u(x)− u(y)|2)h−2

)
dy

is a normalization factor, intended to allow constants to be fixed points of NFh.

The Neighborhood filter (NF) is the simplest particular case of other related filters involving
local terms, notably the Yaroslavsky filter [31, 32], the SUSAN filter [27] introduced by Smith
and Brady, the Bilateral filter [30] of Tomasi and Manduchi, and the Nonlocal Means filter
(NLM) [6] by Buades, Coll and Morel.

These methods have been introduced in the last decades as efficient alternatives to local
methods such as those expressed in terms of nonlinear diffusion partial differential equations
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(PDE’s), among which the pioneering approaches of Perona and Malik [21], Álvarez, Lions and
Morel [2] and Rudin, Osher and Fatemi [25] are fundamental. We refer the reader to [9] for a
review and comparison of these methods.

Among all these filters, the Neighborhood filter is the simplest, but yet useful, method due to
its compromise between denoising quality and computational speed. Indeed, although it creates
shocks and staircasing effects [8], the computational cost is by far lower than those of other
integral kernel filters or PDE’s based methods.

Since, usually, a single denoising step of the nonlocal filters is not enough, an iteration is
performed according to several choices of the iteration actualization, see (3) and (4) for two of
such strategies.

In this context, the Neighborhood filter and its variants have been analyzed from different
points of view. For instance, Barash [3], Elad [13], Barash et al. [4], and Buades et al. [7]
investigate the asymptotic relationship between the Yaroslavsky filter and the Perona-Malik
PDE. Gilboa et al. [16] study certain applications of nonlocal operators to image processing. In
[22], Peyré establishes a relationship between the non-iterative nonlocal filtering schemes and
thresholding in adapted orthogonal basis. In a more recent paper, Singer et al. [26] interpret
the Neighborhood filter as a stochastic diffusion process, explaining in this way the attenuation
of high frequencies in the processed images.

In this article, we reformulate the Neighborhood filter in terms of the decreasing rear-
rangement of the initial image, u, which is defined as the inverse of the distribution function
q ∈ R→ mu(q) = |{x ∈ Ω : u(x) > q}|, see Section 2 for the precise definition.

Realizing that the structure of level sets of u is invariant through the Neighborhood filter
operation as well as through the decreasing rearrangement of u allows us to rewrite (1) in terms
of a one-dimensional integral expression, see Theorem 1.

Although from expression (1) is readily seen that only computation on level lines is needed to
perform the filtering, the alternative expression in terms of the decreasing rearrangement offers
room for further analysis of the iterative scheme.

Perhaps, the most important consequence of the rearrangement is, apart from the dimen-
sional reduction, the reinterpretation of the NF as a local algorithm. Thanks to this, we may
prove some properties of the Neighborhood filter nonlinear iterative scheme, see (4), among
which

• The asymptotic behavior of the NF as a shock filter of the type introduced by Álvarez et
al. [1], combined with a contrast loss effect, see Theorem 3.

• The contrast change character of the NF, i.e. the existence of a continuous and increasing
function g : R→ R such that NFh(u(x)) = g(u(x)), see Corollary 2.

As mentioned above, the most salient advantage of the Neighborhood filter in its rearranged
version is speed. If N denotes the image size in pixels, the complexity of other nonlocal filters
such as the classical NF, the Bilateral or the NLM filters are of the order C × N , where C
depends on different parameters (window sizes) used in those models. A typical value of C may
be of the order 105, for the NLM. However, the complexity of the rearranged version of the NF
depends on the number of the initial image intensity levels, which we assume quantized in Q
levels, and on some small constant related to the window size, h, resulting in a complexity of
the order c×Q, being a typical value of c of the order 102. Thus, the complexity of the NF is
independent of the image size, once the level lines of the initial image have been identified.
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However, denoising quality of the NF is, by far, poorer. The staircaising effect, always
present in algorithms reducing the Total Variation of the initial image, is especially strong for
the NF. In fact, after several iterations, and depending on the window size h, the NF output
image concentrates most of its pixels mass on few level sets, producing a segmentation-like effect
on the initial image.

A quick explanation of the difference between the NF and the Bilateral and NLM filters is
that the NF does not retain any local information of the image, diffusing the intensity values
just according to the mass of their corresponding level lines. Thus, a pixel belonging to a level
line with large mass will retain its value even if it is isolated in a component of the image with
different intensity value.

Due to this, the Neighborhood filter and morphological filters deduced from the topographic
map of an image, see for instance the monograph by Caselles and Monasse [10], such as the
Grain and the Killer filters, are also different since the latter use the local geometry of level sets
connected components in a fundamental manner.

However, they do share some similitudes in their level set based framework, and this could
be used for combining both algorithms. For instance, the isolated small regions belonging to a
level line with large mass which remain in the filtered image after the NF application could be
removed by morphological procedures, such as opening and closing operators.

The segmentation-like behavior of the NF may be explained in terms of the relationship
between the inflexion points of the decreasing rearrangement and the local extreme points of
the image histogram, h(q) = −m′u(q). Thus, since the NF behaves asymptotically as a shock
filter, and shock filters accumulate mass in inflexion points, we deduce that the NF works as an
histogram based segmentation algorithm.

