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ABSTRACT 

This paper analyses six strategies for managing the MSW generated in Asturias (Spain) 

in terms of their environmental impacts applying the Life Cycle Analysis methodology. 

To this end, the effect of these strategies on Human Health, Ecosystem Quality, Global 

Warming and Resource Depletion is studied. The analysed management options include 

direct landfill with recovery of biogas (S-0), direct incineration with energy recovery 

(S-1), biomethanization of the source-separated organic fraction with direct incineration 

of the mixed fraction (S-2), biomethanization of the source-separated organic fraction, 

sorting of the mixed fraction and incineration of the rejected fraction (S-3), 

biomethanization of the source-separated organic fraction, sorting of the mixed fraction 

and incineration of the rejected fraction following aerobic stabilization of the organic 

fraction (S-4 ) and biomethanization of the source-separated organic fraction, sorting of 

the mixed fraction and landfill of the rejected following aerobic stabilization of the 

organic fraction (S-5). The Consortium for Waste Management (COGERSA) provide 

data regarding on transport and collection of waste and consumption of energy, water, 

oil and reagents at each processes. The results obtained suggest that Scenario S-3 has 

the least impact on the analysed damage categories while the scenarios including 

landfilling produces the greatest impact in all the categories analysed. Regarding 

involved processes in studied scenarios, the transport produces a significant impact in 

the environment, biomethanization contributes to reducing the impact in all the damage 

categories and incineration adversely affects the categories of Human Health and 

Climate Change, but helps to reduce damage in the Resources category. 
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ABSTRACT 

This paper analyses six strategies for managing the MSW generated in Asturias (Spain) 

in terms of their environmental impacts applying the Life Cycle Analysis methodology. 

To this end, the effect of different scenarios on four damage categories is studied, 

namely Human Health, Ecosystem Quality, Global Warming and Resource Depletion. 

The studied management options include direct landfill with recovery of biogas (S-0), 

direct incineration with energy recovery (S-1), biomethanization of the source-separated 

organic fraction with direct incineration of the mixed fraction (S-2), biomethanization of 

the source-separated organic fraction, sorting of the mixed fraction and incineration of 

the rejected fraction (S-3), biomethanization of the source-separated organic fraction, 

sorting of the mixed fraction and incineration of the rejected fraction following aerobic 

stabilization of the organic fraction (S-4 ) and biomethanization of the source-separated 

organic fraction, sorting of the mixed fraction and landfill of the rejected following 

aerobic stabilization of the organic fraction (S-5). The Consortium for Waste 

Management (COGERSA) provided data on the transport of waste, amounts of waste 

collected and distances travelled during collection, as well as data on consumptions 

(energy, water, oil and reagents) at each processes. The results obtained suggest that 

Scenario S-3 has the least impact on the analysed damage categories while the scenarios 

including landfilling (S-0 and S-5) produces the greatest impact in all the categories 

analysed. Regarding involved processes in studied scenarios, the transport produces a 

significant impact in the environment. In contrast, biomethanization contributes to 

reducing the impact in all the damage categories and incineration adversely affects the 

categories of Human Health and Climate Change, but helps to reduce damage in the 

Resources category. 

 

Key words: Municipal Waste Management (MWM), Climate Change, Resources, 

Human Health. 
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1. Introduction 

 

The management of municipal solid waste (MSW) is currently one of the most serious 

and controversial issues faced by the local and regional authorities of a country. The 

member countries of the European Union (EU) are required to propose waste 

management systems that comply with the hierarchy of options, based on the following 

order of priority: prevention (in waste generation), preparing for reuse, recycling, other 

types of recovery (including energy) and, finally, the disposal of waste (Directive 

2008/98/EC of the European Parliament and of the Council of 19th November 2008, on 

Waste). Moreover, sending biodegradable organic matter to landfill must be phased out 

gradually, in line with the targets set out in Directive 1999/31/EC of the Council of 26th 

April, on the Landfill of Waste. 

 

Despite important technological advances, improved legislation and regulatory systems 

in the field of waste management in addition to more sophisticated health surveillance, 

public acceptance of the location of new waste disposal and treatments facilities is still 

very low due to concern about adverse effects on the environment and human health. 

Health issues are associated with every step of the handling, treatment and disposal of 

waste, both directly (via recovery and recycling or other activities in the waste 

management industry, via exposure to hazardous substances in the waste or to emissions 

from incinerators and landfill sites, vermin, odours and noise) or indirectly (for 

example, via the ingestion of contaminated water, soil and food) (Giusti, 2009). 

 

Within this context, the application of Life Cycle Assessment (LCA) to sustainable 

municipal solid waste management has rapidly expanded over the last few years as a 

tool capable of capturing and addressing the complexities and interdependencies which 

typically characterise modern integrated waste management systems (Blengini et al., 

2012). In fact, numerous studies have been published in recent years in which this tool 

is applied in the environmental assessment of different scenarios of municipal waste 

management in different countries, such as Italy (Arena et al., 2003; Cherubini et al., 

2009; Blengini et al., 2012), Spain (Güereka et al., 2006; Bovea and Powell, 2006; 

Montejo et al., 2013), Lithuania (Miliūte and Staniškis, 2009), Brazil (Mendes et al., 

2004), Canada (Assamoi and Lawryshyn, 2012), the United States (Vergara et al., 

2011), China (Han et al., 2010; Song et al., 2013), Indonesia (Gunamantha and Sarto, 

2012) and Australia (Lundie and Peters, 2005). 

Cherubini et al. (2009) apply this tool to assess four waste management options in 

Rome, including: landfilling with and without biogas exploitation, sorting plant to 

produce electricity via refused derived fuel and biogas via anaerobic digestion and 
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finally waste incineration. Results show landfill systems  as the worst waste 

management options, while sorting plant coupled with electricity and biogas production  

is very likely to be the best option for waste management. 

Güereka et al. (2006), in the case of biowaste management in Barcelona (Spain), find 

that as a result of producing electricity, biogas production and incineration are the 

processes that most contribute to reducing impact. 

