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1 Executive Summary / Resumen 

1.1 Executive summary  

Engine health monitoring data is at the current core of the civil aeronautical business.  The use 
of engine health monitoring systems has existed for several years, however it is only now that 
the in-flight knowledge gathered through this means is being used to address not only safety and 
reliability but to also understand customer operation and the overall engine condition. 

The assessment of EHM data for optimized life cycle cost, this is, the extension of an engine’s 
time on wing and reduction of maintenance costs, has not yet been fully exploited due to several 
reasons.  The main reasons however have been the lack of available data and the time and 
material type of maintenance operation common until now.  Modern technology and a change 
towards TotalCare have influenced the current importance of EHM and its detailed assessment 
developments. 

This thesis develops a new EHM assessment methodology and its associated prognosis with the 
main objective of improving the level of engine maintenance required detail for a given engine 
prior to its maintenance shop visit.  In addition, the prognosis methodology provides a 
significant long term capability on the state of the engine at module level which enables trade 
studies, not possible today. 

The existing EHM assessment capabilities concentrate on the safety and reliability aspects of 
engine containment and its reactive capabilities.  The EHM methods developed are a proactive 
approach towards interpreting EHM data in its full extent, without filtering, in order to 
determine the actual condition of an engine at a modular level. 

The application of existing methods as BSS, and subsequently a possibilistic filter together with 
a fuzzy classifier, have enabled a new approach at understanding the internal engine condition 
through the combined assessment of all of the available variables.  A subsequent classification 
method which enables the association of this level of deterioration to a known state or level of 
deterioration allows for a prediction of the level of engine deterioration, expected cost of 
maintenance and main exchanged parts to be replaced, to be performed. 

The assessment of events or condition changes does not directly reflect the deterioration of the 
engine.   A sequence mining approach to the previous results obtained above was carried out to 
establish if certain sequences may be associated to specific levels of deterioration, transitions or 
to no significant changes.   

The additional knowledge provided through these methodologies to the current business is 
already a significant step change.  A prognosis however was developed associated to this engine 
condition assessment which further enables the detailed understanding of the engine remaining 
useful life based on the integral of the instantaneous engine deterioration speed and the life 
objective established on its release. 

The result from this assessment is a new set of methods, which allows the maintenance facilities 
to optimize their limited capacity and predict in detail the level of workscope and man-hours to 
be employed for specific engine refurbishments.  These methods also allow trade studies to be 
performed to optimize time on-wing versus over all engine level of deterioration.  
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1.2 Resumen  

El análisis de los datos de vuelo, es hoy día primordial dentro de la industria aeronáutica.  Ha 
habido distintos métodos de análisis de estos datos, pero solo recientemente se han orientado no 
solo a interpretar las prestaciones y grado de riesgo sino además para entender el tipo de 
operación empleada por el operador y las condiciones generales del motor. 

Aun así, el análisis de datos de vuelo para la optimización de los costes totales de vida del motor 
interpretados como extensiones de operación y reducciones de mantenimiento, no se ha 
analizado en detalle debido a varias razones y circunstancias.  La primordial, es sin embargo, la 
falta de datos completos y constantes de las flotas y el tipo de estrategia seguida por los 
operadores para el mantenimiento de sus motores.  La introducción de nuevas estrategias para el 
mantenimiento de motores hacia TotalCare ha influido directamente en la importancia actual del 
análisis de los datos de vuelo y el desarrollo de nuevos métodos para su interpretación. 

Este trabajo desarrolla un nuevo método de análisis de datos y su prognosis con la intención de 
mejorar el conocimiento respecto al nivel de mantenimiento de cualquier motor antes de su 
mantenimiento.  Además, la prognosis permite realizar esta interpretación sobre el motor a nivel 
modular con varios ciclos previos, para su posible consideración con respecto al nivel de 
deterioro, costes de mantenimiento y prioridad dentro de la flota, lo cual no es posible hoy día. 

Los métodos de análisis de datos de hoy día se centran en la identificación de las prestaciones 
de los motores y el grado de riesgo que contienen para contener sus posibles implicaciones de 
una manera reactiva.  Los métodos desarrollados son una interpretación proactiva del análisis de 
los datos completos de vuelo sin filtrado previo para así determinar el estado interno preciso de 
cada motor de forma individual a nivel modular. 

La aplicación de métodos existentes como Separación de Señales con Fuente Ciega y un filtrado 
posibilistica seguido de un clasificador fuzzy han permitido una interpretación de las 
condiciones internas del motor mediante la combinación de todas sus variables.  El sistema de 
clasificación ha permitido la asociación del grado de deterioro de cada motor a ese determinado 
defecto dentro de una base de datos de deterioro.  De esta manera se ha podido asociar el grado 
de deterioro de un motor a los gastos estimados de mantenimiento, y el listado completo de 
material requerido para su posible mantenimiento. 

El análisis inicial, lineal de eventos o condiciones que modifican el estado interno del motor no 
reflejan con precisión el estado de deterioro del motor.  Así pues, se ha aplicado un análisis de 
minería de datos secuenciales.  Este análisis de minería de datos sobre el resultado del método 
anterior se ha generado para determinar si determinadas secuencias podrían estar asociadas a 
cambios específicos, deterioros o incluso a condiciones de no-cambio. 

Este nivel de conocimiento sobre el estado interno de cada motor, es en sí mismo, un cambio 
sustancial con respecto a las herramientas actuales.  Además, el método de prognosis 
desarrollado, determina la vida útil del motor, como la integral de la velocidad instantánea de 
deterioro del motor según el modelo y la vida útil de construcción. 

Los métodos de identificación y clasificación del estado de los motores, y su prognosis 
permitirán así optimizar la capacidad limitada de las bases de mantenimiento y determinar en 
detalle el nivel de mantenimiento y las horas de trabajo necesarias para la vuelta a servicio de 
cada motor.  Además, estos métodos permiten valorar, el estado y nivel de mantenimiento 
requerido por todos y cada uno de los motores de la flota para así optimizar la vida útil de cada 
motor con respecto a su nivel de deterioro y costes asociados. 
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3 Objectives  

3.1 Objective 

Equipment or Engine Health Monitoring (EHM) of aeroengines as that, used in the automotive 
industry today has evolved substantially in recent year.  EHM on aeroengines has evolved from 
simple direct cabin inputs managed and monitored by the third pilot to over 250 variables being 
monitored today at any one moment during every flight. 

The assessment of this data has also evolved over the years, especially with the introduction of 
Power-By-The-Hour and other such engine maintenance services, by which the OEM manages 
the engine maintenance for an hourly fee.  This change has encouraged engine manufacturers to 
look at EHM data not only as a means to maintain reliability and improve safety but also as a 
means to saving operational costs. 

Current EHM development has been structured in two main areas.  The main objective of the 
first is on-wing safety and reliability, based around the assessment of engine data against known 
failure or significant event scenarios, which are used to identify engines where a precautionary 
inspection is required.  The other is established to determine the possible level of deterioration 
of the engine in order to understand the fleet and the level of engine maintenance required by 
any one engine. 

3.1.1 Engine Deterioration over Time 

Engine fleet data is typically assessed by computers, and only in those cases where a significant 
change in a variable or a specific event is identified, is the data actually assessed by an engineer.  
Several methods of assessment are available to establish the state of an engine at any one time.  
However there are very few methods which combine all several parameters in order to 
determine the overall state of an engine.  As a result the evolution of an engine over time is a 
common unknown. 

The main EHM assessment methods available are only able to plot a limited number of 
variables for its subsequent assessment.  These methods carry out engine to engine or an engine 
to fleet comparison, or monitor the complete fleet worth of data to subsequently extrapolate 
fleet-wide conditions.  However in no case are there currently methods available which are able 
to assess the complete engine level of deterioration for a specific in-service engine.   

A method is therefore required, which based on the available EHM data from a given engine is 
able to plot an engine’s evolution over time.  Subsequently the method is to be used in 
combination with the service experience available from engine development and sampling 
programmes to determine the engine’s proximity in level of deterioration to other known engine 
states in order to enable read-across assessments of the original unknown engine. 

3.1.2 Engine Classification 

EHM data assessments are typically performed at individual variable level.  Specific engine 
variables are assessed for their trends or limits, or engine to engine comparisons are carried out, 
however these are as well performed at variable level.  This is appropriate in order to identify 
faults or significant engine events where a substantial internal engine change has occurred.  
However engine deterioration over time is not possible through this means, as the combinations 
of variable changes need to be assessed. 
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Module level assessments are also not generally performed as the internal evolution of the 
engine is continuously compensating itself over time.  As a result of this, determining the actual 
state of an engine module has not been pursued.  Its understanding would however be a 
substantial step change in the understanding of the engine condition, reliability and maintenance 
requirements.   

The current engine classification methods are deemed to be rudimentary and oriented towards 
the safety and reliability aspects of EHM assessment.  This is, the main objective of the existing 
methods attempt a reactive assessment of the engine data in order to avoid running the engine 
under unwanted conditions or to limit the possible secondary damage caused by a significant 
event that may be clearly identified through a step change or a significant trend shift in the data.  
These methods are however limited by the identification of the optimum variable to assess, the 
data availability and the actual occurrence of the event. 

A method is therefore required, which is capable of performing a simultaneous assessment of 
several variables in order to assess small engine levels of deterioration over time.  The method 
should not require previous engine knowledge to determine the overall state of the engine, 
although it is deemed to be a read-across of the service and operational experience for other 
reasons would be of value.  In addition, module and not only engine level assessments would 
also be beneficial. 

3.1.3 Engine Feature Sequence Classification 

The assessment of engine data is based on identifying engine trends, step changes or limit 
exceedances.  Specific engine conditions may be determined this way, however in some cases, 
the actual engine event or condition will not occur simultaneously across all of the variables.  
The changes will in reality occur as a cause-effect sequence across the engine. 

Sequence mapping, is not applied to EHM data assessments.  These methods are common 
practice in other areas as DNA sequence assessments, however not in EHM.  This is mainly due 
to the actual lack of a requirement, and lack of understanding of the actual internal working 
condition of the engine and its interactions.  In addition, there are no existing methods which 
enable these methods to be applied which in turn has reduced the development of these in the 
civil aeronautical industry. 

A method is therefore required, which is capable of identifying engine events or significant 
conditions where the effect is detectable as a sequence of changes in time where the internal 
evolution of the engine over time is the actual condition to be determined and identified.  The 
method should be able to distinguish between engines where changes occurred and those where 
the same events in a different sequence do not relate to an actual engine condition change. 

3.1.4 Engine Remaining Life 

Engines are manufactured and introduced to service with very few life limitations.  As such, 
only the life limited parts will impose an engine refurbishment, however the life of these 
components is for this same reason generally substantially high.  An engine event will therefore 
be the most likely root cause of an engine shop visit.  This on-condition engine policy however 
is not ideal for maintenance facility capacity planning.  Operational conditions are therefore 
typically imposed, based on service experience from the fleet or as a read-across from other 
similar fleets.  This establishes an average utilization and removal so that engines are planned at 
maintenance intervals based on policies and not strictly on the actual engine condition. 
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The assessment of the remaining useful life is established in detail within the aeronautical 
industry in order to establish the life of critical parts.  Its application on the EHM environment is 
also developed due to the safety and reliability emphasis EHM has had to date.  As such 
understanding the number of event worth of reaction time, once a significant change has been 
identified is crucial to the current EHM capabilities.  The determination of a maintenance RUL 
when no significant event has occurred has however not been developed for an engine specific 
application.  Fleet-wide assessment and predictive methods have been developed for 
preventative planning, but none exist which are able to determine the remaining life of a normal 
in-service engine where no significant condition has occurred. 

A method is therefore required, which is capable of establishing the overall engine deterioration 
over time which may subsequently be translated into the actual average engine remaining life to 
a known overall engine state.   
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4 Structure Overview 

4.1 Description of the structure  

The development and application of each of the engine health monitoring data assessment 
methods here described, was the result of an initial study which determined that the existing 
methods were not capable of fully addressing the business needs. 

This thesis in therefore compiled to outline, describe and validate the new methods developed.  
However, due to the business specific needs and the industry specific environment an 
introduction to both the aeroengine configuration and maintenance as well as engine health 
monitoring itself is included in the first sections so as to aid the understanding of the context for 
the following parts. 

A detailed review of the current engine health monitoring data assessment methodologies is 
subsequently described.  This section follows on to determine and weigh the pros and cons of 
each exiting method.  In addition, the assessment also outlines the business requirements and 
areas where further development to the existing method is required so as to meet these needs.  
The conclusions from this section therefore serve to establish the specific objectives of the 
thesis in each of its individual parts. 

The theoretical development and understanding of the new methods developed is subsequently 
described by means of a description of the actual objective to be addressed and the starting point 
of development with regards to the existing methods and the development itself.   

The new theoretical methods have been subsequently applied to specific examples for their own 
validation.  The theoretical methods have also been applied to real life examples so as to allow 
the understanding of the exact differential level of detail between the new and old methods and 
how well the business needs are addressed. 

A review of the results has been carried out solely from the business point of view to establish 
the benefits of these new methods developed.   

The final conclusions section, reviews the new methods developed and how these have 
addressed both the initial set objectives as well as the business needs.  The degree of accuracy 
and benefit of these new methods is also reviewed to establish future areas of further 
development. This section also describes other new areas where further developments may be 
required. 
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5 Introduction to Aeroengines 

5.1 How an engine works 

Aeroengines can be divided into low or high bypass ratio engines, Figure 1.  In civil operation 
aeroengines are typically now a days high ratio bypass engines.  In this assessment the use of 
engine or aeroengine may be used indifferently and will always relate to high bypass civil 
aeroengines unless otherwise stated. 

Aeroengines are used to continuously push air so that as part of the second law of physics, 
through its reaction, an airplane may be pushed forwards.  In order to do so, the fan is used to 
carry out two functions, the first to use the energy to push air through the core and the second to 
use energy to push air through the bypass.   

 

Figure 1 Typical civil engine design overviews (Low, and High By-pass ratio engines, and open 
rotor  

5.1.1 High Bypass Engines 

High bypass engines are composed of a core, a fan and a bypass.  The air pushed through the 
core is used to generate the power required to move the fan.  The fan is used to push the air 
through the bypass, which due to its exhaust nozzle design is optimized to generate the 
maximum push whilst reducing the operating noise produced by both the core and the fan. 
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The remaining section of the engine, the core, is where the power is generated.  The core is 
composed of a compressor and a turbine, with the turbine being subdivided to differentiate the 
generation of power to maintain the engine working efficiently from that used to generate the 
power to move the fan and thus the overall engine thrust. 

In order to simplify the design definition and due to the similarities between engines, these are 
subdivided into engine modules.  A two shaft engine is most commonly composed of the 
following modules, Figure 2:  

! Fan or LP Compressor 
! HP Compressor 
! Combustion and HP Turbine 
! LP Turbine 

 

Figure 2 Engine modular schematic overview  

Whilst a three shaft engine will be composed of the same modules it will also include one 
additional set of intermediate compressor and turbine, IP compressor and IP turbine 
respectively.  In this assessment there will be no distinction between a two and a three shaft 
engine and unless otherwise specified, will always relate to a two shaft engine. 

5.1.2 Working Configuration  

All aeroengines generate thrust through a generic suck-squeeze-bang-blow configuration [1].  
This is in line with any other internal combustion engine, like that of a car.  The air is 
absorbed and compressed, so that a high pressure is achieved and appropriate combustion air 
concentrations are met.  Fuel is then injected into the high pressure air, the combustion then 
combines high pressure and high temperature air onto the turbine where the air is allowed to 
expand. 
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The engine cross section of temperatures and pressures shows the overview of how the engine 
works [1].  The air running through the engine bypass is compressed, however due to the low 
compression ratio; no significant temperature increase is associated to it. 

On the other hand, the air running through the core of the engine is initially compressed by the 
fan blades, but then sustains the highest compression when going through the HP compressor.  
Due to the high compression ratio the associated temperature also increases.  By the time the 
air reaches, the combustion chamber, the air temperature is exceeding 800 degrees Kelvin, 
Figure 3. 

!

Figure 3 Internal engine working conditions 

Combining the compressed air with the engine fuel has no substantial effect at this high level 
overview.  The main impact comes after or during the combustion where there is a small 
pressure loss and a significant temperature increase.  By the time the air reaches the HP 
turbine the temperature is well above 1500 degrees Centigrade.   

The air is subsequently allowed to expand through both the high and the low pressure turbines, 
by when the pressure has substantially reduced whilst the exit temperatures are still high 
considering the entry conditions. 

At the engine exit depending on the engine configuration, the relatively high core exit 
temperature air may be used in combination with the bypass air in order to gain an additional 
proportion of thrust with the use of an exit nozzle.  

5.2 Engine management and maintenance 

Aeroengines, in much the same way as all mechanical systems need to be maintained in order to 
assure their safe and reliable working conditions.  In addition, it is in the operator’s interest to 
maintain the engines in a good overall working condition so as to assure the best possible fuel 
consumption [2] and operating costs. 

Due to the size, complexity and skilled work force required for the maintenance of these 
engines, the appropriate management of the maintenance is crucial to any airline operation. 
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5.2.1 Engine Maintenance 

Since the beginning of civil air travel as we currently know it, operators may acquire a new 
aircraft, and with it, select the engine system that best suits their operation within the given 
range of the aircraft.  At an aircraft level several maintenance and management inspections are 
then required, however this is outside of the scope of this thesis and therefore will solely 
concentrate on the management and maintenance of the engines [3]. 

The maintenance programme of the engines needs to be agreed by the operator with the local 
airworthiness authorities in order to assure the appropriate management of the engines is in 
place before the engines may be certified.  This is, the operator is expected to have an 
engineering department, which will monitor and manage the engine maintenance throughout 
its operating life.   

This requirement means operators are required to have the constant costs of keeping a 
complete engine management related department as well as confronting the variable costs of 
each engine maintenance shop visit, which in many cases may rise above a million dollars. 

This methodology is still followed by many operators, however in order to support the 
industry even further engine manufacturers have developed a maintenance free method of 
operation.  This is, engine manufacturers offer to manage the engine maintenance on behalf of 
the operator.  There are several different names for these agreements depending on the 
services contracted however the most common are “Total Care”, “Corporate Care” or “Fly-
By-The-Hour” [2]. 

The key aspect of this maintenance methodology is that the engine manufacturer needs to 
appropriately manage the flight income from the operator in order to confront the future 
maintenance costs of the engine.  The more knowledge on the engine, the more accurate the 
budget for the future shop visit, and therefore a greater profit. 

5.2.2 Types of engine shop visit 

There are only a limited number of facilities worldwide which can refurbish engines, and these 
have limited capacity.  Managing and planning this capacity appropriately is therefore key.  
Improving the reliability of the fleet is also in the manufacturers’ interest in order to avoid 
unplanned shop visits. 

The overall engine management methodology agreed with the operator and with their 
airworthiness authorities outlines the level of work that will be carried out on an engine for a 
given life.  The life of an engine or component within an engine is monitored though cycles, or 
hours flown, depending on the deterioration method. 

5.2.3 Engine Deterioration  

Inspection methods, limits and intervals are designed to manage and improve reliability within 
the fleet.  This assures that no significant finding will be missed or that it will not be allowed 
to propagate into an unsafe condition before the following inspection.  This is, service 
experience has shown that there are different interim stages in a component or engines’ life 
that depending on the findings will require a different type of maintenance reaction. 
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In a visual form Figure 4, a general Weibul based deterioration plot, can clearly show the 
different stages of deterioration and the reaction time and impact to consider.  Based on 
maintenance cost, inspections would be preferred early in order to maintain as much of the 
original material as possible, however based on utilization reduced on-wing inspections would 
be performed. 

Experience within the fleet or engine family will give guidance with regards to where these 
individual lines are, with respect to each other and will allow certain fleet-wide policies to be 
considered.  However this will be an average point of view for the fleet and not an individual 
engine assessment for each of the engines within a given fleet. 

 

 

Figure 4 Engine or component deterioration Weibul plot  

5.2.4 Engine Deterioration Equilibrium 

Internal engine damage due to erosion, impact or thermal distress will always have a direct 
effect on the engine working conditions.  Substantial amounts of damage will cause a 
significant step change in the engine working conditions which will be picked up through the 
alerting systems.  These may be significant spikes in the working temperatures, or increased 
vibrations.  In any case, the pilot or the ground crew will identify a significant finding which 
they will need to address. 

Small amounts of internal damage, however, will have subtle effects that may not be seen or 
even identified by the current monitoring systems.  The effect on efficiency will however 
exist.  As the engine is subsequently operated in this condition, the engine will need to 
compensate this efficiency loss.  There is therefore a certain equilibrium that the engine seeks 
between the compressor and turbine in order to reach an appropriate balance. 

Compressor damage will reduce the compression efficiency and reduce the temperature at 
which the air is delivered to the combustion and turbine system, all of these effects will be 
assessed in more detail in following chapters.  Due to this temperature loss, the combustion 
system must compensate so that the turbine work and delivered energy is maintained, a higher 
fuel flow is therefore delivered.  However in doing so, the turbine working temperature is 
increased, directly affecting the turbine working conditions and deteriorating the turbine faster 
than in the previous conditions.   

This will follow until the turbine efficiency is lower than that of the compressor, then the 
compressor will need to compensate a turbine efficiency loss, by turning faster in order to 
deliver higher flow air increasing the deterioration of the compressor components!  

!
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6 Introduction to Engine Health Monitoring 

6.1 Engine Controls 

Engine controls have evolved substantially throughout the years, in the 1980s Pratt & Witney 
started developing digital controls in their engines, however it was with the introduction of the 
Olympus engine for the Concord that Rolls-Royce introduced the first civil FADEC engine. 

FADEC or Full Authority Digital Engine Control [4] is the term used for the controls system on 
all modern aeroengines.  The main components within any FADEC system are the EEC or 
Engine Electronic Controller and the surrounding units dealing with the fuel and oil supplies as 
well as the aeroengine settings through bleed valves and variable stator vane actuators, Figure 5. 
In addition and in order to determine the individual conditions required at any one time the 
system also includes all of the engine sensors. 

!

Figure 5 Schematic engine overview with the location of the main FADEC components 

The subsequent engine development once digital engine controls were established was the 
introduction of the EVMU or Engine Vibration Monitoring Unit which monitors and records not 
only engine vibration data but also the data from all of the other engine sensors.  This set of data 
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is what is known as EHM or Equipment Health Monitoring data.  In many cases due to the 
specific use of EHM on aeroengines, it is also known as Engine Health Monitoring data. 

Engine health monitoring data in modern aircraft is a given.  However the number of variables 
measured and the number of data points collected over time for each of these variables has 
substantially increased in recent years.  This has in turn, increased the complexity of the 
assessment methods and models required. 

The main use of engine data is to control and manage the engine [5].  This is, to monitor engine 
parameters in order to avoid running the engine under undesired conditions.  The built-in system 
knowledge within the engine and aircraft is configured to trigger alerts to highlight the need for 
pilot or maintenance crew action or to directly shut the engine down if a significant condition 
would be encountered. 

In addition, engine data is also monitored for its development over time. The variables measured 
and the number of data points taken over time for each of these has also evolved through the 
years, making it necessary to have specific types of analysis software available to assess and 
monitor the flying fleet [6]. 

6.2 FADEC/ Engine Control System 

The main objective with the introduction of digital engine controls was and still is safety [7].  
This was implemented in order to reduce the amount of pilot input required, who in addition 
was not capable of monitoring the engine for small changes several times per second with an 
immediate reaction time [8]. 

In addition, FADEC controls have also contributed to other overall engine improvements, 
improved fuel efficiency, as the engine is optimized for the specific ambient and internal 
conditions of the engine, automatic engine protection in the case of encountering an unsafe 
condition, care free handling allowing the pilots to concentrate on flying the aircraft and not on 
the engines, also reducing the amount of parameters to be monitored by the crew during each 
flight [1].  In addition, it also managed a semi-automatic engine start, monitored a greater 
number of parameters for a more accurate fault isolation system and had an inbuilt emergency 
response in case required. 

The reaction time with which FADEC data is used also defines the type of task or improvement 
it addresses, Figure 6.  This way, and as shown in the chart, immediate reaction is carried out by 
the FADEC system itself to optimise the engine working conditions improving the operating 
costs.  It also continuously monitors the engine, giving warning messages to the crew for pilot 
consideration and mainly contains the auto-protection system to react in case of a hazardous 
condition. 

Long-term, the digital engine control is centred on the Engine Health monitoring (EHM) or 
condition monitoring of the engine.   This way, the EHM data assessment helps identify 
imminent working conditions where operation should be avoided, which in turn helps operators 
plan final routes for engine maintenance, avoiding maintenance outside of the main 
maintenance base, improving maintenance costs [9].  
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Figure 6 Engine controls capability and reason versus reaction time chart 

6.3 Types of data currently managed 

There are several different types of engine data recorded and monitored, Figure 7.  Depending 
on the operation point of the aircraft, the engine monitor will carry out a different type of engine 
data assessment and management. 

Continuous data is monitored throughout the complete flight.   This is, the engine control 
system reviews all of the data points and optimizes the operation of the engine for the given 
working conditions and pilot requirements. 

Semi-continuous data is monitored and recorded at key flight phase points.  During take-off and 
landing and also if exceedances are identified the monitored data is physically recorded so that 
assessments may later be carried out. 

Snapshots of data are also recorded during each flight.  A reduced number of data points are 
recorded at certain steady state conditions throughout the flight and at different points of the 
flight profile.  These are used for trending purposes. 
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Figure 7 Overview of the main types of controls data gathering 

The assessment of this data in any of the three forms may be used to assess the condition of the 
engine [10].  Maintenance information may be gathered to determine engine faults and 
determine if on-wing maintenance may be required.  Life cycle counting , may also be 
determined to manage the number of cycles at a certain working condition that specific group A 
parts may have encountered in order to optimize the engine time on-wing. 

The data recorded throughout each flight is also different depending on the flight phase.  As an 
example, during take-off approximately 164 different engine parameters may be recorded and 
monitored.  During climb however, a reduced number, 131 parameters may be recorded.  
During cruise the parameters monitored and recorded would be once again reduced to 54.  
These parameters and the number of parameters per phase will change depending on the 
operator or the fleet; however they serve as examples of the level of detailed recorded during 
each flight phase. 

Trend assessments are typically carried out through the assessment of cruise data [11].  This is 
due to the fact that the engine is at a steady working condition, reducing the transient effects 
when comparing data from several different flights over several different years.   Even though 
54 different parameters are recorded there are several key parameters that have been determined 
to give an appropriate level of detail about the engine working conditions.  The remainder of the 
parameters either enhance the level of knowledge about specific subsystems or allow a more 
detailed assessment if a certain deviation has been identified.   
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7 Engine Health Monitoring Methods 

7.1 EHM data assessments  

The Engine or equipment health monitoring assessment reviews not only the individual working 
conditions but also the trend over time to identify rapid levels of deterioration.  This engine 
monitor is typically carried out by the OEM, by an operators own engineer or is outsourced to a 
specialist EHM consulting company, [12]. 

The assessment carried out is typically a comparison of the new engine data against those 
parameters identified to be characteristic of known engine conditions or against design limits, 
[13].  However understanding the design limits for a new engine or predicting the engine 
parameter deterioration levels over time is complex and as a result several methods have been 
developed. 

The most common methods developed to assess EHM data are based around Gas Path Analysis 
(GPA), which considers the variability of the engine parameters based on the engines’ own 
design, internal damage and deterioration, [14].  Linear and subsequent non-linear assessments 
based around GPA have helped develop filtering mechanisms to detect step changes in the 
internal working conditions of the engine.  Due to the increase in the number of variables 
monitored and to improve the time before an engine is required to be removed from service 
from the point a trend shift is identified, assessments have used fuzzy logic and neural networks 
to develop pattern recognition methods [15]. 

The aim of these methods has consistently been to filter the variables in order to identify engine 
trends and step changes as early as possible.  Then, based on previous experience, faults may be 
diagnosed early and a prognosis time before engine maintenance is required, may be provided in 
order to plan the required maintenance accordingly, thus avoiding a more significant engine 
event.  

Engine development over time has also been assessed through deterioration modelling and 
probabilistic simulation, [16].  The main objective of this type of assessments, early in an 
engine programme however is to determine the optimum engine maintenance interval and 
assure appropriate levels of reliability for the new fleet. 

In the past these two types of assessment have been developed and used independently.  The 
first concentrating on engine specific safety and reliability and the second on fleet management, 
however neither actually considers long-term engine specific maintenance management.  The 
introduction of maintenance contracts as Power-By-The-Hour where the engine maintenance 
management is the responsibility of the OEMs has emphasized the need for the early diagnosis 
of engine specific deterioration.  This is, further development in the assessment of EHM data 
has been highlighted so that small trends and shifts in the variables are identified, even when the 
values are within the appropriate reliability levels of the specific parameters.  This way, the 
level of engine deterioration at the time of engine maintenance may be determined and 
prioritization of fleet maintenance may be performed ahead of time based on the specific levels 
of each engines own deterioration. 

7.2 Definitions 

Diagnosis and prognosis have several different definitions, however within the EHM 
aeronautical community the definitions of these are as follows.  The diagnosis of engine faults 
consists in the identification and classicisation of a component or subsystem within the engine.  
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The prognosis of an engine fault is on the other hand, the capability of establishing not just the 
fault but the actual progression of said fault over time, in order to define the component or 
subsystem fault [17] [18] [19] [20].     This is, for a diagnosis, an engine fault has already 
occurred, whereas for a prognosis, the fault itself does not yet have to have occurred.  As such, 
system diagnostics may provide a direct benefit on their own.  However prognostic systems 
require an initial diagnosis in order to add value.   

As such the diagnosis of a component fault within a system will detect the fault, identify the 
fault and classify the fault.  This in itself will allow action to be taken, and as discussed is 
already of value.  The prognosis of the system however, will be able to build on this fault 
classification, to carry out a prediction of the evolution of the fault over time, so as to establish 
the Remaining Useful Life, RUL.  This is clearly shown in Figure 8, [17] [18]. 

!

Figure 8 Degrees of complexity for Diagnosis and Prognosis models 
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7.2.1 Fault Types 

Independently of the type of diagnostic or prognostic method used, the detection of faults will 
always require the identification of a variable, or combination of variables which deviate from 
a norm which may be monitored and assessed.  The deviation will be a step change, a drift or 
an intermittent fault over time, Figure 9.  Defining the norm and the time required to 
acknowledge these changes as faults, is the basis of all of the available methods [21]. 

!

Figure 9 Types of variable deviation, step change, drift or intermittent fault 

However, as these types of assessments are typically used on complex systems, faults should 
not be expected to be unique.  As such faults must be considered as combinations of each 
other within the system.  These combinations may be additive or multiplicative depending on 
the faults, the sub-systems and the complexity of the complete system. 

Each method of assessment will look for certain symptoms characteristic of each fault.  These 
may be limit value exceedances, signal analysis or process analysis.  They are all specific and 
mathematically based on the exact variable value measured.  However there are certain other 
methods, which will use qualitative data.  These other methods use maintenance information 
or even subjective inspection criteria within the assessment in order to establish a diagnosis of 
an engine fault. 

7.3 Review of System Diagnostic Methods 

The diagnosis of faults methodology is directly linked to the type of knowledge readily 
available with regards to the system under assessment and the diagnostic strategy to be pursued, 
[22].   On the other hand, the diagnostic strategies are directly proportional to the system 
knowledge.  This is, the more detailed the knowledge is about the system, the lower the 
complexity of the diagnostic method.  Diagnostic methods can therefore be classified dependant 
on the amount and type of knowledge available, as has been outlined by R Isermann [21] first, 
and later by V Venkatasubramanian et al. [22] .   

The basic type of knowledge that is required is a database through which relationships may be 
generated between system and specific faults, Figure 10.  This knowledge may be implicit 
within the diagnostic system, as a look up table.  This type of knowledge is referred to as model-
based knowledge.  There are other methods which utilize these knowledge databases of past 
experience, or experience from other similar systems to create these fault relationships.  This 
type of knowledge is referred to as History-Based knowledge. 

In addition, model-based methods may be subdivided into qualitative and quantitative methods.  
Qualitative models, typically mathematically relate the inputs and outputs of a system, as a 
bases for the assessment.  Quantitative methods, on the other hand, are typically generating 
qualitative relationship functions around specific units within a process. 
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History based methods, are used when the system or system process is ignored or is too 
complex to allow specific inputs to be used.   As such, these methods require substantial 
amounts of historic knowledge in order to establish the fault relationships and understanding of 
the norm.  The methods through which the diagnostic systems extract or transform the required 
knowledge, is known as feature extraction.   

This feature extraction is performed to enable the subsequent diagnosis.  The feature extraction 
process may once again be subdivided into qualitative or quantitative.  In addition, the 
quantitative extraction processes can once again be subdivided into statistical and non-statistical 
feature extraction methods. 

!

Figure 10  Classification overview of Diagnosis methods 

7.3.1 Quantitative Model Based 

Fault detection and isolation (FDI) methods, will typically require a two-stepped approach.  
The first will be the generation of inconsistencies between actual and expected behaviours.  
These inconsistencies or “residuals” are the potential faults required to generate the database 
of relationship to specific system known conditions [22].  The second step is the diagnostic 
rule base of the assessment relating these conditions to specific faults. 

As such the difference between quantitative methods is typically based on the method through 
which the residual identification is performed.  The detection of redundancies where the same 
measurement is performed by two or more sensors is Hardware redundancy.  In these cases, if 
one of the sensors deviates from the norm, then a fault may be detected.  This however is a 
costly method, both on direct cost and on physical space within a system, which may not be 
possible due to size, or weight.   

The other method of identifying redundancies is through mathematical relationships between 
sensors.  This is, through the understanding of the system under assessment, and through the 
understanding of the basic functioning principals of the system, a model may be generated, 
which by using the identical input data is able to generate a computed output prediction or 
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estimation.  This value may therefore be compared against the real output and be assessed for 
deviations, as a method of fault identification.   

These computed predictions will require certain detailed knowledge of the system under 
assessment.  Direct modelling of the processes is possible, however systems where data 
monitoring is required are typically complex and as such these methods are also very complex.  
Statistical methods are therefore applied to allow for model approximations to be generated.  
However in doing so the interpretation of the output results is in many cases not possible, as 
the resulting system does not directly represent reality. 

The assessment methods will therefore need to extract the required features from the system 
and consider the additive or multiplicative nature of the complex system faults.  In addition, 
the non-linearity of the variables will require an initial “linearization” for their subsequent 
analysis.   

The identification of residuals within the system in order to compile the diagnosis method 
implies the use of steady state conditions in order to establish the norm and the difference to a 
cause-effect condition to be assessed.  However the use of transition conditions may also be 
used for clarification or detail within the prediction. 

7.3.1.1 Observers 

There are several different types of Observer models, however they are all based on 
algorithms that monitor a variable [21].  Under normal conditions the deviations will be 
small and close to zero.  However when an event or failure occurs, higher values will be 
identified, which will trigger the fault. 

The combination of several of these algorithms will provide the capability of not only 
detecting a fault but also classifying the fault, as depending on the triggered variable or 
combination of variables, fault isolation and classification may be carried out. 

The fault isolation capability of observer models is based on the isolation of each individual 
fault and the error deviation from the remainder of observers.  This is, the service experience 
together with the engineering understanding of the engine will enable a model database of 
triggers and trigger combinations, which in turn will enable fault isolation. 

In addition, as there are additive and multiplicative types of faults, Kalman filtering is 
generally applied in order to reduce the systems’ inherent error.  Least squares methods are 
in addition applied to reduce the possible error from multiplicative faults.    

Any unique fault signature will be detected through a change to the output and associated 
error estimation which may are considered as the residuals in these methods.  This is the 
basis of current monitoring techniques.   

Dedicated Observers 

Different types of methods may be determined based on the filtering methodology applied: 

• Single output observer  

This method is used to detect individual faults – The observer is defined to be variable 
sensitive.  This is, the method is defined around an individual output sensor to identify 
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and classify a specific fault.  A predicted output signal is constructed, and the real 
system output is compared for fault detection. 

• Kalman Filter 

This method is able to assess signals with multiple influences.  Under normal 
conditions, the output signal is generic white-noise, however when a specific fault 
occurs, quantifiable deviations from the norm, known covariances, will be detected.  A 
Kalman filter may be used to minimize the noise and measure the Kalman filter gain 
over time through a covariance error matrix. Developments into extended Kalman filter 
have introduced adaptive redundancies into these models.  

• Bank of observers – Multiple excitations 

Several generic dedicated fault observers are defined and combined in a fault database.  
Faults are detected thorough the questioning of the output against this database or bank 
of faults. 

• Bank of observers – Single excitations 

Several fault-specific observers are defined and combined in a fault database.  Faults are 
detected through the questioning of the output against this database or bank of faults. 

• Bank of observers – Multiple excitations except one 

Several generic fault observers are generated around a sensor which does not excite the 
output.  The method will monitor several variables and identify a fault when there is a 
change to all variables except in one. 

Fault Detection Filters 

These methods make use of the control signal to create fault specific observers.  The 
resulting fault signal will change in a predetermined way, identifying the possible fault.  As 
such the output signals will be transformed into these specific pre-determined fault planes so 
that the fault isolation may be easily carried out 

Output Observers 

These methods are used when the system under assessment is unknown.  The method is 
based on the comparison between the real and the simulated outputs, which are designed to 
be independent.  As such, a dependency would only occur if a fault exists.    

These Output observer-based methods are of great value as they do not require prior 
knowledge about the actual system being assessed.  On the other hand however, generating 
independent fault-specific observers is increasingly difficult in complex systems [23].  
Linear and subsequent non-linear methodologies have been applied, to establish the 
independence between fault cases and track the Eigen values of the control system output to 
determine fault-free states.  These observer-based methods are typically applied to broad and 
generic cases of on-line “live” control systems which monitor limit exceedances or step 
change faults. 
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7.3.1.2 Parity Equations 

Parity equation methods are based around the input-output relationships within a system 
itself.  The control model input-output is built such that if the input is changed, the output 
from the system and the control model will be the same.  This consistency between the 
model and reality is what’s known as the parity of the model.  Once this parity model is 
available, it may be re-arranged in such a way that fault isolation may be optimized [22].  

Initial transformation methods employed short-term average equations of the steady state 
conditions, and used residuals to determine gross faults.  Further developments have 
however evolved into vector and directional influence of specific faults.  In these cases, the 
models are transformed into a state in which the identified faults are orthogonal to each other 
and validated through their own independence. 

This input-output orthogonality has also been applied to state-space plots for dynamic 
systems [24] [25].  The control model in these cases is capable of minimizing the general 
system noise and therefore detecting drift changes over time. 

These methods are ideal for additive type faults where the influence over time of single 
faults may be detected.  However multiple faults will show as deviations on multiple signals 
and no fault isolation will be possible.  In addition, this method is also not valid for step 
changes in the system due to the nature and construction of the model itself. 