Since for our analysis the Gaussian form of the integral kernel is not important, we consider
the following generalization of the Neighborhood filter

NFh u(x) =
1

C(x)

∫
Ω
Kh(u(x)− u(y))u(y)dy, (2)

with C(x) =
∫

ΩKh(u(x) − u(y))dy, and Kh(ξ) = K(ξ/h). For the moment, we only assume
K ∈ L1

loc(R) and K ≥ 0 to have (2) well defined, although more meaningful conditions will be
stated later.

We consider the following iterative schemes, for n ∈ N (including n = 0), and u(0) = u:

1. Iteration with fixed kernel (linear operator),

u(n+1)(x) =
1

C0(x)

∫
Ω
Kh(u(0)(x)− u(0)(y))u(n)(y)dy, (3)

with C0(x) =
∫

ΩKh(u(0)(x)− u(0)(y))dy.

2. Iteration with varying kernel (nonlinear operator),

u(n+1)(x) =
1

Cn(x)

∫
Ω
Kh(u(n)(x)− u(n)(y))u(n)(y)dy, (4)

with Cn(x) =
∫

ΩKh(u(n)(x)− u(n)(y))dy.
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Observe that, for both schemes, we have

‖u(n+1)‖L∞(Ω) ≤ ‖u(n)‖L∞(Ω), (5)

for all n ∈ N, and therefore the iterations are well defined.
The plan of the article is the following. In Section 2 we introduce the notion of decreasing

rearrangement and establish the equivalence between (3) and (4) and its corresponding versions
under this transformation. In addition, we show some examples on the relationship between an
image and its relative rearrangement and histogram. In Section 3, we prove some qualitative
properties of the nonlinear iterative scheme, among which its behavior as a shock filter. In
Section 4, we describe the discretization of the continuous model and demonstrate with examples
the denoising capabilities of the NF in comparison with the Bilateral and NLM filters, and its
interpretation as a segmentation-like algorithm. In Section 5 we give our conclusions.

Finally, let us emphasize that the reformulation of the Neighborhood filter we propose pro-
duces the same filtered image than that obtained through the classical NF. However, there are
two important advantages in our approach: (i) the filtering process is performed through a one-
dimensional integral, reducing largely the algorithm complexity, and (ii) the rearranged version
exposes the NF functioning to a deeper mathematical analysis.

2 Neighborhood filters in terms of the decreasing rearrange-
ment

Let us denote by |E| the Lebesgue measure of any measurable set E.
For a Lebesgue measurable function u : Ω → R, the function q ∈ R → mu(q) = |{x ∈ Ω :

u(x) > q}| is called the distribution function corresponding to u.
Function mu is non-increasing and therefore admits a unique generalized inverse, called the

decreasing rearrangement. This inverse takes the usual pointwise meaning when the function u
has not flat regions, i.e. when |{x ∈ Ω : u(x) = q}| = 0 for any q ∈ R. In general, the decreasing
rearrangement u∗ : [0, |Ω|]→ R is given by:

u∗(s) =


ess sup{u(x) : x ∈ Ω} if s = 0,
inf{q ∈ R : mu(q) ≤ s} if s ∈ (0, |Ω|),
ess inf{u(x) : x ∈ Ω} if s = |Ω|.

Notice that since u∗ is non-increasing in [0, |Ω|], it is continuous but at most a countable subset
of [0, |Ω|]. In particular, it is right-continuous for all t ∈ (0, |Ω|].

The notion of rearrangement of a function is classical. We refer the reader to the textbook
[19] for the basic definitions and to the monograph [24] for a deeper insight into the subject.

The following equi-measurability property holds [24, Corollary 1.1.1]. Let F : R→ R+ be a
Borel function. Then ∫

Ω
F (u(y))dy =

∫ |Ω|
0

F (u∗(s))ds. (6)

In particular, ‖u‖Lp(Ω) = ‖u∗‖Lp(0,|Ω|) for all p ∈ [0,∞].
We shall use the following notation for the level sets of u:

Lt(u) = {y ∈ Ω : u(y) = u∗(t)}, for t ∈ [0, |Ω|]. (7)
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The following theorem asserts that we may compute the Neighborhood filters in the one-
dimensional space [0, |Ω|].

Theorem 1 Let Ω ⊂ Rd be an open and bounded set, d ≥ 1, and K : R → R+ be a Borel

function. Let u(0) ∈ L∞(Ω) be, without loss of generality, non-negative and set v0 = u
(0)
∗ .

Then, for m = 0 (resp. m = n), the iterative scheme (3) (resp (4)) may be computed as, for
x ∈ Lt(u(0)) and t ∈ [0, |Ω|], u(n+1)(x) = vn+1(t), with

vn+1(t) =
1

cm(t)

∫ |Ω|
0
Kh(vm(t)− vm(s))vn(s)ds, (8)

and cm(t) =
∫ |Ω|

0 Kh(vm(t)− vm(s))ds. In addition, for n ∈ N,

‖vn+1‖L∞(0,|Ω|) ≤ ‖vn‖L∞(0,|Ω|). (9)

Proof. We start considering the one-step Neighborhood filter defined in (1). For each x ∈ Ω
such that u(x) <∞ (i.e. all x ∈ Ω but a subset of zero measure), we consider the Borel function
F : R→ R+ given by

F (w) = Kh(u(x)− w)w if w ≥ 0, F (w) = 0 if w < 0. (10)

Then, (6) implies∫
Ω
Kh(u(x)− u(y))u(y)dy =

∫ |Ω|
0
Kh(u(x)− u∗(s))u∗(s))ds,

and

C(x) =

∫ |Ω|
0
Kh(u(x)− u∗(s))ds.