Montejo et al. (2013) analyze different mechanical biological treatment (MBT) plants in 

Castile and León (Spain). Their results showed that performance is strongly linked to 

energy and materials recovery efficiency. To improve the environmental performance of 

these plants, these authors proposed optimizing materials recovery through increased 

automation of the selection process and prioritizing biogas-electricity production from 

the organic fraction over direct composting. 

Vergara et al. (2011) studied waste management in California, concluding that biogenic 

waste management through anaerobic digestion helps reduce the emission of 

greenhouse gases. The magnitude of the benefits depends strongly on a number of 

model assumptions: the type of electricity displaced by waste-derived energy, how 

biogenic carbon is counted as a contributor to atmospheric carbon stocks, and the 

landfill gas collection rate. 

LCA was applied to assess the environmental profile of different solid waste 

management options for MSW generated in Asturias, a region on the northern coast of 

Spain, with one million inhabitants.  The composition of the MSW generated in the 

region of Asturias has changed over time, both in terms of volume and composition, on 

account of population growth and the consequent changes in lifestyle, leading 

unremittingly towards an unsustainable management system. According to recent 

confirmed data for 2011, 390.4 kg MSW/capita were generated in Asturias, below the 

EU average (503 kg/capita for the EU-27) and the Spanish average (531 kg/capita). 

Currently, landfill is the main destination of mixed household waste in Spain, at 63.1%, 

presently being the only management option in Asturias for mixed household waste. 

More than 20 years have passed since the first facilities were commissioned in 1985 and 

landfilling commenced at the central landfill. The storage capacity of the existing 

landfill will accordingly reach its limit within the following years, with the mandatory 

need to redefine the future model for operating the facilities. Therefore, there is a need 

for evaluating different alternatives for the waste management in this region.  

 

The aim of this paper is to help local decision-makers to design integrated waste 

management solutions that are optimal from the environmental point of view. 

 

2. Materials and methods 
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2.1. Case studio area 

 

Asturias is a region on the northern coast of Spain with a population of around 

1,100,000 and a surface area of 10,500 km2. The majority of the MSW (mixed waste or 

‘black bag’ waste, approximately 480,000 t/year) is treated at a centralized plant 

managed by the Consortium for Waste Management (Spanish acronym, COGERSA). A 

selective collection system is used for glass, paper/cardboard and packaging waste 

(recovering around 80,000 t/year). The mixed waste is landfilled with energy recovery, 

up to 80% of the produced biogas being recovered and used to generate electricity. The 

composition and properties of the household waste generated in Asturias are shown in 

Table 1. The landfill has been in operation since January 1986 and occupies a surface 

area of approximately 250 hectares. The capacity of this landfill will foreseeably be 

exhausted by 2015.  

  

2.2. Description of the scenarios and principal treatment processes 

2.2.1. Waste management scenarios 

Six scenarios were chosen, each of which consists of a combination of different options 

for treating household waste. In addition to the current scenario, five other options for 

the management of household waste generated in Asturias are proposed which could be 

implemented in the region once the capacity of the existing landfill has been exhausted. 

The proposed scenarios are based on the EU hierarchy of options for waste management 

and aim to meet the targets set out in European regulations to reduce the amount of 

biodegradable organic matter sent to landfill (Directive 1999/31/EC) and to promote 

separate collection of waste (Directive 2008/98/EC).  

  

Current scenario (S-0) 

This scenario describes the current management of household waste in Asturias, 

according to which the final destination of waste is landfill with energy recovery 

(biogas) and treatment of leachate. Waste collection is performed in an entirely non-

selective way. 

Scenario 1 (S-1) 

This option describes a management model based on the removal of the mixed waste 

fraction via incineration, without any pre-treatment. As in scenario S-0, waste collection 

is performed in an entirely non-selective way and waste is transported as in the previous 

scenario. 

Scenario 2 (S-2) 
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The management system that this scenario represents combines incineration with 

anaerobic digestion.  

Scenario 3 (S-3) 

This scenario is similar to scenario S-2, the difference being that the mixed waste 

fraction is subjected to a separation process in which recoverable materials are 

recovered prior to treatment via incineration.  

Scenario 4 (S-4) 

The management system that this scenario represents is similar to scenario S-3, but with 

the difference that the stream which is not recovered in the sorting of the mixed waste 

fraction is subjected to a process of aerobic stabilization in order to reduce its volume 

before being disposed of via incineration.  

Scenario 5 (S-5) 

Finally, a scenario has been defined similar to S-4, but in which the waste is finally sent 

to landfill, rather than incineration. As in scenario S-4, the waste reaching landfill has 

previously undergone a sorting process and aerobic stabilization. Biomethanization of 

the source separated organic fraction is also maintained, as in scenarios S-2, S-3 and S-

4. 

 

Figures 1 to 4 show the flowcharts of each of the proposed management scenarios. 

 

2.2.2. Waste treatment processes 

 

� Transportation 

Two systems of transportation are defined: one for the separately collected organic 

fraction and another for the mixed waste fraction, carried out directly or via transfer 

stations. The work of collection is considered to finish when the haulage vehicles used 

for this function return to the place they initially departed from to carry out this work. 

Twenty-one tonne payload trucks were used to transfer the source separated organic 

fraction (SSO), while a differentiation was made for the transport of the mixed waste 

fraction between 21 tonne payload trucks when the transport is carried out directly, and 

40 tonne payload trucks when it is carried out via transfer stations.  

 

�  Mixed waste sorting plant 

The considered sorting plant has manual and mechanical separation and is equipped 

with a trommel and magnetic and ballistic separators. A recovery rate of 7% with 

respect to the waste entering the plant was considered. The recovered materials are: 

paper/cardboard (29.54% recovery with respect to the recovered fraction), HDPE 

(8.73%), PET (10.68%), ferrous metals (29.30%), aluminium (7.45%) and composite 
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packaging (14.30%). The plant has a biofilter for treating the waste gases generated 

during the sorting process.  