7.3.1.3 Signal Models 

The system variables under assessment usually contain a certain natural oscillation to them 
due to system noise, rotational vibration or other influences.  As such, fault isolation may 
also be carried out through the assessment of the signals themselves.  The assessment of the 
signal amplitude and or amplitude density for a given bandwidth may be considered and 
developed to generate band-pass filters [26]. 

Other signal transformations may also be applied to differentiate the average system noise 
from other events for fault detection reasons.  These models identify a maximum entropy 
estimator against which to compare the real output signals.  These are known as 
autoregressive moving average methods [27]. 

The application of these models is valuable for fault isolation of certain sensor specific 
faults.  However when used at system level these method are a useful indicators for fault 
detection, but not of fault identification, as deviations may be identified but are complex to 
associate to specific known faults. 

7.3.1.4 Additional Remarks 

Other quantitative methods exist, as:  

• Parameter estimation, for variables which are not directly measureable 
• Hardware redundancy and voting schemes [28], to determine sensor faults and 

establish appropriate inputs to be considered 
• Enhanced residuals, through directional [29] and structural methods [25], to 

isolate specific faults and generate a structured parity method which selects 
specific faults for specific sub-spaces. 
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As previously discussed these fault detection and isolation models are typically centred on 
the detection of a deviation as a drift or a step change.  Substantial model development has 
been carried out to establish, clarify and define these limits and thresholds, as high limit 
values will reduce the robustness of a given model and low limit values will generate false 
alarms. Fuzzy sets have subsequently been introduced to address this issue and allow limit 
transitions between high and low limit values [30] 

7.3.2 Qualitative Model Based 

Qualitative FDI methods are based on expert knowledge to extract rules or theories which 
define the service or predicted faults.  These methods, review the subjective system 
condition, to establish rules which are considered as fact, by generating conditional trees 
where IF something occurred THEN something is to be expected.  As such, because of the 
subjective nature of these methods, and their distance from the actual physical system being 
assessed, new failure modes cannot be detected or processed, through the direct 
understanding of the method.  A new rule or a revision of a rule would be required, for each 
new fault. 

Based on the type of subjective rules proposed, these methods, may be subdivided into 
Abductive, when the reasoning is based on the output understanding and the selection is the 
weighted most likely reason, or inductive, by compiling all rules which are similar to a 
known system fact; or default, where a rule is established based on the available data at the 
time of the assessment, but is allowed to change or be modified as further experience is 
gathered. 

These qualitative methods which make use of this service experience to establish system 
rules in order to monitor and manage systems may be subdivided again into Casual models 
and Abstraction hierarchy methods [31]. 

7.3.2.1 Casual Models 

Casual model, do not consider the actual physics of the system under assessment, nor do they 
make use of mathematical relations between inputs and outputs.  The casual qualitative 
methods solely review the experience gathered and collate it in a reasoning format where 
future assessments and assumptions may be considered.  These types of models may be 
subdivided into Digraphs, Fault Trees and Qualitative physics methods. 

Digraphs 

The visual representation of observed cause-effect relationships or digraphs is known as 
signed digraphs (SDG) [32].  These charts show the relationships between variables and 
conditions.  The relationships are in addition considered to be directional, which allows for 
an improved understanding of the cause effect mechanism. 

In these representations, each node is a variable.  As such these nodes may be cause or effect 
nodes, and they are related through directional arcs.  Nodes, can have, only outputs, outputs 
and inputs or only inputs, depending on the characteristics of the variable they represent.   

Further extensions of this methodology have also considered partially known relationships 
and multiple probable relationships to bridge the gaps of subjective reasoning or experience 
[33].  More recent developments have also made use of fuzzy reasoning, to further clarify 
these multiple subjective relations [34] [35]. 
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These models are useful as control related methods, as they revise the on-line system to 
verify the correct functionality.  However due to their complexity and multiple possible 
relations on bigger scale systems, their use is limited. 

Fault Tree 

Fault tree methods may be understood as an extension of digraphs.  Fault trees are a detailed 
graphical representation of the actual working system.  These methods require an accurate 
representation of the system under assessment to subsequently model all possible faults 
relating an initial deviation through AND – OR relation to actual faults. 

In addition, the progression through the fault tree may be carried out through probability 
trails, which are directly based on experience.  As such these models are typically used for 
safety and reliability assessments to determine the probability of specific known faults, as a 
means of system validation strategies [36]. 

These models are limited by the capability to represent the system and the experience to 
define all possible faults and relations.  As such these models will serve as control 
mechanisms to verify systems, but cannot be read across to similar systems nor are they 
capable of independently identifying new faults. 

Qualitative Physics 

Due to limited system knowledge or lack of actual variable measurements, qualitative 
physics models have been developed.  These models allow the application of the first law 
rules to the system under assessment, with qualitative values.  This is, “a big increase” may 
be modelled instead of an actual number value within a performance equation. 

However as modelling and understanding of complex systems through detailed equations 
with qualitative data is not possible due to the complexity and in most case unknown details, 
these equations are limited to addition, subtraction and multiplication.  Equations or rules 
can then be established as system monitoring methods where “a big increase in X” + “a 
smaller increase in Y” = 0, to suggest that these qualitative increases are not relevant to a 
fault [37]. 

These methods are descriptive of the system, and are limited by the complexity of the 
systems under assessment and the limited algebra available for their modelling [38].   The 
other limitation is the qualitative data itself, and the requirement for probability 
understanding for non-linear variables [39]. 

7.3.2.2 Abstraction Hierarchy 

Complex systems are typically made up of smaller subsystems which perform a certain 
function in the overall flow.  Under this assumption, abstract hierarchy models divide 
complex systems into subsystems by modelling their structure or function.  This is, the 
model represents the input to output transformation or the input to output relation, without 
having to fully understand the exact mechanisms within the actual subsystem being 
represented. 

Structural Hierarchy 

These methods understand the internal mechanism of each subsystem under assessment to 
establish the transformation of the inputs as the bases of the model.  The inter-connections of 
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these relations across the different subsystems represented to model the complete system are 
subsequently used as the basis of the method. 

There is increasing value in these methods as they are able to quickly identify areas of 
concern or isolate possible faults, however due to the modelling complexities, these methods 
are typically only applied at high sub-system levels and not to small detail therefore 
restricting their fault identification capabilities. 

Functional Hierarchy 

The representation of subsystems as a function of the inputs is useful when considering 
subsystems with known effects [40].  This is, in an electronic environment the effect of a 
resistance to the voltage may be represented as a function of the current. 

As previously, these methods can represent the actual physical changes that occur throughout 
the system when compiled together, however the complexity of the systems to be assessed is 
their inherent limitation.  However they are widely used as a first point of contact fault 
isolation methodology for complex systems. 

7.3.2.3 Additional Remarks 

Qualitative methods are of great use when detailed knowledge about the system under 
assessment is unknown or not fully known in sufficient detail to model.  However through 
the partial knowledge or through relationships between input and outputs, these methods are 
capable of designing representative models which reflect reality. 

The application of these models is limited due to their broad representation of the real 
system.  As such targeted representation of known system faults for validation strategies or 
high-level fault isolation strategies may be considered from these models.  Detailed 
assessments are not typically considered for complex systems through these methods solely 
due to their modelling difficulties. 

7.3.3 Process History Based 

In contrast to the other qualitative or quantitative methods where the understanding of the 
system at hand was a valuable asset for the model, in Process History based methods, the data 
is monitored and managed in order to carry out the assessment.  However the amount of data 
required in order to carry out an accurate prediction of the system fault is increasingly high.  
Feature extraction, determines which knowledge is extracted from this high volume of historic 
processed data.  This extraction may be performed through two main methods; qualitative and 
quantitative. 

The understanding of these different methodologies as exposed by V. Venkatasubramanian et 
al. [41] is further exposed. 

7.3.3.1 Qualitative Process History 

The main methods of qualitative feature extraction are expert systems and trend modelling 
methods. 
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Expert System 

Expert systems are simple data driven rule based models.  These models collect the data 
from the system under assessment, and through the knowledge database available, represent 
the running system so that diagnostics may be carried out, through rule base approaches. 

The structure, with which the data is collated, may be hierarchical, or network based.  This 
way, the fault isolation is performed through the established rules [42] which zone-in and 
both identify and classify the fault simultaneously.   

These rule-based models later gave way to the application of Fuzzy logic and neural 
networks, where the required fault isolation rules are not imposed within the model, but 
learnt, giving way to Fuzzy rule based models [43].   

The limiting factor of these expert models is that they are system specific and are therefore 
not transferable to other even similar systems.  They are however a very simple and straight 
forward to collate and develop due to their structure and transparency.  In addition, and also 
due to their structure-base, faults are aligned to specific, troubleshooting processes or 
procedures, which are a valuable asset when assessing complex systems. 

Qualitative Trend Analysis 

The extraction of trend monitoring data is typically associated to time series.  These can 
easily be filtered to remove the inherence system noise and detect faults.  Trend analysis can 
also be performed to identify known system trends and sensor combinations [44].   

First and second derivative methods are also applied to these time series to determine trend 
changes through the first derivative or zero crossings through the second to clearly notify of 
a signal change [45]. 

These methods are typically used with good results.  Service experience is required to 
establish a solid fault database, however the filtering and fault associated technique is 
appropriate in many environments.  The computational time to review multiple complex 
signals is however high and is deemed to be a limiting factor on the application of these 
methods. 

7.3.3.2 Quantitative Process History 

Feature extraction through quantitative methods is also known as pattern recognition.   This 
is, the method identifies specific patterns within a signal which are subsequently classified, 
this way providing the fault isolation. 

Quantitative feature extraction methods may be subdivided into two main groups. 

Statistical Feature Extraction 

Complex systems are typically unpredictable. This is, historic or even present data does not 
directly relate to the next future state or condition.  As such, statistical methods allow the use 
of probabilities to determine the next likely states or conditions of the working system. 

These methods are typically used for system control through the use of thresholds which 
identify and perform the required change in order to optimize the system working conditions.  
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Statistical tools have been applied to these models to reduce the noise effect, and transform 
the data into smaller subsets which may be easily assessed. 

• Principal Component Analysis / Partial Least Squares 

PCA and PLS methods are based on the statistical analysis of data [46].  PCA methods 
are capable of performing an orthogonal decomposition, which in essence reduces the 
unformatted data into the main characteristic directions.  This way, the principal 
components may be considered [47] as the main drivers, or smaller directions of less 
weight may be dismissed, reducing the number of variables under assessment [48]. 

• Statistical Classifiers 

Statistical classifiers may be applied for fault isolation.  These can be based on 
parametric or nonparametric density estimation, be distance based, etc.  The conditional 
class probabilities are related to the distance to known conditions, thus establishing the 
fault isolation [49]. 

Neural Networks 

Neural networks are one of the main areas of current development for fault isolation 
techniques.  Depending on the model structure, neural networks can substantially reduce the 
amount of effort required to determine a possible solution, through estimation techniques and 
connection weights.  These weights may be learnt, through experience or unsupervised 
neural network processes [50]. 

Pattern similarity is a subsequent area of development which enables nearest neighbour 
assessment to establish robust pattern recognitions and associations [51].    

7.4 Review of Prognosis methods 

A system prognosis is the answer to the next natural question after a fault has been diagnosed in 
order to determine the remaining useful life (RUL) of the component, so that appropriate action 
may be carried out.  This is, a fault needs to be identified for a prognosis to be made.  The fault 
does not necessarily need to be classified, however for a prognosis to be considered a failure 
needs to have occurred or must at least be initiated.  As such, prognosis methods can be seen as 
an extension of the diagnosis methodologies previously discussed.   

In order to generate an appropriate prognosis, several questions need to be addressed.  Is a 
component degraded? Is it a known failure mode? Is the fault classified? At what stage of 
degradation is it at? These are all diagnosis questions that should already be addressed and are 
not part of the prognosis. 

The prognosis phase, will address other questions as “does this fault have a known failure mode 
prognosis?”  Or “does it have a future failure mode prognosis?” And “what’s the post-action 
prognosis?”  These questions will help determine the time to failure, or RUL.  Identifying the 
most likely failure mode to establish an even higher accuracy or confidence in the RUL as well, 
as the appropriate actions which could be considered in order to retard the existing fault, are 
respectively shown in Figure 8. 

Depending on the level or degree of accuracy required in the prognosis, different levels of 
insight may be considered.  On a high level prognosis or Level 1 an RUL is provided based on 
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the extension of the known failure mode.  On a Medium prognosis or Level 2, a descriptive 
outcome of all of the different failure deterioration modes is assessed and an RUL calculated for 
all possible cases, with the worst case scenario provided as the outcome of the assessment.  On 
the most detailed prognosis level, level 3 maintenance actions are considered in order to provide 
a detailed assessment of not just the RUL, but also of how this RUL may be influenced through 
alternative or additional maintenance actions and how the RUL will subsequently evolve. 

As with the diagnosis methods, prognosis methods are also dependant on the type and quantity 
of data or knowledge available.  As such four main classes of prognosis methods have been 
identified [17]as a means of classification, Figure 11.  

!

Figure 11 Classification overview of Prognosis methods  

7.4.1 Knowledge-Based Models 

These models may be further subdivided depending on the method through which the 
knowledge database of faults and fault progressions is applied. 

Fixed Rules 

The fixed rules, or expert system methods, are based on service experience and expert 
knowledge.  As such, direct If-Then rules can be applied, as historical evidence has shown the 
clear path of these specific faults. The limits are typically broad in order to assure an accurate 
prognosis, and as such, the RUL is also considered to be too pessimistic [52].  However, these 
methods do provide a good guideline and a first level approach as to the RUL to be considered 
for the fault identified. 
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Fuzzy Rules 

In order to bridge the gap between the fixed rules requirement and the imprecise data that is 
typically available, fuzzy rules have been applied in order to gain the capability to use 
incomplete data or even confidence limits as to where the system may actually be. 

As such the strict If-Then rules may now also be applied.  However their application will now 
consider the imprecise inputs, in order to provide a range of outcomes with their associated 
degrees of certainty.  In addition, several of the fixed rules required for the assessment may be 
combined, and as such, the fuzzy methods typically require a substantially reduced number of 
rules [53]. 

The RULs as such, are still considered as those from the knowledge database, but in the fuzzy 
method, the outcome is the selection of the most likely prognosis.  

Further more recent development in Fuzzy logic has expanded the use of Fuzzy rules of 
imprecise data to the application of learnt rules over imprecise systems.  This enables the 
assessment of systems, where the actual rule base is learnt directly through a sample dataset 
and then used to monitor the system. 

The RULs of these are not different than before however the method may now be applied to 
more complex systems, where no detail data is available, or where substantial expert 
knowledge would be required. 

7.4.2 Life Expectancy Models 

Once a fault has been diagnosed and classified, the prognosis assessment is carried out in 
order to determine the RUL.  In life expectancy models, no maintenance is considered [52].  
As such, the direct RUL of the specific fault identified is carried out, as if nothing within the 
system would be modified, with regards to the system maintenance, or operation.  This is 
supported by recent which studies which have established the limitation of these models to 
predict long-term maintenance, [53].   

As such, these models provide a baseline to the RUL should no action be considered.  Trade 
studies would subsequently be possible to determine the effects on RUL of on-wing actions 
which may be implemented, however these would be outside of the capabilities of these 
models [54].  These models solely consider the state of the system against a known limitation, 
and not the previous history or influence of other external factors. 

7.4.2.1 Stochastic Models 

These reliability based methods provide a mean time between failures (MTBF) approach to 
their prognosis.  This is, in cases where a substantial number of non-failures have occurred, 
these may also be considered as a part of the knowledge or experience in order to provide an 
appropriate RUL.  The accuracy of these methods may also be modified.  As such, 
depending on the fault the actual RUL may be modified by altering the confidence in the 
result, which determines the number of critical faults before a certain time, based on 
experience.  In addition, due to the mathematical methods used, the failures or events 
considered must be statistically independent, in order to be able to assure a single fault 
condition. 
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Aggregate Reliability Functions 

These methods are not fault specific, but rather holistic to the system.  Based on the system 
experience and the knowledge of the faults, these methods are able to establish a generic 
distribution of when certain faults will occur as well as their likelihood.  Weibul functions of 
faults are the typical examples of these methods, where reliability conditions for families 
may be considered or maintenance planned as part of policy requirements and are not 
specific to system faults [55], Figure 12. 

!

Figure 12 Weibul based reliability function chart 

These methods, require however substantial experience and expert knowledge in order to 
make the appropriate connections and interpretation of the faults, their interactions and the 
specific associated RULs.  In order to ease their assessment or generation, several 
programmes are available which automatically generate these prognosis models. 

Conditional Probability Models 

Based on the information available and the method through which the data is used to 
generate a prognosis model, several different conditional models exist. 

• RUL probability density function 

This is the most basic out of all of the Bayesian methods.  Based on the aggregate 
method, a fleet density function is obtained in order to determine the condition at 
which no failures have been identified As such this density distribution which is 
updated for every new fault condition identified, is a predictive density function based 
model based on which the remaining useful life may be determined.  All subsequent 
Bayesian methods will refine this distribution, but the principal will be the same. 

Depending on the system monitoring requirement as the accuracy on the prediction 
and the RUL confidence values are inversely proportional these may be modified and 
improved to meet the necessary requirements [56].  In addition, depending on the 
signal transformations and filtering, several other detailed methods may be considered, 
Figure 13, details this differentiation through a significant classification difference 
between linear and non-linear methods. 
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Figure 13 RUL overview of Bayesian methods  

• Static Bayesian Networks 

Static Bayesian methods are based on the original knowledge based models.  Through 
this graphical representation, the Bayesian networks sweep this assessment to generate 
a list of plausible states or conditions.  The benefit of this method is the probability 
results returned for each failure condition, already contain an assessment of the 
confidence in said result. 

In order to provide these results, experts are required to establish the links and 
methodology, and as such, the method is not readily transferable [57].  In addition, this 
method will provide a general indication of the RUL for the fleet, but will not be able 
to identify imminent faults or step change fault conditions. 

• Dynamic Bayesian Networks  

Dynamic Bayesian networks on the other hand are prognosis orientated, and allow for 
time-series forward thinking based method.  This is, based on the current state and the 
known failure mode probabilities, a prognostic, time series based RUL may be 
provided.  There are several different methods to perform this assessment, however 
the most common are: 

Markov Model – This method is capable of working with incomplete data and is 
reasonably simple to implement, however it is only capable of assessing non-time 
dependant types of deteriorations [58]. 

Hidden-Markov – Their main developments have been for their application as speech 
processing methods [59].  These methods, allow for the modelling of states or 
conditions, where no change is considered. However more variables and complexity 
are required in order to model these appropriately.  In order to simplify their 
computational complexity, principal component analysis and learning vector 
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quantification are typically used in order to reduce the number of variables whilst 
maintaining the accuracy of the result [60]. 

Kalman Filters – Are used to dismiss noise within signals.  As such, these may be used 
to assess signals in order to determine a state condition.  Non-linear methods have also 
been developed as Extended Kalman filters.  This way independently of the type of 
signal the filter will converge on a signal state condition, which may be subsequently 
assessed or further processed [61] or extrapolated from known conditions. 

Particle Filters - These method is aligned to the Kalman filters, the main difference is 
that a Monte-Carlo simulation is here proposed as the method of providing an RUL 
prediction [62]. 

7.4.2.2 Statistical Models 

These methods use an estimate of the initial failure condition and a service experience based 
progression of the damage in order to provide an RUL, through forecasting the deterioration 
Figure 14.  These are typically considered as an alternative to artificial neural network based 
methods, when a physical model is not availableInvalid source specified.. 

Trend Evaluation 

This is the most basic of these methods.  Based on service experience from a single 
parameter, deterioration over time a prediction chart may be proposed.  Based on engine and 
maintenance knowledge an RUL limit may be proposed against which the parameter is to be 
monitored.  

These methods are simple to establish, however not all failure modes may be represented 
under a single parameter, and not all faults may have precise limit boundaries. 

!

Figure 14 Trend evaluation example overview 

 



Monitorización del estado de flotas de motores usando análisis inteligente de datos para información 
intervalo-valorada y posibilistica!

!

Engine!Health!Monitoring!Methods! 37!

!

Autoregressive Models 

These methods consider the RUL prediction as a linear function of the current and previous 
system conditions [63].  In order to establish an appropriate forecasting model, three main 
steps are required;  

1 – Model identification within a time series 
2 – Optimization of the parameter conditions to be assessed – typically a least squares 

approximation or similar mathematical method is used.   
3 – Model validation 

These methods are useful for known failure conditions; however as they so not consider the 
actual working condition of the system, other faults or general running conditions, may 
trigger false alerts in complex systems.  However these methods are useful for long term 
RUL predictions. 

Proportional Hazard Modelling 

The main benefit of these methods is the combined approach to gather graphical as well as 
analytical data.  In general, system data is not well structured and the use of multiple sources 
is seen as a benefit.  In addition, this method is able to assess both time dependant as well as 
independent conditions.  The complexity of the systems, however require the manual 
identification of guidelines or the specification of the parameters to be assessed.  In addition, 
these methods are only capable of identifying known faults and as such are directly 
dependant on service knowledge [64]. 

7.4.3 Artificial Neural Networks 

Artificial neural networks, used for forecasting RUL may be classified into feed-forward, 
static networks or dynamic networks,  

Figure 15.  Static networks are established and only consider the inputs of the conditions 
assessed immediately prior to the network decision point.  Dynamic networks on the other 
hand consider not only the previous network as an input but also a complete decision loop 
[64].   

These types of networks have been applied in the past to correlate results in a human like 
decision process.  Their use in current models is in general reduced due to their restrictive 
structure. 

Overall system delays are still used for prognosis methods as they provide an overview of the 
deviation of the system against itself.  This simple comparison provides a signal shift which 
may be assessed for both fault identification as well as for RUL system prognosis. 
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Figure 15 Neural Network classification – Feed-forward networks, Static networks and 
Dynamic networks 

Static networks are typically used for pattern recognition and classification.  The majority of 
the artificial neural network based models for the forecasting of RUL are based around these 
[65].  Dynamic methods have not typically been used, however they provide a substantial 
advantage in assessing time delays and re-occurrences. 

The main challenge with artificial neural networks is the requirement for a training data set of 
substantial size, which contains several if not all of the faults to be assessed and has a known 
and consistent structure. 

The main downside, of artificial neural networks is their inherent inability to provide 
prediction confidence limits.  Several error predicting methods have been developed to this 
effect, known as confidence prediction neural networks or others as game learning techniques.  
On the other hand, these methods allow for the direct modelling of systems without the 
necessity of the detailed physical system knowledge. 

7.4.3.1 RUL Forecasting 

Direct RUL forecasting is the most common of the artificial neural network methods due to 
their simplicity and accuracy.  The neural network prediction is tasked with predicting the 
next point in a sequential time series data set.  Based on this prognosis and fault 
identification techniques, the extrapolation of the failure point is subtracted from the last 
known data point and the RUL calculated. 

These networks may be directly applied when numerical non-linear data is available.  
However in many cases, the data may be in a linguistic state or condition.    In such cases, 
these neural network methods have been associated to fuzzy algorithms and logic in order to 
bridge the qualitative data gap [66], [67]. 



Monitorización del estado de flotas de motores usando análisis inteligente de datos para información 
intervalo-valorada y posibilistica!

!

Engine!Health!Monitoring!Methods! 39!

!

7.4.3.2 Parameter Estimation 

There are some instances, where a fault is known to be directly represented by a single 
parameter or by a specific algorithm [68].  However this parameter or a parameter within this 
algorithm may not be specifically known.  Artificial neural networks have been applied in 
these cases in order to predict the parameter value, establish the algorithm progression and 
ultimately the RUL. 

7.4.4 Physical Models 

Physical models are those that represent the actual system directly through mathematical 
equations.  As such the RUL is solely based on mathematical and physical limits of the 
system.  These models are therefore very accurate, as they are deterministic and based on 
precise system specific data and knowledge [69]. 

The method employed to determine the RUL once the model is established is to simply apply 
the same inputs to the model as those provided to the system and determine the error, 
deviation or residuals to establish the RUL from the existing state to the predicted failure 
condition. 

These methods are accurate and simple to understand, as the results directly represent a 
physical condition, however compiling a model for a complex system or even modelling 
complex faults is in many cases not possible. 

7.5 Sensors and sensor validation 

Engine sensors translate the actual physical condition within the engine into a measurable 
quantity.   Through these, engine sensor information on air flow, fuel flow and oil flows may be 
gathered.  In addition parameters as pressures and temperatures are measured, together with 
torque values and other parameters that have been identified through service experience 
throughout the years, as being of value for the understanding of the engine. 

In addition, there are also other types of engine signals that are also monitored.  Acoustical 
changes and shaft vibration or engine electrical and magnetic charges are some examples of 
other possible measureable variables. 

The signal input from these sensors will be used to assess and predict the state of the engine.  
Detailed understanding of the raw data is therefore key to mitigating any uncertainty the data 
may contain due to the sensor itself.  There are several different sensor validation technics 
commonly used, Figure 16 to this effect, which may be subdivided into two main groups signal 
processing and physics based validation.  These range an increasing level of accuracy, but also 
of complexity [70]. 
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Figure 16 Sensor validation technique overview 

7.5.1 Signal processing approach 

A signal processing validation may range from a signal autocorrelation to a complex matrix 
subset of correlations.  A signal autocorrelation is a simple limit or range filter, which 
monitors the data based on a fixed range.  This way, should the data exceed this limit, an alert 
action may be raised [71].    

High pass filtering validation is capable of accounting for physical system response.  This 
method is capable of assessing intermittent faults or spikes to determine if a certain type of 
deterioration has occurred.  These signal filters range from a simple data limit value to more 
complex digital signal filters which assess the data for significant signal changes that may 
occur at a significantly different rate than normal.  An example of this would be a standard 
deviation filter.  Through these filters clipping, spiking or noise within the signal data may be 
assessed. 

Correlation matrix and response statistics is an interim type of validation between the signal 
processing and the physics based approach.  This method is based on a comparison of the 
original data against a set of limits or validated data ranges.  In addition, it is capable of 
carrying out such validation processes across different subsystems or work environments.  
This is, the data may be validated through a cross examination across transient and steady state 
phases.    This type of method requires not only detailed knowledge of the engine, but also of 
its in-service variations across its life cycle and utilization. 

A cross-correlation data validation model would require the original signal data to be 
normalized, in order to create a baseline.  The correlation between the baseline and the data 
would then be monitored [72], [73].   The deviation could be considered as the trigger, to 
determine if an event had occurred.   
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Other methods would carry out a statistical assessment of the data in order to determine if 
there had been a continuous trend over time or a shift to the working condition.  Signal 
processing where the signal data contains substantial noise, may be resolved through a 
statistical plot of the data in order to determine the range of a signal and determine if there is a 
shift to the normalised value range. 

7.5.2 Physics based approach 

Based on the correlation matrix, other more complex validation methods are the statistical 
neural network and a fuzzy logic rule base models.   The statistical neural network allows for 
optimization through trade studies between the validation rules and limits and the models 
actual sensitivity.  This is, the sensitivity and value of the variables within each of the data sets 
are also considered to contain meaning of the evidence under assessment.  Complex 
relationship networks are therefore established based on statistical service experience and 
engineering knowledge. 

Fuzzy rule based validation allows a further step to be taken on the neural network.  This is, 
interim decision taking points between known states may also be considered in order to 
identify true transitions which may otherwise be ignored or trigger untrue events.  In reality, 
however a combination of all of these methods is used.  Fuzzy logic may in addition be 
applied to complex systems, to generate these rules through direct system learning and not as 
imposed expert rules. 

Simple sensor data validation is carried out and then the range and statistical processing is 
performed.  The subsequent clustering and selection of network relations through principal 
component and other reduction techniques allow the complete processing of the data and to 
maximize the overall engine understanding. 

7.6 Aeroengine Specific Applied Methods  

The aeroengine environment requires substantial validation in order to meet the compliance 
requirement of the aviation world.  As such several of the techniques described may be directly 
employed, or may need to be modified.  In addition, data and data availability is one of the key 
restrictive factors when applying these methods, and as such changes may be required in the 
method or in the condition proposed within a method.!

7.6.1 Alternative Method Classifications  

There are several other classification overviews available [74], [75], [76] within the 
aeronautical environment that may be used, which may be more focused on the technique to 
be applied or the classification technique to be used for the fault isolation itself [77].  However 
the techniques and methods themselves are in many cases the same Figure 17, as well as their 
approach to forecasting the reaming life to a certain fault condition. 
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Figure 17 Aero-Industry applied Fault Isolation Techniques 

7.6.1.1 Maintenance Based Classification 

Fault isolation and RUL knowledge is required during all stages of an engine’s life cycle.  
During an engines’ development, the understanding of the engine as a system and its 
reliability risks establish the predicted maintenance intervals.  These have a direct business 
implication.  During service, the fault isolation and RUL knowledge help not only reliability 
but also reduce the predicted maintenance costs. 

The objective of these two distinct environments drive for distinct methodologies, as shown 
in Figure 18.  In addition, once the engine is in-service and service data and knowledge are 
available, fleet assessments to re-iterate the fleet optimum life as well as engine specific 
assessments to establish the reliability of an engine are required [78], and may be performed. 



Monitorización del estado de flotas de motores usando análisis inteligente de datos para información 
intervalo-valorada y posibilistica!

!

Engine!Health!Monitoring!Methods! 43!

!

!

Figure 18 Maintenance model classification overview 

The methods applied however are in general the same [79].  Physics based or experience 
based modelling approaches as described in the other classification overviews.  The main 
difference however is the introduction of usage or load based maintenance.  The engine 
utilization is not identical from operator to operator or even from flight to flight, even if it is 
only due to the external flying conditions, Figure 19 these methods are used to identify these 
differences and generate a more accurate maintenance RUL prediction [80]. 
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Figure 19 Operational risk and Maintenance cost potential trade assessment visualization 

There are several different types of maintenance dependant on the, calendar time, usage, 
usage severity, load based or even condition based maintenance.  The objective of these is 
generally applied at fleet level to determine the optimum maintenance interval to manage the 
overall fleet reliability.  In a calendar time, the objective will be to reach a certain time 
period of 10 or 20 years, with low levels of fleet reliability.  In a usage or usage severity, the 
operator service experience the environment in which they fly will be used.   

However condition based monitoring is oriented towards a dynamic application, where the 
engine and fleet conditions are assessed in order to optimize the fleets’ maintenance.  This 
method is however very complex and is generally either not applied or simplified to a fleet 
level for general average best practice understanding or guidance.  

7.6.2 Fault Isolation Techniques 

Due to the possible severity and implications of events and the general public awareness 
towards the civil aeronautical industry, several engine specific fault isolation techniques have 
been further developed to match the specific environmental conditions of the engines. 

7.6.2.1 Kalman Filtering Algorithms 

The Kalman filtering method is understood to be a de-mixing method to reduce the amount 
of noise or variability within a signal [81].   These methods utilize system entry data to 
propose an output which is then compared against the real system output [82].  Kalman 
filtering methods therefore verify the modelled output against the real output to establish a 
signal difference which is subsequently assessed for fault identification. 

The inherent error due to the system outputs is a complexity which the methods need to 
compensate.  As such, each model will require an algorithm to reduce the output signal 
noise, which will directly influence the error difference.  The algorithms may be hidden 
within the model, as variable specific rules or as additional hidden variables, which 
continuously monitor and compensate the output signal. 



Monitorización del estado de flotas de motores usando análisis inteligente de datos para información 
intervalo-valorada y posibilistica!

!

Engine!Health!Monitoring!Methods! 45!

!

This methodology does not work on non-linear signals and alternatives are therefore 
required.  The main objective of Extended Kalman filters is to assure the signal difference is 
stochastic [83] [84].  No model enhancement will be possible, if the signal difference is 
random. 

Stochastic results may be subsequently reduced to remove the noise influence on the signal 
so as to assure a convergent result.  This will generally be done by providing the model with 
the noise signal estimation. 

On complex systems, where the signal difference may be random, Unscented Kalman filters 
may be used.    A weighted version of the non-linear function based mean and covariance 
transform are considered [85].  Each signal point is associated to a weight, to which the 
mean and the covariance are approximated.  In addition, as further points are considered, the 
approximated mean and covariance will change.  However, the final mean to be considered 
will be the weighted average of the transformed points and the weighed covariance product 
of the transformed points. 

!

7.6.2.2 Kernel Principal Component Analysis 

Gas Turbine Generator System (GTGS) is a similar engine model base on which following 
methods are applied.  Typically these models are ANN based, however an innovative feature 
extraction technique, based on kernel PCA has been developed [86] which is capable of 
reducing the redundant features to ease the qualitative trend wavelet transform based 
assessment. 

Other alternative also exist [81], as compensation distance evaluation techniques, or genetic 
algorithms, however identifying the optimal CDET [82] threshold is deemed to be difficult 
to set and the GA [83] results are unrepeatable.  As such, KPCA [84] is deemed to be an 
optimal method of generally reducing irrelevant or redundant date from a previousfeature 
extraction process. 

The basis of KPCA, is to identify the results from the algorithm being assessed, without the 
actual variables [85].  Once the non-linear results are obtained, KPCA requires no actual 
non-linear optimization.  KPCA solely requires the eigenvalue to be resolved, with the aid of 
the different kernels available without knowing the actual number of original variables to be 
identified. 

7.6.2.3 Fuzzy AHP / TOPSIS 

Fault isolation or classification is also valuable in order to establish the overall condition of 
the engine [70].  Analytical hierarchical processes (AHP) have been used in combination 
with fuzzy logic to extract the conditions of specific features of interest through a decision 
matrix [86].  The results of this assessment are weight related features which are used 
through the technique for performance by similarity to ideal solution (TOPSIS).  This tool 
allows for different engines to be represented and assessed, Figure 20. 
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Figure 20 TOPSIS example visualization 

Along these same objectives, hybrid neural networks may also be applied to structure engine 
specific experience and define a fuzzy model which is subsequently tasked with the 
assessment of the engine signal [87].  This way, the engine complexity, may be reduced by 
vague fuzzy logic rules and connections that ANN models generate.  The assessment or 
problem resolution is therefore reduced to an ANDOR classification, Figure 21. 

!

Figure 21 Visualization of an ANDOR Classifier 

7.6.2.4 Multi-Class Pattern Classification 

Classification techniques between two choices are common; however multiple choice 
models are substantially more complex.  These, typically apply support vector machines and 
artificial networks, to correlate the engine data and determine a most likely class.  

Multiple neural network classification models have also been developed built on existing 
two-choice methods as one-against-all (OAA) or one-against-one (OAO) which are already 
common though algorithms as back propagation [89] or even P-Against-Q (PAQ) 
algorithms.  These have been all extended to multiple classification models, by applying the 
method as many times as classes exist [90]. 

These models have shown that for multi-pattern recognition classifications, problem-
dependant networks provide the best results.  However, in order to obtain good results a 
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substantial sample of training data is required.  In addition, it is also required that this sample 
data sustains a good distribution of the faults and classes.      

The application of the simple two-choice models has been associated with dynamic neural 
networks [91] in order to sweep all possible combinations.  System limitations, can then be 
reduced to combinations of individual variable thresholds in order to identify and classify 
faults. 

As an example, different system performance losses may be associated to specific 
combinations of variable limitations within a fault database.  The model would then review 
the system data against this database of known faults.  The benefit of these models is that 
they allow the identification of faults through the combination of variables, which when 
individually assessed would not trigger a concern, Figure 22. 

!

Figure 22  Multi-variable / Multi-class pattern classification  

However these pattern recognition methods [88] are limited by their knowledge database.  
As such, they are not able to provide an assessment to unknown failures or condition.  The 
complexity of accurately establishing a component fault is too high as such, these methods 
are generally used at module level only.  However they are an optimal method of fault 
isolation and troubleshooting. 

7.6.2.5 Adaptive Estimators 

Kalman filters have shown good results at filtering out noise signals in order to allow for 
their further processing.  Experience has shown that these methods are good at predicting 
long term deterioration but are not optimal when detecting step changes. 

An adaptive diagnosis method, has however been developed that is able to do just this, [89].  
Based on the Kalman filtering method, an adaptive estimator is generated by modifying the 
Kalman filter bandwidth.  Based on this, a difference between the short term and long term 
filter result can be carried out to determine the resulting error or difference and establish if a 
step change in the parameter has occurred.  This Kalman filtering method has therefore 
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extended the long term capabilities of the general Kalman filters to a short term fault 
detection capability.   

Examples of this method have been carried out with good results.  The application of this 
method to several parameters simultaneously offers the possibility of estimating engine 
conditions and comparison of thresholds across several parameters simultaneously.  This has 
enabled a more accurate classification, based not only on single parameter limits but on 
multiple combinations of limits across several parameters, Figure 23. 

!

Figure 23 Multiple parameter fault detection 

7.6.2.6 Blind Source Separation 

Fault isolation in many cases is complex due to the variability within the engine or 
subsystem under assessment.  The constant change in external condition, pilot demands, as 
well as the general internal condition of the engine, make for the resulting measurement 
signals to be extremely volatile.  To this effect one of the first methods to be applied to these 
measurement signals is a Kalman filter, which reduces the signal noise.  However this 
method is parameter specific and reduces the amount of information within the actual signal. 

Blind source separation on the other hand is an alternative technique which moves away 
from the actual signal itself and attempts to read and understand the actual component or 
subsystems it must interpret [90].  As such these methods consist of two steps.  The first step 
is to isolate the signal into its parts or de-mix the signal.  The other will be to assess the 
isolated trend signal for fault detection. 

The de-mixing capability of blind source separation is based on the identification of 
independence.  One of the main methods applied to carry this out is independent component 
analysis (ICA) through which the signals will be decomposed into the source signals from 
the subsystems to be interpreted which will be statistically independent.   

This methodology has the inherent benefit of identifying the most significant sources which 
can subsequently be reduced through PCA.  The resulting subsignals are also generally linear 
which is an additional benefit for the subsequent failure isolation process [91]. 



Monitorización del estado de flotas de motores usando análisis inteligente de datos para información 
intervalo-valorada y posibilistica!

!

Engine!Health!Monitoring!Methods! 49!

!

K Nearest Neighbour 

In more complex systems or when considering the complete engine, non-linear signals will 
still result from the blind source separation.  Kernel independent component analysis (KICA) 
may be applied in these cases, and a wavelet transform or other decomposition methods 
applied to reduce the non-linear signals to their feature vectors.  In addition, even under 
linear classifications, due to the limited 3D view, multiple patterns across multiple variables 
are extremely complex to visually identify, Figure 24. 

 

Figure 24 3D Visualization of Nearest Neighbour approach 

Once the linear feature vectors are obtained through ICA, KICA or other BSS methods, a K-
nearest neighbour technique may be applied for pattern recognition, [96].  In order to 
improve the assessment of the vague resulting data a fuzzy K-nearest neighbour classifier is 
applied.  This method is optimal in order to identify a classification pattern with overlapping 
data signals.  The result is a fuzzy classifier which clearly identifies several multiple classes  

7.6.3 Prognosis techniques 

Gas path analysis or GPA is a physical model based technique, were by the engine is 
represented by the GPA model.  Based on this model different techniques may be applied in 
order to address specific requirements. 