Since x ∈ Lt(u(0)), for some t ∈ [0, |Ω|], we have∫ |Ω|
0
Kh(u(x)−u∗(s))u∗(s))ds =

∫ |Ω|
0
Kh(u∗(t)− u∗(s))u∗(s))ds,

and similarly for C(x).
We thus introduce the equivalent formulation to (1) given by, for t ∈ [0, |Ω|]

NFh u(x) = NFh u∗(t) if x ∈ Lt(u), (11)

with

NFh u∗(t) =
1

c(t)

∫ |Ω|
0
Kh(u∗(t)− u∗(s))u∗(s)ds,

and c(t) =
∫ |Ω|

0 Kh(u∗(t)− u∗(s))ds.
The extension of this transformation to the iterative schemes (3) and (4) (m = 0 or m = n,

respectively) is straightforward due to the invariance of the level sets structure with respect to
the Neighborhood filtering, see (11). For both schemes, the step n = 1 gives

u(1)(x) = v1(t) := NFh u
(0)
∗ (t),
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for x ∈ Lt(u
(0)). In the case of the scheme with variable kernel (4), we may use the same

function F defined in (10) to deduce that u(2) is constant in Lt(u
(0)) for each t ∈ [0, |Ω|]. An

induction argument allows us to define

u(n+1)(x) = vn+1(t) := NFh vn(t),

for n ∈ N, and x ∈ Lt(u(0)), which is (8) with m = n.
For the fixed kernel scheme (3) (m = 0) we can not use F in the step n = 1 because the values

of u(0) and u(1) inside the integral may be different on the level set Lt(u
(0)). However, these

functions are still constant in each level set, implying the existence of a measurable function
f1 such that f1(u(1)(x)) = u(0)(x) for x ∈ Lt(u(0)), for t ∈ [0, |Ω|]. Therefore, we may repeat
the above argument with function F replaced by F1(w) = Kh(u(0)(x) − f1(w))w if w ≥ 0 and
F1(w) = 0 if w < 0, thus obtaining

u(2)(x) = NFh u(1)(x) =
1

C1(x)

∫ |Ω|
0
Kh(u(0)(x)− f1(v1(s))v1(s)ds

=
1

C1(x)

∫ |Ω|
0
Kh(u(0)(x)− u(0)

∗ (s))v1(s)ds.

Reasoning in a similar way for C1(x), and recalling the definition of v0 we obtain for x ∈ Lt(u(0)),

u(2)(x) = v2(t) :=
1

c1(t)

∫ |Ω|
0
Kh(v0(t)− v0(s))v1(s)ds.

Then (8) for m = 0. follows from an inductive argument.
Finally, using (5) and the equi-measurability property (6) we obtain (9) for all n ∈ N. �

2.1 Examples

We show three examples of the decreasing rearrangement for clean and noisy images, all of them
quantized in the usual interval [0, 255].

We have chosen as test images a natural image, Boat, a texture image, Texture, and a
synthetic image, Squares. The first two images are taken from the data base of the Signal
and Image Processing Institute, University of Southern California (boat.512.tiff of Vol. 3
and 1.5.02.tiff of Vol. 1, respectively), see [12, 18], while the third is a synthetic image
constructed with four gray levels (0, 85, 170 and 255) and such that its four level sets have the
same measure.

This choice is motivated by the bad (resp. good) performance of the NF for uniform (resp.
extreme) distribution of gray levels mass. These distributions are plotted in Fig. 1.

A gray levels mass uniformly distributed image has a straight line as decreasing rearrange-
ment, or a constant, as histogram. In Fig. 1, we observe that the decreasing rearrangement of the
Boat, is closer to a straight line than that of the Texture, which is still continuous. The choice
of the synthetic image is motivated by its extreme behavior: a piece-wise constant decreasing
rearrangement.

We have added a Gaussian white noise of SNR = 10 to the test images according to the
noise measure SNR = σ(u)/σ(ν), where σ is the empirical standard deviation, u is the original
image, and ν is the noise.

6
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Figure 1: Test images Boat, Texture and Squares. Second and third columns show the de-
creasing rearrangement and the histogram, respectively, of the original images (clean) and their
counterparts obtained after the addition of a Gaussian noise with SNR= 10.

We may observe in Fig. 1 that the main consequence of noise addition on the decreasing
rearrangement is its smoothening towards a straight line. Of course, the effect is stronger in far
from uniformly distributed images, like the Squares.

Finally, observe the connection between points of local maximum or minimum for the his-
togram and inflexion points for the decreasing rearrangement. This is the base for justifying the
use of the NF as a segmentation algorithm.

3 Properties of the nonlinear varying-kernel iterative scheme

For the differential analysis we carry out in this section we have to assume regularity properties
on the decreasing rearrangement of the given image.