 

� Plant for producing biogas from organic waste 

Following a prior sorting process, approximately 85% of the organic waste entering the 

plant is treated in an anaerobic digestion process, 43% of which then goes on to become 

compost after undergoing a process of aerobic maturation.  

In the prior sorting process, 0.95% of the materials are considered recoverable (the same 

materials and recovery percentages are considered in the case of the mixed waste 

sorting facility), in addition to a rejected fraction of 14.75%, mostly made up of chunks 

of wood (FEDEMCO, 2005).  

The biogas generated in the process is burned in combustion engines and transformed 
into electrical energy. A composting process for the digestate obtained in the 
biomethanization process is also included, aimed at obtaining quality compost for 
subsequent sale. 

Finally, the gases emitted from the plant are treated by means of a biofilter and washing 
with sulphuric acid. Furthermore, the generated leachate is appropriately 
decontaminated. 
 

 

�  Stabilization Plant  

 

Waste with a high organic load requiring treatment reaches the stabilization plant from 

the sorting of the mixed waste fraction. The stabilization process basically comprises 

aeration of this organic matter. Homogenization of the waste is performed by 

mechanical shovels or drum mixers. Pollutant gas emissions and leachates are treated 

for decontamination. 

According to data provided by the management company, 37% of the waste entering the 

stabilization process is considered losses due to entrainment of leachate and treatment of 

the gas that is generated.  

 

�  Incineration Plant 

The different MSW fractions reaching the incineration plant are subjected to a 

combustion process in a furnace. Combustion engines are used to transform the flue 

gases into electrical energy. The residual bottom ash from this process (39.24% of the 

waste for incineration) is taken to a recovery plant which recycles approximately 

33.65% of this residue. Its use as a replacement component in aggregates employed in 

the construction of road surfaces has been considered as a possible application of this 

waste. The gases emitted by the process receive suitable treatment based on a process of 
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dry adsorption with lime, adsorption with activated carbon, selective non-catalytic 

reduction and baghouse filtration. The leachate generated in the process of recovering 

the bottom ash also undergoes physical-chemical treatment.  

 

� Landfill 

Household waste is landfilled with energy recovery. The leachate treatment consists of a 

pressurized nitrification-denitrification process followed by ultrafiltration to separate the 

sludge. After that, treated leachates were send to a wastewater treatment plant. 

Transportation of the leachate to this plant as well as internal transportation within the 

COGERSA facilities of leachate collected at the landfill to the in-house treatment plant, 

were likewise taken into consideration.  

 

 

2.3. LCA methodology 

 

The LCA methodology was used to quantify and compare the potential environmental 

impacts of the different municipal waste management scenarios. This study was based 

on ISO 14040 standards (ISO, 2006 a and b). 

 

2.3.1. Objective 

The LCA study was performed to analyse the environmental impacts of different MSW 

management strategies that may be implemented in Asturias. The results may provide a 

basis for making decisions about the future management of MSW in Asturias, given the 

imminent closure of the existing landfill, whose service life is to come to an end in 

2015. 

 

2.3.2. System boundaries 

The relevant processes are included within the boundary of the MSW management 

system, as shown in Figure 5.  

 

The following processes fall outside the scope of study: 

 

� Everything relating to the management of the materials found in the MSW 

(packaging, paper/cardboard and glass) which is collected separately. 

� The potential impact of the disposal of unrecovered fly ash and bottom ash from 

incineration in a hazardous waste landfill after being subjected to a recovery 

process. The reason for this is that the rejected fraction thus obtained represents 
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a very small percentage by weight compared to the total amount of managed 

waste, taken as the reference value in the study. 

 

Hazardous municipal wastes have not been considered because all such waste is 

collected selectively and independently from non-hazardous waste and treated by means 

of specific processes due to representing a potential hazard to human health and the 

environment. Bulky municipal waste, comprising old electrical appliances and furniture, 

is not included either as it involves a different collection system to that of the study. 

 

2.3.3. Functional unit 

The functional unit of this LCA is the management over a period of one year of 480,000 

tons of MSW generated in Asturias. 

 

2.3.4. Software and data quality 

SimaPro software version 7.1.8 was used to carry out the LCA along with its associated 

database (Professional). COGERSA provided data on the transportation of waste, 

amounts of waste collected and distances travelled during collection, as well as data on 

consumptions (energy, water, oil and reagents) at each treatment plant: sorting, 

biomethanization, stabilization, bottom ash recovery, air pollution treatments, leachate 

treatment, incineration and landfill.  

The Ecoinvent v2.0 (2007) database was used to obtain the environmental loads 

associated with the materials, transport and energy employed in the study. The Spanish 

energetic mix has been updated (Table 2).  

Data on emission of pollutants in sorting, biogas production, stabilization and 

incineration plants were obtained from Reference Documents on Best Available 

Techniques (BREFs) for Waste Treatment Industries and for Waste Incineration. 

 

2.4. Life cycle inventory (LCI) 

 

A specific inventory was created for each one of the considered scenarios. The 

inventory data used for each of the processes involved in the different scenarios are 

described below. 

 

2.4.1. Transportation 

To create the inventory corresponding to the transportation step, the total distance 

travelled by the collection trucks and the tonnes transported were taken into account 
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over a period of one year. These data were used to calculate the average distance 

travelled per tonne of waste during the transportation step for each of the transport 

systems considered in the study (Table 3). 

 

2.4.2. Mixed waste sorting plant 

The electricity, fuel, water and reagent consumptions for the mixed waste sorting plant, 

shown in Table 4, were provided by the company in charge of the Waste Treatment 

Centre (COGERSA). 

 

2.4.3. Plant for producing biogas from organic waste 

The biogas plant consumes electricity, gasoil, water and chemicals (Table 4). As regards 

the consumption of reagents, the following are used: polyelectrolyte for dehydrating the 

digestate, sulphuric acid as the absorbent in the gas treatment plant, methanol in the 

treatment of leachate and lime for neutralization.  