7.6.3.1 Weibul Based ANN 

Engine specific knowledge can be gathered from service or engine development.  System 
failures taken without other boundary condition assessments may off-set reality when 
considering state distributions.  As such, Weibul based assessments are considered to offer 
an optimum approach to service knowledge as they not only provide a failure distribution, 
but also appropriately represent reality by considering not only the failures but also the non-
failure cases [92]. 

In addition, this method also offers the possibility to knowingly modify these distributions, if 
a substantial known change has been introduced.  This is of particular interest on new engine 
developments or for modification introduction, in order to establish the change implications 
in the overall engine predicted life, life cycle cost, and reliability. 
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However these methods are generally very detailed and engine-fleet specific.  In addition 
they are generally physics based models which requires for all or at least all of the main 
components to be identified and associated to a known deterioration or failure distribution, 
which is not always known. 

7.6.3.2 Condition-Based Maintenance / Prognosis 

This method is based on engine historic data, with which a linear or non-linear progression 
of the fleet may be compiled.  Based on these and service experience data, a modelled 
distribution may be considered at the last known condition, in order to generate a prognostic 
outcome and this way determine the RUL, Figure 25. 

!

Figure 25 Distribution based RUL prognosis 

The accuracy of this model increases as the distance to the fault reduces.  As such it is 
determined to be a good technique for fault isolation and clear limit based approach to faults.  
However it does not provide good long term results.  In addition, it is typically single 
parameter based, which reduces its possible applications at reduced levels within the engine. 

Ant Colony Algorithm  

An example of how this service experience may be compiled in order to generate a prognosis 
are ant colony algorithms.  The exact and precise evolution of an engine fault cannot be fully 
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defined, as there may be several possible root causes for similar fault or different 
propagation paths from identical faults.   

Ant colony algorithms are used to assess this vague inconsistent data.  Based on service 
experience probabilities of the most likely path to be followed are considered.  In addition, 
and based on experience, as the fault further develops the probability of the path to be 
followed is increased.  The basis of this type of modelling is a dynamic Bayesian model 
which utilizes the ant colony methodology to establish the fault propagation paths [99].  This 
applied to a hazard and operability framework is the basis of the HAZOP model, Figure 26. 

 

Figure 26 Ant-model example applied to an operational hazard model 

Fuzzy logic may also be applied to these ant colony based models in order to bridge the gap 
within complex systems as engines [93] where the rough level of data or the level of 
granularity required to understand specific components is a known constraint.  The fuzzy 
logic is used to understand the engine parameters and reduce the number of variables 
considered. 

7.6.3.3 State Space Modelling 

The prognosis process which leads to an estimated or proposed RUL has been shown to 
require substantial engine knowledge.  In many cases, a physical event has occurred, and the 
model detects this change.  It is however, only when the damage has reached a critical state 
that the RUL proposed reaches a high confidence condition.  In other cases, there is no 
physical damage as such, and a critical point of inflexion cannot be determined.   

In these cases a state space model may be generated which combined with a health index 
algorithm is able to determine the health state of the engine [94].  This Markov process is 
resolved through the application of a state distribution.  This is a conditional density based 
distribution.  A Bayesian method is subsequently applied to resolve the problem and provide 
a state estimation and the associated probability of said result. 
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However as most engine parameters result in non-linear signals, under these conditions the 
dynamic results are not correct.  A joint state condition is preferred as it considers, if 
available, sufficient statistics of a given parameter.  Through this method of sufficient 
statistics, the parameter itself is not tracked but the Sufficient Statistics of it are, as sequential 
parameter estimation. 

Following this same methodology the prognosis of the RUL is the resulting distribution of 
probability density functions. Once the limit or threshold is known, from the classified 
failure mode, the RUL may be interpreted as the cumulative time density function until the 
predicted failure.  However in cases where the signal is not a simple straight line, a Monte-
Carlo simulation of the possible RULs is required in order to generate an approximation to 
the state distribution, Figure 27. 

!

Figure 27 RUL Monte-Carlo simulation prognosis 

7.6.4 Most recent techniques/advancements in FDI, 

Engine health monitoring still has a secondary utilization within the aeronautical environment.  
This is due to the stringent validation requirements which in many cases electrical systems 
cannot fulfil.  However in recent years, further developments have confirmed the capability of 
engine health monitoring not just as an over-and-above measure for reliability, but also as a 
direct tool with which safety and optimized life cycle cost are may assessed. 

Several techniques are now commonly applied whilst others are still at their infancy. 
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7.6.4.1 Engine-to-Engine Assessments 

In some cases engine specific assessments may be required.  The engine ehm data may be 
assessed in order to help determine a fault root cause [95].  In a single engine event [96], the 
most typical first method of assessment used is the comparison of the data from the affect 
engine to the data from another engine.  In many cases the information from the sister engine 
is used.  This is the comparison is performed between the affected engine and the other 
engine on the same aircraft where an event did not occur, as this engine was working under 
the same external conditions.  The most utilized method is engine to engine comparison 
within the same aircraft, Figure 28. Deviations will then be assessed to determine the most 
likely root cause or at least narrow the root cause understanding to a certain module or 
subsystem. 

!

!

Figure 28 EHM data comparison between engines for root cause understanding fault location 

7.6.4.2 Engine Physical Limits 

Physical limits within EHM are not typically considered, as this is seen to be more of an on-
wing FADEC assessment with a safety objective.  In these cases, a limit or Red Line 
limitation is generated based on the engine internal physical knowledge, and used by the 
FADEC system to assure the engine safety. 

In the example, Figure 29, the TGT parameter is shown and an engine measured signal 
simulated.  This value does not have to be the same as the one the pilot will see in the 
cockpit, due to the trimming process which is carried out during an engine pass-off test, as 
the cock pit indications need to show similar engine temperatures and most of all have an 
identical temperature limitation. 
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On the other hand, EHM does monitor the remaining margin.  TGT remaining margin is one 
of the main engine characteristics which directly represent deterioration.  Due to this, TGT 
remaining margin is one of the main monitored parameters. 

 

Figure 29 Parameter overview example of the actual, delta, and limit values 

Through this trimming, the cockpit indications may be operated to the generic TGT limits 
defined in the certification documentation.  This limit is the same as the one certified during 
the 150 hour endurance test.  In addition, this trimming allows generic relationships between 
engines to be measured, reducing the hardware scatter effects due to tolerances and 
modifications [97]. 

7.6.4.3 Combined Engine Parameter Assessments 

In cases where the comparison to the sister or a baseline engine does not reflect a single 
result Figure 30, the delta parameters and the residual margins will be assessed [98].  Based 
on previous service experience and the known engine performance, there are tables which 
identify the most likely root cause for several of these working condition deviations. 

If the fault or event is not clear within these tables, generic fleet issues will be assessed in 
further detail.  These assessments however are carried out over long periods of time as all of 
the parameters need to be assessed and correlated back to the shop visit findings and the 
actual engine time on-wing experience. 

In most cases these assessments result in a new fault reading in the form of a redline or a 
trend over time which will subsequently be recorded on the list so that other similar engines 
are in the future identified [99].   

In addition, generic EHM assessments may also be carried out at a fleet level to determine 
the overall engine utilization.  This is, the assessment or model will identify the types of 
altitudes at which take-offs are carried out, determine if derated operation is used, and other 
design information that may be used for future engine designs and customer awareness.  
These models may also be used to determine the level of deterioration of the fleet or identify 
sub-fleets amongst operators or within an operator’s fleet which may provide additional 
information on the overall engine planning of the business [100]. 
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Figure 30 Typical example of EHM troubleshooting table 

7.6.4.4 Scatter Plots 
EHM data is typically represented as a time plot.  This is, all of the data points for a given 
parameter are plotted on a time chart, giving the overview of a certain parameter over time.  
This type of plot is appropriate to identify step changes or trend changes.  It is also very 
valuable when comparing engine trends to represent them side by side and “measure” the 
differences under similar working conditions.  However this type of plot is of limited use 
when several different parameters need to be assessed in combination. 

Multiple scatter plots are used which are a matrix type representation of several different 
parameters on several different engines shown simultaneously, Figure 31.  This helps 
determine sub-fleets and specific types of operation.  However it is limited to the amount of 
information that may be correlated across several different parameters in combination to the 
assessment of a certain working condition [101]. 

Other plots used represent the data on a calendar or map, to determine the number of flights 
over certain regions, or time periods or the types of routes followed.  These are of increasing 
interest to the business as they determine the sub-fleets within given engine types and 
operators, which will in turn determine sublevels of average deterioration within the fleets. 
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Figure 31 Typical example of a scatter plot assessment between two engines 

7.6.4.5 Single Parameter Assessments 

The identification of the combined set of parameters and their respective values as a 
threshold for a certain type of deterioration has shown to require a long time and has 
returned limited value due to its uncertainty and variability between engines within a mature 
fleet.  These models require a substantial amount of service data from several distinct 
engines, where the level of deterioration is known.  Based on this data a visual assessment of 
the engine parameters may be carried out in order to determine the specific thresholds.  In 
this case, a detailed performance understanding of the engine and of the module specific 
working conditions is key so as to understand the deviations and in turn limit the number of 
parameters reviewed and assessed. 

In addition, due to the operational effects of the flight schedule or the required on-wing 
maintenance effects on the engine data and the interaction of the complete system on the 
engine parameters, this method is very complicated.  The thresholds achieved are generic 
and in most cases they either don’t detect all of the affected engines or detect engines where 
no fault truly exists. 

The other type of EHM assessment currently performed is based on establishing algorithms 
that will detect or enhance trend changes [102].  This type of assessment requires the initial 
assessment of determining the key parameter to assess as it can only be carried out on single 
or a reduced numbers of parameters as the results need to be subsequently processed. 

New methods are still being developed to further refine the way single variables are assessed 
against running limitations.  A recent patent, [103] has combined the a Bayesian extreme 
value assessment together with a standard deviation model to generate an algorithm which is 
able to generate a limitation for a running variable, Figure 32.  In this case, if the real value 
is above the calculated standard deviation, maintenance is deemed to be required.  This 
method has shown 60% prediction accuracy.  
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Figure 32 Process overview and example of single variable assessment 

The calculation of model based thresholds requires a substantial amount of root cause 
understanding and a significantly distinct signal on at least one parameter, so that the effects 
can clearly be defined.   

It is however clear that neither of these two methods is optimized for the identification of 
general engine deterioration where deviations are small and generally combined across 
several parameters.  These methods may, and have been used however due to the amount of 
information available and the variability between engines; the results to date have not been 
sufficiently accurate to establish them within the general daily working practices. 

7.6.4.6 Engine Deterioration Assessments 

Simple engine deterioration plots are also used for engine deterioration and evolution 
assessments.  These plots are generally straight forward variable comparisons, where 
multiple engines may be compared side-by-side. 

The limitation for these plots is the visual 3D space, as well as the difficulty in identifying 
the optimum variables which represent the fault or deterioration to be assessed.  This is, no 
more than three different variables may be considered and as such their selection is crucial to 
the actual value of the plot represented.  In addition, when several engines with several 
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different conditions are represented together specific fault isolation is difficult and different 
parameter combinations are generally required. 

The simplicity of these plots is however their key benefit, and as such are of general use for 
direct engine to engine comparison, and may also be used to assess the engine evolution over 
time, Figure 33, [104]. 

!

Figure 33 Visual multi-variable GPA engine deterioration assessment 

7.6.4.7 Deterioration Diagnostic networks 

Engine deterioration assessments have also been developed in recent years due to the 
importance of Life Cycle Cost.  Due to the qualitative data available these types of 
assessments are typically performed through neural networks, and have been engine specific. 

These engine models are based on pattern recognition techniques, [105].  This is, multiple 
variable limits and trends are assessed, monitored and combined in order to identify an 
engine known symptom which may be classified, and diagnosed, Figure 34. 

There are several existing methods through which variables are assessed but the main ones 
used are: 

• Exponential weighted moving average – to statistically calculate the mean and 
standard deviation 

• T-Test – to identify shifts in baseline performance 
• Single point feature detection – variable limit alerting 
• Long term deterioration detection – seeks important notified levels of change, and 

may be capable of considering on-wing maintenance 
• Principal component analysis – to identify small multiple variable deviations  

The complexity however of these model to appropriately represent a complete engine, limit 
their capability and are therefore either too generic or are subsystem specific.  In addition, 
due to this same complexity, these models are not easily transferable to other engine types 
even within the same family. 
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Figure 34 Diagnosis network methodology overview 

7.6.4.8 Fleet Deterioration Modelling  

Understanding the engine reliability and optimum maintenance interval for a flying in-
service fleet is difficult.  However once the engine design is known and together with some 
level of service experience, models may be generated which can represent the engine.  

These same models are of interest mainly for new engine developments as they provide the 
capability of performing design trade studies early in the design in order to release an 
optimum engine.  Through detailed engine and system knowledge links may be generated to 
align a baseline design to certain known features and deterioration models. 

DMTrade [106] is a Weibul based optimization model or a trade study tool generated 
through this methodology.  The known or extrapolated engine design reliability inputs and 
softlives are used as inputs.  Then based on the engineering judgement of similarities in the 
design to other existing knowledge a simulation model is generated.  The model logic is 
neural network based, and is also part of the detail required by the model in order to generate 
a decision tree which may then determine the new fleet fly-forwards reliability, and optimum 
maintenance interval, Figure 35.   

These models are very complex and subjective to the engineer who is generating the data and 
establishing the level of similarity of the new designed hardware to that of an existing 
engine.  As such, the level of accuracy of the output should not be considered directly, but 
only as a baseline for the trade studies in order to determine if a change is an improvement or 
not. 

However they are of critical value during an engine development programme and entry into 
service periods, where no engine specific data is available and changes are performed.  In 
addition, the possible maintenance implications as well as determining the optimum engine 
removal times at fleet levels are an important set of knowledge in order to assure 
maintenance capacity and reduced costs. 

!
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Figure 35 DMTrade underlying network correlations 

!  
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8 Existing Methods & Areas of Further Development 

All of the methods reviewed are capable and appropriate when determining a diagnosis or a 
prognosis as the case may be.  However it is identifying the optimum method or model to 
follow that is generally the greatest difficulty or obstacle. 

Depending on the complexity of the engine or system to be modelled and the data available, the 
selection of method is generally resolved.  However in most cases the subsequent selection of 
variables to monitor or the detailed engineering understanding required to establish the model 
are the limiting factors. 

Data availability in aerospace is always one of the prime limitations.  Due to the sole 
aftermarket methodology implemented in the early years of civil aviation, engine monitoring 
data for OEMs is generally scarce for the current in-service fleet.  The new technologies and the 
implementation of TotalCare only a decade ago have however managed to change this and 
increase the importance and amount of flight data available. 

On the other hand, the actual engine condition when the engine is overhauled is fairly well 
known as under either of the two methodologies, the number of maintenance and overhaul 
facilities worldwide has always been limited.  As such the OEMs, understanding of the 
maintenance of engines has always been in general good.  The quality of the data however is 
another restrictive aspect as it is generally a qualitative description of the maintenance findings 
and in most cases an incomplete overview.  

8.1 Pros and Cons of Diagnosis methods 

In order to establish an accurate comparison of the values of each of the methods reviewed, a 
standard list of method qualities is necessary for consistence.   A detailed review carried out by 
V. Venkatasubramanian, [107] identified the following as key aspects to be considered: 

Quick detection and diagnosis – This is to value how quickly a diagnosis is reached.  In safety 
oriented models, this is a crucial aspect to consider, where as in deterioration models, this 
characteristic will not be as important. 

Isolability – This is to value the classification capability of the model.  This is, in many cases 
the failures or failure modes will be very similar or even contained within each other.  The 
Isolability will determine how well each method is capable of distinguishing between failures. 

Robustness – This characteristic assures that the diagnosis proposed by the model is not abrupt 
and the diagnosis does not shift with every additional point.  A smooth transition between 
diagnoses is preferred.  This is to adjust to the inherent signal noise every engine and system 
measurement has. 

Novelty identificability – This is the capability of the model to establish that even if the faulty 
diagnosis is not one contained within the model’s database, it would still determine that the 
engine is not functioning correctly.  This is, the model is capable of identifying new failure 
modes or abnormal conditions. 

Classification error estimate – This is an important aspect of an engine diagnostics or 
prognostics model capability.  This is the capability to readily establish the confidence of the 
diagnosis proposed.  Not all diagnosis will be firm, and in many cases, the models offer a trend 
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towards which the deterioration of the engine is going.  This error capability would determine 
the most likely failure mode and with how much confidence this is likely to occur. 

Adaptability – This is to allow for the model to be easily upgraded in line with the upgrades the 
engine that it is being monitored may sustain over its in-service life. 

Ease of Explanation – This is to classify the ease with which the diagnosis may be correlated 
with the physical understanding of the internal or external engine conditions. 

Modelling requirements – This is to quantify the effort required to establish a solid working 
model, as well as the degree of expert, engine detail required. 

Storage and Computational requirements – Engine or aircraft weight is one of the most crucial 
limitations in any design.  Any EHM system generated which requires a substantial amount of 
storage will require a hard drive which will add weight.  However on off-line systems this 
limitation is not as critical.  However the computational time required to generate a diagnosis 
will be a direct measure of the methods capabilities. 

Multiple fault detection – This is to establish the capability of the method to identify more than 
one individual fault at any one time, as in any running system faults generally occur in 
combination of other faults or other system deviations. 

8.1.1 Quantitative Model Based Diagnosis Methods 

A quantitative model is based around the identification of residuals which are typically of zero 
value of close to zero.  Any deviation from the zero value would highlight a residual which 
would be classified to determine the associated fault.  This residual identification may be 
carried out as a comparison of the engine to a model or from physical measurement 
redundancies. 

There are several different types of quantitative models available, however their capabilities 
are in general the same.  Their main capabilities involve the use of linear signals, and although 
there are specific non-linear models that have been developed, their methodologies are the 
transformation of the original non-linear signal into a linear one which is subsequently 
assessed through the linear methods.  As such their diagnosis capabilities are reduced. 

The signal processing capabilities are limited and as such the model is generally a simple 
comparison of signals.  This reduces the models capability to identify and diagnose against 
additive signal noise, as engine disturbances are generally multiplicative.  In addition, due to 
their limited modelling capability the actual diagnosis doesn’t actually have to be directly 
related to the symptoms identified.  This is, a fault may be known to be correlated to a signal 
deviation, but it may not directly explain the correlation between the fault and the actual 
variable change.  This is a restriction to the subsequent trouble shooting requirements. 

In addition, these models are limited to their knowledge database.  When a new fault occurs 
these models are not be capable of identifying a possible fault deviation.  This is because the 
variables or signals been monitored, do not contain a shift, and as such will not show any 
residual shift. 

The modelling complexity of these systems is directly dependant on the number of variables 
monitored and the database of known faults.  This is not seen to be a limitation to these 
models and they are easily updated as they do not directly reflect the engine physical state, and 
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only monitor specific variables against a database.  The computational requirements are also 
not deemed to be critical in these types of models for the same reasons stated. 

8.1.1.1 Observer Models 

These models are simple and dedicated to individual faults or signal limiters.  The direct 
signal through single output observers, or Kalman filter generated signals are directly 
assessed.  In some cases multiple faults may be detected through the combination of these 
individual signal models, however the underlying model is the same and directly dependant 
on the fault knowledge database 

Fault detection filters are also single variable observers, where the model transforms the 
signal or variable into a known plane where a limit is imposed as the triggering value.  This 
is, in general the same as with output observers, whereas the actual physical model is ignored 
and the variable is independently assessed against a given limit. 

These types of models are of extended use in control systems, due to their simplicity and in 
general low computational requirements.  Their objective within controls and safety 
monitoring is basically the representation of direct known engine limiters which based on the 
engines’ design.  Their accuracy with regards to the variable measured is in general very 
high, with low error levels. 

Their main limitation is their exponential complexity when an assessment across several 
different signals is required.  As such these models only monitor reduced numbers of 
variables and are not used for full engine or system modelling.  Their application in current 
day aviation is mainly for on-wing engine safety monitoring. 

8.1.1.2 Parity Equations and Signal Models 

These models assess the engine solely through its inputs and outputs without attempting to 
model the actual engine itself.  As such these models are easily updated with any engine 
upgrade and are able to assess the engine against a given model which utilizes the same 
inputs as those of the engine itself.  In this same manner, signal models only assess the 
signals to identify possible general deviations. 

These models are complex to establish but then easily upgradable.  Their accuracy is high as 
they solely review the direct signal against itself or against a model baseline, and as such will 
be able to trigger trend shifts or changes.  In addition, as they assess deviations, even if the 
fault cannot be classified, a trigger will be generated to determine an abnormal engine 
running condition. 

These models are currently used for trend shift changes.  In more limited use, these models 
may also be used as a troubleshooting guide if the deviation of the engine from the baseline 
model is understood, although this is in general a complex step. 

8.1.2 Qualitative Based Diagnosis Models 

These methods attempt to carry out a qualitative assessment of the actual engine or systems 
which is being monitored.  Due to the qualitative data they use they are generally broad in 
their assessments with no single direct diagnosis.  



Engine Health monitoring and prognosis for engine fleets using intelligent data analysis of interval-
valued and possibilistic data!

!

Existing!Methods!&!Areas!of!Further!Development! 64!

!

The complexity of these models is high due to the representation of the engine through 
combined correlations.  However the computational time and space requirement of these 
methods is low due to the capability to reduce the number of variables considered through 
qualitative rules. 

As these models represent the actual engine monitored, the possible fault trigger may be 
directly correlated to a specific subsystem.  This allows the actual system fault to be 
physically inspected to verify or refute said fault. 

8.1.2.1 Casual Models 

Casual models assess the direct cause-effect relations of the observed changes to faults.  The 
Diagraph and fault tree models do this.  Their initial complexity to establish a working 
model which is capable of representing the engine or engine fleet is substantial but through 
expert knowledge the system may be compiled.  Subsequent updates will be easier to 
incorporate with an average level of understanding of the engine and the model. 

The main advantage of these models is their capability to gather all of the engine working 
knowledge and combine it to provide a single overview.  The computational requirements 
are not deemed to be high, but the complexity of the qualitative relations require a significant 
calculation time. 

Due to the fact that they gather service information from all operators and engines, their 
main capability is for general fleet assessments, where reliability changes and trade-offs may 
be better understood. 

In addition, they are generally used in combination with other quantitative methods in order 
to limit the assessment boundaries or reduce the number of variables to be considered.  The 
main limitation of these models is the initial level of complexity and difficulty to transfer 
existing models to other engine types. 

Physics models attempt to reduce this significant gap through the application of qualitative 
equations to ease the complexity of the engine modelling, however the transferability to 
other engine types is still not addressed. 

8.1.2.2 Abstraction Hierarchy 

An improvement to casual models is abstraction hierarchy, which subdivides the assessment 
or modelling of the complete engine into smaller subsystems which are easier to model.  
This way, interim assessment steps may be performed, which subsequently ease the 
adaptation of the model for future updates. 

In hierarchical systems, structural or functional, the individual subsystems are modelled and 
then combined through their known possible outputs.  As such, when representing a 
complete engine or even a complete subsystem, these models are extremely complex and are 
system specific.  In addition, any change to the actual engine will also need to be carried out 
on the model.   

These methods are typically used in current civil aerospace to model the complete controls 
system, where the input and output relation of the individual units may be represented and 
further combined in order to establish the complete subsystem.  This way reliability 
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modelling may be carried out in order to assure the system requirements and the times 
between maintenance are met. 

8.2 Process History Based diagnosis Models 

Process history models a centred on feature extraction.  In order to carry this out, however, vast 
amounts of data are required in order to generate a sufficiently accurate diagnosis with a 
sufficient level of isolation.  

8.2.1 Qualitative Process History 

Qualitative history methods are generally simple rule based models which combine a 
substantial knowledge database with a well-structured neural network.  This in turn is 
generally associated to fuzzy logic due to the qualitative associations which are required in 
order to gain modelling robustness. 

These models are system specific due to the specific network connections which are required 
to simulate the engine working conditions.  In addition, due to the detailed modelling and the 
un-divided level of construction, these models are not easily maintained nor are they easy to 
transfer to other similar engine types.  They are however straight forward to use, once they are 
correctly implemented. 

The main use of these methods in current aerospace is within EHM modelling.  These models 
are the current back bone of engine monitoring through the association of limits and delta 
values and their network combined association in order to diagnose specific engines.  In 
addition, due to their vast database most faults and deviations will be identified.  In addition, 
deviations from previous experience will also be identified and will trigger for the requirement 
of further manual assessment. 

A high degree of expert service experience is required to establish a solid fault database.  The 
computational time to review multiple complex signals is high and is deemed to be a limiting 
factor on the application of these methods. 

8.2.2 Quantitative Process History 

This Quantitative approach is closely related to pattern recognition, where the actual feature 
extraction is a pattern within a signal or combination of signals. The use of PCA and or PLS, 
allows for the number of variables to be reduced with small levels of data loss, in order to 
enable the identification of delays or factors which trigger specific faults.  In addition, through 
the application of density function, fault isolation modelling may be carried out in order to 
ease and accelerate troubleshooting. 

This has been one of the areas of greatest development over the past few years with a special 
interest within the medical environment for its diagnosis capabilities.  Probabilistic reasoning, 
Bayesian methods or fuzzy logic are the main methods used by these models.  One of the most 
accepted methods is the use of a finite model in order to establish the first and second 
derivatives [108], in order to carry out a hierarchical representation.  Other multivariate 
statistical methods make use of PCA and PLS in order to deal with non-linear signals. 

These methods are however complex rule-based algorithms, which require a substantial 
amount of data for the algorithm training in the initial phase in order to generate the fault base.  
The computing time as such is also deemed to be normally high. 
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Due to the complexity and amount of required data, this type of method is not of widespread 
use within the aeronautic environment, as the level of detail, non-transferability and general 
lack of utilization have not required for this level of modelling. 

8.2.3 Neural Networks 

The application of neural networks on diagnosis models is also common nowadays 
specifically for classification and approximating methods.   Their general use in these fields 
highlights their robust diagnosis detection properties and isolation capabilities.  However are 
restricted to the pre-determined fault database, and are not easily transferable to other engine 
fleets.  In addition, they are not capable of detecting multiple faults and their diagnosis is not 
directly traceable to engine symptoms 

8.3 Comparison of Diagnosis Methods 

As a general overview of the diagnosis methods that have been here assessed, the following is a 
quick visual interpretation of these, Figure 36.  It can clearly be seen how there is no single 
optimum method for all cases and as such one must be selected which will best suit each 
individual need [107]. 

!

Figure 36 Methods of Diagnosis comparative overview 

The use in aeronautics of simple fault isolation techniques as Kalman filtering, or KPCA are 
simple methods that are transferable across engines, identify faults quickly and have high levels 
of robustness.  Their low storage requirements are ideal for on-board control systems, where no 
long term data is needed, and immediate assessments are required.  

However their limitation to actually classify errors, and specifically identify faulty working 
conditions which have not been previously considered does not highlight them as methods to be 
used for long term deterioration. 

Single variable assessments may also be used for deterioration over time as a trend limitation on 
a single variable.  However high levels of technical understanding are required to select the 
most representative variable and then identify a filtering method which will limit the signal 
appropriately to limit the number of false faults. 

In these cases, Diagraph models where engine to engine, engine against baseline or engine 
limitation models may be applied, are not as good to quickly identify a fault, but are robust and 
generally used for long term deterioration.  Due to the general overview of these methods, they 
are also capable of detecting engine faults not previously classified highlighting abnormal 
working conditions- They are easily transferable to other engine types and are self-explanatory 
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when a fault is detected.  Their main limitation is the high level of expertise required to generate 
and interpret these models as well as the high classification errors generated. 

Scatter plots are typical engine to baseline or engine to engine fleet visual methods used to 
determine the similarity of the engine to previous service knowledge.  These models are also 
quick to determine if an engine has an abnormal working condition but are limited on the 
information returned on their diagnosis for the actual origin of the deviation. 

Multi-class pattern classification methods are a hierarchical model which also enables long term 
deterioration modelling with higher levels of robustness.  The main driver for their use is the 
traceability of the detected fault to the specific origin of the fault, greatly benefiting the 
subsequent engine troubleshooting.  The high level of data storage however is a limitation to 
their wider use. 

Adaptive estimators and blind source separation are general methods used to reduce the amount 
of data storage and primarily computational time required to carry out these multiclass pattern 
models.  Their reduced computational times, enable quicker diagnosis of long term faults whilst 
reducing their isolation capability and maintaining their robustness.  However due to the 
reduction in variables, the classification error is increased these models are also engine fleet 
specific as they are individually optimized by an expert in both the modelling and the engine 
design. 

Neural network methods as TOPSIS enable a more detailed modelling of the engine and its 
inherent faults.  They are complex, engine specific networks which directly correlate to the 
engine and as such highlight the specific area of concern when a fault is identified.  However 
they cannot identify new faults that have not been modelled, and require a substantial amount of 
data to validate. 

Other methods as combined engine parameter assessments bridge the gap between the Kalman 
filtering methods and allow for a simplified multivariable assessment which may be considered 
neural network based.  However this is a rudimentary neural network methodology and is 
limited in it use.   

Whole engine deterioration methods combine the single variable assessment or the rudimentary 
neural network methods, in order to correlate several variables and establish abnormal engine 
running conditions.  They are however limited to the 3D space when attempting their visual 
representation.  Once the main variables to be used are selected the engine trend over time may 
be isolated and an overall engine understanding extracted.  These methods may be understood 
as early patter recognition or feature extraction methods, as they enable a whole engine over 
time assessment. 

8.4 Pros and Cons of Prognosis methods 

In order to establish an accurate comparison of the values of each of the methods reviewed, a 
standard list of method qualities is necessary for consistency.    

Data Requirements – This evaluates the amount of data and data point required in order to 
generate a prognosis 

Prognosis Scatter – This is to determine the scatter within the prognosis determined which could 
also be interpreted as isolation or robustness of the actual prognosis.   
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Isolation - This will determine if the method is capable of appropriately classifying faults in 
order to generate a valid prognosis.  This will enable appropriate operational assumptions to be 
made as an early maintenance may be considered if the specific fault is known and understood. 

Multi-Fault Assessment – This is to value the capability of the method tracing several 
simultaneous faults to generate a single prognosis for a given engine.  This will ease the manual 
assessment of selecting a worst case fault which may change over time. 

8.4.1 Knowledge-Based Models 

These types of prognosis models are based on previous service experience.  Substantial expert 
knowledge is therefore required to modify this experience so as to align it to a new system or 
modification of an existing system.   

These methods are not able to generate a prognosis if they fall outside of previous service 
knowledge, nor are they capable of assessing multiple faults.  On the other hand, this is 
compensated through high levels of isolation capability. 

These types of prognosis models are ideal for known failures, generally associated to high 
risk, or high impact safety and reliability driven scenarios.  Due to their service experience 
base, the RUL prognosis is detailed, however scatter may be influenced by operator specific 
deviations.  This is generally not of a concern as due to the safety and reliability objective of 
these, a conservative prediction is typically generated. 

8.4.2 Life Expectancy Models 

This type of prognosis model is very simplistic, and is a direct fly-forward of the last known 
deterioration trend.  As such, the prognosis model is simple to set up but the associated scatter 
is high as it does not compensate for the reality of the working system.  This method may be 
used at a whole engine level, and as such will be capable of generating the prognosis of the 
overall engine or subsystem independently of single or multiple fault effects, however the 
isolation of individual faults will not be possible. 

These methods may be subdivided into stochastically or Statistical methods. 

Stochastic Models 

These methods are generally used to predict the mean time between failures.  This is, the 
estimated time between which no maintenance will be required on the engine or subsystem 
being considered.  These models may be combined to enable a full engine overview, however 
the resulting prognosis will not be directly traceable to the key root cause of the limitation. 

These stochastical methods are based on expert knowledge and further improve their 
prognosis capabilities, through the optimized use of service experience and mathematical 
algorithms.  To this effect the use of detailed deterioration Weibuls, which assess not only 
failures but also non-failures, the use of Kalman signal filtering methods, and Bayesian 
networks, enable a more detailed assessment of the overall system.  

However the final outcome is still limited to a multi-fault prognosis with no isolation.  The 
greatest benefits of these types of prognosis methods are the simple trade studies that may be 
generated.  These models are not easily transferable and are engine fleet specific. 
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Statistical Models 

Statistical models are used when unknown deteriorations are identified.  The classification of 
these faults or their isolation is not possible, however their deterioration visualized through a 
single variable may be limited by mathematical algorithms within the actual signal.   

Based on trend values, fly-forward limitation may be generated as a way of limiting the 
possible prognosis fault.  On the other hand, if it is a known parameter with a known 
limitation a trend fly-forward will directly be identified and the RUL calculated. 

In each case, service experience and engine knowledge are the basis of these predictions. 

8.4.3 Artificial Neural Networks 

These are elaborate models compiled from several neural network connections which require 
detail engine design knowledge.  These models allow for not only detailed assessment but also 
pattern recognition, due to the model architecture.  The main capability of these methods is 
being able to determine the most likely next state of the system or engine. 

The methods are capable of multiple faults assessments, however their isolation capability is 
inversely proportional to their scatter.  As they are complex engine specific systems, they are 
complex to transfer to other engine types. 

8.4.4 Physical Models 

These models are typically not used to represent the complete engine due to its complexity.  
However they are of general use within the controls environment, as the physical 
transformation of inputs is known and may be compiled.  However these models are not only 
engine specific but specific also to the engine standard, and as such their ease of transfer is 
very low and require high levels of expertise to update. 

Their results however are very accurate and contain low error levels.  Once implemented, 
these models are able to isolate and identify multiple faults and also correlate them to specific 
root causes and generate based on the component physical understanding a prognosis. 

8.5 Comparison of Prognosis Methods 

As a general overview of the prognosis methods that have been here assessed, the following is a 
quick visual interpretation of these, Figure 37.   

!

Figure 37 Methods of Prognosis comparative overview 
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The use of these prognosis models is generally two fold within current aeroengine applications.  
The fleet reliability oriented methods, aim to determine the most likely point at which a certain 
reliability level will be exceeded in order to apply appropriate pro-active maintenance to the 
fleet.  As such these prognosis methods are not engine specific. 

Weibul based and even physical based models are used in these cases based on known service 
experience, combined with the engine detailed design knowledge in order to generate the 
appropriate reliability prognosis. 

An extension of these methods is condition based modelling which not only predicts reliability 
prognosis RULs, but is also capable of performing trade studies in order to optimize the actual 
engine maintenance to be carried out.  However once again, these methods are only used at fleet 
level as engine specific assessments are not possible due to operator and engine specific 
differences. 

The other type of prognosis is the in-service engine-specific models, the most utilized models 
are knowledge database structured, where once a fault type is identified, within the database, 
and a prognosis may be generated.   This is carried out through density functions to determine 
the most likely fault root cause and RUL prognosis to be used.  Due to the structure of the 
method, individual or multiple fault prognosis is possible.  The complexity for a detailed engine 
level model and the limited detailed service experience to isolate faults and determine their RUL 
is however a limiting feature of these models. 

In the occurrence of a previously unknown engine fault, the ant colony algorithm is capable of 
detecting deviations from the normal engine average fleet.  This forecasting artificial neural 
network method is able to establish through service experience probabilities the most likely next 
point at which the engine will be in its deterioration.  Deepening on the accumulated 
likelihoods, actions may be put in place within the system to alert of abnormal running 
conditions and establish a most likely RUL if no other inputs are known. 

8.6 Business Needs 

The vast amount of engine health monitoring method developments to date have been carried 
out in order to support and / or improve engine safety and reliability.  The introduction of Total-
Care has increased the OEMs interest in understanding detailed engine overall deterioration in 
order to optimize engine overhaul costs. 

This is, there is a need to understand the detailed level of engine deterioration and engine level 
of maintenance any given engine will require in order to optimize its individual engine 
maintenance.  Early similar attempts on this area have been solely based on service experience 
or even operator specific service experience.  As such only a gross approximation has been 
possible and did not achieve sufficient levels of detail. 

In order to optimize the reduced amount of engine maintenance, repair and overhaul capacity 
available worldwide and also to improve the engine life cycle costs, detailed engine knowledge 
is required.  Forward planning of engine maintenance, will allow the overhaul shop to detail 
plan, and prepare for each individual engine induction.  Detailed knowledge, will improve not 
only the engine turnaround time, but also the number of man-hours required on a single engine 
refurbishment, as key decisions, may be made upfront of the engine induction.   

In addition, detailed engine deterioration knowledge will improve the prioritization of engine 
maintenance, not solely through their quantitative states (Group A part cycles flown, Average 
fleet assumptions for a given life) but through detailed knowledge on the specific internal 
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condition.  This way, older engines with low levels of deterioration may be kept on-wing 
increasing the company’s revenue, whilst younger engines, which may be deteriorated, may be 
pulled early, in order to reduce operating costs. 

There is therefore a requirement to establish a method which will be capable of not only 
determining the level of engine deterioration but also allow for a fleet-wide optimization of 
engine maintenance shop capacity through detailed engine-specific deterioration knowledge.  
This, in turn will also imply the detailed engine knowledge of the actual engine level of 
refurbishment required dependant on the time selected to carry out said maintenance.  An earlier 
maintenance would imply reduce maintenance and also reduced maintenance costs, where as a 
late maintenance would imply higher maintenance cost, but also higher revenues.  Engine and 
fleet knowledge to carry out this optimization is required.  

One additional benefit or improvement would be to determine the level of deterioration not just 
at engine level, but to gain the capability to determine the level of deterioration at modular level 
within the engine.  This is, knowing and understanding the level of deterioration of an engine, 
will be a significant improvement for today’s engine maintenance planning.  However knowing 
the detailed level of deterioration of a specific module within an engine, will allow for a 
significant step change in the current engine deterioration understanding and engine 
maintenance planning capabilities.   

8.7 Objectives 

The main overall objective will be to identify the level of deterioration of an engine within an 
engine fleet in order to prioritize its maintenance.  This is a similar approach to the Weibul 
based methods or the existing DMTrade model, which currently exist, which are able to perform 
these trade studies.  However, this assessment needs to be extrapolated to a specific flying 
engine fleet composed of single individual engines. 

Engine health monitoring data is therefore deemed to be the only possible available input to 
understand the flying fleet of engines.  As the requirement is to further understand engine 
deterioration over time, and the current methods which address safety and reliability are already 
in place, this will be out of the scope of this assessment.   

The aim is therefore to generate a fleet model that may be capable of determining detailed 
deterioration knowledge at engine level and may be to module level.  The output should in 
addition be simple, so as to ease the task of the fleet support engineers.   

This significant improvement to optimize engine maintenance is not currently available across 
any fleet.  As such, it is key that all engine fleets be able to consider this optimization 
improvement.  The new methods developed, should therefore be easily transferable between 
engine fleets, with little or no expert engineering knowledge. 

Engine deterioration is a long term study which in all literature is associated to low accuracy in 
the diagnosis and prognosis results.  There would therefore also be an improvement to the 
current available methods, if knowledge with regards to the error or confidence with regards to 
the diagnosis and prognosis results would be available.  This information could in turn be used 
or be considered in the overall fleet optimization as an additional secondary input.  