In general, if u ∈ W 1,q(Ω), with q > d, and Ω is open, bounded and connected, then
u∗ ∈ W 1,p(0, |Ω|) for any p < 2, see [24, Th. 3.3.2]. However, not much more than this is

7
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Figure 2: Graphic of function f(x) = x sin(10x) (top panel) and that of its decreasing rearrangement,

f∗ (bottom panel). Although f ∈ C∞(−π, π), f∗ is not even once continuously differentiable in (0, 2π).

expected, and even for C∞(Ω) functions, their decreasing rearrangement may be non globally
differentiable, see Fig. 2.

The following theorem asserts that the monotonicity property of the decreasing rearrange-
ment of the initial image is conserved along all the iterations. In addition, for some type of
kernels among which the Gaussian is included, the measure of flat regions does not change in
the iterative procedure. We also obtain a condition in terms of the window size, h, ensuring
that the steady state is a constant.

Theorem 2 Let v0 = u
(0)
∗ ∈W 1,p(0, |Ω|) for some p ≥ 1. Let K ∈W 1,∞

loc (R), with K(ξ) ≥ 0 for
all ξ ∈ R, and K(ξ) > 0 for all ξ in a neighborhood of 0.

Let vn+1 be given by the iterative scheme (8), for n ∈ N and m = n. Then we have, for all
n ∈ N,

(i) vn+1 ∈W 1,p(0, |Ω|), and if v′0(t) = 0 then v′n+1(t) = 0.

(ii) Let R1 := (ξ1 − ξ2)
(
K′(ξ − ξ1)K(ξ − ξ2)−K′(ξ − ξ2)K(ξ − ξ1)

)
and assume

R1 ≥ 0 for all ξ, ξ1, ξ2 ∈ R. (12)

Then v′n+1 ≤ 0 a.e. in (0, |Ω|). In addition, if v′0(t) < 0 and the inequality in (12) is strict
then v′n+1(t) < 0.

(iii) Let φ : R+ → R+ be a continuous function of h such that limh→∞ φ(h) = 0. Assume that
K > 0 in R, and let

R2 = (ξ1 − ξ2)
(K′(ξ − ξ1)

K(ξ − ξ1)
− K

′(ξ − ξ2)

K(ξ − ξ2)

)
.

Assume

R2 ≤ φ(h)(ξ1 − ξ2)q ∀h ≥ 0, ∀ξ, ξ1, ξ2 ∈ R, (13)

for some q ≥ 1. Then, if h is large enough the sequence vn converges uniformly to a
constant.
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Remark 1 With the additional assumption of K being symmetric, condition (12) imposes K(ξ2) ≥
K(ξ1) if |ξ1| ≥ |ξ2|, that is, it must be a decaying kernel.

Observe that the Gaussian kernel K(s) = e−s
2

satisfies all the assumptions of Theorem 2. In
particular, condition (13) is satisfied for φ(h) = 1/h2 and q = 2.

Functions R1 and R2 are related in the following way: R1 = K(ξ − ξ1)K(ξ − ξ2)R2. Thus, if
K > 0 in R then condition (12) is equivalent to R2 ≥ 0.

Proof of Theorem 2. Differentiating (8), for m = n, with respect to t we obtain

v′n+1(t) =
1

c2
n(t)

v′n(t)
(
cn(t)

∫ |Ω|
0
K′h(vn(t)− vn(s))vn(s)ds (14)

−
∫ |Ω|

0
Kh(vn(t)− vn(s))vn(s)ds

∫ |Ω|
0
K′h(vn(t)− vn(s))ds

)
.

Let us consider the case n = 0. By assumption, v0 ∈ W 1,p(0, |Ω|). On one hand, since K is
continuous and positive in a neighborhood of 0, and v′0 is bounded in L1(0, |Ω|), we deduce
c0(t) ≥ ĉ

∫
RKh(ξ)dξ, for some positive constant ĉ.

On the other hand, the regularity assumed on v0 also implies v0 ∈ L∞(0, |Ω|). Using these
properties together with the Lipschitz continuity of K we obtain that also v1 ∈ W 1,p(0, |Ω|).
Then we proceed recursively to deduce vn+1 ∈W 1,p(0, |Ω|) for all n ∈ N, and thus (i) follows.

To check the sign of v′n+1, let us simplify the notation introducing, for fixed t ∈ (0, |Ω|),

f(s) = K′h(vn(t)− vn(s)), g(s) = vn(s),

h(s) = Kh(vn(t)− vn(s)).

Then v′n+1 ≤ 0 follows from (14) if we prove∫ |Ω|
0

f(s)ds

∫ |Ω|
0

g(z)h(z)dz ≤
∫ |Ω|

0
h(s)ds

∫ |Ω|
0

f(z)g(z)dz,

which is equivalent to α ≥ 0, with

α =

∫ |Ω|
0

∫ |Ω|
0

g(z)
(
f(z)h(s)− f(s)h(z)

)
dsdz. (15)

Interchanging the dummy variables, we get after addition of the corresponding identities

2α =

∫ |Ω|
0

∫ |Ω|
0

(g(z)− g(s))
(
f(z)h(s)− f(s)h(z)

)
dsdz.

We then use assumption (12) to deduce α ≥ 0. The second part of (ii) follows from similar
arguments.

We, finally, prove (iii). Using (14) and the definition (15) we have

v′n+1(t) =
α

c2
n(t)

v′n(t).