The pollutant emissions data were obtained from the BREF Document on Waste 

Treatment Industries (IPPC, 2006a), from which the emissions given in Table 5 were 

estimated. 

Furthermore, a biogas production of 109.5 m3 was considered (COGERSA), generating 

an energy recovery of 229.6 kWh per tonne of waste entering the digester (assuming 

that 60% of the biogas is composed of CH4 with a PCI of 8600 kcal/m3 CH4, and a 35% 

electricity yield). Energy recovery only in the form of electricity was considered as 

there are no industries or towns close to the landfill that could use the generated heat.   

2.4.4. Stabilization Plant  

The aerobic stabilization plant consumes electricity, gasoil, water and chemicals (Table 

4). The consumption in gasoil is due to the mobile machinery used to move the waste 

(loader, forklifts and truck for transporting the rejected fraction), while the reagents are 

consumed in treating the gases (absorption by sulphuric acid) and leachate (nitrification-

denitrification with methanol). 

Data on pollutant emissions were obtained from the Reference Document on Best 

Available Techniques for Waste Treatment Industries (IPPC, 2006a), on the basis of 

which the subsequent substances and emissions were considered (Table 6). 

 

2.4.5. Incineration Plant 

The consumptions at the incineration plant are given in Table 4. A value of 5515.25 

Nm3 of generated combustion gas per tonne of waste is considered, in accordance with 

the BREF Document on Waste Incineration (IPPC, 2006b). Furthermore, the electricity 

produced amounts to 550 kWh per tonne of waste, a value obtained by considering a 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
PCI of 2070 kcal/kg waste sent to incineration. Of this production, 480 kWh are 

exported to the grid and 70 kWh are used in-house at the incineration plant. 

 

The data on gas emissions (emission limits have been taken into account) and final 

waste streams were obtained from Annex V of Directive 2000/76/EC on the 

Incineration of Waste, except in the case of CO and CO2, for which only anthropogenic 

emissions from the fossil C contained in the waste plastic were taken into consideration. 

 

As regards bottom ash recovery, the percentage recoveries of materials vary depending 

on whether the mixed waste fraction is sorted (sorting) or not before being sent to the 

incineration plant (Table 7). 

 

Finally, the reference values adopted in the BREF Document on Waste Incineration 

(IPPC, 2006b) are taken into account to calculate the production of fly ash entrained in 

the flue gas. This document establishes a value of 82.75 kg fly ash/t incinerated waste 

after applying the chosen dry process gas treatments. 

 

2.4.6. Landfill 

Electricity, water and oil consumptions are shown in Table 4. A leachate generation rate 

of 0.44 m3 leachate/t waste deposited in landfill and a 100% capture yield was 

considered when defining this process. Furthermore, the use of 0.25 t covering 

material/t deposited waste was also considered, 50% of this material being clay and the 

other 50% bottom ash recovered in the incineration process. 

 

Other data needed to create the LCI for this process are those relating to generated air 

emissions and energy recovery as a result of biogas capture and recovery. The emissions 

were obtained from the European Pollutant Release and Transfer Register (E-PRTR) 

Report presented by COGERSA for the year 2009, which includes emission factors for 

all the substances produced by combustion engines used to generate electricity or 

torches. As regards energy recovery, it is assumed that 987 and 259 Nm3 of biogas can 

be collected for every tonne of MSW deposited in the current landfill or stabilized waste 

landfill, respectively. Considering an 82% capture yield (18% is emitted to the 

atmosphere) and a 35% electricity yield (COGERSA, 2010), it is hence possible to 

recover about 1.5 kWh/Nm3 flared biogas. 

 

When considering landfilling in waste management, it is necessary to consider the post-

closure phase, as leachate which must be treated and biogas which must be collected 

will still continue to be produced during this period. This study employs the approach 
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that estimates a biogas emissions and leachate time horizon of 30 years for sanitary 

landfill during the post-closure phase (Mc Dougall et al., 2001). The values of 

harnessed biogas and consumptions at the leachate treatment plant will thus increase, 

given that biogas capture will be 100% for the first 5 years after closure, 50% the 

following 5 years, and 10% in the last 20 years, while leachate generation is estimated 

at 100% during the first 10 years after closure, 60% the following 10 years, and 30% in 

the last 10 years. 

 

Finally, the haulage of treated leachate in 21 tonne payload trucks to a wastewater 

treatment plant located at an average distance of 20 km has also been taken into 

account, while internal transportation within the COGERSA facilities of leachate 

collected at the landfill to the in-house treatment plant, at an average distance of 5 km 

for the stabilized waste landfill, was likewise taken into consideration. 

 

2.3.6. Life cycle impact assessment 

The life cycle impact assessment based on the results of the inventory was performed 

using the Impact 2002+ method (Jolliet et al., 2003). This impact assessment method is 

a combination of four methods: IMPACT 2002 (Pennington et al. 2005), Eco-indicator 

99 (Goedkoop and Spriensma. 2001), CML (Guinée et al. 2002) and IPCC. The 

approach defines 15 mid-point categories (Table 8). 

 

These mid-point categories are structured into four damage categories (Jolliet et al., 

2003): Human Health (including mid-point scores for carcinogens, non-carcinogens, 

respiratory inorganics, ionizing radiation, ozone layer depletion, and respiratory 

organics), Ecosystem Quality (including mid-point scores for aquatic ecotoxicity, 

terrestrial ecotoxicity, terrestrial acidification/nitrification, and land occupation), 

Climate Change (only including the mid-point scores for global warming) and Resource 

Depletion (including mid-point scores for non-renewable energy and mineral 

extraction). 