Depending on the state within the life cycle of the fleet, the amount of engine data available 
varies.  A mature fleet will have engine health monitoring data and also direct hardware 
knowledge from engine shop visits.  A younger fleet may only have engine health monitoring 
data but no actual direct hardware understanding due to a lack of shop visits to date.  In this 
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second case, assumptions, with regards to the engine design and architecture will be required to 
bridge this knowledge gap.  The BR700-715 Rolls-Royce engine fleet is a mature fleet where 
substantial EHM and engine maintenance knowledge and data are available.  As such the data 
from this fleet should be used as the basis of the method development in order to prove the 
method prediction and accuracy. 

The development of a new method of engine health monitoring data modelling to determine the 
level of engine and module deterioration and to provide a maintenance prognosis, will be 
carried out through a stepped approach.   

8.7.1 Objective 1 - Engine Deterioration 

In previous models, engine deterioration has been assessed at fleet level only.  This was 
appropriate as the goal was to understand and appropriately plan engine maintenance of 
engine fleets which were under development or at very early stages of their life cycle.  As such 
these methods provide a sound understanding of the cost and reliability implications of the 
design and allow architecture trade assessments during the engine design phase. 

Other existing engine deterioration methods have visually shown engine deterioration over 
time, as a 2D or 3D relation of 2 or 3 variables respectively.  These probabilistic, fault 
classifiers methods, are deemed to be a good visual representation, limited by the number of 
variables that may be considered, and as such by the actual optimized selection of variables to 
represent the overall engine state or condition. 

Scatter plots, are similar to the engine deterioration plots, however they also provide a 
significant classification improvement for the engine diagnosis as they provide a fleet 
comparison of previous engine states to consider. 

A method is therefore proposed which will consider previous engine experience in line with 
the scatter plots methods.  Consideration of engine service experience and current EHM safety 
and reliability limitations, will also be included.   The new method to be developed will need 
to optimize the variable assessment in order to provide a visualization of the engine over time, 
in line with the engine deterioration plots. 

However, the objective is to understand engine deterioration and gain the capability to carry 
out module level assessments.  No single variables should therefore be considered, but a 
holistic overall engine condition, which may subsequently be used, to further assess the 
detailed engine level of deterioration at modular level. 

The engine level of deteriorating may therefore be considered as the variable to determine.  As 
such, blind source separation may be used to determine this level of deterioration variable 
from all of the available measurement inputs provided through the EHM data.  The intrinsic 
use of process history statistical methods, as Principal Component Analysis, will therefore 
provide the optimized variables to be considered for plotting the engine state. 

Kalman filtering and Fuzzy logic will also be required in order to reduce the amount of EHM 
data noise and the unknown or imprecise engine state conditions. 
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8.7.2 Objective 2 – Engine / Module Deterioration Diagnosis 

Subject to the proven capability to establishing an overall engine level of deterioration based 
on all of the EHM data available without the individual selection of a single subset, a second 
evolution of the method is required to address the deterioration diagnosis. 

In line with the scatter plots, there is substantial BR700-715 engine maintenance experience.  
This engine experience may be further assessed to subdivide engines within level of 
deterioration.  This can then be used to identify diagnosis correlations between the quantitative 
EHM data and the known qualitative engine maintenance condition.  The engine condition 
report assessments should contain the engine overall level of deterioration, as well as the 
module level of deterioration, in order to establish all possible combinations of overall engine 
states. 

Engine level deterioration assessments, have shown that long term trends may be used.  
However they have also shown that the actual engine condition is unknown due to the internal 
working conditions of the engine and the compressor-turbine interactions.  As such when 
considering all of the measurement values available, no data points should be dismissed.  
Based on the first objective assessment, a second more detailed iteration is required. 

A detailed individual variable assessment is required, to extract as much information as 
possible.  The Kalman filtering methods, are appropriate for trend assessments, however no 
data points may be dismissed for deterioration assessments.  A bandwidth sweep is therefore 
proposed as the basis for the second method iteration.  This individual variable sweep will 
extract all of the knowledge from each variable for each given time point, and consider or 
dismiss its importance individually. 

A fuzzy assessment is subsequently proposed which will consider the different probabilities of 
each variable state for each individual data point.  The variable states may subsequently be 
combined in order to classify them against the known engine maintenance states and as such 
classify and diagnose each individual engine and module.  

8.7.2.1 Objective 2.1 – Pattern Recognition 

Engine deterioration is known to be a continuous compensation over time, of the compressor-
turbine states.  This is, should the compressor deteriorate first, the turbine will need to work 
harder to compensate the compressor loss.  As such, over time, the turbine will therefore suffer 
the consequences of this additional work, and be more deteriorated than the compressor.  The 
compressor will then need to work harder to compensate this turbine deterioration. 

An emerging pattern of compressor-turbine deterioration overtime should therefore be 
assessed to determine if more detailed statistical methods may be applied which would further 
refine the classification results of the engine maintenance states.  

8.7.3 Objective 3 - Engine Deterioration Prognosis 

The final step of the assessment, once the level of deterioration has been identified and 
classified, will be to determine the remaining time to failure or prognosis of time before which 
engine maintenance will be required. 
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Based on the classification of the engine and the individual engine modules, the engine level 
of deterioration may be known.  However in order to propose a deterioration over time, and as 
such a prognosis for maintenance, a second knowledge point is required. 

Based on the fact that engines are released at initial production or after maintenance with a 
certain consistent build life objective, this original data point should be considered.  Knowing 
the original starting point and the evolution over time from the diagnosis which will provide a 
higher or lower than expected level of deterioration, a prognosis will be possible. 

This is, the detailed evolution of the engine over time, against the original build life objective 
of the engine, will determine if the engine is deteriorating faster or slower than expected, and 
as such will move the actual maintenance prognosis.  In line with the quantitative trend 
process history methods, the first and second derivatives will be applied to determine the trend 
changes and establish the zero crossings respectively and therefore calculate the actual engine 
deterioration against the given baseline. 

This in turn, will enable the trade study consideration of several engine conditions at the time 
of maintenance, in order to optimize revenue and maintenance costs.  This is, by considering 
different build life objectives, increased reliability levels of deterioration may be considered so 
as to determine what-if scenarios of maintaining the engines on-wing longer due to optimized 
costs, maintenance facility capacity or full utilization of engine and module life. 

!  
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9 New Method Proposals – Theoretical Analysis 

The theoretical analysis has been carried out in line with the objectives established.  The 
ultimate goal of this analysis is the optimization of an engines’ maintenance and its prognosis, 
in order to maximize its revenue. 

However in order to understand the engines deterioration and optimize its life cycle costs, it is 
first of all required to understand the engines’ attributes, architecture and limitations.  The main 
areas of deterioration as well as cost drivers are at the engines’ core, as such the core modules 
and variables are used to associate theoretical variables to actual engine variables and as such 
ease their understanding and correlation.  

9.1 Aeroengine Design 

9.1.1 Engine Modules 

Engines are generally subdivided into sub-systems or sub-assemblies, [8] for their subsequent 
ease of manufacture, assembly and maintenance, known as modules, Figure 38.  The main 
core modules are the HPC-M33 and the HPT-M41, the remaining modules generally sustain 
lower levels of deterioration and as such are, based on service experience, not specifically 
deemed to be engine drivers. 

 

Figure 38 Engine modular overview  

9.1.1.1 M33 – HP Compressor 

The HP Compressor or Module 33 is used to increase the air pressure.  The overall 
configuration of the module is tapered in order to have a convex casing to rotor design.  The 
HP compressor blades reduce in size from the front of the module to the rear.  The number of 
stages of compression will depend on the engine requirements. 
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9.1.1.2 M41 – Combustion and HP Turbine 

The combustion chamber and HP Turbine are used to increase the air temperature and to 
start expanding the hot and high pressure air to turn the turbine blades.  The combustion 
chamber utilizes only a portion of all of the air supplied by the HP compressor and slows the 
air down so that an appropriate flame can be sustained.  After the combustion, the hot and 
high pressure air is pushed onto the turbine.  The HP turbine is tapered in order to have a 
diffuser cross section design.  The turbine blade and vanes increase in size from the front to 
the rear of the module. 

9.1.1.3 Remaining modules 

Other modules like the Fan case, Module 34, the intermediate case Module 32, the accessory 
gearbox Module 61 or the bypass duct Module 80 are not addressed as although they are part 
of the engine design they are not required for this study. 

9.1.2 Engine Design Established Stations 

The overall engine design is fairly common throughout all aeroengine configurations, and 
more specifically for most if not all civil high bypass ratio engines, Figure 39.  The 
nomenclature for the modules and more specifically the engine internal locations has been 
established and is commonly used. 

 

Figure 39 Engine main stations  

9.1.3 Parameter Inputs  

The two main data inputs are: 

FF – Fuel flow is continuously measured, monitored and controlled.  The engine thrust is 
controlled through the amount of fuel consumed and is monitored in order to maintain the 
overall engine working conditions. 
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P2T2 – Pressure and Temperature at position 2 just in front of the fan blades is taken as a 
reference.  The engine controls system will use this pressure and temperature to determine the 
internal working conditions of the engine.  

9.1.4 Parameter Outputs 

The main or most common parameters recorded as outputs are: 

P30 – Compressor outlet pressure is measured to determine if the compressor pressure ratio is 
maintained.  A reduction in this pressure will indicate that the core is deteriorated. 

T30 – The compressor outlet pressure is measured to determine if the compressor is 
compromised when a pressure loss is identified  

TGT – The turbine gas temperature or turbine entry temperature TET, or T4 is measured to 
determine if there is deterioration on the turbine and to determine the actual engine working 
temperature at its worst internal point. 

P50 – The low pressure turbine outlet pressure is measured to determine the overall efficiency 
of the turbine and also of the engine. 

In addition, there are multiple other measurements taken throughout each flight.  Other 
significant parameters are: 

N2 –High pressure system speed.  This is the speed at which the high pressure compressor and 
turbine are turning at. 

N2V – This is the vibration off-set of the N2 shaft.  It is significant to determine small 
unbalanced deviations within the high pressure system 

9.1.5 Engine management and maintenance 

Aeroengines, in much the same way as all mechanical systems need to be maintained in order to 
assure their safe and reliable working conditions.  In addition, it is in the operator’s interest to 
maintain the engines in good working condition so as to assure the best possible fuel 
consumption [2] and operating costs. 

Due to the size, complexity and skilled work force required for the maintenance of these 
engines, the appropriate management of the maintenance is crucial to any airline operation. 

9.1.5.1 Types of engine shop visit 

The overall engine maintenance may be divided into two main groups, on-wing maintenance 
and off-wing maintenance.   

On-wing is all of the work that is carried out on an engine while it is still attached to the 
aircraft.  This will include all of the routine inspections and replacement of parts.  In 
addition, it also includes routine inspection of the internal condition of the engine, carried 
out with borescope equipment.   



Engine Health monitoring and prognosis for engine fleets using intelligent data analysis of interval-
valued and possibilistic data!

!

New!Method!Proposals!–!Theoretical!Analysis! 78!

!

Off-wing maintenance on the other hand is when the engine is removed from the aircraft.  
Engines are replaced and shipped to an overhaul facility where detailed maintenance work 
may be carried out.  There are only a limited number of facilities worldwide which can 
refurbish engines, and these have limited capacity.  Managing and planning these 
appropriately is therefore key and associated to improving the reliability of the fleet which is 
also in the manufacturers’ interest in order to avoid unplanned shop visits. 

The overall engine management methodology agreed with the operator and with their 
airworthiness authorities outlines the level of work that will be carried out on an engine for a 
given life.  The life of an engine or component within an engine is monitored though the 
cycles, or hours flown, depending on the deterioration characteristic. 

This level of maintenance is detailed at a module level within each engine.  This is, even if 
an engine is inducted into an overhaul shop, it does not immediately mean that it will be 
disassembled completely to individual piece part, but that each engine module will be treated 
independently. 

9.1.5.2 Levels of engine maintenance 

There are three main levels of maintenance dependant on the level of workscope required in 
order to return the engine to service [109].   The current methodology used to determine the 
level of strip requirement for any given engine, follows a stepped approach.  The main driver 
is the objective of the shop visit.  This is, the engine build life which once released the 
engine is expected to meet.  Based on this customer or business requirement, a review of the 
group A part or critical part lives and level of deterioration of the engine will be considered. 

The individual module softlives, are based on previous service experience, and assure that 
parts are inspected at an interim time in the expected life of the module or engine.  This is 
also one of the main drivers for a shop visit level of strip, as neither the group A part lives 
nor the module level of strip are typically waived. 

9.1.6 Deterioration plot 

Inspection methods, limits and intervals are designed to avoid and manage reliability within 
the fleet.  This assures that no significant finding will be missed or that it will not propagate 
into an unsafe condition before the following inspection.  This is, service experience has 
shown that there are different interim stages in a component or engines’ life that depending on 
the findings will require a different type of reaction. 

Experience within the fleet or engine family will give guidance about where these individual 
lines are with respect to each other and will allow certain policies to be considered.  However 
this will be an average point of view for the fleet and not an individual engine assessment for 
each of the engines within a given fleet. 

9.1.7 Engine condition reports 

An engine condition report is created for each and every engine shop visit.  This report 
contains a high level overview of the shop visits’ most relevant findings and requirements.  In 
many cases these reports also contain photo evidence of the main issues, a repair and replace 
overview, as well as a small summary of the most relevant findings. 
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Through the assessment of these reports it is considered that a qualitative distinction in the 
level of deterioration of each individual module is possible.  As such, the HPC level of 
deterioration has been divided into:  

• High 
• Normal to high 
• Normal 
• Good to Normal 
• Good 
• Bad 

Whilst the HPT into: 

• High 
• Normal to high 
• Normal 
• Good to Normal 
• Good 

 

 

 

! !
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9.2 Objective 1 - Interval-valued blind source separation applied to AI-based 
prognostic fault detection 

The main driver of this theoretical analysis is the proposal of a new method which will consider 
previous engine experience in line with the existing scatter plots methods.   The new method to 
be developed will need to optimize the assessment of the different variables in order to provide 
a visualization of the engine over time, in line with existing engine deterioration plots. 

9.2.1 Objective  

Engine deterioration models have generally been carried out at fleet level only.  Engine 
specific deterioration plots are limited by the number of variables which may be 
simultaneously assessed.   Scatter plots are a combination of these as they are carried out at a 
fleet level through the assessment of specific variables in order to understand engine specific 
differences. 

The objective of this method is to understand engine deterioration and gain the capability to 
carry out module specific assessments.  In addition, this should be a holistic engine level of 
deterioration understanding and not a variable specific in order to gain as much information as 
possible from the data and knowledge available.   

The engine level of deteriorating may therefore be considered as the variable to identify and 
assess.  Blind source separation may be used to determine this level of deterioration variable 
from all of the available measurement inputs provided through the EHM data.  The intrinsic 
use of process history statistical methods, as Principal Component Analysis, will therefore 
provide the optimized variables to consider when plotting the engine state. 

Kalman filtering and Fuzzy logic will also be required in order to reduce the amount of EHM 
data noise and the unknown or imprecise engine state conditions. 

9.2.2 Overview 

An initial review of the EHM data available and its associated engine state performance 
meaning, determined that the data analysis required, where a single state needs to be extracted 
from data from multiple sources, was not very different from that typically proposed for blind 
source separation. 

The two most typical examples where blind source separation is applied are sound signal 
separation from different sources typically multiple microphones, or the separation of images 
as that used on a foetal eco-graphy machine.  The case presented was deemed to be similar to 
these, as the state of the engine was to be extracted through the multiple different signals that 
monitor the engine.  

Blind source separation consists on identifying the main parameters that define a signal and 
correlating these to a datum.  Several different analysis methods exist, however independent 
component analysis is one of the most common methodologies applied.  In essence, this 
method is the application of blind source separation to the assessment of engine EHM 
combined variable data to determine the single state of the engine.  The method may be 
subsequently used to track the engine deterioration over time and its similarity of any other 
given engine of known state. 
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9.2.3 Blind source separation  

A single engine event, in the form of general engine or component specific deterioration, will 
influence the engine overall working conditions.  As such it is to be expected that in these 
cases, more than one variable will be affected by this change.  The change in parameters may 
be directly visible through a significant step change in a single key variable for a given mode, 
however in reality it will most likely be a combination of subtle changes across several 
variables. 

The individual changes of event engines with different types or levels of deterioration may 
also be assessed in this form.  These may subsequently be collected and compiled into a 
database of failure or event modes to be used as a baseline, or example of the type of damage 
to be associated for a given profile. 

An engine will fly and collect data from every flight; however significant deterioration or step 
changes in the variables will not occur unless a significant change is initiated.  Once this 
begins a trend detailing the evolution of the engines’ deterioration will be generated within the 
data.  It is therefore only this final trend of data that is of interest as all of the earlier records 
only show a normal working engine.   

In addition, the engine data will be monitored for individual parameter limit and range values.  
However in most cases it will also require a combination of several values under different data 
ranges which will determine the specific known state. 

EHM data is not the direct signal measured or if it is, cannot be directly compared against 
another engine or even against itself.  This is, EHM data is unique to the overall engine 
conditions both external and internal at the time of the flight.  The ambient temperatures and 
pressures, the pilot settings and the aircraft configuration at the time of the data extraction will 
all influence the resulting data point.  As such, the flight data and measurements are given as a 
delta between the real measurement taken during the flight and a common baseline flight 
where the data is extrapolated to the engine working conditions.  This baseline flight data is 
common to all engines within a given fleet and used consistently throughout the service life of 
the engine. 

The data is therefore variable from flight to flight within a given band and with an overall 
trend that is deemed to be appropriate to provide a good overall indication of the engine 
condition.  However, it is considered that through the appropriate detailed assessment of the 
complete signal additional knowledge may be gained about smaller deviations related to 
deterioration.  

9.2.4 The blind source separation problem 

Blind source separation is a technique commonly used to isolate or recover a signal which has 
previously been mixed or which contains noise, by isolating the signal from different linear 
combinations, without knowledge of the original signal itself or of its weight within the 
original data set.   

A typical example of the application of blind source separation is that used to individually 
identify the signal of a single instrument within a band through the assessment of the sound 
signals of the recordings of several different microphones distributed around a studio [110].  
The actual instrument is not known, and the actual microphone which best determines a 
specific instrument is also not known, however through the assessment of the signals the 
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individual instruments may be identified.  As such the individual signals may be extracted 
even though the original recording signal was “blind” to the actual input instruments. 

The application of blind source separation is the mathematical equivalent of that which the 
human brain performs when listening to a conversation.  The signal is filtered to remove all 
noise and is isolated.  The cocktail party example is exactly this.  Blind source separation is 
used by the user to extract the single signal of interest within a room full of different 
conversations taking place simultaneously.  An independence analysis allows this individual 
signal to be identified and extracted from the noise within the room, so that the conversation 
may be followed. 

The main goal of blind source separation is the definition of independence.  This is, to identify 
and determine all of the independent signals.  In a conversation, this method would identify all 
of the participants and the background noise.  In a music studio, Figure 40 it would be capable 
of singling out a musical input from each individual instrument. 

 

Figure 40 Blind Source Separation – Recording studio example 

In the case of assessing EHM data, it is expected that this method will be capable of extracting 
the exact change within each variable on each individual flight.   The application of blind 
source separation to EHM variables provides the exact deterioration effect of the engine to be 
extracted from the noise or from the variability of the signals generated during its extraction 
processing.  

9.2.5 Solving the blind source separation problem 

Blind source separation techniques are all based on the independence of the signals.  This is, 
by identifying the most independent signals within a given source, this method is capable of 
determining all of the different input signals Figure 40.  The methods used to solve this 
problem therefore either attempt to maximize the independence of signals, or try to minimize 
the correlation between them.  

The most common mathematical methods used are principal component analysis, single value 
decomposition, independent component analysis, dependant component analysis and non-
negative matrix factorization; all of these methods, however only maximize or minimize the 
signal independence or dependence respectively. 
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9.2.5.1 Principal component analysis (PCA) 

The principal component analysis method is based on establishing the independence of 
signals [111].  This method transforms the original source into perpendicular signals (if there 
are only two) or orthogonal signals (more than two).  This is, the method is used to separate 
as much as possible all independent signals, so that they may be subsequently extracted or 
assessed. 

9.2.5.2 Independent component analysis 

The independent component analysis method [112], is used to separate multiple signals into 
subcomponents, with the assumption that the subcomponents will be non-Gaussian and 
statistically independent.  These resulting subsignals will not be directly representative of the 
source signal, however they will be statistically independent and may be subsequently be 
used as the basis of further filtering assessments which could not be performed on the 
original source signal [113]. 

The independent component analysis method consists of an initial pre-processing of the 
signal as a method of centring of the data [114], by subtracting the mean value.  This is 
typically done through eigenvalue decomposition.  Once this is done, a dimension reduction 
may also be applied in order to simplify and reduce the complexity of the actual problem.  
This may be achieved through principal component analysis or single value decomposition.   

9.2.5.3 Singular value decomposition 

Singular value decomposition is one of the most common methods used within independent 
component analysis [115].  The overall methodology consists in identifying a factorization 
matrix M which will provide the eigenvectors for each of the variables from the original 
vector data set V.  This is performed through the following formula, where U is a unitary 
matrix, and Σ is a diagonal matrix.   

 

The eigenvalue decomposition and single value decomposition are very closely related as the 
columns of U are also the eigenvectors of and the columns of V are also the 
eigenvectors of . 

Considering the special square matrix case, on a limited 2D model, and considering the 
original data is contained within a circle, this method would rotate, scale and rotate the circle 
into a new 2D form [116].  This is, the coordinates within the circle would be initially 
rotated, a transformation of the circle into an ellipse would then occur, establishing the 
principal components of the matrix and then one final rotation would be carried out Figure 
41.   
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Figure 41 Simplified 2D single value decomposition 

9.2.6 Blind source separation of interval valued data 

The typical blind source separation examples of identifying a single musical instrument 
through several different microphones, or the party conversation, where a single conversation 
needs to be extracted from all of the others, is consistent in the fact that a single source needs 
to be extracted from the system [117] [118].   

Engine health monitoring data is logged as a method of monitoring the single engine system.  
When a deviation in the engine working conditions occurs, several different variables show 
this deviation.  As such, extracting specific engine events and deviations, through the use of 
EHM data may be considered a typical blind source separation case. 

The current EHM methods are used to detect mayor deviations from the engine working 
conditions [109] [119] [120] [121] [99] [122] [123] [124] [125].  This is, EHM is used for the 
identification of engine deterioration levels of a high reliability concern.  As such, these 
methods begin by smoothing the variable inputs as the variable trends are sufficient to 
determine the internal state of the engine. 

The objective of this assessment however, is to identify engine deterioration or the evolution 
of this engine deterioration over time.  As such, the deviations that need to be assessed are 
substantially smaller and in most cases, not visible through a single variable, as they are a 
combination of small changes on several variables that are not required to occur 
simultaneously.   

The typical blind source separation problem is complicated with the use of the complete data 
set of the variables and the need for a combined variable assessment.  However, the variable 
inputs are collected during every flight and are dependent on the internal and external engine 
working conditions.  Due to the engine design the variable values are also known and 
constrained to a certain interval value, which varies from variable to variable. 

A revision of the blind source separation problem resolution methodology was therefore 
performed in order to gain the capability to apply specific interval valued inputs of the EHM 
data to the blind source problem proposed. 

9.2.6.1 Extension of blind source separation to interval valued data 

Blind source separation, is used to identify the linear combinations of N different 
independent variables also known as independent components.  As such, linear independence 
between the signals is therefore assumed. 
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The resulting latent variables are assumed to expand throughout a multivalued time series Sk, 
where t = 1;…; T, and the multiple different values S are as sk =(s1k; …; sNk), k = 1; …;N.   

In much the same way, the original input observed data is assumed to expand throughout the 
similar multivalued time series Xk, k = 1;…; T where the multiple different input variables are 
xk = (x1k;…; xNk)with the same time series being used.   

Following the general blind source separation methodology an unknown matrix of N by N 
rows and columns is assumed in order to mix the X and S matrices of [xik] and [sik] 
respectively through 

X=AS. 

The blind source separation methodology therefore consists in identifying a de-mixing 
matrix W such that the rows of the output matrix are statistically independent and where W 
and A-1 are related by scale and rotation transforms. 

Y=WX 

The most common method of resolving blind source separation is through independent 
component analysis [126].  This has previously been used in combination to neural networks, 
gradient learning, maximum likelihood and other such mathematical methods [127].  
However not in combination with interval valued data [128]. 

Principal component analysis has previously been used together with interval valued and 
fuzzy data [129] [130] [131] [132] [133], however the blind source separation problem 
resolution through independent component analysis has not been generalized.  As such, this 
new methodology has been established to expand the resolution of blind source separation to 
interval value data through independent component analysis. 

Interval-Valued Data 

The interval valued, observed data is an interval based input, composed of [x-
k

 , x+
k ], k = 

1.…T, where X is each of the different input variables with x-
k = (x-

1k...x-
Nk) and x+

k = 
(x+

1k...x+
Nk) and ranges from 1 to N and K is the time series which ranges from 1 to T.   

 
For each variable and for each time point, the variable signal has a maximum and a 
minimum value, no average or mean or tolerance has been assumed as it is not applicable to 
the subsequent EHM case and is considered to be a subset of this generic case.  As such, 
these intervals are arranged in a matrix XI whose elements are intervals [x-

ik, x+
ik], i = 1…N. 

Each term of the product AS will therefore be contained within the corresponding interval of 
XI. 

The application of the blind source separation methodology would therefore result in  

 

Where each term of the AS product will be contained within the corresponding interval term 
of X.  As such, the notation may be simplified into  
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Following the established methodology, the objective of blind source separation is to identify 
a de-mixing matrix W of N different independent random variables Y, where Y1 to YN are 
composed of  a random sample of (yi1, yiT).  Each of these Y variables would in addition be 

 of interval valued data, where  

 

This way, the resolving algorithm is established following the original methodology, where 
the terms of each of the matrices are in interval form. 

 

The linear independence between signals is assumed as an inherent consequence of applying 
the blind source separation methodology.  Under independence, the cumulative distribution 
function and the probability density function are product of their marginal distributions and 
densities.  Testing for their independence therefore depends on a divergence between the 
estimated joint cdf or df and the product of the estimated marginal [134]. 

This same premise is applicable to the independent component analysis principals of 
maximum likelihood, mutual information minimization and information maximization [135] 
[127].  In particular, infomax or maximization criterion is equivalent to the minimization of 
the Kullback-Leibler divergence between the distribution of Y and the product of its 
individual marginals. 

In order to keep the resolution as general as possible, the YI matrix will be assumed to 
provide only incomplete information about the complete sample distribution of Y.  Each 
possible W matrix will therefore be associated to a different set of Kullback-Leibler 
divergence values. 

The Y matrix may therefore be considered such that it is a sample vector y, with YI being an 
interval-valued matrix with elements [y-

ik, y+
ik] such that 

 

In addition, it is also assumed that Y is unknown thus all the available information about  is 
given by YI . Considering Sє(y0) as a sphere of radius є centred in a point y0 = (y01…  y0N), if 
a sample Y = [yik] of  was available, then the density function of  in y could be 
approximated by the fraction of the sample elements that belong to Sє(y0) divided by the 
volume of this sphere [136]. As such, if 

 

Then 
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Where vol(є) is the volume of Sє(y0). As a particular case, the nearest neighbour (NN) 
estimation consists in defining є as the distance between y0 and the nearest column of Y thus 
the numerator of the above equation is always 1.  

The extension of the NN estimator to interval data consists in defining two functions +
y and 

-
y that bound the values of  (y).  Let Vk be a cell 

 

And let є be the radius of the smallest sphere centred in y0 that completely contains one of 
the cells Vk, then 

 

The upper and lower estimations of fY(y0) are  

 

 

Limiting the preceding case to one dimension, the NN estimations of the marginal 
distributions are, 

 

 

Which in terms of the definitions established is, 

 

 

Where y is unknown.  Nonetheless a Monte Carlo estimation of the bounds of the KL 
divergence may be carried out as follows: 
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Each matrix W has been associated with the upper and lower bounds of the KL divergence, 
given by the above equations.   In order to find the most appropriate matrix W the following 
issues need to be addressed ahead of the calculations in order to appropriately resolve the 
possible conflicts: 

• An order must be chosen that enables a consideration between two matrices whose 
divergence estimates are overlapping intervals.  

• The proposed estimator changes if the data from XI or the matrix W are scaled, because 
of the properties of the NN estimator. 

The first point can be solved by using the uniform dominance [137]. The second 
consideration however, is addressed by introducing two requirements:  

• The data matrix XI is standardized. 
• The search of the matrix W is restricted to the space of matrices with unity eigenvalues. 

The numerical search in this restricted space will be carried by a real-coded genetic 
algorithm, [138]. To comply with the unity eigenvalue requirement, crossover and mutation 
operators are followed by a repair operator that applies a Procrustes transformation to the 
data [139], 

 

Where W = U∑Vt is the Singular Value Decomposition of matrix W. 

The standardization of an interval-valued data matrix is established by applying Principal 
Component Analysis to the centre points of the data considered.  The calculation is 
subsequently extended to the interval data.  

Let X = [xik] be the matrix of centre points of XI, 

 

Let µ be the vector mean of the columns of X and let C = [cik] be the covariance matrix of 
the columns of X. Let C = V ɅV t be the single value decomposition of C.  This is, V 
contains the principal components of X, and Ʌ is a diagonal matrix whose elements (λ1;..; 
λN) are the variances of the principal components.  As such, resulting in  

 

As C-1 = StS, the standardized centre points matrix is  

 

Which in turn, is the PCA solution to the BSS problem when all intervals are replaced by 
their centre points.   
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The proposed extension to interval-valued data is carried out through the matrix Xs
I = (xs-

ik, 
xs+

ik), minimizing the distance 

 

Where  

 

And 

 

 

 

The elements of Xs
I minimizing the distance are found through a greedy algorithm with a 

starting point in 

 

Where 

 

The interval valued problem is therefore resolved, through the identification of the sphere 
centre point average of the variable and through the identification of its radius as the 
minimum distance between elements. 

Through the application of this extended method, the blind source separation problem for 
interval valued data is resolved. 

An initial validation of the model with precise known inputs was carried out in order to show 
the method capability.  This was then expanded to actual engine health monitoring data. 

9.2.7 %Interval%value%methodology%trial%

In order to visually confirm the methodology, a trial case was established to determine the 
feasibility and applicability of this extension of the blind source separation problem.  Three 
distinctly different input signals were proposed, a sinusoidal signal, a square wave and random 
noise signal, first row of the proposed example, Figure 42.  

In order to establish the input to this trial case example, all three signals were mixed, as shown 
in the second row of the worked example.  This would entail the input data which would be 
contained within the data matrix X. 
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The third row shows the extraordinary results of the application of the algorithm proposed in 
line with the new methodology outlined, where the original signals can clearly be 
reconstructed except for a scale factor and a permutation in the order of the result. 

This case, is a clear demonstration that the methodology used was appropriate, and is capable 
of extracting the original data sources as required, as well as demonstrating the physical 
applicability of the method. 

 

 

Figure 42 Interval-valued blind source data worked example 

A second additional iteration of the case was performed.  The forth row of results is a 
demonstration of the interval valued input data method resolved through the new methodology 
outlined, where by an input interval valued error was introduced half way through the signal.  
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In this example, once again it is shown that the resulting interval from the methodology 
applied returns an upper and a lower boundary which contains, black and red lines 
respectively, following the original input signal. 

As a comparison to the current working capabilities, the final fifth row are the results to the 
same input signals using the most up to date principal component analysis capabilities.  The 
resulting signals are shown to substantially deviate from the original inputs. 

9.3 Objective 2 - Engine health monitoring for engine fleets using fuzzy 
RadViz 

The existing engine level deterioration assessments and models, have shown that the actual 
engine condition of specific engines is still today unknown.  This is due to the variable and 
undetermined internal working conditions of the engine and the compressor-turbine interactions.  
These models consider a reduced subset or a smoothed version of variable values in order to 
establish long term and overall fleet assessment, but in no case are they used for short term, 
engine specific analysis. 

There is therefore a requirement for a new method to provide the capability of understanding 
small engine deviations and determining if these are within the overall engine working 
conditions or may already be conceived as initial deviations due to deterioration. 

9.3.1 Objective  

The objective of the new method developed is to establish a detailed individual variable 
assessment so as to extract as much information as possible.  The Kalman filtering methods, 
are appropriate for trend assessments, however no data points may be dismissed for 
deterioration assessments.  A bandwidth sweep is therefore proposed and the basis for the 
second method iteration.  This individual variable sweep will extract all of the knowledge 
from each variable for each given time point, and consider or dismiss its importance 
individually. 

A fuzzy assessment is therefore proposed which will consider the different probabilities of 
each variable state for each individual data point.  The variable states may subsequently be 
combined in order to classify them against the known engine maintenance states and as such 
classify and diagnose each individual engine and module. 

9.3.2 Overview 

Overall engine deterioration is a combination of the deterioration of each of the individual 
modules.  However the engine doesn’t deteriorate evenly or simultaneously.  A single module 
will initially deteriorate faster than the others, due to a weak link in its material, build or due to 
a different root cause.  This will be a small deviation that the rest of the engine will need to 
compensate. 

The next module, suffering from the increased load, will then deteriorate, and so on.  In 
essence, the engine will deteriorate one step at a time.  However from a performance point of 
view, the engine is actually compensating itself in order to work under the best possible 
conditions for the state in which it is in. 



Engine Health monitoring and prognosis for engine fleets using intelligent data analysis of interval-
valued and possibilistic data!

!

New!Method!Proposals!–!Theoretical!Analysis! 92!

!

The core modules of the two shaft engine assessed basically evolve in this manner.  Should the 
HPC module deteriorate first, a known signal drift would occur that could be identified.  
However the HPT would subsequently react to this deterioration and compensate which in 
turn would deteriorate the HPT.  The signal assessment in this second reaction would not be 
clearly visible as the signal would now be a combination of the two deteriorated modules. 

The aim of this assessment is therefore to address these small, interim deterioration trends or 
patterns, so that they can be classified and quantified in order to determine the precise level of 
deterioration of the engine.  

9.3.3 Simultaneous signal assessment 

General pattern recognition today is limited to the assessment of a single variables’ trend.  At 
most a combination of two or three variables can be performed; however the trend changes 
need to be substantial in order for the step change to be visible, as this is currently performed 
as a manual task. 

The first requirement is therefore to identify an automated method which is capable of 
assessing several signals simultaneously where the trend changes are not required to occur at 
the same immediate point in time, and where the changes are not required to be of a 
substantial magnitude.  This is due to the fact, that the objective of the assessment is general 
deterioration and not that which may be associated to an event or a substantial material 
release. 

The full set of signals is therefore assessed simultaneously.  Each full set of EHM data will 
therefore be a combination of several different patterns over time which will show the 
deterioration evolution of the engine and which combined will establish the actual state of the 
engine at the time of the assessment. 

The assessment has been limited to the core modules of a two shaft engine.  The pre-
assessment performance understanding has also determined that a total of five parameters 
DFF, DN2, DP30, DTGT and DT30 are the main variables that will define the evolution of the 
engines’ core.  The diagnosis will therefore assess the combination of these five variables, in 
order to establish smaller time series of the complete signal, which will in turn be the interim 
working states.   

The states can subsequently be classified in order to identify their meaning and the level of 
deterioration of the engine through the individual understanding of the engines’ individual 
module levels of deterioration. 

9.3.3.1 Fuzzy feature extraction 
Based on an EHM engine signal composed of these five variables, each variable will be 
composed of several different sequences.  These individual variable sequences are named rit

e, 
t = 1,…,N, i =0,..,4 which will be engine specific over a specific smaller time series.  In 
addition, each variable is expected to contain a number of different patterns I, in this 
example limited to 4 different patterns. 

Each variable within the EHM signal is a measurement of a different pressure, temperature 
of flow of a different part of the engine.  This is, each variable, has a different baseline, 
average and tolerance range as well as different actual measurement bandwidth [140].  The 
assessment method is therefore required to assess each variable individually and consider its 
individual bandwidth. 
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9.3.3.2 Signal filter 

A bandwidth kernel is used to address this issue.  This is, a boundary function is used to 
assess the actual size of each of the individual variable bandwidths.  This may be performed 
through a cloudy data filter, which would in essence review all of the data and determine the 
function which would encompass all of the data [141].   However it is deemed not to be 
required in this case due to the fact that further processing will be subsequently performed. 

A Monte-Carlo estimation of the bandwidth kernel has therefore been applied.  This is, a 
function is generated which reviews the individual variable signal bandwidth sweeping all of 
the possible bandwidth values.  The result from this assessment is a bandwidth-dependant 
filtered signal. 

 

The filtered signal however still does not convey an appropriate subset of information.  This 
is due to the fact that the variables assessed are not the direct measured value and are 
actually delta values of the actual measurement.  This is required in order to pre-filter the 
engine working conditions from the actual measurement considered.  In these cases, the 
external ambient conditions together with the actual pilot and aircraft settings are assessed in 
order to establish the extrapolation parameters required to convert the known pass-off test 
result baseline data into the baseline engine values for the engine at the point of 
measurement. 

The delta value signal assessed is in actual fact the deviation of the original parameter values 
measured to those extrapolated from a known engine to the working conditions at the time 
the measurement is taken.   This is current common practice as the use of cruise EHM is 
limited to the understanding of shifts and trend changes over relatively small time periods 
[124].   

As such, the data itself is of limited value in its current state.  Even considering the variable 
specific bandwidth-dependant filter, each variable has a different baseline value dependant 
on the engine working conditions at the time each measurement is taken [142].  A trend 
assessment of the data is therefore deemed to be more appropriate and to convey a 
substantial increase of information to that of the original signal [143].   

The trend signal may therefore be in turn approximated through the derivative of the filtered 
signal.  This is, the combined set of bandwidth-dependant patterns is derived in order to 
obtain the trend values instead of simply using the filtered data.  The derivative of the family 
of kernels is therefore established as the slope of the straight lines of a least square filter to 
each point of the smoothed signal [144].  This is however done through the Monte Carlo 
estimation window in order to maintain the bandwidth dependant kernel. 

 

This is in line with the standard of signal processing of EHM data currently carried out.  A 
least squares approximation of the data is performed and the resulting individual variables 
are assessed for trends and shifts in order to determine if the engine under assessment has a 
substantial level of deterioration. 
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However when considering the complete variable bandwidth, it can be clearly appreciated 
that this least squares approximation is highly dependent on the bandwidth filter used.  An 
error to this approximation is therefore introduced to account for this data loss. 

 

This error is once again dependant on the engine under assessment, the slope of the actual 
function, the trend assessed, the time period and the actual variable bandwidth.  The 
derivative of the least squared approximation error is carried out in line with the baseline 
function.  Through this, a minimum error value of the baseline result approximation is 
obtained. 