Since K > 0, we may rewrite α as

α =

∫ |Ω|
0

∫ |Ω|
0

g(z)h(s)h(z)
(f(z)

h(z)
− f(s)

h(s)

)
dsdz.

9
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Using again the interchange of dummy variables and condition (13) we obtain

α

c2
n(t)

≤ φ(h)‖vn‖qL∞ .

Therefore, for h large enough (depending on the shape of function φ) we have |v′n+1(t)| ≤ c|v′n(t)|,
with c < 1. The result follows. �

Corollary 1 Let v0 = u
(0)
∗ ∈ Cm([0, |Ω|]) and K ∈ Cm(R), with K > 0. Then vn+1 ∈

Cm([0, |Ω|]) for all n ∈ N.

Proof. From formula (14) we see that the m−order derivative of vn+1 is given in terms of
a quotient with a non-vanishing denominator and a numerator expressed as a composition of
continuous functions, given in terms of the derivatives of order up to m of vn and K. �

Although an easy consequence of Theorems 1 and 2, the following result neatly exposes the
functioning of the Neighborhood filter. We recall that the mapping g : R → R is a contrast
change if g is strictly increasing and continuous.

Corollary 2 Assume the conditions of Theorem 2, with the exception of condition (iii), and
suppose that v′0(t) < 0 for all t ∈ (0, |Ω|). Then, there exists a contrast change, g such that
u(n+1) = g(u(0)) in Ω, where u(n+1) is the (n+ 1)−th iteration of the nonlinear iterated Neigh-
borhood filter (4).

Proof. Since, by assumption, v0 ∈ W 1,1(0, |Ω|) ⊂ C([0, |Ω|]), and v′0(t) < 0 for t ∈ (0, |Ω|),
the corresponding distribution function of v0, mv0 is continuous and invertible in (0, |Ω|) and,

actually, it is the inverse of v0. Notice that mv0 coincides with the distribution function of u
(0)
∗ ,

since v0 = u
(0)
∗ . We define the function

g(q) = vn+1(mv0(q)), for q ∈ [min v0,max v0].

By Theorem 2, vn+1 ∈W 1,1(0, |Ω|) ⊂ C([0, |Ω|]), and v′n+1(t) < 0, implying that g is continuous
and increasing (composition of two continuous and decreasing functions).

According to Theorem 1, the structure of level sets is invariant under the NF, i.e. the level
lines of u(n+1) are the same as those of u(0). In addition, the values of u(n+1) on the level lines
are given by (8). Therefore, for x ∈ Ls(u(0)), for all s ∈ [0, |Ω|], we have

g(u(0)(x)) = g(v0(s)) = vn+1(s) = u(n+1)(x).

�
In the following theorem we establish a correspondence between the nonlocal diffusion scheme

(8) and local diffusion. This is a fundamental ingredient for the properties deduced later, which
can not be directly deduced from the N-dimensional model.

Indeed, since vn is non-increasing for all n ∈ N (Theorem 2), we have that the values selected
by the nonlocal kernel Kh(vn(t) − vn(s)) are related to the independent variables through, for
instance, Taylor’s expansion.

For example, if u∗ is smooth, we may approximate∫
Ω

e−
(vn(t)−vn(s))2

h2 vn(s)ds ≈
∫

Ω
e−

((t−s)v′n(t))2

h2 vn(s)ds.

10
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Therefore, the size of the support of the cut-off function approximated by the Gaussian is related
to the size of v′n. If v′n is large, the size is small and the diffusion only occurs in a small interval
around vn(t). The opposite effect holds if v′n is small.

Although more general assumptions on K may be prescribed, see Remark 2, we estate this
result for the Gaussian kernel, for clarity. We also ask for further regularity on u∗.

Theorem 3 Let v0 = u∗ ∈ C3([0, |Ω|]) be such that v′0 < 0 in [0, |Ω|]. Let K(ξ) = e−ξ
2
. Then,

for all t ∈ (0, |Ω|), there exist positive constants α1, α2 independent of h such that

vn+1(t) = vn(t) + α1k̃h(t)v′n(t)
(
h+O(h3/2)

)
− α2

v′′n(t)

(v′n(t))2
h2 +O(h5/2), (16)

with

k̃h(t) =
Kh(vn(t)− vn(|Ω|))

v′n(|Ω|)
− Kh(vn(t)− vn(0))

v′n(0)
, (17)

and with α1 ≈ 1/
√
π, and α2 ≈ 1.

There are two interesting effects captured by (16):

1. The border effect (loss of contrast). Function k̃h is active only when t is close to the
boundaries, t ≈ 0 and t ≈ |Ω|. For t ≈ 0 the term k̃h(t)v′n(t) < 0 contributes to the
decrease of the largest values of vn+1 while for t ≈ |Ω| the opposite effect takes place.
Therefore, this term tends to flatten vn+1, i.e. induces a loss of contrast.

2. The term −h2

2
v′′n(t)

(v′n(t))2
is anti-diffusive, inducing large gradients of the iterated functions

in a neighborhood of the inflexion points. In this sense, the scheme (16) is related to the
shock filter introduced by Alvarez and Mazorra [1]

ut + F (Gtuxx, Gtux)ux = 0, (18)

where Gt is a smoothing kernel and function F satisfies F (p, q)pq ≥ 0 for any p, q ∈ R.
Indeed, neglecting the border and the lower order terms, and defining F (p, q) = p/q3, we
obtain from (16)

vn+1(t)− vn(t) + α2h
2F (v′′n(t), v′n(t))v′n(t) = 0,

which may be regarded as a time discretization of (18).