 

3. Results and discussion 

 

Figure 6 shows the results obtained in the damage assessment of the six considered 

scenarios. The scenarios which include the option of landfill as the final waste treatment 

are those which present the worse results in all damage categories. Scenario S-0 is the 

one that contributes most in the Human Health damage category, with a value of 

1.04×10-3 DALY/t waste. In contrast, S-3 is the one that contributes least to this 

category, presenting a value of 6.94×10-5 DALY/t waste.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

All scenarios except for S-0 and S-5 help reduce the impact in the Ecosystem Quality 

damage category. As regards Climate Change, all scenarios have an impact, S-0 having 

the most impact (4.63×103 kg CO2 eq/t waste) and S-3 contributing the least to this 

impact category (31.9 kg CO2 eq/t waste). Finally, in the Resources damage category, 

all scenarios that do not include landfill as the final waste treatment are observed to help 

reduce the impact in this damage category, while the scenarios that do include landfill 

(S-0 and S-5) are seen to have a substantial impact, presenting values of 30,343.6 and 

12,816.5 MJ/t waste, despite involving an energy recovery process. 

 

Figure 7 presents the results of damage normalization. The idea of normalization is to 

analyse the respective share of each impact to the overall damage by applying 

normalization factors to damage impact classes in order to facilitate interpretation. To 

carry out this process, the IMPACT 2002+ method utilizes the emission values of 

Western Europe as reference values.  

 

In view of the results, it may be concluded that the contribution of the studied scenarios 

to the Ecosystem Quality damage category is negligible, the most affected categories 

being Climate Change, Resource Consumption and Human Health. These categories are 

accordingly analysed below in greater detail. 

 

3.1. Human Health 

As already stated, scenario S-0 contributes the most damage in this category, with a 

value of 1.04×10-3 DALY/t waste (1.45x10-3 DALY/t dry waste). This result contrasts 

with that obtained by Hong et al. (2010). These authors, who also applied the Impact 

2002+ method to a similar scenario to that analysed in our study, obtained a value of -

1.88�10-5 DALY/t dry waste. However, their study did not consider the transport of 

waste to the treatment centre, the composition of the waste is very different (with 61.4% 

food waste compared to 38.1% in our study), the energy consumption associated with 

landfill is lower than in our study (0.17 vs. 3.85 kWh/t waste) and the considered energy 

recoveries are higher (45.6 versus 9.44 kWh/t waste). 

 

An impact of 1.12×10-4 DALY/t waste is obtained for scenario S-1, based on 

incineration as the only waste management system.  Morselli et al. (2008) assess the 

environmental impact of waste incineration in a region of northern Italy, obtaining an 

impact on human health of 8.29×10-4 DALY/t waste. However, their study did not take 
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into account transportation of waste to the incineration plant or a recovery process for 

botton ash, although it did consider the construction of the incineration plant. 

Furthermore, the impact assessment method employed by these authors was Eco-

Indicator 99, which includes climate change within the category of damage to human 

health. 

 

When individually analysing the impact categories that make up this damage category 

(Figure 8), it can be seen that the impact is mainly due to the effect of respiratory 

inorganics (RI). According to the Impact 2002+ method, the following substances are 

taken into consideration to evaluate the impact category of respiratory inorganics: 

carbon monoxide, ammonia, nitrogen oxides, sulphur oxides, sedimentary particles and 

particulate matter of below 10 and 2.5 microns in size. 

 

On analysing each of the processes involved in each studied scenario in detail (Figure 9, 

Table 9), it can be seen that the processes that contribute the most to increasing the 

impact in the Respiratory Inorganics category and therefore on Human Health are 

transportation, incineration, stabilization and, to a much greater extent, landfill, whereas 

sorting and, to a lesser extent, biomethanization contribute to avoiding this impact. 

 

Transportation processes mainly contribute to this damage via emissions of particles 

and nitrogen oxides, the effect being greater in those scenarios that include selective 

collection of the organic fraction. The effect of incineration in this impact category is 

associated not only with direct emissions resulting from the process, but also with 

indirect emissions, such as those associated with the processes of manufacturing the 

reagents consumed in the processes used to treat combustion gases. Studies by Morselli 

et al. (2008) also show that the Respiratory Inorganics category is one of the most 

affected by the incineration process.  

 

The sorting and stabilization processes are seen to help reduce the effect of incineration 

in this impact category, as materials which would increase emissions associated with the 

incineration process in terms of both quantity and hazards (such as plastic and/or 

organic matter) are separated or removed by means of these processes. For example, 

scenario S-1, which includes no process prior to incineration, obtains a maximum 

impact of 0.0785 kg PM2.5 eq/t waste, while scenario S-4, which involves sorting 

(triage) and waste stabilization prior to incineration, does not exceed a level of impact 

of 0.0552 kg PM2.5 eq/t waste.  
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Landfill is one of the most important contributors to this category, although the 

contributions associated with energy recovery from landfill gas afford substantial 

benefits. The impact is related to losses in produced biogas which is not collected, these 

losses generating the most important contributions to the formation of acid-forming 

compounds (Bovea and Powell, 2006). 

 

As regards the stabilization process, the observed impact is related to direct emissions 

from the process. 

 

Among the processes that avoid impact, the sorting of mixed waste, via material 

recovery and the replacement of virgin raw materials that it provides (Morris, 2005; 

Banar et al. 2009), helps to reduce the impact in this category. Despite the benefits 

deriving from materials and energy recovery, biogas production has no significant 

impact compared to the impacts produced in other processes, as the amount of waste 

being treated in this way is a very small fraction of the total.  

 

3.2. Climate Change 

As already stated, S-0 is the worst scenario with an impact of 4.63×103 kg CO2 eq/t 

treated waste. This value is relatively high compared to similar studies conducted by 

other authors. For example, Miliūte and Staniškis (2010) analysed the landfill option for 

the waste generated in the region of Alytus (Lithuania), a total of 45,150 t/year, 

obtaining a value of 51,230 t of CO2 eq (1,135 kg CO2 eq/t waste) for this impact 

category; Mendes et al. (2004) obtained a value of around 900 kg CO2 eq/t waste for 

this impact category when analysing the landfill of waste generated in the city of Sao 

Paulo in Brazil; while Gunamantha and Sarto (2012) obtained a value of 188 kg CO2 

eq/t waste for a similarly defined scenario for three cities in the region of Yogyakarta in 

Indonesia. The high value obtained in our study may be due to the fact that the energy 

recovery considered in our case only refers to electricity generation, without taking into 

consideration the production of heat, which could also be obtained, given that this 

possibility is not currently available at the management centre’s facilities. Moreover, the 

landfill under study generates a large amount of leachate, which requires high 

consumptions in its treatment plant. In contrast, the scenario with the least effect on this 

impact category is S-3 with only 31.9 kg CO2 eq/t waste. 