 

This is a very similar approach to that previously discussed, where Principal Component 
Analysis was used, in order to obtain an orthogonal transformation of the data. 

The result of applying this signal filter however is very dependent on the actual bandwidth 
considered.  The smoothed signal in its current form is therefore not considered to be 
appropriate for the actual assessment of a fleet, as the variability from engine to engine and 
even from flight to flight within the same engine, would be too gross to be able to establish 
specific deterioration patterns. 

9.3.3.3 Soft Discretization 

A more detailed method of filtering of the signal is therefore deemed to be required in order 
to determine the precise effect of the bandwidth and of the residual signal error in order to 
establish a method that is equally valid for all signals independent of the variable measured, 
or the method by which it is obtained. 

The simplification of the signal is therefore applied to the original function of family of 
bandwidths, for each of the patterns within a given EHM data set. A straight forward filter 
using a hard discretization could be applied which following a similar methodology to that of 
Ruspini’s fuzzy partition, would allow the EHM original signal to be processed.  Each 
variable would be smoothed using the filtering method above outlined, but then dependant 
on the actual slope of the curves at each time period; individual hard discretization values 
could be allocated.   

 

Figure 43 Ruspini’s fuzzy partition 

This is, if the smoothed signal has a negative slope, it can be associated to a 0 value.  If the 
smoothed signal has no slope it can be associated to a value of 1, and if the smoothed signal 
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has a positive slope, it can be associated to a value of 2, Figure 43.  Through applying this 
hard discretization to all of the variables, we can obtain a 5 variable combination of these 3 
distinct values.  

As an example, using the five different variables previously discussed, each EHM individual 
data time point could be reduced to a ternary number which would be a combination of the 
hard discretization values of each of the individual variables Figure 44.  In turn, this state 
value can be used as a state identification value which can subsequently be used for trend 
assessment [145]. 

 

Figure 44 EHM Value reduction to a single state 

However in reality, no two engines will have the same identical pattern sequence, due to the 
fact that several factors affect both the internal and external working conditions, as well as 
the fact that the actual variable baseline data is actually dependant on the flight conditions 
and is not a fixed baseline as such.  It is therefore required to develop a method which will 
allow the assessment of similar and not identical engine trends. 

A soft discretization is therefore preferred in order to gain the capability of assessing the 
complete variable bandwidth together with its associated error.  Ruspini’s fuzzy partition is 
therefore used together with the combined associated probabilities for each of the possible 
variable trend values. 

This results in a new function, which is a probability distribution of the set of state 
identifiers.  This is, for each of the EHM data variable time points, the filter, not only returns 
a single value but a combination of all of the possible values, together with its associated 
probability of each of these.  The assessment, using the derivative of the variable function, 
and considering the slope at each time point, together with the effect of the error for this 
same time period, takes into account the Monte Carlo estimation value sweep of the 
bandwidth, in order to produce the probability of each specific state. 

As such, the resulting filter is a probability distribution of the sum of all of the different 
states of the variable that may be found within a given EHM signal, which in turn considers 
the combination of probabilities of a certain discrete state and associated error.  All of which 
are dependent on the variable specific bandwidth. 
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The possible state probabilities of the combined individual variable states would in turn 
result in a chart where the overall engine trend over time could be assessed and which would 
consider not only the baseline least squares approximation, but also the error associated to 
this bandwidth dependant approximation. 

9.3.4 EHM filter example 

The different levels of signal filtering discussed were applied to a single EHM data set in order 
to determine the quantity and quality of the knowledge gained through each methodology. 

The initial chart, Figure 45 shows the original EHM data set composed of five different 
variable signals of different values and bandwidths.  No significant assessments can be carried 
out with the data in this state. 

 

Figure 45 Initial raw set of EHM data 

The first standard filtering method of a least squares approximation, Figure 46 shows 
smoothed out versions of the variables.  On this chart, it can be seen that the engine has a 
slight deviation trend starting approximately at time period 100 and returning to its original 
working conditions at approximately time period 600.  This could be considered as that 
although there has been a slight deviation the engine has returned to normal working 
conditions. 
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Figure 46 Initial least squares filter application 

The second filtering method, Figure 47 is carried out through a signal filter which not only 
considers the least squares approximation, but that it does so by also considering its associated 
error and its dependency to the variables own bandwidth.  This is, the derivative of the 
smoothed signal is computed by fitting a line by least squared regression to a window centred 
in the estimation point.  This methodology allows a more detailed assessment and inside 
knowledge of the engines state.  The engine is seen to deviate from time period 100 where at 
least one of the variables, changes its trend.  The engine is then seen to stabilize on a different 
working condition by time period 600. 

 

Figure 47 Second filter with a bandwidth of 2000 following proposed methodology 

The final methodology outlined, utilizes a soft discretization to combine all of the variables 
that make up the EHM data set into a single individual time point state.  Through the use of 
probabilities the soft discretization of the least squares approximation and of the associated 
error, for each of the individual variables, this method returns a probability state value.  The 
representation of this state value is performed through the representation of the value 
probabilities.   

The first main characteristic of this method is that it is an overall view of the engine.  No 
manual assessment is required to combine the individual effects of each of the different 
variables.  In addition, it is a clear representation of the engine for each time period.  In this 
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case, Figure 48 it is significantly easier to establish that the engine sustained a slight deviation 
at the beginning after its entry into service, which could be due to the bedding of the different 
engine components.  A significant time period then shows that no significant changes occurred 
until time period 300 where a significant step change in the engine working conditions 
occurred.  The engine then compensated itself to return to a stable working condition from 
time period 500 onwards. 

 

Figure 48 Single state time plot representation 

This is a clear example of the substantial differences on the conclusions that may be made of 
the internal condition of an engine, dependant on the type of signal filtering method used.  The 
first was not able to establish that the engine had deteriorated, the second determined that a 
working condition transition began at time period 100 and then recovered by time period 600, 
whereas the soft discretization method has been able to visually represent the engine 
deterioration over time in sufficient detail to establish that the actual deterioration transition 
occurred from time period 300 to 400, to then be compensated just after time period 500. 

In addition, this method also provides a clear representation of the actual engine overall 
condition.  The combination of these individual states can be used to establish distinct engine 
patterns which may be associated to engine specific identification sequences.  These may in 
turn be associated not only to engine deterioration but also to any other state of interest. 

9.3.5 Distance to other known states 
The new method discussed, has shown that a trend sequence may be generated for each 
individual variable.  Not only this, but a soft discretization of the trend sequence may be 
performed in order to establish the probability values of each state for any individual variable 
for each individual time period. 

A comparison could therefore be made from this probable state value to other known states or 
trajectories, by determining how close each state is, to other known state values.  This is, a 
minimum distance value is seeked in order to determine the proximity of our variable to other 
known cases. 
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The minimum distance value will be zero if the actual variable state is contained within the 
engines’ trajectory.  In any other case the distance to each possible known state needs to be 
measured in order to establish the one of minimum distance. 

Actual values cannot be used to determine this distance due to the soft discretization used.  A 
set of probabilities is therefore required to determine the probability of a distance between 
state identification values. 

 

In addition, and in line with the hard discretization previously performed, the different 
variable probability states may be combined in order to establish an overall state that defines 
the engine.  As such and considering the five different variables and the three possible variable 
states, there are a total of 243 different possible combinations that may define the engines’ 
individual state. 

The engine state sequence is therefore transformed into a set of probabilities, which in turn 
represent the probability of the sequence of engine states q1,…,qN. 

 

In line with the process defined for the individual variables, the same is applicable to the 
overall engine sequence.  The probability of a certain minimum distance between the engine 
under assessment and one of the 243 different possible states is therefore established as the 
sum of all of the probabilities of each sequence of state and their individual distance to a 
known state trajectory.  This is, each of the individual variable possible states is assessed and 
combined, and the distance is measured against all 243 different possible state values.  When a 
combination aligns to one of the 243,  p=q , then the distance value is 1, in any other case, the 
value is zero.  In this case, the probability value of this sequence combination is conveyed for 
further assessment. 

 

The final step is therefore to determine to which of the 243 different possible states, the engine 
under assessment is closest to, for any given time point.  The resulting value will therefore be 
the engine state with the highest probable value out of all of the different state combinations 
and all of the different bandwidth assessments.   

 

The distance distribution will sweep all of the different probabilities of a state for each given 
variable, and measure the combined possible engine states distance to each of the 243 
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possibilities Figure 49.  In addition, this will be done whilst sweeping each variables’ 
individual bandwidth. 

 

Figure 49 Minimum fuzzy distance plot (black - centroids, red and blue - supports) 

9.3.6 Classification 
An engine deterioration knowledge database has been compiled, which has reviewed the 
condition of over 1000 engine shop visits.  An assessment has in addition, been made to 
determine the overall condition of the core engine modules individually.  As such, the HPC 
modules have been classified into 6 different deterioration levels of Good, Good to Normal, 
Normal, Normal to High, High and Bad.  On the other hand the HPT modules have been 
classified into 5 different deterioration levels, Good, Good to Normal, Normal, Normal to 
High and High. 

The fuzzy feature extraction method has in addition, been applied to the EHM data from all of 
these engines in order to obtain a set of standard shifts, trends and patterns for each of the 
individual levels of deterioration defined. 

Based on these results and for the HPC module six different possible levels of deterioration 
are determined and distinct classes can be identified.  These deterioration classes are defined 
as Ak. 

if x є A1 then class = G 
if x є A2 then class = GN 
if x є A3 then class = N 
if x є A4 then class = NH 
if x є A5 then class = H 
if x є A6 then class = B 

A simple fuzzy rule classifier can now be applied with a learning algorithm which is based on 
the Linear Discriminant Analysis methodology, in order to align the engine assessed to each of 
these possible determination states [146].  Other more complex methods as cost-based 
boosting may be applied [147], however the LDA approach is deemed to be sufficiently 
accurate for the purpose of the analysis. 
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Linear discriminant analysis seeks in a Gaussian problem, the minimum error of the Bayesian 
classifier.  In addition, due to the methodology used, the special condition is contained that all 
of the possible classes have the exact same probability matrix and covariance matrix.  As such 
a much simpler approach may be carried out, to determine the minimum distance to a certain 
level of deterioration or class.  This is through identifying the case of maximum Gaussian 
density [12]. 

The general Gaussian density function is  
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However in our case, a combination of engine sequences is considered, which run for several 
different time points each.  Considering (xe

1,…..xe
m), when e = 1,…,M, of M instances, each 

consisting of m crisp features. 

The Gaussian multivariate density can therefore be applied for each of the crisp individual 
engine states, against the average centre values ck of each of the different levels of 
deterioration, or patterns previously determined. 

 

As the actual distance to a class is not required, the formula may be further reduced, by 
removing all of the terms that are not class dependant. 

 

A final maximum vote assessment is considered in order to establish the actual class to which 
the engine is most similar too. 

 

In the overall problem however, for crisp data, the scaling matrix used is the covariance matrix 
of the complete data set of features and centres of each of these features [136].  These centres 
are considered as the mean value of all of the elements within each knowledge database class. 

Based on the fuzzy data we are managing, this methodology may be extrapolated.  This is, a 
new covariance matrix and new sample mean centres may be considered within the fuzzy sets, 
which in turn minimize the misclassification of the method.  A ranking method is therefore 
required.  The fuzzy data ranking method is proposed as a common approach [148], through 
applying the extension principle; the member function of the number of misclassifications is 
converted to:  

 

However this methodology is not considered appropriate as considering the 243 possible states 
and the 6 different knowledge database classes established this would account for over 60000 
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parameters.  In addition, the covariance matrix is also not appropriate for further 
transformations, as several of the distances of some states to the system trajectories will be 
similar amongst themselves. 

The full optimization of the data is therefore not pursued. If we consider each individual data 
instance as a list comprising a weighted average of the distances to each of the 243 states, 
where the weights are the respective membership functions, 

 

 The crisp data centre of the sample data would therefore be equivalent to  

 

And the crisp data being assessed would be 

 

As such the covariance matrix of the engine data assessed would be  

 

Which is equivalent to  

 

Where matrix P is orthogonal and matrix Ʌ is diagonal. 

The crisp fuzzy data from the engine may therefore be classified through  

 

This way, and due to the fuzzy rules previously established, there are only 243 diagonal terms 
in matrix Ʌ which are easily found through a fuzzy fitness genetic algorithm [149]. 

9.3.7 Visualization of the results 
A common visualization method for data classification is Radial Coordinate Visualization, 
also commonly known as RadViz [150].  This method is based on plotting the data inside a 
circle, with the different classification intervals in the circumference. 

The RadViz representation is based on a physical analogy related to springs Figure 50.  Each 
data point is anchored to each of the different possible classes on the circumference through 
springs.  The value of the data against each class equates to the force with which each spring is 
loaded, with all of the spring forces in equilibrium.   
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Figure 50 Radial Coordinate visualization 

Considering an example of two anchors at the circumferential positions (cos(2kπ/p), 
sin(2kπ/p)), and with values of vk (v1,…vp) the data point would be mapped to  

 

This method is useful, in order to determine data associations, as depending on the location of 
the different classifications on the circumference different results and conclusions may be 
reached.  The main objective of RadViz is therefore to push the data outwards from the 
circumference centre, so that associations may be made. 

The application to the fuzzy data obtained through the previous assessments is applied to this 
RadViz representation method through an extension to imprecise data.  The proposal is 
therefore established that each of the six pre-defined deterioration classes are equally spaced 
around the circumference and each engine is represented by a normalized vector of values as 

 

 However through the approach outlined, further data may be transferred with regards to the 
actual state of the engine.  This method has established the class; however a further iteration of 
the data may be carried out in order to also represent the confidence in the result provided.  As 
such, the fuzzy set data membership can be carried out as 

 

Here, the fuzzy sets are displayed as ellipses which best fit the respective support.  This is, the 
engines represented will not only be shown to be closer to a certain class the higher the 
confidence, but will also have an associated ellipse representing the uncertainty of the fuzzy 
association to the given class. 

! !
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9.4 Objective 2.1 - Sequential pattern mining applied to aeroengine 

Sequential pattern mining is a common data mining method used to identify and dismiss events 
and conditions.  It is considered that this methodology will enable a further refinement in the 
understanding of engine deterioration assessments, as it may be used to understand events or 
conditions that are only of concern under a specific sequence.   

This is a similar study to that performed on DNA data mining assessments.  This work has been 
carried out as a collaboration, where the application of the method and result interpretation 
where the tasks performed whilst the method itself was developed by Ana Palacios.  

9.4.1 Objective  

The existing methods as well as the methods here proposed are all dependant on the 
understanding of the internal working conditions of the engine.  However the deterioration of 
the engine is not linear and is dependent on the overall system interactions. 

The previous method developed, allows the visualization of the overall engine deterioration, 
however events are assessed as they occur and considered equally.  Sequence mining however 
allows the interpretation of these individual events in order to further refine the understanding 
of the engine condition. 

The objective of this collaboration is to understand this level of refinement, and understand the 
potential sequence mining will enable in the assessment of EHM data.  A new set of rules will 
therefore be proposed which will establish and determine the meaning of certain sequences of 
events and translate these into actual engine condition classes or not. 

9.4.2 Sequence mining 
The previous model transforms EHM data records, sampled in a certain time lapse and for a 
given aeroengine, into a single sequence of symbols (State-Ids). This is a convenient 
conversion because there are many different algorithms which already exist that can be applied 
to data expressed in this format. 

Sequence mining algorithms comprise a wide family of methods that efficiently process 
and help understand long sequences composed of a limited alphabet of items. For example, in 
computational biology, DNA or protein sequences can be decomposed into structural units, 
and detecting a particular symbol in a sequence is not as relevant as finding an ordered list of 
symbols associated to a marker. In particular, sequential pattern mining was introduced by 
Agrawal and Srikant [151], and was intended to discover frequent sub sequences of patterns in 
a sequence of records.  This may be directly read across to EHM data.  The current available 
catalogue of methods is substantial. As a result of this, different sequence-mining methods 
have been reviewed to assess their suitability for the diagnosis problem.  !

!

A sequence database stores records that are sequences of ordered events. In the following, 
sequences will be records with the following format:  

[Transaction ID, 〈Ordered Sequence of Events〉].  
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In turn, each event in a sequence has one or more items. The purpose of the sequence mining 
algorithm is to detect certain sub sequences of events, with the rule-base structure provided by 
the previous method.  

For instance, the subsequence ((TGT=UP P30=DOWN) (TGT=SAME T30=UP) (P30=UP)) 
means that three events are searched for in Engine #1. In the first event, the turbine 
temperature TGT increases and at the same time the compressor pressure, P30 decreases. In 
the second event, TGT does not change and the compressor temperature T30 increases. In the 
third event, P30 increases. The following transaction would therefore match this sequence:  

[E1, 〈(TGT=UP P30=DOWN T30=UP) (TGT=UP P30=DOWN T30=UP) 
(TGT=SAME P30=SAME T30=UP) (TGT=SAME P30=UP T30=UP)〉]  

Observe that additional events are allowed independently of the searched ones.  

On the other hand, the following transaction does not match the sequence in this example, 
because these same events are disordered:  

[E2, 〈(TGT=UP P30=DOWN T30=UP) (TGT=SAME P30=UP T30=UP) 
(TGT=SAME P30=SAME T30=UP)〉]  

 

As such the intention of this method is to, based on a sequential database be D, and a set of 
items be I = {i1,i2,…,ik} find all of the frequent sequences S in D comprising of items in I.  

Where “frequent” means that the support of the sequence, i.e., the fraction of transactions in D 
that match the sequence, is higher or equal than a given threshold.  

The first sequential pattern-mining algorithm was the algorithm AprioriAll [151], adapted 
from the Apriori algorithm [152]. Many other different algorithms exist, like AprioriSome 
[151], GSP (Generalized Sequential Patterns) [153] or SPADE (Sequential Pattern Discovery 
using Equivalence classes) [154], which are based on the Apriori property [155], i.e. “All 
nonempty subsets of a frequent itemset must also be frequent”. According to [156], there are 
three different families of sequential pattern-mining algorithms, Figure 51:  

1. Apriori-based  
2. Pattern-growth, e.g. FreeSpan [157], PrefixSpan [158] or SPARSE [159]  
3. Early-pruning, e.g. HVSM [160] or LAPIN [161].  
In addition, there are also hybrid algorithms. For instance, PLWAP [162] is a hybrid between 
pattern-growth and early-pruning, however these will not be assessed.  
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Figure 51 Hierarchical overview of sequential pattern-mining methods. 

There are studies that favour the algorithm PrefixSpan, which is pattern-grow based [156] over 
the mentioned families in terms of execution time, memory consumption and number of 
frequent sequences found. PrefixSpan demands less computational resources than Apriori, in 
both time and memory, and is also faster than other pure or hybrid pattern-growing techniques, 
like WAP-mine or PLWAP [163], albeit less memory efficient. In addition PrefixSpan has 
also shown to improve FreeSpan [163]. Apart from this, early-pruning techniques are an 
alternative with more efficient algorithms (LAPIN_Suffix [161]).  

As such, it is considered that the PrefixSpan algorithm is the best algorithm to mine the 
sequences of EHM data. However, this algorithm cannot be directly applied to the previous 
model results and some modifications must previously be performed in order to manage 
uncertain data.  

9.4.3 Mining uncertain sequential patterns 

There is a high level of uncertainty in the gas path measurements that the mining process has 
to consider. As such the data may be so noisy that a clear decision cannot be made between a 
pair of conflicting condition as “TGT=UP” and “TGT=SAME.” In order to address this 
conflict, a fuzzy discretisation of numerical data may be performed [164], [165], [166], where 
by, “truth(TGT=UP)=0.7” and “truth(TGT=SAME)=0.3.” 
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9.4.3.1 Emerging pattern mining with uncertain data 

The main objective of this assessment is to identify frequent sequences.  This is, ordered 
sequences of state-ids that appear only when a certain degree of deterioration occurs.  
Emerging Patterns (EPs) are itemsets whose support significantly changes from one class to 
another, which have been successfully used to establish robust classifiers. The first of these 
algorithms was CAEP (Classification by Aggregating Emerging Patterns) [167], [168], 
[169], [170].!!

CAEP partitions the training set in a one-versus-all manner, defining the target EPs as 
specific patterns of a given class. Test instances are classified by finding all target EPs 
contained in an instance, and then aggregating the conditional probabilities of the EPs 
appearing in each possible output class.  

The method proposed will use a combination of the CAEP and PrefixSpan capabilities in 
order to assess EHM data. The PrefixSpan algorithm will be used to mine frequent sequences 
of State-Ids that appear with a probability which will depend on the degree of deterioration 
of the engine. In the second step, a classifier will be built to diagnose the engine by searching 
for EPs in the test pattern, and then finding the class for which these EPs are more likely to 
appear.  

9.4.3.2 Notations and definitions 
The meaning of the symbols that will be used in the following section is described here. D is 
a dataset of m attributes and n classes, where Ci is the i-th class (1≤i≤n) and Dci

 are the 

instances of the i-th class.!

• Support of an itemset X, supportD(X): The quotient between the number of instances 

that contain or are compatible to X, countD(X), and the number of instances in D, 

denoted by |D|. 

 
• Growth rate of an itemset X from DCs

 to DCi
, (s,i=1,…,n and s≠i):  

 
If both supports are zero then!GR

DCs
⟶DCi

(X)=0.!If!support
DCi

(X)≠0!and!support
DCs

(X)=0!

then!GR
DCs

⟶DCi

(X)=∞.!!

The following abbreviated notation is used when appropriate:  

 

where  DCi
  is the set of instances of classes different than Ci.!
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• Emerging pattern (EP): Given a threshold ϱ>1, if GRDCs
⟶DCi

(X)≥ϱ then an EP is 

obtained from DCs
 to DCi

. 

• JEP: Jumping Emerging Pattern: If GRDCs
⟶DCi

(X)=∞, the itemset X is called a 

Jumping EP from DCs
 to DCi

. 

• Growth rate improvement: The Growth rate improvement of an EP e, Rateimp(e), is 
defined as follows:  

 
• Aggregate score: Given a test instance (tins) and a set Ei of EPs of the class Ci, the 

aggregate score of tins for Ci is:  

 
where  

 
and baseScore(Ci) is the median of the scores of the training instances of class Ci [169]. 

9.4.4 Proposed method 

The PrefixSpan algorithm is used to extract frequent sequential patterns, from which some will 
be the desired EPs.  As previously highlighted the previous model data output will be assessed 
in order to identify patterns and sequences, however the confidence and difference between 
State-Ids may not always be clear.  As such a rise in turbine temperature, that was denoted 
TGT=UP may also be expressed as  

TGT = {UP/0.8,SAME/0.2},  

Where TGT is UP with 0.8 confidence and SAME with 0.2 confidence. Following with the 
same example, the subsequence 〈(TGT=UP P30=DOWN) (TGT=SAME T30=UP) 
(P30=UP)〉 would match the following list of uncertain perceptions of the EHM signals 
with confidence 0.8:  

〈(TGT={UP/0.8,SAME/0.2} P30=DOWN T30=UP) (TGT=UP P30=DOWN 
T30=UP) (TGT=SAME P30=SAME T30=UP) (TGT=SAME P30=UP T30=UP)〉  

Partial matches are combined with a t-norm operator, like the product or the minimum. For 
instance, the degree of matching of the mentioned subsequence with the list  

〈(TGT={UP/0.8,SAME/0.2} P30=DOWN T30=UP) (TGT=UP P30=DOWN 
T30=UP) (TGT=SAME P30=SAME T30=UP) (TGT=SAME 

P30={UP/0.4,SAME=0.6} T30=UP)〉  
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is 0.8∧0.4=0.4 (if the minimum is used). 

An initial pseudocode of the PreFixSpan algorithm is shown in Figure 52 in order to 
subsequently identify the modifications needed for its application to EHM data. 

 

!

Figure 52 Pseudocode of the PrefixSpan algorithm 

 

9.4.5 Revised definitions 

The following definitions are required for the extension of the PrefixSpan algorithm to 
uncertain EHM data:   

1. Linguistic Item: A linguistic item is the pair [xi,lj], where xi is an item and lj is a 

linguistic label. There are m different items (also called “features”), as such i=1…,m.  

 

Each item can take ni different linguistic values lj, j=1…,ni where for example 

[TGT,UP], written as TGT=UP, is considered a linguistic item. 

 

2. Fuzzy Transaction:  if the value of the item xi is uncertain, and the degree of truth of the 

assert xi=lj for a given linguistic label lj is the fuzzy membership µlj
(xi). The available 
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knowledge about the value of xi is given by a fuzzy subset of the set of labels {l1,…,lni
}, 

that is  

 
However, the notation  

Xi={l1/µl1
(xi),…,lni

/µlni
(xi)} 

is more convenient in this context.  For instance:  

TGT={UP/0.8,SAME/0.1,DOWN/0.1}. 

 

However the set TGT={UP/1} may also be abbreviated as TGT=UP. 

Considering a sequence as 〈X1
i X

2
i …X

T
i 〉 which describes the temporal evolution of the 

value of the i-th item xi. A fuzzy transaction Ek may be identified as a record, composed 

by three parts:  

(a) The identification of the aeroengine  

(b) A sequence comprising the fuzzy sets describing the knowledge from the values 
taken by each item at different time lapses, i.e.  

Ek=[k,〈(X1
1,…,X

1
m)…(X

T
1,…,X

T
m)〉]. 

(c) The diagnosis of the aeroengine after the shop visit, or “class” of the engine.  

 

As such a valid fuzzy transaction may be considered in the following form,  

[1, 〈(TGT={UP/0.8,SAME/0.2} P30=DOWN T30=UP) (TGT=UP P30=SAME 
T30=UP) (TGT=SAME P30=SAME T30=UP) (TGT=SAME 

P30={UP/0.4,SAME/0.6} T30=UP)〉, EXPECTED COMPRESSOR LIFE = 
1000 CYCLES]  

In this example ni=3, 1≤i≤3, three items x1=TGT, x2=P30, x3=T30, T=4 time lapses, and 

three linguistic labels “UP”, “SAME” and “DOWN” for each of the items, thus  

3. Compatibility between a Linguistic Item and a Fuzzy Transaction:  The compatibility 
between a Linguistic Item [xi,lj] and a fuzzy transaction Ek is defined as:  

compatibility(Ek,[xi,lj])=⋁
T
t=1µlj

(x
t
ik). 

For instance, the compatibility between the Linguistic Item TGT=UP and the preceding 
fuzzy transaction is  

(0.8∨1∨0∨0)=1 
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4. Linguistic Multivariate Item: A Linguistic Multivariate Item (LMI) is a tuple of 
linguistic items, for instance (TGT=UP P30=DOWN).  

5. Compatibility between a Linguistic Multivariate Item and a Fuzzy Transaction:  The 
compatibility between a LMI and a fuzzy transaction Ek is defined as:  

 

where the symbol ∧ denotes a t-norm combination. The compatibility between (TGT=UP 
P30=DOWN) and the preceding fuzzy transaction is  

( )(0.8∧1)∨(1∧0)∨0∨0 =0.8 

6. Support of a Linguistic Multivariate Item: considering  S as a set of fuzzy transactions 
S={E1,E2,…,EnS

}. 

The support of a Linguistic Multivariate Item LMI in the set S is defined as:  

 
This is, considering the set D of fuzzy transactions:  

[1, 〈(TGT={UP/0.8,SAME/0.2} P30=DOWN T30=UP) (TGT=UP P30=SAME 
T30=UP) (TGT=SAME P30=SAME T30=UP) (TGT=SAME 

P30={UP/0.4,SAME/0.6} T30=UP)〉, 1000]  

the support of (TGT=UP P30=DOWN) in D would be  

 
7. Linguistic Multivariate Itemset:  A Linguistic Multivariate Itemset is a set of LMIs, for 

instance {(TGT=UP P30=DOWN), (TGT=SAME P30=DOWN)}. 

8. Compatibility between a Linguistic Multivariate Itemset and a transaction:  The 
compatibility between a Linguistic Multivariate Itemset and a transaction is the t-norm 
composition of the compatibilities between each of the elements of the itemset and the 
transaction, i.e.  

 
This is, the compatibility between the first transaction of the preceding set and the itemset 
{(TGT=UP P30=DOWN) (TGT=SAME P30=DOWN)} would be 

0.8∧0.2=0.2 

9. Support of a Linguistic Multivariate Itemset:  The support of a Linguistic Multivariate 
Itemset is the average of the compatibilities between the itemset and the set of 
transactions,  
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The support of the itemset {(TGT=UP P30=DOWN), (TGT=SAME 
P30=DOWN)} in the set of transactions previously defined would be 

 
10. Linguistic Sequential Patterns:  A Linguistic Sequential Pattern (LSP) is an ordered 

sequence of the elements of a Linguistic Multivariate Itemset, as 〈(TGT=UP 
P30=DOWN) (TGT=SAME P30=DOWN)〉. 

11. Compatibility between a Linguistic Sequential Pattern and a transaction:  Let “tail” 
denote the last item in a sequence, and “head” be the subsequence formed by all items but 
the last. The recursive definition of the compatibility function would be  

 compatibility(Ek,LSP)=max{min(compatibility(tail(Ek),tail(LSP)),

compatibility(head(Ek),head(LSP))), compatibility(head(Ek),LSP)} 

and the base cases would be two:  

(a) The compatibility of a LSP with an empty transaction is zero,  

compatibility(∅,LSP)=0 

(b) compatibility(tail(Ek),tail(LSP)) is the degree of truth that the last LMI of the LSP 

matches the last element of the fuzzy transaction Ek. which in the stablished 

notation would be,  

  
As such, the compatibility between the LSP 〈(TGT=UP P30=DOWN) 
(TGT=SAME P30=SAME)〉 and the sequence  

〈(TGT={UP/0.8,SAME/0.2} P30=DOWN) (TGT=UP P30=SAME) 
(TGT=SAME P30=SAME) (TGT=SAME P30={UP/0.4,SAME/0.6})〉  

Would be 

max{0.6∧0.8,0.8}=0.8. 

The compatibility between an LSP with a transaction is lower or equal than the 
compatibility between the itemset comprising the elements of the sequence and the same 
transaction. In this particular case, the compatibility of the itemset {(TGT=UP 
P30=DOWN) (TGT=SAME P30=SAME)} is also 0.8∧1=0.8.  

Whereas the compatibility between a different LSP comprising these same items but in a 
different order 〈(TGT=SAME P30=SAME) (TGT=UP P30=DOWN)〉 would be 0. 

12. Support of a LSP:  The support of a LSP is the average of the compatibilities between 
the LSP and the set of transactions, i.e. 
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13. Emerging pattern: One of the main differences between the proposed extension and the 

original CAEP algorithm lies in the definition of EP. It is suggested that EPs are not 
associated to a single class but to a set of classes.  

As such, a Linguistic Sequential Pattern LSP will be considered an EP if one of the 
following conditions apply:  

(a) There are not EPs that are subsets of LSP. The set of classes of the EP comprises the 
classes of all transactions compatible with LSP. 

(b) There exist at least an EP e that is a subset of LSP whose growth rate improvement for 
some of its possible classes is greater than 0. In this case, the class of the EP is the 
class Ci for which RateimpCi

(e) is higher. 

Another deviation from the original definition of EP is that the support of the EP will be 
computed with respect to all transactions compatible with the set of classes associated to 
it. 

14. Aggregate score: Considering a test transaction Ek and a set S of EPs, the aggregate 

score of Ek for the class Ci will be 

 
where the truth value of the EP e in the class Ci is computed as:  

• If e does not have subsets that are also EPs  

 
• If there is a subset e'⊂e that is also an EP,  

 

9.4.6 Fuzzy PrefixSpan with uncertain data 

The Fuzzy PrefixSpan algorithm is designed to process a dataset made up of fuzzy 
transactions. Considering only two EHM variables, TGT and FF, the following would be 
considered as a valid element of a fuzzy transaction:  

(TGT={UP/0.8,SAME/0.2} FF={SAME/0.1,DOWN/0.9}). 

However, EHM signals are numbers and not linguistic labels and membership values must be 
obtained by filtering EHM values through a conversion interface. In this interface, each 
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linguistic label is associated to a possibility distribution, which is in turn defined by means of 
a fuzzy set, Figure 53.  

  

 
Figure 53 Fuzzy memberships compatibilities associated to “DOWN”, “SAME” and “UP” 
for any given variable 

If the value of the EHM variable is considered to be the number x0, and L is a linguistic label 

(i.e. “SAME”, “UP”, or “DOWN”) the degree of truth of the condition “x0 is L” would be 

understood as that the value of x0 is a possibility distribution ΠL(x0)=µL(x0).  

This possibilistic structure would therefore also be valid for uncertain measurements of the 
EHM signals as the degree of truth of the condition “x0±ε is L” could be interpreted as: 

 

And as a result of this kind of representation of the uncertainty, missing values will have 
membership 1 to all labels. 

The pseudocode in Figure 54 describes the proposed implementation of the PrefixSpan 
algorithm for generating rules in the EHM-based diagnostic problem.  
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Figure 54 Proposed method adapting PrefixSpan algorithm to uncertain data 

9.4.7 Descriptive%example%

An example is partially worked to describe the application of PrefixSpan to uncertain EHM 
data. A total of seven aeroengines were considered, with ten cycles each. Two EHM signals, 
TGT and FF were assessed.  

In order to reduce the explanation, the following letters were assigned to LSPs of size 1:  

([TGT,DOWN][FF,DOWN])=a ([TGT,DOWN][FF,SAME])=b ([TGT,DOWN][FF,UP])=c 

([TGT,SAME][FF,DOWN])=d ([TGT,DOWN][FF,SAME])=e ([TGT,DOWN][FF,UP])=f 

([TGT,UP][FF,DOWN])=g ([TGT,UP][FF,DOWN])=h ([TGT,UP][FF,UP])=i 

 A fuzzy value a/0.8,b/0.2 means that (TGT=DOWN and FF=DOWN) is associated with to a 
confidence of 0.8 and (TGT=DOWN and FF=SAME) to a confidence of 0.2.  

These memberships could result, for instance, if TGT=3, FF=1 and µTGT−DOWN(3)=0.9, 

µFF−DOWN(1)=0.8 and µFF−SAME(1)=0.2 (assuming the t-norm “minimum”).  
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The example dataset is reduced and assumed as follows:  

 

For ease of the method example, the only uncertain item is the first sample from the first 
engine. The stages of the proposed algorithm are: 

1. The supports of all LSP of size 1 are computed. The associated values are:  

 
 Suppose that the minimum support threshold is Θ=0.4. In this case, g and h are not the 
starting element of any frequent sequence because their support is too low.  

2. All of the LSPs a, b, c, d, e, f and i are EPs because they do not have subsets and their 
support is greater than the threshold. The fuzzy rule obtained from the first one is computed 
as follows: 

 
The fuzzy rule extracted from the EP a is:  

if TGT is DOWN and FF is DOWN then HPC-health = (GOOD,BAD) with confidences 
(0.203,0.058)  
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3. The database is projected for each of these LSPs a, b, c, d, e, f and i. The first of these 
projections is: 

  
4. The algorithm is called again to find those LSPs of size 2 whose first element is a; the 

supports of these sequences are: 

  

 

thus the sequences 〈aa〉, 〈ab〉, 〈ac〉 and 〈ai〉 are considered. Each of these sequences is 
evaluated to check whether they are EPs. For instance, support(〈ab〉)=0.5>0.4, thus it is a 
frequent sequence. 〈ab〉 has the subsets 〈a〉 and 〈b〉 and both are EPs. However the GR of 〈ab〉 
is  

 
which is lower than the GR of the EP a; therefore, 〈ab〉 is not an EP and a rule beginning with: 

if TGT is DOWN and FF is DOWN and later 

TGT is DOWN and FF is SAME then ... 

will not be produced. 

!
! !



Engine Health monitoring and prognosis for engine fleets using intelligent data analysis of interval-
valued and possibilistic data!

!

New!Method!Proposals!–!Theoretical!Analysis! 118!

!

9.5 Objective 3 - Engine Deterioration Prognosis Aeroengine prognosis 
through Genetic Distal Learning applied to uncertain Engine Health 
Monitoring data 

The final step of the assessment, once the level of deterioration has been identified and 
classified, will be to determine the remaining time to failure or prognosis of time before which 
engine maintenance will be required. 

Based on the classification of the engine and the individual engine modules, the engine level of 
deterioration may be determined.  However in order to propose a deterioration over time, and as 
such a prognosis for maintenance, a second knowledge point is required. 

9.5.1 Objective  

The objective of this method is to establish the engine remaining useful life.  In order to 
understand this however a baseline or starting condition is required.  Using the fact that 
engines are released after initial production or after maintenance with a certain consistent build 
life objective, this original data point is considered.  As such, knowing the original starting 
point and the evolution over time from the diagnosis which will provide a higher or lower than 
expected level of deterioration, a prognosis is possible. 

This is, the detailed evolution of the engine over time, against the build life objective of the 
engine, will determine if the engine is deteriorating faster or slower than expected, and as such 
will determine the maintenance prognosis.  In line with the quantitative trend process history 
methods, the first and second derivatives will be applied to determine the trend changes and 
establish the zero crossings respectively and therefore calculate the actual engine deterioration 
against a given baseline. 

This will in turn enable the trade study consideration of several engine conditions at the time 
of maintenance, in order to optimize revenue and maintenance costs.  This is, by considering 
different build life objectives, increased reliability levels of deterioration may be considered so 
as to determine what-if scenarios of maintaining the engines on-wing longer due to optimized 
costs, maintenance facility capacity and full utilization of engine and module life. 

9.5.2 Overview 

Engine events or significant engine conditions are not always associated to a combination of 
delta variations. As such, there are methods which aim to detect trend shifts in the variables 
[165] or signatures that are combinations of slope changes in the EHM deltas known to be 
associated to specific events or conditions [171].  

These techniques are effective diagnostic systems, which can detect the presence of abnormal 
events or significant engine conditions. However, the prediction of an engine’s remaining life 
is a wider problem.  

An engine that repeatedly operates under unfavourable conditions has smooth levels of 
deterioration over time which inherently shorten the engine’s life. However smooth 
deterioration trends are not manifested as combinations of EHM signals, and as such are not 
detected by the current existing methods. 
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A new method has therefore been developed which, determines the level of deterioration of an 
engine or module through the integral of r(t), where r(t) is the deterioration rate model of a 
component as a function of the EHM variables:  

 

For example, if the HPC has a constant deterioration rate r(t)=2, and considering an initial life 
of 5000 cycles, then the engine would need to undergo maintenance at 2500 cycles as the 
Remaining cycles(2500)=0. Deterioration rates lower than 1 are also considered, for those 
engines which flying in above-average conditions. The cyclic or hourly remaining life 
calculation would be dependent on the actual data available.  

The resulting method is therefore a prognosis indicator which is capable of estimating the 
remaining life of an engine, through a prediction of its individual deterioration rate. 
Extrapolating these rates is considered will allow the dynamic re-scheduling of maintenance 
checks specific to each individual engine. 