Proof of Theorem 3. We may rewrite the iterative scheme (8), for n ∈ N and m = n as

vn+1(t)− vn(t) = (19)

1

cn(t)

∫ |Ω|
0
Kh(vn(t)− vn(s))(vn(s)− vn(t))ds.

Due to (3) of Theorem 2 we have v′n < 0 in (0, |Ω|), and due to (9), vn(0, |Ω|) ⊂ v0(0, |Ω|). Let us
denote the inverse of vn by v−1

n . Using the change of variable s = v−1
n (q) and writing t = v−1

n (z),
we obtain from (19)

vn+1(t)− vn(t) =
I1(z)

I2(z)
, (20)

11
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with

I1(z) =

∫ vn(0)

vn(|Ω|)
Kh(z − q)(q − z) dq

v′n(v−1
n (q))

,

I2(z) =

∫ vn(0)

vn(|Ω|)
Kh(z − q) dq

v′n(v−1
n (q))

.

Using the explicit form of K and integrating by parts, we obtain

I1(z) =
h2

2

(
k̃h(v−1

n (z))−
∫ vn(0)

vn(|Ω|)
Kh(z − q) v′′n(v−1

n (q))

(v′n(v−1
n (q)))3

dq
)
, (21)

with k̃h given by (17).
By assumption, functions

f(q) =
v′′n(v−1

n (q))

(v′n(v−1
n (q)))3

and g(q) =
1

v′n(v−1
n (q))

are bounded in [vn(|Ω|), vn(0)] and by Corollary 1 they are also continuously differentiable in
(vn(|Ω|), vn(0)).

Consider the interval Jh = {q : |z − q| <
√
h}. By well known properties of the Gaussian

kernel, we have

κ(h) :=

∫
Jh

Kh(z − q)dq <
∫
R
Kh(q)dq = h

√
π, (22)

and
Kh(z − q) ≤ e−1/h if q ∈ JCh = {q : |z − q| ≥

√
h}. (23)

In particular, from (23) we get∣∣∣∣∣
∫
JCh

Kh(z − q)f(q)dq

∣∣∣∣∣ < O(hα) for any α > 0. (24)

Taylor’s formula implies∫ vn(0)

vn(|Ω|)
Kh(z − q)f(q)dq =

∫
Jh

Kh(z − q)(f(z) +O(
√
h))dq +

∫
JCh

Kh(z − q)f(q)dq.

Therefore, from (21), (22) and (24) we deduce

I1(z) =
h2

2

(
k̃(v−1

n (z))− v′′n(v−1
n (z))

(v′n(v−1
n (z)))3

κ(h) +O(h3/2)
)
.

Similarly,

I2(z) =

∫ vn(0)

vn(|Ω|)
Kh(z − q)g(q)dq =

∫
Jh

Kh(z − q)(g(z) +O(
√
h))dq +

∫
JCh

Kh(z − q)g(q)dq

=
1

v′n(v−1
n (z))

κ(h) +O(h3/2).

Then, the result follows from (20) substituting z by vn(t). �

12
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Remark 2 Theorem 3 may be extended to Lipschitz continuous decaying kernels satisfying the
growth condition

K(s) ≤ k0

1 + |s|p
, for some p > 1. (25)

In such case, the higher order terms in formula (16) must be replaced by O(hα+1) and O(hα+2),
respectively, with α = (p− 1)/(p+ 1), and α1, α2 are just some positive constants. In addition,
function k̃h given by (17) is replaced by some continuous function related to a primitive of
sKh(s), and still inducing the border effect commented after the statement of the theorem. This
primitive plays the same role as −h2Kh(s)/2 (the primitive when K is a Gaussian kernel) in
formulas (21), (22) and (23), from where condition (25) arises.

4 Discretization and numerical examples

For computing the iterated Neighborhood filter (4) of a function through its decreasing rear-
rangement version (8), we assume that the initial image, u(0) is quantized in some range, e. g.

[0, 255], and compute its decreasing rearrangement v0 = u
(0)
∗ as the inverse of the distribution

function mu(0) . Then, the iterations are performed by computing the integrals involved in the
filter by a simple middle point formula, i.e. by assuming a constant-wise interpolation of the
discrete image.

Only two parameters must be fixed in advance, the length of the kernel window, h, and a
tolerance for the stopping criterium or, alternatively, the number of filtering iterations.