 

A detailed analysis of the contribution of each of the processes involved in each 

scenario to this impact category (Figure 10, Table 10) shows that transportation, 

landfill, incineration and stabilization adversely affect this impact category, while the 

sorting of the mixed waste fraction and biogas production help reduce the impact. 
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In line with the results reported by Morris (2005) and Bovea and Powell (2006), the 

processes of transportation, landfill and incineration are the main contributors to the 

emission of greenhouse gases (GHG), mainly CO2 and CH4. As regards transportation, 

this has a lower contribution in scenarios S-0 and S-1 (48.1 kg CO2 eq/t waste), in 

which there is no source separation of the organics. The contribution of transportation is 

slightly higher for the other scenarios (51.4 kg CO2 eq/t waste). 

 

The savings in GHG in incineration (due to the reduction in the emission of the fossil 

carbon in the plastic) increase when a sorting process is carried out prior to incineration, 

obtaining impacts of 3.5 kg CO2 eq /t waste for scenario S-3 (with prior sorting) versus 

approximately 81.2 kg CO2 eq/t waste for S-1, in which there is no kind of sorting is 

carried out. 

  

Although a significant impact might be expected in the aerobic stabilization of waste 

process, it is not so large. This is because biogenic CO2 emissions are not considered as 

losses, thus reducing the effect of this process with respect to the others. The impact 

associated with this process is 12.2 kg CO2 eq/t waste, mainly due to energy 

consumption during aeration and N2O and CH4 emissions during the process. 

 

Landfill in scenarios S-0 and S-5 is the most unfavourably valued waste treatment 

option due to the significant GHG emissions generated, primarily resulting from landfill 

gas losses, obtaining maximum damages of 4,586.7 and 1,384.8 kg CO2 eq/t waste, 

respectively, in this process alone. 

The processes of material recovery and biomethanization of the SSO help reduce the 

impact in this category, although their repercussions are almost negligible compared to 

the damage caused by the other processes in the overall behaviour of the scenarios. 

From the point of view of Climate Change, insufficient energy is recovered in the 

incineration process to cause more favourable consequences for the environment. 

 

3.3. Resource Depletion 

 

On analysing the contributions of the different processes that make up each scenario to 

this impact category (Figure 11, Table 11), landfilling, transportation and stabilization 

are seen to be the processes which adversely affect this category. Transportation is the 

largest consumer of fossil fuels because of the use of diesel. As in previous cases, those 

scenarios in which the distance waste is transported is greater (scenarios S-2, S-3, S-4 

and S-5) have slightly higher impacts (780.5 MJ/t waste) from the rest (732.0 MJ/t 
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waste). The value obtained by the stabilization process for this impact category is 204.6 

MJ/t waste in scenarios S-4 and S-5, basically due to the consumption of reagents used 

to treat the gases and leachate produced during the process. 

 

Incineration, sorting of the mixed waste and biomethanization help reduce the impact on 

this category, but not all the processes avoid it to the same extent. As a result of the 

recovery of energy, metals (ferrous and non-ferrous) and bottom ash (material that can 

be recovered as an aggregate or filler component), incineration is the most favourable 

process with respect to this reduction. From this point of view, the separation of 

materials prior to the incineration process is not conducive to reducing the impact of the 

process. For example, the savings in scenario S-1, in which no prior sorting is carried 

out, are -2,801.1 primary MJ/t waste, while in S-4, in which prior sorting is performed, 

the savings are -1,880.3 primary MJ/t waste. 

 

In the study carried out by Morselli et al. (2008), the authors concluded that the savings 

in resource consumption that the incineration process presents are due to the energy 

recovery achieved in the process. However, in their study both fly ash and botton ash 

are sent to landfill, without considering their possible recycling as a filler. 

 

The materials recovery carried out in the sorting plant (plastic, paper and metal) is also a 

process which benefits this category. The avoided damage in scenarios S-3, S-4 and S-

5, in which a greater amount of materials is recovered (the entire mixed waste fraction 

passes through the sorting plant), is -816.8 MJ/t waste (S-3) and -830.7 MJ/t waste (S-4 

and S-5).  

 

Although materials are recovered and the biogas generated in the biomethanization 

process is used to produce energy, the consumption of reagents and resources in the 

process itself means that the damage avoided in this category is somewhat smaller (-

30.1 MJ/t waste) in the scenarios that include this process (S-2, S-3, S-4 and S-5). 

 

Finnveden et al. (2005) apply Life Cycle Analysis to assess different solid waste 

treatment options in Sweden. The treatments considered in the studio are: incineration 

with heat recovery, landfilling with landfill gas extraction, recycling, anaerobic 

digestion and composting. The study is applied to the combustible, recyclable and 

compostable fractions present in municipal waste. The results show that recycling is the 

treatment that contributes the most to reducing energy consumption, followed by 

incineration and landfill. When analysing the results obtained with food waste, 
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incineration is slightly more efficient than anaerobic digestion, while composting is 

found to be the only studied option that requires an energy input. 

  

Hong et al. (2010) also found incineration to be the option that contributes the most to 

reducing the impact on resource consumption, with savings of -5.73×103 MJ/t dry 

waste (-2.36103 MJ/t waste), similar values to those obtained in our study. However, 

when incineration is combined with a composting process, the generated impact on this 

damage category becomes 657.73 MJ/t dry waste (270.3 MJ/t waste), corroborating the 

fact that the composting option has a negative impact on this damage category. 