9.5.3 Distal learning of FRBS 

Modelling the prognostic indicator through the integral of the instantaneous deterioration rate 
of an engine enables the identification of not only sudden events but also of smooth levels of 
deterioration. The simplest version of the estimator for the remaining cycles is obtained by 
assuming that the last known deterioration speed is constant throughout the remaining life of 
the engine.  As such, is determined by resolving the integral to identify the value T0 for which 

the Remaining cycles(T0)=0. 

An FRBS is used to link EHM data to deterioration rates. Learning the KB of an FRBS 
requires a training dataset with samples of the input and output variables. This set would 
typically consist of a sample of engine measurements which would link the EHM variables to 
the specific known deterioration rates. However, as the deterioration rate is not an observable 
parameter the sample dataset cannot be compiled. The KB must therefore be indirectly learnt 
from the available information, this is  

1. The sequence of EHM variables considered are those measured in the time lapse between 
two shop visits.  

2. The remaining life is based on the condition of each component at the end of the 
sequence, which is determined through the inspections carried out at the engine shop 
visit.  

3. An estimation of the release life of each component at the beginning of the sequence can 
be made after each shop visit.  

This indirect learning task could be deemed to be a type of supervised learning problem also 
known as “Distal Learning” [172]. In this kind of problems, Figure 55, target values are 
available for the distal variables (the “outcomes”) but not for the proximal variables (the 
“actions”). In the EHM prognosis case, the target values will be the life expectations. Whereas 
the proximal variables will be the deterioration rates, which are related to the distal variables 
through an ageing model of the engine.  
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The ageing model has memory, and as such the outcome depends on the history of the actions.  
This is, the age of the engine depends on the sequence of deterioration rates. The learner, 
which in this case is the FRBS, is adjusted so that the output of the ageing model at the end of 
an EHM data sequence matches the measured level of deterioration of the engine. 

A Pitts Genetic Fuzzy System [173] based rule learning process where the fitness function is 
modified in order to include the ageing model is therefore developed to determine the engine 
deterioration prognosis.  

 
Figure 55 Distal supervised learning problem overview. 

 

The proposed KB comprises rules that map combinations of slope changes in EHM deltas and 
deterioration rates, as:  

IF TURBINE TEMPERATURE DECREASE  

AND FUEL FLOW INCREASE THEN 

DETERIORATION RATE OF THE HPC IS LOW.  

The main purpose of the learnt FRBS is estimating the remaining cycles of the engine in 
combination with the ageing model mentioned. As such, the FRBS is a by-product of the 
learning task. However, in this particular application the FRBS is in itself a model of the 
instantaneous deterioration rate as a function of the EHM signals, which can in addition be 
used to gain an insight of the relationship between the values of the EHM variables and the 
engine’s operating conditions. 

9.5.4 Proposed method 

An algorithm which is used to learn the expression of a prognostic indicator using Genetic 
Fuzzy Systems (GFSs) is proposed. The training data consists of historical EHM data from 
sampled engines from the same fleet but from different operators. 

The method proposal is developed in four parts, Figure 56: 
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• the procedures for cleaning, discretizing and transforming the uncertain input data into a 
sequence of fuzzy numbers  

• the structure of the FRBS learnt  
• the fitness function that the Genetic Algorithm (GA) is required to optimize, including the 

definition of the ageing model  
• the definition of the prognostic indicator in terms of the learnt FRBS.  

  

 

 
Figure 56 Proposed method strategy overview 

9.5.4.1 Cleaning,!discretizing!and!transforming!input!data!

EHM data is noisy and is not expressed in absolute values. The state of an engine is 
estimated from the deltas between an engine’s own measurements and those from a known 
baseline engine. It can therefore be assumed that the deterioration rate depends on the speed 
of change of the EHM signals and the derivative of the signals may be used as inputs to the 
deterioration rate model.   

Using the previous developed models’ output, the smoothed value of a signal would be 
determined by its convolution with a Gaussian kernel function K, whose bandwidth Δ is 
related to the cut-off frequency of the filter.  For instance, the smoothed value of TGT is:  

 

Following with the same example, estimating the derivative of TGT would be determined 
through the slope of a line locally fitted to TGT. This line could be determined by weighted 
least squares.   In turn the slope a and the y-intercept b of the best-fit line, for a given value 
of time t and bandwidth Δ would be determined by establishing the minimum of:  
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The sequence of slopes a(t) is therefore considered to be an estimate of the derivative 
dTGT/dt or the derivative of an arbitrary health.   The combination of the individual variable 
derivatives for all signals considered (TGT, FF, P30, T30 and N2) may also be referred to as 
the state of the engine. 

As a rule-based model is required, the state must be discretized and a finite set of defined 
combinations and each numerical value of a derivative replaced by a label, defined as 
“DOWN”, “SAME” or “UP”.  

The soft discretization considers that if the state is x0, and L is a linguistic label, the degree 

of truth of “x0 is L” is a possibility ΠL(x0)=µL(x0) and consequently the degree of truth of 

the assert “x0±ε is L” (this will be needed later in this section when processing interval-

valued data) is . 

In addition, within this kind of uncertainty representation, missing values have membership 
1 to all labels.  

Each set of 5 linguistic labels is assigned a number. This number is called the “State-ID” 
which may sustain one of three possible slopes.  Considering the three slopes and the five 
variables, there are 243 different possible State-Ids (three to the power of five), where a 
base-3 numbering scheme, with the digits down=0, same=1, up=2 is respectively used to 
assign a label to each variable. For instance, the set of labels (down, same, up, up, down) 
would be assigned in base-3 the number 01220, whose corresponding State-Id would be 51 
in base 10. 

Each combination of EHM variables is in turn not assigned a precise State-Id but a fuzzy 
subset of all the possible Ids as a result of the soft discretization. In turn, this subset is also 
dependent on the selected bandwidth, as such an arbitrary value of the bandwidth was not 
selected.   The soft discretization therefore considers a sweep of a range of bandwidths and 
then combines their corresponding fuzzy State-Ids into a discrete sequence that is 
subsequently considered by the deterioration rate model. 

The numerical procedure for sweeping the range of bandwidths is based on a Monte-Carlo 
simulation with multiple repetitions of the whole filtering and discretization process, for 
different values of Δ. The set of values obtained are combined into a single fuzzy set, whose 
membership defines a possibility distribution over the set of State-Ids. Through this method, 
the EHM data of an engine is transformed into a chain of fuzzy numbers  

 

This chain is the input to the rule-based model used to predict the specific HPC and HPT 
deterioration rate. 

9.5.4.2 Structure of the FRBS modelling the deterioration rate 
Two different FRBSs have to be learnt, to model the HPC and HPT respectively. Each of 
them is considered to have five inputs, dTGT/dt, dFF/dt, dP30/dt, dT30/dt, and dN2/dt, 
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which are discretized into the linguistic labels “down”, “same” and ‘up”, and Mamdani-type 
rules can therefore be used, as:  

IF dTGT/dt=SAME AND dFF/dt=UP AND dP30/dt=UP AND dT30/dt=DOWN 
AND dN2/dt=UP  

THEN 

DETERIORATION RATE OF THE HPC IS LOW 

WITH CONFIDENCE FACTOR 0.8 

which would be the same as  

IF STATE-ID=12202 THEN 

DETERIORATION RATE OF THE HPC IS LOW 

WITH CONFIDENCE FACTOR 0.8 

No fuzzyfication or defuzzification interfaces are required through this method. The degree 
of truth of the k-th antecedent is the membership value µk(t) in the input chain of fuzzy 

numbers .  The output of each FRBS is therefore not a number but an interval 

 r  (t)=[r−(t),r+(t)] due to the fact that the inputs are not crisp.  

As such, as the fuzzy State-Id has a possibilistic interpretation, where the output interval will 
range the possible outputs of the FRBS when the degrees of truth of the rules in the KB are 
the probability distributions dominated by the possibility distribution of State-Ids,  

 

where Rk and ωk are the modal point of the linguistic label in the k-th consequent and the 

weight of the rule whose antecedent refers to the k-th State-Id, respectively. This interval of 
values is then passed on to the ageing model to compute the fitness function. 

9.5.4.3 Ageing model and fitness function 
The simplest form of the ageing model consists in integrating the deterioration rate over 
time. As such the number of remaining cycles would be  

RemainingCycles(t)=InitialLife−EstimatedAge(t) 

Considering that  r  (t)⊂[0,∞), the following would then be true:  
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In practical cases, the ageing model also needs to account for engine events (which may 
cause a sudden change to the estimated age) or even an on-wing maintenance operation. The 
discrete form of the ageing model is therefore deemed to be  

 

This is, given a sample of N aeroengines whose expected life was fi when inspected after ci 

cycles, the fitness of the FRBS may be evaluated by means of an interval-valued function, 
as:  

 
Considering the encoding mechanism in the GA, and given that each of the KBs are made up 
of a maximum of 243 rules, all parameters can be jointly encoded in the same genotype 
(Pitts-style GFS) with a reasonable computational efficiency. However, a nonstandard GA is 
required to optimize the interval-valued function to determine the parameters which define 
the KB, because interval-valued nature of the function.  In addition, instead of modifying the 
membership functions of the labels “UP”, “SAME” and “DOWN” the fuzzy rules were 
weighed. 

9.5.4.4 Definition of the prognostic indicator 
The prognosis indicator is intended to estimate the remaining life of an engine, through a 

prediction of its deterioration rate.  For an extrapolated rate for τ>t, the prediction at 
time t of the useful life T(t) of an engine will be the solution to the following integral 
equation:  

 

Considering an 0-th order prognosis indicator T0(t), and a constant rate of deterioration rate 

 

 
Different strategies could be used for assigning a value to r0: the last known rate r(t), the 

average deterioration  or the unity value, to name a few. Higher order 
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prognosis models were defined by using time series models to extrapolate r(t) or the EHM 
variables, however it was found that the accuracy of the higher order models did not 
significantly improve the 0-th order model with an extrapolated unity deterioration rate.   
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10 New Method Proposal - Applied Method Validation 
The new methods proposed have been validated through the use of predetermined models and / 
or actual engine health monitoring data in order to verify the validity, accuracy and possible 
interpretation of the model results. 
 
In addition, and in order to put into context and gain the capability of interpreting the engine 
results, a more detailed introduction into the actual engine variables and levels of deterioration 
as well as the actual data available is described.  The assessments are then carried out in the 
same order as the one in which the Objectives have been proposed. 

10.1 Aeroengine Design 
The actual engine design and architecture will not be detailed as these have been outlined in 
previous sections.  The emphasis of this section will be on engine maintenance and engine 
deterioration, as well as the qualitative assessment performed in order to gain the additional 
engine deterioration knowledge associated to actual EHM trends. 

This is the knowledge database which has enabled the detailed assessment and validation of the 
models as the physical understanding of the engines in order to understand and interpret the 
model results. 

10.1.1 Engine Design Established Stations 

The overall engine design is common throughout most civil high bypass ratio engines, Figure 
57.   

Due to the engine intake configuration which allows the air to be slowed, high bypass ratio 
engines consider both the ambient conditions at position 0 as well as the conditions directly 
prior to the fan blades, position 2. 

Position 1 is left for the intermediate position where the diffused intake air transitions from the 
intake to the fan case.  In most cases position 1 and position 2 are considered to be identical. 

In some other cases, Position 1 is given to the location just prior to the fan blades and Position 
2 to the location just after the fan blades coinciding with the compressor intake conditions.  
However following the guidelines from the overview given these alternative numbering 
positions will not be considered within this assessment. 

 

Figure 57 Engine main stations  
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10.1.2 Parameter Inputs  

The two main data inputs, Figure 58 are 

FF – Fuel flow is continuously measured, monitored and controlled.  The engine thrust is 
controlled through the amount of fuel consumed and is monitored in order to maintain the 
overall engine working conditions. 

P2T2 – Pressure and Temperature at position 2 just in front of the fan blades is taken as a 
reference.  The engine controls system will use this pressure and temperature to determine the 
internal working conditions of the engine.  

!

Figure 58 Engine and pilot settings to cockpit visualization of main variables monitored 

10.1.3 Parameter Outputs 

The main or most common parameters recorded as outputs are 

P30 – Compressor outlet pressure is measured to determine if the compressor pressure ratio is 
maintained.  A reduction in this pressure will indicate that the core is deteriorated. 

T30 – The compressor outlet temperature is measured to determine if the compressor is 
compromised when a pressure loss is identified  

TGT – The turbine gas temperature or turbine entry temperature TET, or T4 is measured to 
determine if there is deterioration on the turbine and to determine the actual engine working 
temperature at its worst internal point. 

P50 – The low pressure turbine outlet pressure is measured to determine the overall engine 
efficiency of the turbine but also of the engine. 

Other significant parameters which may be considered are: 
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N2 –This is the speed at which the high pressure compressor and turbine are turning. 

N2V – This is the vibration off-set of the N2 shaft.  It is significant to determine small 
unbalanced deviations within the high pressure system 

10.1.4 Engine Management and Maintenance 

Aeroengines, in much the same way as all mechanical systems need to be maintained in order 
to assure their safe and reliable working conditions.  In addition, it is in the operator’s interest 
to maintain the engines in a good working condition so as to assure the best possible fuel 
consumption [2] and operating costs. 

Due to the size, complexity and skilled work force required for the maintenance of these 
engines, the appropriate management of the maintenance is crucial to any airline operation. 

10.1.5 Engine Maintenance 

Overall engine maintenance may be divided into two main groups, on-wing maintenance and 
off-wing maintenance.   

On-wing is all of the work that is carried out on an engine while it’s still attached to the 
aircraft.  This will include all of the routine inspections and replacement of parts.  In addition, 
it also includes routine inspection of the internal condition of the engine, carried out with 
borescope equipment.   

Off-wing maintenance on the other hand is when the engine is removed from the aircraft.  
Engines are replaced and shipped to an overhaul facility where detailed maintenance work is 
carried out.   

10.1.5.1 Types of engine shop visit 

There are only a limited number of facilities worldwide which can refurbish engines, and 
these have limited capacity.  Managing and planning this capacity appropriately is key.  
Improving the reliability of the fleet is therefore also in the manufacturers interest in order to 
avoid unplanned shop visits. 

The overall engine management methodology agreed with the operator and with their 
airworthiness authorities outlines the level of work that will be carried out on an engine 
within a given life.  The life of an engine or component within an engine is monitored 
though cycles, or hours flown, depending on the deterioration characteristic. 

The level of maintenance is detailed at a module level within each engine.  This is, even if an 
engine is inducted into an overhaul shop, it does not immediately imply that it will be 
disassembled to piece part level, but that maintenance of each engine module will be 
determined independently. 

10.1.5.2 Levels of engine maintenance 

Each module will have at least three levels of workscope detailed which are the basis of the 
maintenance of the engine.  These are in line with the level of maintenance that the operator 
expects for the TotalCare rate paid. 
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The initial level of maintenance is an external visual inspection.  This is, the module is 
externally inspected as a subassembly.  Should any findings be noted, they would 
immediately require the next level of inspection. 

The intermediate level of maintenance is also known as a check and repair.  This is, the 
module is only partially disassembled, in order to gain access to the area that needs to be 
fixed and then re-assembled. 

The final level of strip is the most detailed.  Should an engine module require this level of 
strip, each component will be disassembled completely to a piece part level and inspected 
before being re-assembled. 

The difference between each level of maintenance is crucial as it does not only affect the 
direct cost of the engine refurbishment but also the man-hours required and the capacity of 
the maintenance facility.  The yearly capacity for each facility is monitored in order to keep 
the facilities to their maximum capacity without over loading the work. 

In addition, identifying the level of maintenance required for each of the modules before the 
engine is inducted into the facility is also important.  If additional work is required on any of 
the modules, this will delay the engine refurbishment time, and in addition increase the cost 
of the engine maintenance, which in turn will also increase the engine turnaround time back 
to the operator and the lease engine costs.  

In order to keep engine maintenance creep to a minimum, substantial efforts have been 
carried out, however in all cases service experience is required to determine and substantiate 
the results.  On older more mature engines where several iteration of engine maintenance 
have been carried out, this is possible and accurate.  However on new or less mature engines, 
the deviations and variability from the mean of each maintenance cost is greater and 
unacceptable as a business input. 

10.1.6 Engine deterioration 

Engines deteriorate naturally due to their use.  However understanding this deterioration 
allows the engine manufacturer to determine the level and time at which maintenance is 
required.  If an engine is inducted into an overhaul facility too early, the engine will be 
refurbished loosing possible revenue on material that was still capable of further flying.   

Planning the engine induction too late, would directly increase the reliability risk of the 
engine, increasing the possibility of a significant event, or causing increased amounts of 
damage which would result in replacing more parts that initially considered.  In addition, if 
an event occurred, the engine would require an immediate shop visit when overhaul facility 
capacity may not be available, increasing the lease engine costs. 

Understanding each of the possible deterioration cases for each of the engine components 
and determining the life of each of those is therefore critical for the appropriate planning and 
management of the engine and fleet maintenance.   

Erosion 

There are several types of erosion that may occur across the engine.  Due to the difference in 
temperatures throughout the engine and the running clearances, the most critical types of 
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erosion are contact rubs, in the high pressure compressor and thermal erosion in the high 
pressure turbine. 

Erosion may also occur on the remainder of the modules in the form of small impacts, 
however this type of erosion may be directly attributed to utilization and is mainly 
concentrated in the low pressure compressor blades or first stages of the HP Compressor, 
where leading edge erosion is directly visible and therefore the use of engine health 
monitoring data for its assessment is not required.  Based on the environment at which the 
engine is used, and the type of operation flown, leading edge erosion may be significant, 
however inspection and repairs are available for this type of engine deterioration. 

High pressure compressor erosion is mainly driven by the ingestion of small particles 
causing leading edge erosion in the same way as to the fan blades.  However this erosion will 
also impact the blade and vane chordal width [174].  A reduction in blade chordal width will 
have a direct impact on the amount of air that a single blade or vane is able to push and will 
therefore be directly responsible for a loss of compressor efficiency. 

In addition, the compressor design is such that the running tip clearances are as small as 
physically possible in order to reach the chocked state in each of the interim blade and vane 
stages of the module.  This is, the engine is designed in such a way that the air ingested is 
always the maximum possible by design. 

 

Figure 59 HPC Liner loss condition over time 

In order to do so, the high pressure compressor case and rotor are lined with sacrificial 
material, Figure 59, this way the blade and vanes will rub their individual pattern within each 
stage thus reaching the tightest clearances.   However this also causes direct erosion damage 
to the blade and vane tips.  In addition, further engine running will increase the deterioration 
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of the sacrificial material, not only causing secondary damage as it is released, but also 
increasing the running tip clearances. 

The loss of tip clearances in the high pressure compressor is one of the most important 
aspects to be avoided for appropriate engine running.  Increased tip clearances in the 
compressor may ultimately lead to an engine surge, where by air is not pushed back through 
the engine but is for this sequence pushed forward.  In doing so, the flame from the 
combustion chamber or the high temperature air is pushed through the compressor causing 
severe damage. 

Dust ingestion, or ingestion of very small particles contained in the air is not of deemed to be 
associated to severe consequences for the compressor. 

Thermal distress 

Thermal distress or deterioration due to temperature effects is typically sustained within the 
combustion chamber and turbine [175].  The compressor modules may also run at high 
temperatures, however none sufficiently severe to highlight under normal conditions as a 
deterioration factor. 

 

Figure 60 HPT NGV condition over time 

Thermal distress is the effect of temperature on a material. Typical combustion chamber and 
turbine working temperatures are above 1500 degrees; this is above the base material melting 
point.  Thought the use of coatings and cooling flows the design is capable of creating a 
protective surface that will avoid the rapid deterioration of these components.  

Dust ingestion or the ingestion of small particles has negative effects to this engineering 
solution.  The ingestion of external particles or small particles from the engine during its 
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typical working wear may affect the cooling flows and cause rapid deterioration or severe 
damage. 

The most typical example of this is HPT NGV burnback [176], Figure 60 this is caused when 
material within the cooling flows blocks one of the cooling holes, creating an initial stress 
point [177].  At these high temperatures a simple grain of sand will be converted into glass 
and firmly attach during a run down, blocking the hole for the following engine run. 

The worst case of dust ingestion is the ingestion of volcanic ash.  This ash will enter the 
turbine cooling flows and will rapidly deteriorate the vanes and blades. 

Impact deterioration 

Impact damage may be caused externally by the ingestion of a foreign object, or internally 
due to the release of material from an internal component. 

Foreign objects may be anything from a bird to a small rock, as the aircraft is taxing or 
taking off, material from the runway can also be ingested.  The engine is designed in such a 
way that most of this material will be pushed outwards and will flow through the bypass of 
the engine, however in some cases this material may flow through the engine core.   

In such cases, it is the compressor blades and vanes that will sustain most of the damage 
[178].  Damage to a blade or vane aerofoil may initiate a crack that will subsequently 
propagate and release a section of aerofoil, or it may bend the aerofoil, causing an alteration 
to the flow, increasing the stall effects.  Turbine damage due to foreign object damage is 
rare. 

Damage due to internally released material is also common on the compressor, the release of 
a section of aerofoil, Figure 61 [178] or of a platform due to the tight clearances used, will 
result in substantial additional secondary damage.  This will affect the efficiency of the 
engine, and also release additional material which may cause further downstream damage. 

 

Figure 61 FOD Damage  
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Damage to the combustion and turbine systems due to impact will typically cause an 
initiation point in an aerofoil.  This will however rapidly deteriorate further as the damage 
will affect the air flow increasing the thermal deterioration or will cause a crack initiation 
which will propagate. 

10.1.7 Engine Deterioration Equilibrium 

Internal engine damage due to erosion, impact or thermal distress will always have a direct 
effect on the engine working conditions.  Substantial amounts of damage will cause a 
significant step change in the engine working conditions which will be picked up through the 
alerting systems.  These may be significant spikes in the working temperatures, or increased 
vibrations.  In any case, the pilot or the ground crew will have a significant finding which they 
will need to address. 

Small amounts of internal damage however, will have subtle effects that may not be seen or 
even identified by the current monitoring systems.  The effect on efficiency will however 
exist.  As the engine is subsequently operated in this condition, it will need to compensate the 
efficiency loss.  There is therefore a certain equilibrium that the engine seeks between the 
compressor and turbine in order to reach an appropriate balance. 

Compressor damage will reduce the compression efficiency and reduce the pressure at which 
the air is delivered to the combustion and turbine system.  Due to this pressure loss, the 
combustion system must compensate so that the delivery temperature to the turbine is 
maintained, a higher fuel flow is therefore delivered.  However in doing so, the turbine 
working temperature is increased, directly affecting the turbine working conditions and 
deteriorating the turbine faster than before.   

This will follow until the turbine efficiency is lower than that of the compressor, when the 
compressor will need to compensate a turbine efficiency loss, by turning faster in order to 
deliver higher pressure air increasing the deterioration of the compressor components. 

10.2 Aeroengine deterioration and cost modelling 

The state of the engine will directly affect the reliability of the engine.  Safety is taken as a 
must, as no unsafe condition would be allowed for continued flight under normal conditions for 
the fleet.  An older or more deteriorated engine will be more strained into delivering the 
required power and thus will always have a higher level of unreliability.  Reliability therefore 
may be managed through engine maintenance. 

In order to maintain a reliable fleet, engines must be inducted before their individual risk is 
high.  However based on the current tools available this may only be carried out through service 
experience and in some obvious cases through engine data.  On the other hand, there are other 
aspects to be considered as the engine must be kept on-wing for as long as possible and the shop 
visit costs should as low as possible [179].   

A balance is required between a proactive engine life management (PELM) of the fleet and 
unplanned engine shop visits due to reliability issues.   

10.2.1 Product Attributes 

In order to assure a long term business case for the engine programme, a product attributes 
document is generated for each engine type.  This document contains all of the fleet engine 
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data, and the predictions and assumptions made in order to determine the maintenance and 
operating costs of the fleet until the end of the TotalCare contracts. 

This document contains all of the fleet assumptions in terms of levels of deterioration, levels 
of utilization and associated expected levels of strip that each of the engines will require over 
the following contracted years. 

The assumptions made carry a direct relevance to the profitability of each programme.  In 
addition, this document is also the substantiation to the in-year profit made by each 
programme.  Any change to these assumptions will imply a direct impact to the underlying 
profit margin of the programme. 

The assessment into the level of deterioration of each of the engines and modules is therefore 
determined to clarify, substantiate or reduce the current assumptions made.  A clarification of 
the assumptions would allow improved planning to reduce operational costs which may not be 
predicted today [180].  Additional substantiation will allow assumptions to be taken as a real 
cause of impact to the programme and action in the form of a modification or an alternative 
means of compliance may be pursued in order to mitigate an issue.  A reduction of current 
assumptions, will allow a more flexible approach to engine maintenance and reduce the costs 
from average or even higher conservative maintenance predictions to tailored assumptions 
made on engine specific knowledge. 

10.2.2 Engine condition reports 

During and engine shop visit, data is recorded to manage and monitor the requirements of each 
part through the overhaul process.  This is, the reason for scrap, repair or acceptance for each 
individual part is recorded. 

Shop visit report 

An engine condition report is created for each and every engine shop visit.  This report 
contains a high level overview of the shop visits’ most relevant findings and requirements.  In 
many cases these reports also contain photo evidence of the main issues and a repair and 
replace overview. 

An analysis of over 1000 engine condition reports was carried out, in order to create an 
exhaustive service experience database of shop visit findings.  The engine type assessed was 
the BR700-715 fleet, a two shaft engine, composed of 7 different modules.  However the main 
shop visit drivers are deemed to be contained within the HP core modules [181],  

The assessment of the high pressure system was subdivided into compressor and turbine.  This 
is due to the fact that the reliability and cost issues are substantially different and is the main 
areas where the new methodology is expected to clarify the distinct levels of deterioration.  

The cycles since new, and the date of the shop visit were logged together with the reason for 
the shop visit for further processing.  In addition the planned or unplanned reason for the shop 
visit was also recorded as this directly determines if the engine sustained an in-service issue or 
not. 

In order to carry out a consistent assessment across all of the different condition reports, 
different levels of deterioration were identified with a small overview of their meaning [182].  
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These were similar but not identical across the compressor and turbine and have therefore also 
been detailed. 

The High Pressure Compressor levels of deterioration were defined as follows: 

• High 
This was associated to compressors where significant internal damage was identified.  
This is, instances where a material release event may have incurred significant secondary 
damage.  The scrap rates associated are significantly higher than average. 

• Normal to high 
This was associated to compressors where specific deterioration issues where identified, 
as may be liner loss or material releases with no significant secondary damage.  The 
material assessment was also considered where a significantly higher than average scrap 
rate was identified. 

• Normal 
This was associated to compressors where the material scrap assessment suggested an 
average level of deterioration was sustained and the shop visit findings identified several 
common areas of damage, with no substantial significant issues. 

• Good to Normal 
This was associated to compressors where the findings suggested that the compressor was 
in good condition but where the material scrap assessment suggested some level of 
deterioration was sustained 

• Good 
This was associated to compressors where no hardware was exchanged and where the 
findings suggested the compressor was in good condition. 

• Bad 
In some cases Bad has also been recorded however this is typically associated to an 
engine event where material has been released causing severe internal engine damage. 

The High Pressure Turbine levels of deterioration were defined as: 

• High 
This was associated to turbine modules where all of the high pressure nozzle guide 
vanes sustained high levels of burnback, or blade deterioration, significantly influencing 
the engine working conditions 

• Normal to high 
This was associated to turbines where a significant level of deterioration was identified 
during the engine strip with one or two HPT NGVs showing signs of burnback but no 
significant blade issues 

• Normal 
This was associated to turbines where the findings suggest an average level of 
deterioration and where no burnback was identified, but it may however sustain vane 
discolouration of combustor deterioration 

• Good to Normal 
This was associated to turbines where the strip condition suggested a good overall 
turbine condition, but where the material assessment showed an average level of scrap 
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• Good 
This was associated to turbines where the condition report suggests a good overall 
turbine state and where the material assessment also confirms that no significant 
amounts of hardware where replaced. 

In some cases Bad has also been recorded however this is typically associated to an engine 
event where material has been released causing severe internal engine damage and as such has 
not been used. 

The engine condition report assessment therefore resulted in an exhaustive database of high 
pressure compressor and turbine detailed level of deterioration assessment Appendix 1, where 
several different engine condition combinations were made in order to pursue a detailed 
engine health monitoring assessment signature for each of the associated states. 

Invoice database 

In addition to the engine condition reports, overhauls shops also keep record of all of the 
associated findings.  A scrap, repair or acceptance database for each engine shop visits was 
therefore also assessed.  This separate database associates the engine shop visit against a level 
of strip and the set of material data.   

The data is recorded with percentages and associated costs in order to determine the relative 
importance of the parts going forward.  On the other hand it does not directly reflect the reason 
for scrap of a part.  Detailed engineering judgement is therefore required in order to associate 
scrap rates between engines for similar components. 

This assessment has been limited to material; a similar assessment would be possible to 
determine labour requirements for levels of strip, inspection, repair and build.  However this 
has been deemed to be outside of the scope of the current assessment as it further supports the 
findings but does not in itself improve the final result achieved. 

Due to the size of the file and the confidentiality of the data this spreadsheet is not here shared. 

Combined Data Set 

The original data from both sets available was subsequently cross referenced and associated to 
provide a list of engines where the level of deterioration has been assessed and in addition 
contains the hardware condition details.   The full list of engines was subsequently subdivided 
into the different combinations of levels of deterioration. 

The list of all of the possible combination levels of deterioration for the high pressure system 
then contained all of the material and cost data.  A summary overview for each of these was 
created in order to reduce the amount of detail required.  The overview, Figure 62 shows the 
HPC and HPT left and right respectively, Level 3 shop visit costs associated to the different 
degrees of deterioration identified.   

The data combinations therefore allowed each module to be assessed for level of deterioration, 
cost, material and level of strip carried out.  Subsequent assessments of the remaining data 
help determine the root cause of these similarities and deviations. 
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Figure 62 HPC and HPT Cost overview depending on the level of deterioration 

10.2.3 Associated cost assessment 

Based on the original set of shop visit reports available, the invoices and strip reports were 
reviewed to correlate the level of strip and the level of deterioration associated to the hardware 
inspection and rejection rate, to the costs of each respective shop visit. 

Due to limitation in the data available a total of 272 HPC refurbishments and 267 HPT 
refurbishments were used for the final compilation of the data. 

The associated cost data for each of the engine shop visits, was organized to align to the 
associated level of deterioration assessed based on the information available through the strip 
reports.  In addition, it was subdivided once again depending on the specific module level of 
strip as this also has a direct influence on the refurbishment costs. 

A good module should always have a reduced level of strip where as a deteriorated module is 
always expected to have a higher level of strip.  Deviations in this association would highlight 
a significant cost reduction gap which the new methodology proposed may prove to be a 
means of mitigation through the detailed understanding of the module level of deterioration 
prediction. 

The cost data associated to each of the determined levels of deterioration and levels of strip 
were added to generate the overall module cost of refurbishment.  All of the data for each of 
the subgroups was subsequently added to generate a module refurbishment cost table with the 
average, max, min and standard deviation cost of refurbishment [183]. 

This assessment showed the wide range of costs involved in an engine shop visit and its 
independence from its level of deterioration.  An assessment carried out based on the average 
costs, showed that engines with a good, good to normal and even normal levels of 
deterioration have a similar range of costs associated to their shop visits.  This is, 
independently of the level of deterioration of the engines, a similar amount of work is carried 
out on them.  This may not be required in some cases and is therefore within the objective of 
this assessment.  In addition, compressors with a normal to high, high and even bad levels of 
deterioration, also show similar associated costs. 

The turbine refurbishment cost data shows a similar independence from the level of 
deterioration.  In this case however engines with a level of deterioration qualified to be good 
have lower average associated costs, as would be expected.  Good to normal, normal and 
normal to high deteriorated turbine modules all show similar associated costs.  High and bad 
are again associated to similar higher costs, than the ones with normal levels of deterioration. 
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This association within the data shows that the current costs of refurbishment and level of strip 
associated to an engine at its induction is independent from the engines’ true level of 
deterioration.  This is a clear indication of the value of this new methodology to assess the 
detailed level of deterioration for each engine induction and optimize the shop visit cost. 

10.2.3.1 Qualitative assessment 

During a module refurbishment, parts which are determined to be scrap will be replaced or 
repaired.  However there are also many components that are replaced in order to meet the 
build life objective of the engine, even though the inspection results would be positive.  This 
is, the material utilization within the specific module was not optimized. 

The material assessment therefore shows that the parts replaced throughout several different 
modules, with different levels of deterioration is relatively consistent [184].  This is, parts are 
replaced independently of their level of deterioration, or the levels of deterioration are not 
clearly distinguished. 

The review of all 1000 shop visit reports only identified 70 HPT modules and 27 HPC 
modules where the complete material scrap data was available.  Due to the limited amount of 
data collected, the service experience from this assessment will not be considered to be 
representative of the prediction assessments carried out but will nevertheless be quantified as 
it provides an indication of the true values to be expected. 

The material data available was divided into the level of deterioration identified and 
subsequently subdivided into the level of strip carried out.  As expected high levels of 
deterioration show no low-levels of strip whereas low levels of deterioration show all of the 
associated levels of strip.  The data was reduced to the material replaced associated to each 
individual shop visit and level of strip and re-assessed to determine the actual replaced parts 
dependant of the level of deterioration.   

The associated level of deterioration prediction was associated to the knowledge database 
allowing a cross-reference of parts which will most likely require replacement dependant on 
the level of deterioration and maintenance. 

10.2.3.2 Quantitative assessment 

The material data was also reviewed from a quantitative point of view in order to assess the 
number of parts replaced in each case.  This is a direct cross reference of the cost and 
material data in order to further substantiate the service experience gathered.   

The material data was associated by level of deterioration and level of strip performed.  
Based on this, similarities between levels of deterioration and levels of strip were carried out 
to determine cross references. 

Once the associated level of deterioration prediction is determined an assessment to the 
number of parts required for the main scrap drivers is possible, based on this knowledge 
database.   
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10.2.4 Associated part requirement assessment 

The material utilization on engines with higher levels of deterioration is also seen to be higher.  
Based on the level of deterioration, the associated quantities of scrap material replaced on the 
modules assessed are seen to increase with the level of deterioration.  In addition and under 
normal condition, the level of utilization and the level of deterioration are on average 
proportional. 

There are several engine types, which have been in service for several years, where sufficient 
service data has been gathered, which substantiates this assessment.  This is, the engine 
maintenance plans, already detail higher associated costs or an increase of these parts when 
engines are kept on-wing longer.  These engine types are able to substantiate for an average 
engine refurbishment, how the refurbishment associated costs will be maintained and how 
from a certain point in time, although the engine is reliable and working appropriately the 
costs will substantially rise. 

The data gathered above allows this such an assessment, however due to the lack of data the 
specific point at which the costs increase and the specific incremental cost associated, would 
not be truly representative. 

However, the use of EHM data to determine the level of deterioration, allows a more detailed 
use of the data as it does not represent the associated costs of an engine or module 
refurbishment against the fleet average utilization but against the engine specific level of 
deterioration.  As deterioration may in some cases be independent of the actual utilization, this 
allows a more engine specific and detailed approach to the same assessment, directly reducing 
the associated costs. 

In addition, due to the similarities between engine designs and the common data points 
assessed, it may be possible to assume certain levels of deterioration and associated costs for 
new engines where no service data is available.  This is critical for appropriate planning not 
just of the engines maintenance but also for the programme budget planning. 

10.3 Engine Health Monitoring 

10.3.1 FADEC 

The main objective with the introduction of digital engine controls was and still is safety [7].  
This was achieved with the FADEC as it reduced the amount of pilot input required and 
monitored the engine for small changes several times per second with an immediate reaction 
time [8]. 

In addition, FADEC controls also contributed to other overall engine improvements as, 
improved fuel efficiency, by optimizing the engine for the specific ambient and internal 
conditions of the engine, automatic engine protection in the case of encountering an unsafe 
condition, care free handling allowing the pilots to concentrate on flying the aircraft and not 
on the engines, as well as reducing the amount of parameters to be monitored by the crew 
during each flight [1].  In addition, it also managed a semi-automatic engine start, monitored a 
greater number of parameters for a more accurate fault isolation system and had an inbuilt 
emergency response in case required, Figure 63. 
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Figure 63 FADEC system overview of EEC, main units and connecting harnesses 

!

Figure 64 Engine controls capability and reason versus reaction time chart 

The reaction time with which FADEC data is analysed also defines the type of task or 
improvement it addresses, Figure 64.  This way, and as shown in the chart, immediate reaction 
is carried out by the FADEC system itself to optimise the engine working conditions 
improving the operating costs, it also continuously monitors the engine, giving warning 
messages to the crew for pilot consideration and also contains the auto-protection system to 
react in case of a hazardous condition. 

The short term reaction benefits of digital engine controls are based around the integral 
condition monitoring of the engine.  The warnings and alerts highlighted by the system allow 
the maintenance crew to address these issues during overnight maintenance or at the 
established aircraft maintenance checks removing any operational concerns and reducing 
costs.  In addition the auto-protection system also reviews deterioration limits and manages the 
long and short term dispatch messages. 
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Long-term, the digital engine control is centred on the Engine Health monitoring (EHM) or 
condition monitoring of the engine.   This way, the EHM data assessment helps identify 
imminent working conditions where operation should be avoided, which in turn helps 
operators plan final routes for engine maintenance avoiding maintenance outside of the main 
maintenance base, improving maintenance costs [9].  

10.3.2 Types of data currently managed 

There are several different types of engine data recorded and monitored, Figure 65.  
Depending on the operation point of the aircraft, the engine monitor will carry out a different 
type of engine data assessment and management. 

Continuous data is monitored throughout the complete flight.   This is, the engine control 
system reviews all of the data points and optimizes the operation of the engine for the given 
working conditions and pilot requirements. 

Semi-continuous data is monitored and recorded at key flight phase points.  During take-off 
and landing and also if exceedances are identified the monitored data is physically recorded so 
that assessments may later be carried out. 

Snapshots of data are recorded during each flight.  A reduced number of data points are 
recorded at certain steady state conditions throughout the flight and at different points of the 
flight profile.  These are subsequently used for trending purposes. 

 

!

Figure 65 Overview of the main types of controls data gathering 
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The assessment of this data in any of the three forms may be used to assess the condition of 
the engine [10].  Maintenance information may be gathered to determine engine faults and 
determine if on-wing maintenance may be required.  Life cycle counting , may be determined 
to assure the number of cycles at a certain working condition that certain group A parts may 
have encountered in order to optimize the engine time on-wing. 

The data actually recorded throughout each flight is also different depending on the flight 
phase.  During take-off 164 different engine parameters may be recorded and monitored.  
During climb however, a reduced number, 131 parameters would be recorded.  During cruise 
the parameters monitored and recorded would be once again reduced to 54.  These parameters 
and the number of parameters per phase will change depending on the operator or the fleet; 
however they serve as examples of the level of detailed recorded during each phase. 