When the iterations are stopped at iteration, say, n + 1, we recover the output image by
using the formula provided in Theorem 1,

u(n+1)(x) = vn+1(t) for x ∈ Lt(u(0)) and t ∈ [0, |Ω|],

where Lt(u
(0)) stands for the level sets of u(0), see (7). Recall that the level sets structure of

u(n), for n = 0, 1, . . . , is invariant.
We used a stopping criterium based on the variational approach of the NF given by Kin-

dermann et al. [17]. In particular, the authors formally show that the critical points of the
functional

J(u) =

∫
Ω×Ω

g
((u(x)− u(y))2

h2

)
dxdy,

for g(s) =
∫ s

0 Kh(
√
t)dt , coincide with the fixed points of the Neighborhood filter. The gradient

descent scheme associated to the minimization of J is just the iterated Neighborhood filter
(4), and thus the relative difference of the decreasing sequence J(u(n+1)) between successive
iterations may be used as a stopping criterium. In fact, using the equi-measurability property
(6) we readily deduce

J(u) = J∗(u∗) :=

∫ |Ω|
0

∫ |Ω|
0

g
((u∗(s)− u∗(t))2

h2

)
dsdt,

which is the actual form of the functional we use for the stopping criterium.
Let us mention that in [17] the authors show that the functional J is not convex, in general,

and therefore the existence and uniqueness of a global minimum for J may not be deduced from
the standard theory.

13
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Finally, let us stress that in discrete computations the analytical results obtained in Section 3
are not always observed. The reason is, of course, that some of the assumptions are not fulfilled
in the discrete framework. Importantly, those referring to the unbounded support of the kernel
K, or to the regularity of u∗.

For example, for the Gaussian kernel used in our numerical experiments, it is proven in
Theorem 2 that if v′0(t) < 0 then v′n(t) < 0 for all n. However, as it may be seen, for instance,
in Fig. 3 (fourth row, second column), this property is violated in the discrete framework.
Nevertheless, the weaker result v′n(t) ≤ 0 is always observed in the experiments

4.1 Numerical examples for denoising

In the first set of experiments we used the Neighborhood filter for denoising porpouses, and
compare it with other related filters: the Bilateral filter,

BFh,ρ u(x) =
1

C(x)

∫
Ω

e−
|u(x)−u(y)|2

h2 e
− |x−y|2

ρ2 u(y)dy,

where h and ρ are positive constants, and

C(x) =

∫
Ω

exp
(
−|u(x)− u(y)|2)h−2

)
exp

(
−|x− y|2ρ−2

)
dy,

and the Nonlocal Means filter,

NLh,ρ u(x) =
1

C(x)

∫
Ω

e−
Gρ∗|u(x+·)−u(y+·)|2(0)

h2 u(y)dy,

where h > 0, Gρ is a Gaussian kernel of standard deviation ρ > 0 and

C(x) =

∫
Ω

exp
(
−Gρ ∗ |u(x + ·)− u(y + ·)|2(0))h−2

)
dy.

Since the usual version of the NF, given by (4), and the version introduced in this article,
expressed through the decreasing rearrangement by (8), are equivalent, there is no need of
comparison between them.

The denoising properties of these three filters are well known, and a thoroughfull comparison
among them (and among other filters) is given in [9]. Here, we are not so interested in deciding
which is the best performing denoising algorithm than in analyzing their behavior with respect
to the histogram and the decreasing rearrangement redistributions.

We applied the filters on the test images given in the Introduction, see Fig. 1, corrupted with
an additive Gaussian white noise of SNR = 10, according to the noise measure SNR = σ(u)/σ(ν),
where σ is the empirical standard deviation, u is the original image, and ν is the noise.

In Figs. 3 to 5 we show the results of applying these filters to the Boat, the Texture and the
Squares images. The columns correspond to: noisy image, Neighborhood filter, Nonlocal means
filter, and Bilateral filter. The rows correspond to: image, detail of the image, intensity his-
tograms of noisy and denoised images, decreasing rearrangements of noisy and denoised images,
level curves of image details showed in row 2.
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Although the Bilateral and the Nonlocal Means filters are applied only once, their execution
time is always much larger than that of the iterated Neighborhood filter, for which we used the
stopping criterium

|J∗(vn+1)− J∗(vn)|
|J∗(vn)|

< 10−5,

producing between eight iterations, for the Squares image, and twenty iterations, for the Texture
image. We used the same parameter values for h and ρ in all the experiments.

As expected, the best visual result for the natural image is obtained with the Nonlocal Means
filter: smoother and with a lower staircaising effect than the others. It is interesting to notice
how the absence of local information in the Neighborhood filter produces regions with rapid
intensity value changes, for instance in the clouds of the image. The smoothing effect of the
local terms in the Bilateral and the NLM filters prevent the formation of this artifact.

A partial explanation of the worse behavior of the NF may be found in the corresponding
plots for the histograms and the decreasing rearrangements. While the Bilateral and the NLM
filters keep almost unchanged the gray intensity structure of the pixel mass, the NF concentrates
most of the mass in few and disconnected values which, in general, is an undesired effect in
natural images.

Finally, observe that all the filters produce a level lines shortening, notably the NLM filter.

For the Texture image, similar conclusions may be deduced. In this case, the level lines
shortening is specially intense for the NF. The area between the circles is cleaned to one single
intensity value, around 225. We may check in the corresponding histograms the large difference
between the mass assigned to this value in the different filters. This is a first clue in the
consideration of the NF as a segmentation-like filter.

For the synthetic image Squares, the result of applying the NF is almost a perfect image
recovery, while the Bilateral and the NLM filters keep always some noise due to the local diffusion.
The spatial smoothening effect of the latter work against denoising, for this image.