 

 

4. Conclusions 

 

In line with other studies, our results show that traditional landfill produces the greatest 

environmental impact in all the analysed categories.  

 

The transportation process produces a significant impact in the analysed damage 

categories due to the use of fossil fuels. 

 

Biomethanization is a process that contributes to reducing the impact. From the 

environmental point of view, anaerobic digestion plants are better than other 

fermentable treatments due to not requiring a major external power supply, mostly from 

fossil fuels, as they are capable of generating electricity using the biogas that is 

produced. This represents positive effects in nearly all damage categories as a result of 

savings and compensation in non-renewable energy. 

 

Incineration adversely affects the categories of Human Health and Climate Change, but 

helps reduce damage in the Resources category due to the benefits obtained from the 

electricity generated in the process.  

 

The sorting processes carried out both for the mixed waste fraction and the organic 

fraction provide savings in the studied categories, given the reduction in emissions due 

to replacing raw materials, which promotes environmental benefits. 

 

The aerobic stabilization process generates impacts in all the categories, but presents 

relevant values (compared to the other processes) only in the Climate Change category. 
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The effect on Ecosystem Quality is considered negligible for all the analysed scenarios. 

As to the other impact categories (Human Health, Climate Change and Resources), the 

most favourable scenario is S-3, producing a damage of 6.94×10-5 DALY/t waste and 

emissions of 31.9 kg CO2 eq/t waste, in addition to supposing savings in resources and 

energy of -2361.3 MJ/t waste. The management system employed in this scenario 

includes source separation of the organic fraction followed by biomethanization and 

incineration of the mixed waste and rejected materials from the organic fraction after 

the sorting of recyclable materials.  
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Table 8 Impact categories and units employed in the IMPACT2002+ method (Jolliet et 
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Table 9 Summary of the contribution of each process to Respiratory Inorganics (kg 
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Figure captions 

Figure 1. Flowchart of the current scenario (S-0) 

Figure 2. Flowchart of the main steps involved in scenario S-1 

Figure 3. Flowchart of the main steps involved in scenarios S-2 and S-3 

Figure 4. Flowchart of the main steps involved in scenarios S-4 and S-5 

Figure 5. System boundary of the waste management system 

Figure 6. Contribution of each scenario to the damage categories 

Figure 7. Normalized damage categories in each scenario 

Figure 8. Normalized mid-point scores included in the Human Health damage category  

Figure 9. Contribution of each process from each scenario to Respiratory Inorganics 

Figure 10. Contribution of each process from each scenario to Climate Change 

Figure 11. Contribution of each process from each scenario to Resource Depletion 
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Table 1 Characteristics and composition of mixed municipal waste in Asturias 

(Castrillón et al., 2012) 

Waste composition (%) Organic matter 

Paper/Cardboard 

Textiles 

Plastics 

Glass 

Metals 

Others 

38.1 

20.6 

10.9 

10.8 

5.6 

3.6 

10.5 

Waste properties Density (kg m–3) 

Moisture (%) 

Lower Heating Value (kJ kg–1) 

187 

28.5 

10,744 
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Table 2 Spanish energy mix (Red Eléctrica Española, 2009). 

Regime Type 
Percentage 

(%) 

STANDARD 

 

 

 

 

SPECIAL 

Coal (bituminous coal, anthracite and lignite) 

Hydraulic 

Fuel-gas 

Nuclear 

Combined cycle 

Wind 

Solar 

Other renewables (biomass) 

Non-renewables (waste heat, industrial gas) 

12.0 

20.1 

3.0 

8.0 

25.0 

20.0 

3.7 

1.0 

7.2 
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Table 3 Transport process inventory (COGERSA, 2010). 

Process 

Waste 

load 

(t/year) 

Distance 

travelled 

(km/year) 

Average 

distance 

(km) 

Transport 

vehicle(1) 

Direct 

transport 

Home → TS 

247,092 

1,913,559 162.63 21 tonne 

payload 

trucks 
Home → Management 

centre 
486,096 41.28 

Transport via TS 

 

 

Transport of SSO 

234,857 

 

 

- 

1,624,853 

 

 

- 

276.71 

 

 

49.53 

40 tonne 

payload 

trucks 

21 tonne 

payload 

trucks 
(1) Ecoinvent v2.0. database 
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Table 4 Data on consumption, expressed as tonnes of waste, at the treatment plants for 

the different scenarios (COGERSA, 2010). 

Consumption Value 

(A) (B) (C) (D) (E) (F) 

Energy (kWh) 

Water (kg) 

Gasoil (kg) 

Reagents (kg) 

Polyelectrolytes 

Sulphuric acid 

Methanol 

Lime 

Ammonium 

Activated carbon 

Sodium 

hypochlorite 

Phosphoric acid 

22.7 

32 

0.87 

 

- 

- 

- 

- 

- 

- 

 

- 

- 

174.25 

899 

0.38 

 

0.74 

4.32 

0.15 

0.041 

- 

- 

 

- 

- 

65.9 

521.5 

0.45 

 

- 

4.05 

0.084  

0.024 

- 

- 

 

- 

- 

73.42 

307.5 

0.85 

 

- 

- 

0.062 

14.48 

2.13 

0.75 

 

- 

- 

257.4(1) 

761.58 

0.50 

 

- 

- 

28.92 

11.56 

- 

17.34 

 

0.077 

0.096 

163.6(1) 

479.89 

0.50 

 

- 

- 

18.22 

7.28 

- 

10.93 

 

0.049 

0.061 

(A) Sorting; (B) Biomethanization; (C) Stabilization; (D) Incineration; (E) 
Landfill of non-stabilized waste; (F) Landfill of stabilized waste. 
(1) This energy consumption is the sum corresponding to the operation of the 
landfill (3.85 kWh/t waste) and the operation of the leachate treatment plant 
during the post-closure period (30 years). 
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Table 5 Air emissions from the biogas production plant (IPPC, 2006a). 