Trend assessments are carried out at cruise [11].  This is due to the fact that the engine is at a 
steady working condition, reducing the transient effects when comparing data from several 
different flights over several different years.   Even though 54 different parameters are 
recorded there are several key parameters that have been determined to give an appropriate 
level of detail about the engine working conditions.  The remainder of the parameters either 
enhance the level of knowledge about specific subsystems or allow a more detailed assessment 
if a certain deviation has been identified.   

10.3.3 Parameter and parameter correction and trimming 

Each engine is unique, due to the different build tolerances and measurement tolerances of the 
equipment.  In order to address this acceptable variance, engines are tested to determine that 
all of the parameters are within the appropriate working tolerances and then these are 
corrected.  This is carried out so that engines mounted on the same aircraft will show similar 
working conditions of pressure, temperature and power, easing the pilots’ workload. 

 

Figure 66 Parameter overview example of the actual, delta, and limit values 

One of the more critical parameters is TGT or turbine gas temperature; other parameters will 
be treated in a similar way, Figure 66.  During an engine pass-off test after first engine build 
or after refurbishment, TGT will be recorded at a specific speed and power settings.  This 
parameter reading will be compared against a model.  This model may be a worst case, a 
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certification model or a sea level model of the parameter for that engine type.  The difference 
between the true reading and the model is called Delta-TGT.   

In addition, there is a parameter redline.  Working above this redline is not allowed as it would 
directly affect the safety of the engine.  Different parameters will have different read lines with 
different concerns.  The difference between the true TGT reading and the redline is known as 
remaining TGT margin.  This is, as the engine deteriorates, the TGT working temperature will 
increase, reducing its TGT margin and thus limiting the engines’ remaining time on-wing. 

The true TGT reading is therefore monitored and compared against the baseline model to 
monitor its deviation from the model and against the redline to monitor its remaining margin.   

In addition parameter trimming is also performed during the engine pass-off test.  This is, a 
parameter like TGT needs to be commonalised so that the generic threshold values can be 
applied.  This is performed by interpolating these parameters to the trimmed EPR check gates 
and corrected to the appropriate ISA conditions. 

!

Figure 67 Cockpit view of engine status with both engine dials side by side 

Through this trimming, the cockpit indications may be operated to the generic TGT limits 
defined in the certification documentation.  This limit is generally the same as the one certified 
during the 150 hour endurance test.  In addition, this trimming allows generic relationships 
between engines to be measured, reducing the hardware scatter effects due to tolerances and 
modifications [97], Figure 67. 

!  
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10.4  Objective 1 - Interval-valued blind source separation applied to AI-based 
prognostic fault detection 

The main objective of applying blind source separation to interval valued data was to determine 
if the state of the engine could be interpreted from the values of the variables measured.  The 
new method proposed to address this first objective has made use of the existing tools and 
methods to increase their capability to interval valued data. 

This has resulted in a new method which enables the use of engine health monitoring data 
without the direct mis-use of variable filtering.  Thus enabling a more detailed understanding 
and interpretation of the data available. 

In addition, the new method is also able to combine any number of variables available and is not 
limited by the visual space.  It also enables the identification of known engine conditions and 
limitations as well as previous known service experience. 

10.4.1 Application of BSS to EHM interval valued data 

This new method using interval-valued data is applied in order to determine if small deviations 
to the engine working conditions may be identified, so as to gain the deterioration over time 
evolution of an engine.  This will determine if the small deviations of EHM data are visible in 
order to assess engine deterioration, as the current state of the art assessments solely review 
step changes in order to contain the safety and reliability of the fleet.   

Engine health monitoring data is collected from the engines’ individual entry into service date.  
As such, this method, will allow visualization of trend maps with shift signatures.  Cruise data 
for each of the individual variables of the engine being diagnosed, is expressed as increments 
over time with respect to an engine model extrapolated to the same flight condition, Figure 68. 

 

Figure 68 Typical example of an EHM variable over time plot 

Abnormalities may be detected when a signature is deemed to contain a high similarity to a 
prototype or lies above a specified threshold. With the help of the proposed maps, a diagnosis 
of known events and the subsequent assessment of deterioration is possible through visual 
examination of the trends.  
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Established or known abnormalities are expressed as thresholds that must not be exceeded. 
These abnormality signatures are derived from service data and service experience, and are 
expressed as thresholds that should not be exceeded.  EHM data, prototype and abnormality 
signatures are regarded as a mix of different sources and transformed with the proposed 
procedure that extends Blind Source Separation to interval-valued data 

The enhanced capability through the method proposed is gained where by it is now possible to 
detect whether the predicted signature is likely to come near a prototype or lies out of the 
confidence intervals defined by the current service experience knowledge database for the 
given engine fleet or even engine family. 

The EHM subset of cruise parameters is limited in this sample case to the assessment of the 
engine core, as such and based on the associated engine performance relation, the following 
six variables are considered: 

 

• FF - Fuel flow is a measure of the amount of work required.  
• N1, N2 - are the speeds of the low (N1) and high (N2) pressure systems in a two shaft 

engine.  
• P30 - This is the high pressure compressor exit pressure. This parameter identifies the 

amount of air that the combustion systems will receive. It also serves to determine how 
much air the compressor has been able to compress, as due to the engine design intake 
volumes can be assumed. The more deteriorated the compressor is, the lower P30 will be. 

• T30 - This is the high pressure compressor exit temperature. This parameter will vary 
depending on the amount of work required to compress the given volume of air and 
therefore will also give an indication of the overall level of deterioration of the 
compressor. The more deteriorated the compressor is, the lower T30 will be. 

• TGT - the Turbine Gas Temperature, is another way of understanding the amount of work 
carried out by the turbine, in line with fuel flow, as the more fuel that is delivered, the 
higher the TGT will be. However due to compressor flows and other factors this 
correlation is not always followed.    

Samples of FF, N1, N2, P30, T30 and TGT for two engines, Engine 1 and Engine 2 are shown 
in the left hand side of Figure 69 and Figure 70 respectively. Each black trace is a sequence of 
measurements taken from an engine. Green traces are prototypes of different events.  This is, 
each point of the green curves was sampled in a different plane. Red traces are subjective 
intervals for different abnormality conditions.  The right part of the figures, are the unmixed 
sources of these signals, obtained through the proposed methodology. 

The plot of the unmixed EHM parameters does not hold more information about the health of 
the engine than the raw EHM data.  However the engine path in phase space shows the 
correlation between these signals and the deterioration of the engine.  
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Figure 69 Engine 1 plot of the EHM variables and method assessment 
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Figure 70 Engine 2 plot of the EHM variables and method assessment 

The deterioration over time maps in Figure 71 and Figure 72, show the two first sources ICA1 
and ICA2 overlapped one against the other. Engine data forms a blue path, along with the 
prototypes of different events (green points) and interval-valued abnormality thresholds (red 
rectangles). In the map in Figure 71 the signatures of the engine are far from both the 
abnormality intervals and the prototypes.  The change in the properties of the engine after a 
shop visit are made evident by the jump in the engine trend to the right, marked with an arrow. 
The data is concentrated into two main clusters, before and after this engine shop visit, and the 
trend (data points near the label “ENGINE1-END”) do not indicate a probable short term 
event.  
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Figure 71 Engine 1, ICA 1 versus ICA 2 plot of deterioration over time 

On the other hand the map in Figure 72 shows an engine that repeatedly encounters 
abnormality thresholds.   Jumps in the engine trend caused by shop visits have also been 
marked with arrows.  The evolution of the engine from the starting point “ENGINE2-START” 
is shown in further detail in Figure 73. Here, it is clear how the relative position and size of 
the abnormality thresholds depend on the engine data. 

 



Monitorización del estado de flotas de motores usando análisis inteligente de datos para información 
intervalo-valorada y posibilistica!

!

New!Method!Proposal!Y!Applied!Method!Validation! 149!

!

 

Figure 72 Engine 2, ICA 1 versus ICA 2 plot of deterioration over time 

 

 

 

 

 

 

 



Engine Health monitoring and prognosis for engine fleets using intelligent data analysis of interval-
valued and possibilistic data!

!

New!Method!Proposal!Y!Applied!Method!Validation! 150!

!

 

 

Figure 73 Engine 2 close ups of overlapped sections where trend is over known deterioration 
areas 

10.5 Objective 2 - Engine health monitoring for engine fleets using fuzzy 
RadViz 

The new method developed has enabled the use of the complete scope of variable measurements 
to understand the engine working condition.  This is, through the use of the bandwidth sweep 
and the possibilistic assessment of the resulting data for each individual data point, a resulting 
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condition is provided on a likelihood level which in addition is in a format which may be further 
assessed. 

As such, the method has been further refined into a classification and representation method 
which enables the assessment of not only individual engine but also fleet and module level 
assessments. 

The method is initially used to assess the complete engine fleet with regards to the level of 
deterioration at module level.  This is, the engine health monitoring data is used and classified 
with regards to the module levels of deterioration.  The engines are subsequently classified in 
these combinations of core module deterioration. 

This is a significant step in the current use of engine health monitoring data as it already 
provides a significant understanding of the internal engine working conditions, not available 
today. 

The method has been then subsequently applied to engine specific cases, in order to interpret the 
actual module condition.  This is, the method is applied not to understand the condition of each 
module against the fleet, but the actual condition of the module specifically.  This provides an 
understanding of the actual level of deterioration of the engine and the actual modules within 
the engine. 

The complete set of data available and the additional use of the fleet experience are applied in 
these cases to predict the actual level of workscope that may be required in the case these engine 
would be inducted into an overhaul maintenance facility.  A prediction of the costs and parts 
required is also detailed within this prediction. 

These two case studies show the significant step change in the understanding and interpretation 
of the EHM data for the engine overhaul business.  The prediction of the level of workscope, the 
parts required and the actual costs of the shop visit which are a significant improvement to the 
existing EHM predictions for engine maintenance. 

10.5.1 Fleet Level Applied Example 

The complete assessment method was applied to the EHM data of 435 engines where the 
actual internal level of deterioration was known, as a means of establishing direct back to back 
effectivity of the method. 

The methodology was applied with the EHM data knowledge as the sole input and no further 
details with regards to the engines, or operators associated to these.  Each of the 435 
compressor and turbine modules where individually represented and associated to a level of 
deterioration class and its respective uncertainty ellipse.  In order to further ease the plot 
interpretation a colour coding was introduced in line with the associated class. 

The initial expectation of misclassification was assumed to range from approximately 0,04 to 
0,07 for the HPC module prediction and from approximately 0,06 to 0,10 for the HPT module, 
solely based on experience from previous trials and due to the variability ranges and 
bandwidths of the data. 

A first run of results was assessed against the actual levels of deterioration in order to establish 
the actual misclassification obtained.  A total of 50 misclassification where identified, when 
compared against the strip report assessment prediction.  This is approximately a 10% 
prediction mismatch. 
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These specific mismatched results were reviewed in further detail.  The methodology was re-
assessed with no substantial findings which would re-condition the results.  On the other hand 
the engine strip condition reports were also re- assessed.  The qualitative strip report re-
assessment determined that the actual condition of 30 out of these mismatched engines could 
be re-classified.  The subjective nature of the engine condition classification is therefore 
determined to be the root cause of more than half of the mismatched cases. 

The resulting 20 engines worth of mismatch are therefore considered as the methods own 
error.  This is, a total of 6 HPC modules and a total of 19 HPT modules were deemed to be 
misclassified.   

The EHM diagnosis tool generated under this methodology is determined to be capable of 
identifying HPC and HPT module deterioration states of normal to high, high and bad.  Due to 
the similarities and smaller deviations, the classification is determined to be less robust for the 
good, good to normal and normal classifications of deterioration.  However, if the centre point 
of the output is considered as a correct classification, then the average percentage of correct 
classifications is determined to be approximately 95% and 92% for the HPC and HPT modules 
respectively. 

The actual representation of the HPC and HPT modules of all 435 engines Figure 74, was 
carried out, following the RadViz method described.  The different classes anchored 
equidistantly around the perimeter.  Each individual engine module was then represented by 
positioning not only its class but also its associated uncertainty ellipse.   A large ellipse is 
equivalent to low confidence classification.  A change to the actual output may simply be 
associated to the kernel smoothing of the bandwidth or to the actual derivative itself.  

 

 

Figure 74 Fleet RadViz and polar representation  
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Independently of this, the plots in their current form, for each of the modules, show that the 
average condition of the fleet is in a normal or good to normal state, due to the proximity of 
the modules towards these classifications.  It is also visible how specific modules deviate 
substantially towards specific classifications and how the closer these are to a specific class, 
the ellipses are substantially smaller. 

Following the RadViz capabilities previously detailed, the charts were modified in order to 
attempt an improved visual condition of the fleet.  In this case, the classification was 
represented in polar coordinates, with the especial condition, of the RadViz anchors being all 
considered on the same plane.  The first immediate improvement is that through this, change, 
all of the different classes have an even representation, whereas in the previous circular 
representation, good compressor modules where represented next to bad compressor modules. 

In this way the classification of the level of deterioration of a module range from left to right 
as it further deteriorates and bottom to top as the accuracy in the classification of the level of 
deterioration is gained.  In addition, and as in the previous representation, the ellipses convey a 
methodology assurance on the level of confidence of the prediction.  Larger ellipses are 
obtained the further away from a single classification, due to the uncertainty of the prediction, 
however the closer to a single prediction, the ellipses also become smaller. 

This second form or representing the EHM data could also be used to establish the evolution 
of a single engine or engine module over time.  In this case, it would be possible to establish 
its evolution from left to right and from bottom to top.  This information could subsequently 
be used to carry out predictions on the engines or modules possible future state. 

10.5.2 Engine prognosis 

The circumferential RadViz representation of the class and classification uncertainty of two 
randomly selected engines was carried out.  The engine selection was established out of 
engines where the engine induction was planned to be carried out in the near future or had 
already been performed so as to be able to have a baseline comparison of the prognosis 
performed. 

The engine prognosis method is not only capable of predicting the overall engine level of 
deterioration, but it is capable of establishing a prognosis for the actual individual engine 
modules.  This prediction, due to the variables used is limited to the core modules of a two 
shaft engine.  A total of two plots are therefore provided for each engine as the resulting 
prognosis of the method, one for the HPC and another for the HPT module. 

10.5.2.1 Engine 1 Prognosis 

The results for Engine 1, Figure 75 show that the engine was in a good overall condition, 
with the compressor showing a level of deterioration deemed to be “good to normal” with 
high confidence of this being the case and with a small level of uncertainty of the level of 
deterioration being a different one.  As for the turbine module, this module was deemed to 
have a “good” overall level of deterioration.  However the position of the result also suggests 
that this level of deterioration may be progressing towards a “good to normal” state.  The 
level of uncertainty on the result however is low. 
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Figure 75 Engine 1 Compressor and Turbine module deterioration plot 

Based on this information, it may be suggested that neither the compressor nor the turbine 
module directly require a shop visit solely based on their level of deterioration.  However, 
should a shop visit be required for other reasons, this assessment may also be used as a 
prognosis tool.  As such, it is also determined that if a full overhaul of the compressor 
module is performed it would require approximately 150 new blades, 134 new vanes, at least 
28 new VSV levers and the compressor case would need to be repaired.  As for the turbine 
module, it is expected that such a module would require a new set of HPT stage 1 vanes, at 
least half a set of HPT stage 2 vanes, a low number of HPT stage 2 blades, as well as all of 
the air and oil RBSS pipes.  In addition, both the RBSS and the external cases would need to 
be repaired and in a low number of cases replaced. 

The overall prognosis of the overhaul cost suggests that the compressor module 
refurbishment would be cheaper than that of an average shop visit.  The turbine module 
refurbishment costs are also deemed to be cheaper than those from average refurbishment; 
however additional repair costs may be involved due to the state of the RBSS and the turbine 
case. 

10.5.2.2 Engine 2 Prognosis 

The results from Engine 2, Figure 76 show that the engine was in an average overall 
condition, with the compressor showing a level of deterioration deemed to be “normal” with 
an average confidence of this being the case and with an average level of uncertainty of the 
level of deterioration being a different one.  As for the turbine module, this module is 
deemed to have a “normal” overall level of deterioration.  The position of the result suggests 
that the exact level of “normal” deterioration is not precise; however the confidence of the 
turbine having a “normal” level of deterioration is clear. 
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Figure 76 Engine 2 Compressor and Turbine module deterioration plot 

The overall “normal” state of both modules suggests that the overhaul of this engine is 
optimal, before higher costs are incurred due to additional accumulated deterioration.  A full 
refurbishment of both modules is therefore suggested. 

It is considered that based on the level of deterioration, a compressor refurbishment would  
require approximately 293 new blades, 172 new vanes, at least 36 new VSV levers and a 
compressor case.  As for the turbine module, it is expected that such a module would require 
a new set of HPT stage 1 vanes as well as half a set of HPT stage 2 vanes.  At least one third 
of HPT stage 2 blades are expected to be replaced together with most of the heatshield.  The 
combustion chamber is deemed will most likely need to be repaired; however in some 
instances it is also replaced.  The air and oil RBSS pipes will be replaced and the RBSS will 
need to be repaired and in a low number of cases replaced. 

The overall prognosis of the overhaul cost suggests that the compressor module 
refurbishment would be the same as that of an average shop visit.  The turbine module 
refurbishment costs are also deemed to be the same as those from average refurbishment. 

10.5.3 Engine maintenance findings 

These specific engines were assessed in further detail not only to establish the module level of 
deterioration but to also consider the amount and type of hardware that was replaced as a 
result of the subject shop visit. 

In addition, the associated costs of the complete engine maintenance were assessed, however 
due to the limitation of the exercise to the core modules; a direct cost comparison was not 
possible. 
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10.5.3.1 Engine 1 Maintenance findings 

The first engine was removed from the aircraft on the 16th Jun 2010 and inducted as part of 
a planned shop visit on the 5th Jul 2010 in order to replace the HPT stage 1 blades.  No other 
in service issues were reported. 

The compressor module was visually inspected and a borescope inspection carried out which 
determined that the module was in a good overall state and that the strip of the module at this 
shop visit would not be required.  As such no further strip was carried out. 

The turbine module was stripped to replace the HPT stage 1 blades, as such, this component 
is not considered in the comparison.  The module was deemed to be in a good overall 
condition, with the following components replaced, full set of HPT stage 1 vanes, two thirds 
of HPT stage 2 vanes, a full set of HPT stage 2 blades and all of the RBSS air pipes.  In 
addition, the RBSS and the turbine case were both repaired. 

10.5.3.2 Engine 2 Maintenance findings 

This second engine was removed from the aircraft on the 22nd Aug 2006 and inducted as 
part of a planned shop visit on the 9th Oct 2006 in order to replace a time expired life limited 
part.  No other in service issues were reported. 

The compressor module was fully stripped as part of this shop visit due to its life exceeding 
the module softlife.  The module was deemed to be in an average overall condition, with the 
following components replaced, 2793 new blades, 183 new vanes, 97 new VSV levers as 
well as the repair of all of the compressor cases.  The module was deemed to be in a good 
overall condition, however due to the number of parts replaced, it is considered to be normal 
and representative of an average compressor refurbishment. 

The turbine module was stripped to replace the HPT stage 1 disc due to its time expiry.  As 
part of the module refurbishment the following components were replaced, 1 HPT stage 1 
vane, 11 HPT stage 2 blades and all of the heat shields and RBSS pipes.  In addition, 
however a high number of repairs were carried out, which include the combustion chamber, 
the RBSS and turbine case, and all of the HPT stage 2 blades and vanes. 

10.5.4  Prognosis Versus findings 

The results from both engine predictions and the subsequent findings can now be compared 
side-by-side in order to determine the level of accuracy of the method, both in predicting the 
level of deterioration of each module as well as the number of parts required for the 
subsequent refurbishment.   

10.5.4.1 Engine 1 Maintenance findings 

The results from Engine 1, show that the prediction deemed the HPC module to be in a good 
serviceable state which was capable of further continued flight.  The actual visual inspection 
of the HPC module concluded the same statement with no further strip performed. 

The turbine module results from Engine 1 also show a high level of accuracy between the 
prediction and the actual shop visit findings, where the replacement rates of the stage 1 
turbine vanes, and RBSS pipes, as well as the repair requirements of the RBSS and turbine 
case were identified, Figure 77.  The stage 2 prediction however with regards to the blades 



Monitorización del estado de flotas de motores usando análisis inteligente de datos para información 
intervalo-valorada y posibilistica!

!

New!Method!Proposal!Y!Applied!Method!Validation! 157!

!

and vanes was lower than that found during the strip.  Although the level of prediction for 
the vanes is deemed acceptable, the blade prediction was lower than reality, this however is 
considered to be due to the inspection of areas of the components with no direct effect on 
deterioration, as is the blade bedding or root front face area which are not visible to this 
method.   

!

Figure 77 Engine 1 prediction versus scrap parts comparison 

10.5.4.2 Engine 2 Maintenance findings 

The results from Engine 2, once again show high similarities between the predictions and the 
actual inspection findings.  The number of predicted compressor blades and vanes closely 
resembles that of the inspection findings, with the prediction in VSV lever replacement 
falling short. 

The turbine section prediction in this case shows a high level of accuracy with regards to the 
heastshields, combustion chamber and RBSS, Figure 78.  The prediction of the stage 2 
turbine blade replacement is slightly lower than reality; however the vane prediction on both 
stages is substantially lower than that found during the strip.  It is however acknowledged 
that there are a higher than average number of repairs carried out on both stages of vanes and 
as well as on the stage 2 blades, suggesting that the actual state of the hardware was in an 
interim state of deterioration. 

!

Figure 78 Engine 2 prediction versus scrap parts comparison 



Engine Health monitoring and prognosis for engine fleets using intelligent data analysis of interval-
valued and possibilistic data!

!

New!Method!Proposal!Y!Applied!Method!Validation! 158!

!

10.6 Objective 2.1- Sequential pattern mining applied to aeroengine diagnosis 
with uncertain Engine Health Monitoring data 

The application of PreFixSpan to the engine health monitoring assessment method developed to 
address the second objective is carried out to further refine the understanding in the variability 
of the results.  This method, similar to that used in DNA sequence mining methods is able to 
review the engine state to identify specific sequences of substantial meaning or others of no 
meaning what so ever in order to associate them to actual deterioration states or not. 

This method makes use of the results from the previous method to associate sequence of 
condition and not solely conditions in isolation.  As such engine deterioration of the prognosis 
of the deterioration may be assessed not on the individual deterioration but also though the 
sequence of events throughout the in-service life. 

The EHM data of seven-off engines where all of the overhaul data is known in sufficient detail 
and where the conditions were deemed to be representative of the fleet were used for this 
assessment.  The assessment also used different version of the model to determine the accuracy 
and benefit of the improved results.!

10.6.1 %%Numerical results and discussion 

Some diagnosis methods have been recently proposed that are based on the detection of 
certain signatures, that are combinations of EHM values known to be associated to a specific 
event [171]. The distances between each of these signatures and a sequence of EHM values 
measured on an engine constitutes a feature vector which could be fed to a classifier in order 
to predict the deterioration level of an engine. 

Many engines can be diagnosed in this way, however some defects will not be detected by a 
classifier operating under these principles, because the deterioration signatures are not yet 
known. This particular problem has been solved by using an all-inclusive catalog of 
signatures, in combination with a sample of engines where all of the sought defects are 
present. Feature selection techniques are applied for finding the most relevant signatures, or 
alternatively a classifier that implicitly performs a feature selection [185]. 

This second solution may be further developed, as not all defects are associated to a single 
signature. This will address the continuous equilibrium of deterioration between the HPC and 
the HPT where the combination of both effects masks the trend changes in EHM signals. In 
this case, not only the presence of certain combinations of signals but also the order in which 
they appear is relevant. In addition, the EHM combinations that are searched for, may appear 
in different defects or planes without actual specific faults.  

10.6.2 Experimental design 

The level of deterioration of an engine is determined through the inspections carried out 
during engine maintenance. The cycles at which certain events or findings occur are not 
known, as such it is not simple to map deterioration levels to sequences of events: a training 
sample made up of engines with the kind of faults that the proposed method can find is 
therefore not possible. 
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As such, engines without a detectable signature were selected, with the aim that some may 
contain the desired fault type. The experimental design in this section is guided to compare the 
results of a state-of-the-art signature-based classifier against the proposed approach.  

A total of 43 aeroengines were selected where the knowledge about the level of deterioration 
from the HPC of these engines was used to define three categories: low, normal and high 
levels of deterioration. The level of deterioration definition is changed however to define the 
expected life and not the level of deterioration.  A deterioration rate r has therefore been 
associated as  

6000−r ⋅*actual cycles=expected cycles 

where “actual cycles” is the number of cycles flown since the last shop visit, and “expected 
cycles” is the expected remaining life of the engine that is estimated on its release after 
maintenance. Rates between 0 and 0.75 are labelled as “low deterioration rate”, between 0.75 
and 1.25 are normal and higher than 1.25 are defined as abnormal deterioration rates. 

10.6.3 Compared results 

The procedure described in [185] has been applied initially to the sample of 43 engines as 
previously described. Random forests were used for the classification task [186]. Two 
different sets of EHM signals have been used. The dataset “EHM5” composed by the five 
signals TGT, FF, P30, T30 and N2, with two linguistic labels by variable. The dataset 
“EHM2” composed of two signals formed by compressing the five preceding values [171]. 
Three linguistic labels were used for discretising the compressed signals and 10-cv validation 
was used in all comparisons. In addiiton, the proposed method allows for the EPs to be 
assigned multiple labels and the output of the classifier to be consireded as a set of 
alternatives, for example “either low or normal deterioration”. As such, the expected test 
errors will not be numbers but intervals. 

 

 
Figure 79 Average accuracy (10-cv) for the datasets EHM2 and EHM5 using a signature-
based random forest classifier 

 
Figure 80 Average accuracy (10-cv) for the dataset EHM2 using PrefixSpan + CAEP 
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Figure 81 Average accuracy (10-cv) for the dataset EHM5 using PrefixSpan + CAEP 

 
Figure 82 Average accuracy (10-cv) for the dataset EHM2 using PrefixSpan + ECAEP 

 
Figure 83 Average accuracy (10-cv) for the dataset EHM5 using PrefixSpan + ECAEP 

In, Figure 80, Figure 81, Figure 82 and Figure 83 the accuracies of the different approaches 
being compared are shown. The statistical relevance of the differences is graphically shown in 
Figure 84. Six boxplots are used to establish the statistical relevance of the differences 
between signature-based approaches, Fuzzy PrefixSpan+CAEP and Fuzzy 
PrefixSpan+Extended CAEP (ECAEP). 

Figure 84 shows that approximately half of the engines in the training set are not properly 
diagnosed by a signature-based classifier. The results of applying Fuzzy PrefixSpan in 
combination with the original definition of EP improve these results for EHM2, however 
sequence mining does not seem to benefit EHM5.  

The support threshold for EHM2 was in turn high which meant that the number of frequent 
patterns and rules was small and the generalization capability of the rule base was therefore 
also high. The support of the frequent sequences for the best accuracy in EHM5 is too low , 
due to the fact that some rules were supported by only three transactions and therefore the 
classifier showed a poor test error. 

A noticeable improvement can be seen with the extended definition of EP proposed. The test 
error for the dataset EHM2 improves further and the results for EHM5 (75% of hits in test) is 
significantly better than that of the signature-based classifier (60%).  

The difference between the results for EHM5 and EHM2 with random forests is small, 
however the sequence mining algorithms are significantly different. The proposed algorithm is 
more efficient if the sequences comprise an alphabet of symbols of small size in relation to the 
number of instances assessed. As a reduced alphabet would limit the new capability of the 
method developed  the compression of the signals before they are discretized is stablished. 
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Figure 84 Boxplots showing, for the datasets EHM2 and EHM5, the statistical relevance of the 
differences between signature-based , PrefixSpan+CAEP and PrefixSpan+Extended CAEP  

10.7 Objective 3 - Aeroengine prognosis through Genetic Distal Learning 
applied to uncertain Engine Health Monitoring data  

The final prognosis method has been applied at modular level to the engine fleet.  This is to 
understand not only the RUL at engine level but to gain the capability of performing trade-
studies and cost estimates, should a module remaining on-wing for an optimized overall engine 
return. 

The use of distal learning techniques to indirectly identify the engine and module deterioration 
rate bridges the gap from the existing tools, which cannot differentiate between a deteriorated 
engine or an engine working under unfavourable conditions.  The comparison of the modelled 
integral rate against the average predicted build life objective of the engine provides the 
required prognosis understanding. 

This new method was applied to a significant number of engine shop visits, where the level of 
deterioration of the engine modules at the time of induction was known.  However in addition, 
both the EHM data and the build life objective were considered, in order to validate the method. 

In addition, and in order to determine the additional value provided by this prognosis, the 
current Service Experience based shop visit plan was used as a comparative baseline for the 
results. 

10.7.1 Individual Engine Case Study 

The unfiltered EHM signals are shown in Figure 85, together with their filtered derivatives for 
a particular bandwidth, as well as the outputs of the deterioration rate models and the outputs 
of the prognostic indicators. The green curves in the two plots in the lower part of the figure 
are the outputs of the deterioration rate model.  
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The combination of EHM signals around sample 1500 show a particularly harsh set of 
conditions for the compressor.  In addition, it is also visible that the level of deterioration of 
the compressor and turbine alternate with time.  

The red curves are the integral of the deterioration.  The initial life of HPC and HPT is 
assumed to be 5000 cycles in line with the minimum build life objective. The circles at the end 
of the red curves are the measured life of these elements as observed at the shop visit. The 
difference between the height of these circles and the red curves are the centerpoint of the 
fitness function defined.!

 
Figure 85 Chart overview showing the EHM signals, slopes of the filtered EHM signals for a 
given bandwidth, HPC and HPT deterioration rates and prognostic indicators  

10.7.2 Prognosis Results Comparison 

The deterioration assessment method developed was applied to a sample of 43 engines where 
the classification stage was replaced by a regression module that approximates the expected 
life of either the HPC or the HPT. Random forests were subsequently used for the regression.  
However the dispersion of the classification was not dismissed, to only consider the centroids 
of the feature vector.  

The baseline model used as reference considers a constant deterioration rate equal to 1. This 
is, the expected life of the engine is considered as the difference between the initial life of the 
module and the number of cycles the engine has flown. This is deemed to be in line with the 
current policy based method of fleet management. 

The Genetic Distal Learning of a FRBS was combined with a 0-th order prognosis indicator 
and a unity extrapolated deterioration rate. A 10-cv validation was used in all comparisons. 
The back to back assessment results are shown in Figure 86.  
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The Distal Learning method is shown to be the optimum alternative for both HPC and HPT, 
however the accuracy gain of the method with respect to the standard scheduling is improved 
for the compressors (20% on average) more than for the turbines (4%). 

 

!

Figure 86 Average accuracy (10-cv) for HPC and HPT using a Distal Learning, a Signature-
based Random Forest regression model and the standard procedure 

The!relevance!of!the differences between the methods are illustrated in Figure 87, Figure 88 
and Figure 89.  Figure 87 shows three boxplots with the dispersion of the 10-cv test results 
with the absolute differences between the HPC predicted life and the measured values for 
Distal, Signature-based and Standard techniques for the HPC module. The same boxplots are 
shown for the HPT in Figure 88.!

!

 Figure 87 Dispersion of the 10-cv test results with the absolute differences between the 
predicted life and the measured values for Distal, Signature-based and Standard techniques in 
HPC 
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Figure 88 Dispersion of the 10-cv test results with the absolute differences between the 
predicted life and the measured values for Distal, Signature-based and Standard techniques in 
HPT 

The p-values of the paired differences between the standard method and the proposed 
algorithm are negligible for both HPC and HPT, although the percent gain is much higher for 
compressors. A boxplot with these paired differences is shown in Figure 89.  

The figure also aids justify the p-value found in the statistical tests with regards to the 
difference of the mean accuracy in both algorithms.  The differences are lower or equal than 
zero in all cases, highlighting that Distal Learning is a direct improvement to the standard 
maintenance scheduling method. 
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Figure 89 Boxplot of the paired differences between Standard and Distal algorithms, showing 
that the proposed algorithm improved the standard maintenance schedule for all folds in the 
validation. 

!  
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11 Business Applications 

The current shop visit planning capabilities are limited to the engine fleet specific service 
experience.  Read across from other engine fleets is possible, however detailed engineering 
knowledge is required and does not directly aid an in-year view required for maintenance 
facility capacity planning. 

Developments to further refine the engine fleet refurbishment intervals and associated 
maintenance costs have been carried out in recent years, but these do not address engine specific 
and in-year concerns. 

In addition, the current drive for optimized costs has driven certain aspects of the business into 
unknown areas.  In addition, the trade-off effects between revenue, maintenance cost and unit 
costs are not clear. 

The tools here developed to determine the level of deterioration and associated level of 
maintenance, together with the prognosis method to establish this level of deterioration at any 
one time, are a substantial improvement to the business. 

11.1 Business Improvement  

The engine level of deterioration understanding does not solely affect the engine maintenance 
planning and the safety & reliability of the fleet.  Understanding the actual state and condition 
of each engine within the fleet, also helps optimize the overall efforts required to manage the 
in-service fleet. 

The direct interactions between the service management areas for which these methods where 
initially developed interfaces with other areas of the business which will also benefit from 
these tools.  As such, the business and financial areas, as well as the on-wing fleet 
management operation departments will gain a new capability of assessment, of a substantially 
improved level of confidence in the cost predictions for the fleet. 

In addition, the method in which the data in compiled and assessed is also influenced through 
these new methods developed, as it is the first direct link of EHM data to overhaul 
maintenance shop data.  This in turn will improve the forecast accuracy not just at a parts 
utilization level but also at an engine unplanned removal, which will in turn directly influence 
the number of required lease engines to support the fleet.  
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Figure 90 Cross-business dependency of appropriate engine maintenance planning overview 

These interlinks between departments and areas of the business extend the amount of 
influence of the new methods developed further away from the direct maintenance cost 
planning area for which they were initially proposed, Figure 90 due to the substantial 
improvement they provide for the overall business plan and assumption assurance. 

11.2 Maintenance Improvement 

Aside from the overall business improvements detailed these new methods the initial goal was 
the optimization and prognosis of engine deterioration for shop visit maintenance planning.  
To this effect, the methods developed may be determined to have addressed the objectives set.  

Overhaul facilities, may now, know the level of workscope required for an engine months 
prior to its induction, allowing sufficient time to plan the work, request the main required parts 
and most importantly reduce workscope creep during the engine refurbishment. 

Based on the direct benefits of engine turn-around-time improvements and the improved 
workscope prediction, reduced unnecessary maintenance, due to this forward planning gained 
capability is deemed will contribute towards increased profits on the current planned engine 
management costs for the fleets. 

In addition, this work will also improve reliability as it will reduce the amount of time 
currently required to identify a sub-fleet of affected engines against an event engine trend.  A 
comparison could now be carried out immediately across the complete fleet based on this 
method, substantially reducing the reaction time and improving the granularity of the 
assessment, reducing the number of affected engines only to those truly affected.  
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12 Conclusions and Future Work 

The new methods developed have been shown to address the objectives set.  The business 
requirements have been address and an improved method of understanding the flying fleet is 
available which allows for long term planning, and detailed cost understanding. 

In addition, and to address one of the main areas required at the beginning of this assessment, 
the methods developed are easily transferrable between engine types and do not need detailed 
technical understanding of the engine in order to establish and understand the results.  This is a 
key aspect as there are several similar engine fleets at different stages within the life cycle, on 
which detailed understanding is not yet possible. 

The transfer from the fleet assessment tools available to understand the optimized shop visit 
intervals for fleet planning on engine fleets under development need to now be transferred to the 
engine specific and shop visit capacity methods developed.  The direct application of these 
models to these new engine types is therefore a substantial benefit. 

Further developments are however possible in order to improve the accuracy of the predictions 
both from a mathematical point of view as well as from a qualitative data knowledge database 
point.  Improvements in either of these areas will directly influence the current method 
capabilities. 

12.1 !Objective 1 - Interval-valued blind source separation applied to AI-based 
prognostic fault detection 

The numerical algorithm to carry out the blind source separation with interval-valued data 
used an infomax criterion on the basis of an upper and lower bounds of the Kullback-Leibler 
divergence which in turn, had dependence on a nearest-neighbour estimator of the density and 
a Monte-Carlo simulation.  The results obtained with synthetic data suggested the algorithm 
was able to unmix certain signals whose combination was imprecisely perceived. 

The technique was applied to the design of EHM data maps for prognostic fault detection of 
engines, linking engine trend shift signatures with known failures and abnormality thresholds. 
The resulting graph showed the impact of shop visits and the wear out of engines which could 
be used to make short term predictions of the evolution of an engine. 

In future assessments, by extending interval-valued BSS to possibilistic data, confidence 
intervals of EHM variables could be used in combination with abnormality thresholds. Joint 
maps of the planes within a fleet could be considered where these confidence intervals would 
be part of an anomaly detector able to signal the presence of abnormal engines. 

12.2  Objective 2 - Engine health monitoring for engine fleets using fuzzy 
RadViz 

A graphical map of the health of engine fleets was proposed. The diagnosis tool searched for 
the presence of characteristic combinations of slopes in different EHM-related signals, by 
means of a possibilistic pre-processing of the data and an LDA-inspired GFS which diagnosed 
the deterioration level of an engine.  
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The pre-processing was shown to be robust against noise in the data and the natural 
differences between different types of engines. The map jointly displayed all engines within a 
given fleet, and could also show the degree of confidence in the diagnosis along with the 
robustness of the classification, understood as the variability of the outcome of the classifier 
under changes in the bandwidth of the filter and the thresholds in the discretization of the 
derivative of the signals. 

In future work, the map could be used to predict the evolution of individual engines by 
extrapolating the trend of different projections of the same engine. 

12.3  Objective 2.1- Sequential pattern mining applied to aeroengine diagnosis 
with uncertain Engine Health Monitoring data 

This part of the assessment showed the potential to diagnose the level of deterioration or the 
occurrence of a significant event on aeroengines through the use of EHM data applying 
sequence mining techniques. Most of the engines will be diagnosed through the existing 
techniques, but there are certain types of defects that will not be associated to a change in the 
slope of the EHM data but as an ordered sequence of events which would be dismissed if 
considered independently. 

The PrefixSpan algorithm, adapted for uncertain data, has been used to mine sequences 
composed of linguistic items, which in turn were fuzzy discretizations of EHM variables. 
Some of the frequent sequential patterns found by this algorithm were identified as Emerging 
Patterns, which were in turn established as fuzzy rules.  

An extension of the characterization of an EP was proposed which improved the 
generalization capabilities of the classifier for this particular problem. The results showed that 
previous diagnostic methods could be improved by including the new algorithm in the 
catalogue of diagnosing techniques. 

In future works the prognosis problem could also be addressed in order to attempt to estimate 
the remaining useful life of an engine, through a prediction of the deterioration rate of an 
engine. 

12.4 Objective 3 - Aeroengine prognosis through Genetic Distal Learning 
applied to uncertain Engine Health Monitoring data  

The prognosis method developed has shown the potential to predict the remaining life of an 
engine through the use of EHM data applying Genetic Distal Learning techniques.  