Let us finally point out to the border effects mentioned after Theorem 3, involving formula
(16), and related to the contrast loss induced by the NF. They are clearly visualized in the
plots of the decreasing rearrangement of these images. Also the anti-diffusive behavior of the
algorithm, captured by the second order term of formula (16) is observed: concave regions induce
increase on the iterate while convex regions induce decrease. The result is a steeper slope around
the inflexion points at each iteration.

4.2 Numerical examples for segmentation

The intensity histogram, hu, of an image u is defined by the measure of its level sets

hu(q) = |{y ∈ Ω : u(y) = q}|, for q ∈ [minu,maxu].

We therefore have the following relationship between the histogram and the distribution function
of u,

mu(q) =

∫ maxu

q
h(s)ds.

In particular, under regularity assumptions, critical points of the histogram coincides with in-
flexion points of the distribution function and, hence, of the decreasing rearrangement.
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Observe that histogram critical points detection is the base for some segmentation algorithms,
see for instance [29, 11, 20, 23]. Due to the discrete nature of computations, finding the maxima
of the histogram from where initiating a segmentation procedure is a challenging task.

At this respect, the NF may be seen as a way of detecting histogram maxima, i.e. inflexion
points of the decreasing rearrangement, which produces an automatic segmentation with the
only tunning of the the window size controlled by h.

To demonstrate this capability, we applied the NF to MRI brain segmentation. We used a
phantom brain from the Simulated Brain Database [5] with a 9% of additive Riccian noise.

In Fig. 6 we show an axial slice of the volume (initial image) an the corresponding segmenta-
tion in four, three and two regions reached by setting h = 17, 20, 50, respectively. The contour
lines and the decreasing rearrangement are shown too.

In Fig. 7 we show the masks of the segmented regions corresponding to h = 17, 20.
In Fig. 8 we show the grey-white matter segmentation performed with the NF and with other

standard packages: Freesurfer [14], FSL [15] and SPM8 [28]. The Dice coincidence coefficient is
computed for all the algorithms, see Table 1, showing a good performance of the NF in relation to
the more sophisticated algorithms implemented in the mentioned packages. The Dice coefficient
is one if a perfect match to the ground truth is attained. Zero, on the contrary.

Although in Fig. 8 we have shown the results for one slice, the NF is applied directly to
the whole volume, meaning that the dimension reduction is from a three dimensional space (the
space of voxels) to a one dimensional space (the space of level lines measures). Thus, the time
execution of the NF is several orders of magnitude lower than the others (a standard volume
takes few seconds in a standard laptop).

However, this is no more than a toy example, from where general conclusions can not be
inferred.

Table 1: Comparison among several algorithms

Dice coefficient

Freesurfer FSL SPM NF

white 0.9490 0.9435 0.9468 0.9563
grey 0.8509 0.8599 0.8835 0.8797
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5 Summary

In this paper we introduced the use of the decreasing rearrangement to express nonlinear and nonlocal filters
in terms of integral operators in the one-dimensional space [0, |Ω|].

We have proved properties related to the Neighborhood filter nonlinear iterative scheme. In particular,
geometric properties like the invariance of level sets and the performance of the filter as a contrast change.

We have also proven a detailed qualitative behavior of the iterations as a power expansion in terms of
the window size, and with coefficients which depend on up to second order derivatives of the iterations. This
allowed us to distinguish two kind of effects of the filtering process: an anti-diffusive effect of shock-filter
type, and a contrast loss effect.

Motivated by the possible piece-wise constant steady state of the discrete problem, we have illustrated
the interpretation of the filter as a segmentation algorithm, indeed connected to other techniques involving
the histogram thresholding.

The main conclusion of our work is that, for certain kind of images, among which those having con-
centrated their pixel mass around few intensity levels, the NF is appropriate both as a denoising and as
a histogram-maxima based segmentation algorithm. The execution time of its rearranged version clearly
out-performs those of other algorithms. However, for other kind of images, specially those with a relatively
flat histogram, the results of the NF are poor.
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Figure 3: Denoising experiment. Columns: noisy image, Neighborhood, NLM, and Bilateral filters. Rows:
noisy image, detail of the image, histograms, decreasing rearrangements, and level curves of image details
shown in row 2.
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Figure 4: Denoising experiment. Columns: noisy image, Neighborhood, NLM, and Bilateral filters. Rows:
noisy image, detail of the image, histograms, decreasing rearrangements, and level curves of image details
shown in row 2.
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Figure 5: Denoising experiment. Columns: noisy image, Neighborhood, NLM, and Bilateral filters. Rows:
noisy image, detail of the image, histograms, decreasing rearrangements, and level curves of image details
shown in row 2.
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Figure 6: Segmentation experiment. Results of applying the Neighborhood filter with several values of the
window size h. Rows: Image, level curves and decreasing rearrangement, showing the number of segmented
regions (flat regions). Columns: Image, results of applying the NF with h = 17, h = 20, and h = 50,
respectively.

23



G. Galiano and J. Velasco

Figure 7: Segmentation experiment. Masks of the segmented regions. First row: h = 17. The NF produces
four regions, corresponding to background, dura-mater and ventricles, grey matter and white matter. Second
row: h = 20. The NF produces three regions, corresponding to background, duramatter and ventricles, grey
plus white matter.
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Figure 8: Segmentation experiment. Details of the segmentation produced with several MRI standard
packages and with the Neighborhood filter. See Table 1 for details.
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