Substance Value(1) 

Methane (CH4) 

Sulphuric acid (SH2) 

Organics 

0.986 g 

0.301 mg 

0.021 mg 

(1) Per m3 of generated biogas. 
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Table 6 Air emissions from the stabilization plant (IPPC, 2006a). 

Substance Value(1) 

Ammonium (NH3) 

N2O 

Nitrogen oxides (NOx) 

Methane (CH4) 

Organics 

Particulate matter 

Dioxins 

Water (H20) 

102.2 g 

60.5 g 

100 g 

411 g 

300 g 

174.5 g 

508.3 ng 

303 kg 

(1) Per tonne of waste. 
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Table 7 Percentage recoveries at the bottom ash recovery plant (COGERSA, 2010) 

Recovered materials (%)(1) 

Process Ferrous Non-ferrous 

WITH sorting 

WITH sorting + stabilization 

WITHOUT sorting 

1.5 

2.05 

3.0 

0.4 

0.55 

1.3 

(1) Percentage recovery with respect to incinerator input  

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 8 Impact categories and units employed in the IMPACT2002+ method (Jolliet et 
al., 2003) 

Impact category (mid-point) Units 

Carcinogens 

Non-carcinogens 

Respiratory inorganics 

Respiratory organics 

Ionizing radiation 

Ozone layer depletion 

Aquatic ecotoxicity 

Terrestrial ecotoxicity 

Terrestrial acid/nutrient 

Aquatic acidification 

Aquatic eutrophication 

Land occupation 

Global warming 

Non-renewable energy 

Mineral extraction 

kg C2H3Cleq 

kg C2H3Cleq 

kg PM2.5eq 

kg C2H4eq 

Bq Carbon-14eq 

kg CFC-11eq 

kg TEG water 

kg TEG soil 

kg SO2eq 

kg SO2eq 

kg PO4-P limited 

m2 organic arable land 

kg CO2eq 

MJ primary 

MJ surplus 
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Table 9 Summary of the contribution of each process to Respiratory Inorganics (kg 

PM2.5 eq/t waste) 

Process S-0 S-1 S-2 S-3 S-4 S-5 

Waste Transport 

Sorting of Household 

Waste 

Biomethanization 

Plant 

Incineration Plant 

Stabilization Plant 

Landfill 

0.0685 

 

- 

 

- 

- 

- 

1.2540 

0.0685 

 

- 

 

- 

0.0785 

- 

- 

0.0734 

 

- 

 

-0.0008 

0.0702 

- 

- 

0.0734 

 

-0.0114 

 

-0.0008 

0.0675 

- 

- 

0.0734 

 

-0.0115 

 

-0.0008 

0.0552 

0.0368 

- 

0.0734 

 

-0.0115 

 

-0.0008 

 

0.0368 

0.3460 

TOTAL 1.3224 0.1470 0.1428 0.1287 0.1530 0.4438 
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Table 10 Summary of the contribution of each process to Climate Change (kg CO2 eq/t 

waste) 

Process S-0 S-1 S-2 S-3 S-4 S-5 

Waste Transport 

Sorting MSW 

Biomethanization 

Plant 

Incineration Plant 

Stabilization Plant 

Landfill 

48.1 

- 

 

- 

 

- 

4,586.7 

48.1 

- 

 

- 

81.2 

- 

- 

51.4 

- 

 

-1.4 

71.1 

- 

- 

51.4 

-21.6 

 

-1.4 

3.5 

- 

- 

51.4 

-21.7 

 

-1.4 

17.7 

12.2 

- 

51.4 

-21.7 

 

-1.4 

- 

12.2 

1,384.8 

TOTAL 4,634.9 129.3 121.1 31.9 58.1 1,425.2 
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Table 11 Summary of the contribution of each process to Resources Depletion (MJ/t 

waste) 

 

Process S-0 S-1 S-2 S-3 S-4 S-5 

Waste Transport 

Sorting of MSW 

Biomethanization Plant 

Incineration Plant 

Stabilization Plant 

Landfill 

732.0 

- 

- 

- 

- 

29611.5 

732.0 

- 

- 

-2,801.1 

- 

- 

780.5 

- 

-30.1 

-2,501.8 

- 

- 

780.5 

-816.8 

-30.1 

-2,295.1 

- 

- 

780.5 

-830.7 

-30.1 

-1,880.3 

204.6 

- 

780.5 

-830.7 

-30.1 

- 

204.6 

12,692.3 

TOTAL 30,343.6 -2,069.1 -1,751.5 -2,361.6 -1,756.1 12,816.5 
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Figure 6. Contribution of each scenario to the damage categories
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Figure 7. Normalized damage categories in each scenario
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Figure 8. Normalized mid-point scores included in the Human Health damage category 
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Figure 9. Contribution of each process from each scenario to Respiratory Inorganics

-0.5

0.0

0.5

1.0

S-0 S-1 S-2 S-3 S-4 S-5

Waste Transport Sorting Household Waste

Biomethanization Plant Incineration Plant

Stabilization Plant Landfill

C
o

n
tr

ib
u

ti
o

n
 t

o
 R

I



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 10. Contribution of each process from each scenario to Climate Change
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Figure 11. Contribution of each process from each scenario to Resource Depletion
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Figure 1. Flowchart of the current scenario (S-0) 
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Figure 2. Flowchart of the current scenario (S-1) 
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Figure 3. Flowchart of the main steps involved in scenarios S-2 and S-3 
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Figure 4. Flowchart of the main steps involved in scenarios S-4 and S-5 
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Figure 5. System boundary of the waste management system 
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Highlights 

 

Six waste management scenarios were assessed by LCA methodology. 

 

Four damage categories were considered, according to the Impact 2002+ method. 

 

Waste landfilling is the option with greater environmental impacts. 

 

Sorting and biomethanization processes provide savings in the studied categories. 

 

Incineration helps to reduce damage in the Resources Depletion category. 