The supervised learning with a distal teacher paradigm, adapted for uncertain data and genetic 
algorithms, has been applied in order to learn FRBS from sequences composed of fuzzy 
discretizations of the different EHM variables.  In turn these FRBS were used to predict the 
deterioration rate of the HPC or HPT within an aeroengine.  

An ageing model that integrates these instantaneous deteriorations was developed which 
produced an online estimation of the remaining life of the engine. As a by-product of the 
learning process, the FRBS showed that the combinations of EHM values were associated 
with an increased level of deterioration for the HPC or HPT therefore detecting the cycles 
where the deterioration was higher.  The opposite was also shown to be true for those cases 
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where reduced levels of deterioration were incurred. The results have been tested with a 
representative sample of planes.  

It was therefore determined that the results from previous prognostic methods could be 
improved through the inclusion of the new algorithm in the existing available catalogue of 
assessment techniques. 

12.5 Knowledge!Database!

The cost of refurbishment of and engine and its associated level of strip is known determined 
to be independent from its own individual level of deterioration.  In many cases this is most 
likely due to primary requirements in order to meet the engine build life objective or due to 
group A parts being time expired.  However there are many other shop visits, where the actual 
costs do not align to the engines’ or modules’ own level of deterioration.  It is here that this 
assessment will avoid generic average workscopes and help tailor module specific workscopes 
that will reduce refurbishment costs or predict with increased reaction time the amount of 
workscope that the module will require. 

Due to the lack of complete data, extrapolations have been made, in order to associate certain 
levels of deterioration to the relevant cost and material data for engines with similar levels of 
deterioration.  The validation and cross reference of the number of parts replaced and cost of 
refurbishment is deemed to be good substantiating evidence that the service experience 
gathered to date is appropriate and although not directly representative of the engines assessed 
is a good indication of the level of deterioration through the use of data from other engines 
where similar levels of deterioration were identified. 

In future developments, cross-references between engine types and the engine level of 
knowledge needs to be updated in order to address these issues.  The associated costs and their 
understanding may be further refined in order to improve the accuracy of the actual hop visit 
cost predictions. 

 

 
 
!  
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13 Publications, Patents and Awards 

The assessments developed and detailed within this thesis have been submitted to several 
journals and conferences and are at different stages of approval at the time of submission of this 
thesis.  The status here described is an actual status at the time of submission. 

In addition, the innovative methodology developed to establish the possibilistic condition 
understanding of an engine through the use of the multi-variable unfiltered has been the subject 
of significant repercussion which is further detailed in the patents and awards subsection. 

13.1 Publications 

13.1.1 Interval-valued blind source separation applied to AI-based prognostic 
fault detection  

Authors: A Martinez, L Sanchez, I Couso 

Reference: Journal of Multiple-Valued Logic and Soft Computing. Vol 22, Number 1-2, pp. 
151-166 (2014) 

This paper, Attachment 17.1 was raised to address the initial objective of establishing a 
method which was capable of determining the distance of en engine to other known states.  
This paper covered in detail the extension of blind source separation to interval valued data. 

Impact factor 2012: 1.047 

13.1.2 Engine health monitoring for engine fleets using fuzzy RadViz 

Authors: A Martinez, L Sanchez, I Couso 

Reference: Proc. FUZZ-IEEE 2013, pp 1-8. doi: 10.1109/FUZZ-IEEE.2013.6622420 

This paper, Attachment 17.2 was raised to address the second objective of establishing a 
method which was capable of utilizing the complete set of multi-variable data without 
filtering in order to determine the deterioration condition of the engine.  This paper covered 
in detail the bandwidth associated fuzzy filter and its subsequent possibilistic utilization.  
The paper then went on to establish a visualization method enabling a visual overview of 
fleets based on their individual deterioration. 

The paper was formally presented on the 8th July 2013 at the IEEE International Conference 
on Fuzzy Systems 2013 conference. 

Current State – Presented 8th Jul 2013 at conference 

 

!
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13.1.3 Improved Life Cycle Cost – Reduced engine maintenance through engine 
health monitoring genetic fuzzy system – method validation and case 
study 

Authors: A Martinez, L Sanchez, I Couso 

This paper, Attachment 17.3 was raised to serve as a worked example and a more detailed 
explanation of the paper on the use of fuzzy RadViz for EHM data management.  The paper 
then goes on to detail the cost and management improvements enabled by this level of 
understanding prior to an engine induction. 

The paper has been formally accepted for presentation on the 24th February 2014 at the 
ASME Turbo Expo 2014 conference. 

Current State – Accepted, to be presented at conference 

13.1.4 Sequential pattern mining applied to aeroengine diagnosis with uncertain 
Engine Health Monitoring data 

Authors: A Palacios, A Martinez, L Sanchez, I Couso 

This paper, Attachment 17.4 was raised as a collaboration to determine the possible 
identification of events within the engine which may only be of concern should they occur 
on a specific sequence.  This is, although the Compressor-Turbine equilibrium is known 
there may be other unknown relations which may this way be identified and assessed. 

The paper is currently under review by the Engineering Applications of Artificial 
Intelligence journal 

Current State – Submitted 

Impact Factor 2012: 1.625    

13.1.5 Aeroengine prognosis through Genetic Distal Learning applied to 
uncertain Engine Health Monitoring data%

Authors: A Martinez, L Sanchez, I Couso 

This paper, Attachment 17.5 was raised to highlight the associated developed prognosis to 
the possibilistic results obtained by the new deterioration identification and classification 
method.  The paper associates the possibilistic results to provide a prognosis of the level of 
deterioration as the integral difference of the model and the original release life. 

The paper has been formally accepted for presentation on the 5th March 2014 at the 2014 
IEEE International Conference on Fuzzy Systems conference. 

Current State – Accepted, to be presented at conference 
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13.2 Patents and awards 

13.2.1 Patent%

The method exposed as part of the fuzzy RadViz assessment of EHM data, Attachment 17.2 
which addresses the second objective has been submitted to the European Patent Office for 
formal review as a part of the patent application process.  This patent application was filed 
on the 10th October 2013 with an associated submission reference number 2342844 and an 
application number EP13188188. 

13.2.2 IEEE 2013 Outstanding Paper Award 

This same paper, Attachment 17.2 was submitted and presented to the IEEE international 
conference on fuzzy systems held at Hyderabad, India in July 2013.   At this conference, the 
paper was awarded the IEEE 2013 Outstanding Paper Award. 

13.2.3 Rolls-Royce Deutschland Innovation Award – Publications%

In addition, the paper, Attachment 17.2 was also awarded the First Price - Rolls-Royce 
Deutschland Innovation Award – Publications.   This is a company-wide award which 
includes all contributions from Rolls-Royce internally, the associated University Technology 
Centres and from other associated contributions where Rolls-Royce may have had a 
contribution or has shared knowledge. 
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16 Appendix 

16.1 Appendix 1 – Engine deterioration assessment based on strip reports 
 

Shop 
visit  

Date of 
removal CSN HPC condition HPT Condition 

ESV-1 02.06.2006 8321 normal to high normal to high 
ESV-2 15.10.2005 8798 normal to high normal to high 
ESV-3 15.05.2007 9778 normal to high normal to high 
ESV-4 13.10.2011 13426 normal to high normal to high 
ESV-5 13.10.2011 13426 normal to high normal to high 
ESV-6 06.05.2009 18629 normal to high normal  
ESV-7 18.12.2008 7647 normal to high normal 
ESV-8 01.05.2009 8361 normal to high normal 
ESV-9 07.11.2006 10393 normal to high normal 
ESV-10 06.06.2006 10965 normal to high normal 
ESV-11 31.01.2008 11997 normal to high normal 
ESV-12 19.10.2007 12100 normal to high normal 
ESV-13 20.10.2009 14913 normal to high normal 
ESV-14 10.09.2011 21082 normal to high normal 
ESV-15 09.07.2012 22586 normal to high normal 
ESV-16 09.07.2012 22586 normal to high normal 
ESV-17 01.11.2005 7885 normal to high high 
ESV-18 21.05.2005 8129 normal to high high 
ESV-19 22.05.2005 9871 normal to high high 
ESV-20 20.07.2005 11018 normal to high high 
ESV-21 24.09.2007 21299 normal to high high 
ESV-22 02.06.2006 4584 normal to high good to normal 
ESV-23 09.06.2006 7311 normal to high good to normal 
ESV-24 14.03.2007 9548 normal to high good to normal 
ESV-25 04.03.2008 9844 normal to high good to normal 
ESV-26 09.10.2007 9929 normal to high good to normal 
ESV-27 19.12.2006 10181 normal to high good to normal 
ESV-28 01.04.2008 10332 normal to high good to normal 
ESV-29 18.01.2005 11115 normal to high good to normal 
ESV-30 08.02.2006 12558 normal to high good to normal 
ESV-31 06.05.2009 13168 normal to high good to normal 
ESV-32 20.05.2005 13513 normal to high good to normal 
ESV-33 29.09.2006 14705 normal to high good to normal 
ESV-34 11.10.2008 14773 normal to high good to normal 
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Shop 
visit  

Date of 
removal CSN HPC condition HPT Condition 

ESV-35 05.05.2011 17624 normal to high good to normal 
ESV-36 21.02.2010 28218 normal to high good to normal 
ESV-37 06.08.2012 19810 normal to high good to normal 
ESV-38 28.01.2013 12994 normal to high good to normal 
ESV-39 06.08.2012 19810 normal to high good to normal 
ESV-40 28.01.2013 12994 normal to high good to normal 
ESV-41 02.02.2003 4468 normal to high good  
ESV-42 27.11.2003 3488 normal to high good 
ESV-43 04.02.2004 3731 normal to high good 
ESV-44 02.03.2003 3904 normal to high good 
ESV-45 07.08.2002 3987 normal to high good 
ESV-46 03.02.2003 4147 normal to high good 
ESV-47 01.09.2003 4619 normal to high good 
ESV-48 03.08.2004 4660 normal to high good 
ESV-49 26.08.2004 5945 normal to high good 
ESV-50 01.06.2004 6693 normal to high good 
ESV-51 18.01.2005 6761 normal to high good 
ESV-52 03.09.2003 7620 normal to high good 
ESV-53 07.09.2010 15356 normal to high good 
ESV-54 31.07.2010 17496 normal to high good 
ESV-55 16.02.2006 12486 normal  normal to high 
ESV-56 25.03.2009 19022 normal  normal  
ESV-57 17.07.2007 9702 normal  normal 
ESV-58 26.09.2008 13088 normal  normal 
ESV-59 02.09.2008 16979 normal  normal 
ESV-60 29.12.2006 10759 normal  high 
ESV-61 15.01.2010 11096 normal  good 
ESV-62 08.08.2012 17220 normal  good 
ESV-63 08.08.2012 17220 normal  good 
ESV-64 08.01.2010 14305 normal nornal 
ESV-65 24.04.2004 6127 normal normal to high 
ESV-66 29.06.2005 6675 normal normal to high 
ESV-67 21.02.2006 8959 normal normal to high 
ESV-68 06.07.2009 9094 normal normal to high 
ESV-69 23.06.2005 9225 normal normal to high 
ESV-70 27.12.2005 10435 normal normal to high 
ESV-71 31.01.2007 11076 normal normal to high 
ESV-72 28.04.2009 11181 normal normal to high 
ESV-73 28.03.2007 12060 normal normal to high 
ESV-74 29.04.2005 13061 normal normal to high 
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Shop 
visit  

Date of 
removal CSN HPC condition HPT Condition 

ESV-75 01.10.2005 13106 normal normal to high 
ESV-76 13.03.2007 13681 normal normal to high 
ESV-77 06.06.2007 13747 normal normal to high 
ESV-78 02.11.2008 13981 normal normal to high 
ESV-79 30.06.2007 14830 normal normal to high 
ESV-80 30.10.2008 15343 normal normal to high 
ESV-81 22.09.2008 15369 normal normal to high 
ESV-82 21.09.2007 15438 normal normal to high 
ESV-83 15.02.2009 17058 normal normal to high 
ESV-84 01.02.2007 17421 normal normal to high 
ESV-85 22.01.2011 19379 normal normal to high 
ESV-86 22.02.2012 20667 normal normal to high 
ESV-87 12.02.2009 22682 normal normal to high 
ESV-88 20.09.2012 34619 normal normal to high 
ESV-89 24.10.2012 20715 normal normal to high 
ESV-90 07.11.2012 19515 normal normal to high 
ESV-91 20.09.2012 34619 normal normal to high 
ESV-92 24.10.2012 20715 normal normal to high 
ESV-93 07.11.2012 19515 normal normal to high 
ESV-94 03.08.2002 3589 normal normal 
ESV-95 27.07.2003 4068 normal normal 
ESV-96 23.06.2002 4381 normal normal 
ESV-97 06.03.2003 4883 normal normal 
ESV-98 01.10.2004 4991 normal normal 
ESV-99 06.10.2003 5669 normal normal 
ESV-100 16.09.2004 6626 normal normal 
ESV-101 14.08.2005 7011 normal normal 
ESV-102 21.12.2003 7403 normal normal 
ESV-103 22.07.2004 7503 normal normal 
ESV-104 24.08.2008 7883 normal normal 
ESV-105 01.04.2005 8283 normal normal 
ESV-106 05.08.2008 8455 normal normal 
ESV-107 16.10.2006 8477 normal normal 
ESV-108 06.05.2008 8523 normal normal 
ESV-109 05.09.2008 8539 normal normal 
ESV-110 24.03.2007 8563 normal normal 
ESV-111 07.08.2008 8632 normal normal 
ESV-112 11.03.2009 8786 normal normal 
ESV-113 21.02.2006 8800 normal normal 
ESV-114 27.04.2007 8986 normal normal 
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Shop 
visit  

Date of 
removal CSN HPC condition HPT Condition 

ESV-115 01.08.2008 8996 normal normal 
ESV-116 31.10.2006 9268 normal normal 
ESV-117 22.04.2007 9309 normal normal 
ESV-118 04.04.2008 9355 normal normal 
ESV-119 02.10.2006 9356 normal normal 
ESV-120 02.02.2008 9428 normal normal 
ESV-121 14.11.2004 9436 normal normal 
ESV-122 05.09.2007 9490 normal normal 
ESV-123 25.04.2007 9503 normal normal 
ESV-124 21.07.2007 9724 normal normal 
ESV-125 06.06.2007 9734 normal normal 
ESV-126 04.03.2007 9780 normal normal 
ESV-127 05.10.2005 9836 normal normal 
ESV-128 02.04.2006 10230 normal normal 
ESV-129 07.08.2007 10300 normal normal 
ESV-130 02.05.2007 10351 normal normal 
ESV-131 29.09.2007 10457 normal normal 
ESV-132 11.11.2009 10567 normal normal 
ESV-133 01.05.2010 10815 normal normal 
ESV-134 24.06.2007 10823 normal normal 
ESV-135 27.06.2007 11151 normal normal 
ESV-136 22.08.2006 11373 normal normal 
ESV-137 02.11.2007 11513 normal normal 
ESV-138 16.09.2010 11731 normal normal 
ESV-139 09.04.2008 11734 normal normal 
ESV-140 22.03.2009 11933 normal normal 
ESV-141 02.04.2008 11975 normal normal 
ESV-142 25.06.2010 12234 normal normal 
ESV-143 13.01.2007 12417 normal normal 
ESV-144 15.03.2009 12662 normal normal 
ESV-145 08.03.2009 12663 normal normal 
ESV-146 30.10.2008 12726 normal normal 
ESV-147 24.02.2007 12970 normal normal 
ESV-148 11.02.2009 13100 normal normal 
ESV-149 31.01.2005 13162 normal normal 
ESV-150 04.04.2007 13206 normal normal 
ESV-151 19.11.2008 13234 normal normal 
ESV-152 11.06.2008 13284 normal normal 
ESV-153 07.07.2007 13354 normal normal 
ESV-154 22.02.2007 13361 normal normal 
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Shop 
visit  

Date of 
removal CSN HPC condition HPT Condition 

ESV-155 19.07.2007 13451 normal normal 
ESV-156 09.07.2009 13585 normal normal 
ESV-157 23.05.2006 13648 normal normal 
ESV-158 16.05.2012 13810 normal normal 
ESV-159 23.11.2008 13901 normal normal 
ESV-160 24.02.2008 14146 normal normal 
ESV-161 27.04.2008 14376 normal normal 
ESV-162 01.04.2009 14405 normal normal 
ESV-163 10.02.2009 14460 normal normal 
ESV-164 09.08.2009 14727 normal normal 
ESV-165 21.07.2007 14778 normal normal 
ESV-166 03.03.2010 15021 normal normal 
ESV-167 30.06.2008 15108 normal normal 
ESV-168 25.05.2008 15283 normal normal 
ESV-169 08.11.2007 15406 normal normal 
ESV-170 07.07.2009 15467 normal normal 
ESV-171 01.09.2010 16504 normal normal 
ESV-172 21.03.2009 16590 normal normal 
ESV-173 30.10.2008 16623 normal normal 
ESV-174 02.07.2008 16752 normal normal 
ESV-175 31.12.2009 16778 normal normal 
ESV-176 09.11.2012 16855 normal normal 
ESV-177 22.12.2009 16997 normal normal 
ESV-178 02.08.2007 17102 normal normal 
ESV-179 28.04.2009 17219 normal normal 
ESV-180 17.09.2008 17318 normal normal 
ESV-181 31.12.2010 17682 normal normal 
ESV-182 31.07.2009 18251 normal normal 
ESV-183 26.04.2011 18621 normal normal 
ESV-184 06.05.2007 19395 normal normal 
ESV-185 21.02.2008 19923 normal normal 
ESV-186 28.01.2008 20013 normal normal 
ESV-187 14.11.2007 20027 normal normal 
ESV-188 25.10.2007 20043 normal normal 
ESV-189 10.06.2007 20701 normal normal 
ESV-190 01.09.2011 21511 normal normal 
ESV-191 22.12.2007 21633 normal normal 
ESV-192 02.02.2009 22850 normal normal 
ESV-193 07.09.2010 26804 normal normal 
ESV-194 16.07.2012 19907 normal normal 
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Shop 
visit  

Date of 
removal CSN HPC condition HPT Condition 

ESV-195 26.10.2012 18895 normal normal 
ESV-196 11.11.2012 19781 normal normal 
ESV-197 14.01.2013 11483 normal normal 
ESV-198 04.02.2012 14453 normal normal 
ESV-199 28.02.2012 2526 normal normal 
ESV-200 29.06.2011 9645 normal normal 
ESV-201 16.07.2012 19907 normal normal 
ESV-202 26.10.2012 18895 normal normal 
ESV-203 11.11.2012 19781 normal normal 
ESV-204 14.01.2013 11483 normal normal 
ESV-205 04.02.2012 14453 normal normal 
ESV-206 28.02.2012 2526 normal normal 
ESV-207 29.06.2011 9645 normal normal 
ESV-208 08.01.2010 14305 normal normal 
ESV-209 14.11.2007 7360 normal high 
ESV-210 03.08.2005 10033 normal high 
ESV-211 30.04.2005 10604 normal high 
ESV-212 09.01.2006 14023 normal high 
ESV-213 20.04.2011 16227 normal good to normal  
ESV-214 29.10.2011 16613 normal good to normal  
ESV-215 12.02.2004 2883 normal good to normal 
ESV-216 10.07.2002 3096 normal good to normal 
ESV-217 18.08.2004 3107 normal good to normal 
ESV-218 01.07.2002 3527 normal good to normal 
ESV-219 04.11.2002 4128 normal good to normal 
ESV-220 02.06.2004 4348 normal good to normal 
ESV-221 16.01.2002 4620 normal good to normal 
ESV-222 01.02.2004 4793 normal good to normal 
ESV-223 08.06.2004 5007 normal good to normal 
ESV-224 01.04.2004 5354 normal good to normal 
ESV-225 21.12.2007 5510 normal good to normal 
ESV-226 15.04.2005 5966 normal good to normal 
ESV-227 15.04.2006 5966 normal good to normal 
ESV-228 09.03.2008 6620 normal good to normal 
ESV-229 28.08.2007 7110 normal good to normal 
ESV-230 28.09.2008 7130 normal good to normal 
ESV-231 10.10.2008 7865 normal good to normal 
ESV-232 06.11.2009 7974 normal good to normal 
ESV-233 21.09.2008 8053 normal good to normal 
ESV-234 28.04.2004 8346 normal good to normal 
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Shop 
visit  

Date of 
removal CSN HPC condition HPT Condition 

ESV-235 20.03.2008 8481 normal good to normal 
ESV-236 13.11.2008 8577 normal good to normal 
ESV-237 07.02.2008 8710 normal good to normal 
ESV-238 11.05.2008 9645 normal good to normal 
ESV-239 09.06.2007 9792 normal good to normal 
ESV-240 03.07.2007 10018 normal good to normal 
ESV-241 15.09.2007 10487 normal good to normal 
ESV-242 03.01.2005 11104 normal good to normal 
ESV-243 14.05.2008 11405 normal good to normal 
ESV-244 04.02.2010 11608 normal good to normal 
ESV-245 21.05.2008 11972 normal good to normal 
ESV-246 31.10.2008 12052 normal good to normal 
ESV-247 07.03.2007 12700 normal good to normal 
ESV-248 30.03.2008 12732 normal good to normal 
ESV-249 23.09.2007 13251 normal good to normal 
ESV-250 07.09.2008 13413 normal good to normal 
ESV-251 13.11.2011 13467 normal good to normal 
ESV-252 07.01.2009 13683 normal good to normal 
ESV-253 21.02.2009 14064 normal good to normal 
ESV-254 07.01.2007 14348 normal good to normal 
ESV-255 11.12.2009 15305 normal good to normal 
ESV-256 16.04.2012 16187 normal good to normal 
ESV-257 08.02.2011 16880 normal good to normal 
ESV-258 31.05.2007 17209 normal good to normal 
ESV-259 24.05.2011 17243 normal good to normal 
ESV-260 20.07.2009 18348 normal good to normal 
ESV-261 14.01.2008 18822 normal good to normal 
ESV-262 25.02.2012 19010 normal good to normal 
ESV-263 21.02.2007 20086 normal good to normal 
ESV-264 01.03.2011 20186 normal good to normal 
ESV-265 02.04.2012 21394 normal good to normal 
ESV-266 14.11.2012 23551 normal good to normal 
ESV-267 23.01.2013 20854 normal good to normal 
ESV-268 13.09.2012 19701 normal good to normal 
ESV-269 25.07.2012 19418 normal good to normal 
ESV-270 07.02.2012 12769 normal good to normal 
ESV-271 06.11.2012 9977 normal good to normal 
ESV-272 22.10.2012 6749 normal good to normal 
ESV-273 27.07.2012 10593 normal good to normal 
ESV-274 14.11.2012 23551 normal good to normal 
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Shop 
visit  

Date of 
removal CSN HPC condition HPT Condition 

ESV-275 23.01.2013 20854 normal good to normal 
ESV-276 13.09.2012 19701 normal good to normal 
ESV-277 25.07.2012 19418 normal good to normal 
ESV-278 07.02.2012 12769 normal good to normal 
ESV-279 06.11.2012 9977 normal good to normal 
ESV-280 22.10.2012 6749 normal good to normal 
ESV-281 27.07.2012 10593 normal good to normal 
ESV-282 03.05.2002 4755 normal good  
ESV-283 31.12.2009 16515 normal good 
ESV-284 15.05.2002 886 normal good 
ESV-285 01.11.2001 2345 normal good 
ESV-286 28.03.2003 2814 normal good 
ESV-287 28.08.2003 3021 normal good 
ESV-288 20.04.2004 3442 normal good 
ESV-289 16.09.2002 3930 normal good 
ESV-290 15.05.2003 5096 normal good 
ESV-291 29.07.2003 5199 normal good 
ESV-292 13.08.2003 5334 normal good 
ESV-293 01.02.2004 5416 normal good 
ESV-294 05.02.2005 5832 normal good 
ESV-295 06.04.2004 6066 normal good 
ESV-296 16.03.2004 6327 normal good 
ESV-297 17.06.2004 6482 normal good 
ESV-298 13.01.2005 6838 normal good 
ESV-299 15.08.2008 7681 normal good 
ESV-300 29.04.2009 7889 normal good 
ESV-301 17.03.2004 8486 normal good 
ESV-302 02.06.2006 8704 normal good 
ESV-303 08.07.2005 8794 normal good 
ESV-304 28.02.2007 9661 normal good 
ESV-305 29.07.2008 10020 normal good 
ESV-306 26.12.2006 12855 normal good 
ESV-307 30.04.2012 15159 normal good 
ESV-308 16.12.2010 15392 normal good 
ESV-309 03.05.2011 18644 normal good 
ESV-310 03.11.2010 19202 normal good 
ESV-311 21.05.2012 19521 normal good 
ESV-312 18.11.2010 20072 normal good 
ESV-313 08.06.2009 26157 normal good 
ESV-314 31.05.2010 26990 normal good 
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Shop 
visit  

Date of 
removal CSN HPC condition HPT Condition 

ESV-315 26.10.2012 24070 normal good 
ESV-316 28.08.2012 18649 normal good 
ESV-317 21.12.2012 20805 normal good 
ESV-318 06.12.2012 20930 normal good 
ESV-319 12.11.2012 13188 normal good 
ESV-320 24.01.2012 12166 normal good 
ESV-321 26.10.2012 24070 normal good 
ESV-322 28.08.2012 18649 normal good 
ESV-323 21.12.2012 20805 normal good 
ESV-324 06.12.2012 20930 normal good 
ESV-325 12.11.2012 13188 normal good 
ESV-326 24.01.2012 12166 normal good 
ESV-327 17.11.2001 3471 high normal to high 
ESV-328 30.12.2005 6781 high normal to high 
ESV-329 03.04.2010 9627 high normal to high 
ESV-330 17.02.2006 12915 high normal to high 
ESV-331 05.04.2006 11982 high normal  
ESV-332 08.04.2007 14141 high normal  
ESV-333 06.12.2005 5135 high normal 
ESV-334 15.11.2004 5223 high normal 
ESV-335 03.02.2003 5573 high normal 
ESV-336 01.12.2004 6250 high normal 
ESV-337 03.05.2009 6922 high normal 
ESV-338 26.03.2005 8719 high normal 
ESV-339 27.04.2006 9274 high normal 
ESV-340 06.04.2010 9278 high normal 
ESV-341 06.02.2008 11806 high normal 
ESV-342 09.06.2009 12697 high normal 
ESV-343 01.04.2009 13180 high normal 
ESV-344 12.10.2011 13426 high normal 
ESV-345 03.12.2009 14595 high normal 
ESV-346 22.12.2009 14766 high normal 
ESV-347 10.10.2008 15744 high normal 
ESV-348 24.07.2012 11878 high normal 
ESV-349 12.09.2010 6905 high normal 
ESV-350 24.07.2012 11878 high normal 
ESV-351 12.09.2010 6905 high normal 
ESV-352 16.04.2003 5242 high high 
ESV-353 28.10.2005 6538 high high 
ESV-354 01.12.2005 8224 high high 
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ESV-355 19.09.2005 8740 high high 
ESV-356 01.12.2005 9772 high high 
ESV-357 17.10.2005 11094 high high 
ESV-358 27.02.2005 6339 high good to normal 
ESV-359 12.09.2010 6905 high good to normal 
ESV-360 05.02.2006 8692 high good to normal 
ESV-361 03.05.2006 10625 high good to normal 
ESV-362 16.05.2007 10999 high good to normal 
ESV-363 27.11.2009 14227 high good to normal 
ESV-364 10.08.2012 9812 high good to normal 
ESV-365 10.08.2012 9812 high good to normal 
ESV-366 24.03.2005 5317 high good  
ESV-367 15.03.2004 6674 high good  
ESV-368 01.07.2000 1145 high good 
ESV-369 26.03.2003 1792 high good 
ESV-370 06.04.2004 3707 high good 
ESV-371 19.10.2004 3938 high good 
ESV-372 10.07.2007 3998 high good 
ESV-373 10.03.2004 5745 high good 
ESV-374 04.04.2006 6190 high good 
ESV-375 03.04.2006 6386 high good 
ESV-376 03.04.2005 6991 high good 
ESV-377 11.03.2005 7264 high good 
ESV-378 10.04.2006 8274 high good 
ESV-379 26.03.2006 8719 high good 
ESV-380 08.12.2006 12640 high good 
ESV-381 23.02.2006 13846 high good 
ESV-382 12.12.2012 19588 high good 
ESV-383 19.11.2002 4951 good to normal  normal to high 
ESV-384 01.07.2007 5999 good to normal  good to normal 
ESV-385 17.04.2008 6654 good to normal  good to normal 
ESV-386 31.10.2003 4847 good to normal normal to high 
ESV-387 04.12.2007 5499 good to normal normal to high 
ESV-388 04.04.2008 9634 good to normal normal to high 
ESV-389 02.03.2008 10725 good to normal normal to high 
ESV-390 11.08.2005 12012 good to normal normal to high 
ESV-391 13.02.2006 16028 good to normal normal to high 
ESV-392 31.03.2007 19602 good to normal normal  
ESV-393 03.09.2003 3629 good to normal normal 
ESV-394 01.03.2002 3689 good to normal normal 
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ESV-395 01.10.2001 3911 good to normal normal 
ESV-396 01.01.2002 4065 good to normal normal 
ESV-397 22.10.2002 4157 good to normal normal 
ESV-398 23.07.2002 5052 good to normal normal 
ESV-399 01.06.2005 8312 good to normal normal 
ESV-400 03.07.2007 9514 good to normal normal 
ESV-401 18.04.2007 9527 good to normal normal 
ESV-402 28.01.2009 10929 good to normal normal 
ESV-403 01.07.2010 13916 good to normal normal 
ESV-404 01.09.2008 15579 good to normal normal 
ESV-405 24.01.2008 18616 good to normal normal 
ESV-406 24.03.2011 20243 good to normal normal 
ESV-407 01.12.2007 21121 good to normal normal 
ESV-408 06.09.2012 6501 good to normal normal 
ESV-409 18.11.2011 14088 good to normal normal 
ESV-410 06.09.2012 6501 good to normal normal 
ESV-411 18.11.2011 14088 good to normal normal 
ESV-412 05.04.2002 4256 good to normal high 
ESV-413 30.05.2008 14577 good to normal high 
ESV-414 20.08.2012 33517 good to normal high 
ESV-415 20.08.2012 33517 good to normal high 
ESV-416 01.11.2001 2336 good to normal good to normal 
ESV-417 02.09.2002 4646 good to normal good to normal 
ESV-418 28.05.2002 4913 good to normal good to normal 
ESV-419 20.03.2005 6032 good to normal good to normal 
ESV-420 15.05.2003 6666 good to normal good to normal 
ESV-421 01.11.2008 8153 good to normal good to normal 
ESV-422 04.02.2007 8459 good to normal good to normal 
ESV-423 10.03.2009 9038 good to normal good to normal 
ESV-424 07.11.2008 9115 good to normal good to normal 
ESV-425 16.10.2006 9218 good to normal good to normal 
ESV-426 04.02.2008 9564 good to normal good to normal 
ESV-427 15.07.2007 10406 good to normal good to normal 
ESV-428 20.04.2008 11281 good to normal good to normal 
ESV-429 03.06.2008 12185 good to normal good to normal 
ESV-430 29.06.2005 12383 good to normal good to normal 
ESV-431 15.06.2008 12514 good to normal good to normal 
ESV-432 21.10.2007 12813 good to normal good to normal 
ESV-433 30.09.2007 12815 good to normal good to normal 
ESV-434 29.04.2009 13255 good to normal good to normal 

! !



Engine Health monitoring and prognosis for engine fleets using intelligent data analysis of interval-
valued and possibilistic data!

!

Appendix! 204!

!

Shop 
visit  

Date of 
removal CSN HPC condition HPT Condition 

ESV-435 14.09.2008 14599 good to normal good to normal 
ESV-436 01.02.2011 16962 good to normal good to normal 
ESV-437 23.07.2011 18322 good to normal good to normal 
ESV-438 21.02.2010 27858 good to normal good to normal 
ESV-439 24.05.2012 35929 good to normal good to normal 
ESV-440 01.08.2012 34942 good to normal good to normal 
ESV-441 26.11.2012 15488 good to normal good to normal 
ESV-442 22.03.2012 19875 good to normal good to normal 
ESV-443 18.10.2012 20439 good to normal good to normal 
ESV-444 20.12.2012 19607 good to normal good to normal 
ESV-445 01.08.2012 34942 good to normal good to normal 
ESV-446 26.11.2012 15488 good to normal good to normal 
ESV-447 22.03.2012 19875 good to normal good to normal 
ESV-448 18.10.2012 20439 good to normal good to normal 
ESV-449 20.12.2012 19607 good to normal good to normal 
ESV-450 18.11.2002 2436 good to normal good  
ESV-451 27.07.2008 16565 good to normal good  
ESV-452 02.11.2003 2162 good to normal good 
ESV-453 18.11.2001 2422 good to normal good 
ESV-454 17.12.2004 2783 good to normal good 
ESV-455 01.10.2003 3048 good to normal good 
ESV-456 30.09.2003 3200 good to normal good 
ESV-457 27.03.2003 3744 good to normal good 
ESV-458 01.09.2007 4062 good to normal good 
ESV-459 22.05.2002 4155 good to normal good 
ESV-460 08.12.2003 4251 good to normal good 
ESV-461 15.12.2001 4377 good to normal good 
ESV-462 03.02.2003 4469 good to normal good 
ESV-463 11.07.2002 4530 good to normal good 
ESV-464 30.08.2002 4992 good to normal good 
ESV-465 14.11.2003 5093 good to normal good 
ESV-466 02.12.2004 6171 good to normal good 
ESV-467 01.02.2004 7622 good to normal good 
ESV-468 05.09.2007 8607 good to normal good 
ESV-469 01.04.2007 9044 good to normal good 
ESV-470 18.09.2007 10159 good to normal good 
ESV-471 16.11.2006 10180 good to normal good 
ESV-472 04.12.2010 11809 good to normal good 
ESV-473 08.11.2008 13898 good to normal good 
ESV-474 18.12.2007 14425 good to normal good 
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ESV-475 28.01.2011 17055 good to normal good 
ESV-476 03.05.2011 32048 good to normal good 
ESV-477 06.12.2012 21892 good to normal good 
ESV-478 26.09.2012 23678 good to normal good 
ESV-479 06.08.2012 12518 good to normal good 
ESV-480 04.12.2010 11809 good to normal good 
ESV-481 24.10.2012 20460 good to normal good 
ESV-482 14.08.2012 19198 good to normal good 
ESV-483 01.07.2012 10371 good to normal good 
ESV-484 17.07.2012 14442 good to normal good 
ESV-485 06.12.2012 21892 good to normal good 
ESV-486 26.09.2012 23678 good to normal good 
ESV-487 06.08.2012 12518 good to normal good 
ESV-488 04.12.2010 11809 good to normal good 
ESV-489 24.10.2012 20460 good to normal good 
ESV-490 14.08.2012 19198 good to normal good 
ESV-491 01.07.2012 10371 good to normal good 
ESV-492 17.07.2012 14442 good to normal good 
ESV-493 01.11.2011 9435 good   normal to high 
ESV-494 18.09.2006 11714 good  normal to high 
ESV-495 16.04.2009 18579 good  normal 
ESV-496 07.08.2002 4394 good  high 
ESV-497 26.06.2012 12859 good  good to normal 
ESV-498 26.06.2012 12859 good  good to normal 
ESV-499 18.11.2009 18249 good normal to high 
ESV-500 17.09.2010 21566 good normal to high 
ESV-501 29.05.2002 5057 good normal to high 
ESV-502 05.01.2003 5495 good normal to high 
ESV-503 01.03.2005 9362 good normal to high 
ESV-504 05.07.2002 2652 good normal to high 
ESV-505 01.01.2003 5065 good normal to high 
ESV-506 20.12.2003 5042 good normal to high 
ESV-507 24.06.2004 6841 good normal 
ESV-508 01.02.2011 14719 good normal 
ESV-509 29.03.2009 17613 good normal 
ESV-510 18.04.2006 12656 good normal 
ESV-511 24.06.2002 4967 good normal 
ESV-512 11.02.2008 17051 good normal 
ESV-513 18.09.2002 3748 good normal 
ESV-514 04.06.2009 14312 good normal 
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ESV-515 31.10.2011 18928 good normal 
ESV-516 03.06.2007 11087 good normal 
ESV-517 01.03.2003 4942 good normal 
ESV-518 08.04.2009 14152 good normal 
ESV-519 14.06.2005 8749 good normal 
ESV-520 27.04.2005 8791 good normal 
ESV-521 08.12.2009 14538 good normal 
ESV-522 02.09.2011 20497 good normal 
ESV-523 29.04.2002 2202 good normal 
ESV-524 01.01.2009 24077 good normal 
ESV-525 18.08.2009 15473 good normal 
ESV-526 03.03.2004 6195 good normal 
ESV-527 06.12.2011 11142 good normal 
ESV-528 15.11.2004 10252 good normal 
ESV-529 14.11.2008 13961 good normal 
ESV-530 01.12.2010 1747 good normal 
ESV-531 11.10.2010 21357 good high 
ESV-532 12.11.2004 10119 good high 
ESV-533 30.01.2013 36721 good high 
ESV-534 30.01.2013 36721 good high 
ESV-535 05.03.2002 4860 good good to normal 
ESV-536 13.06.2007 14102 good good to normal 
ESV-537 19.04.2010 17269 good good to normal 
ESV-538 01.07.2008 13029 good good to normal 
ESV-539 07.12.2011 17563 good good to normal 
ESV-540 01.03.2012 20427 good good to normal 
ESV-541 28.09.2006 12628 good good to normal 
ESV-542 14.10.2011 19502 good good to normal 
ESV-543 19.05.2010 17269 good good to normal 
ESV-544 29.04.2010 17021 good good to normal 
ESV-545 06.10.2003 5587 good good to normal 
ESV-546 24.10.2004 12112 good good to normal 
ESV-547 01.06.2010 16394 good good to normal 
ESV-548 13.07.2008 13728 good good to normal 
ESV-549 18.09.2007 12624 good good to normal 
ESV-550 20.06.2002 4144 good good to normal 
ESV-551 07.10.2008 13960 good good to normal 
ESV-552 15.01.2003 5382 good good to normal 
ESV-553 06.10.2003 3533 good good to normal 
ESV-554 04.02.2009 13281 good good to normal 
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ESV-555 01.12.2008 12947 good good to normal 
ESV-556 01.12.2010 16336 good good to normal 
ESV-557 16.02.2007 8789 good good to normal 
ESV-558 21.12.2010 14690 good good to normal 
ESV-559 30.04.2010 11613 good good to normal 
ESV-560 01.09.2010 7104 good good to normal 
ESV-561 18.06.2012 6800 good good to normal 
ESV-562 24.11.2009 8187 good good to normal 
ESV-563 29.11.2011 8305 good good to normal 
ESV-564 24.02.2009 5842 good good to normal 
ESV-565 15.01.2003 2146 good good  
ESV-566 03.01.2009 12774 good good  
ESV-567 10.08.2007 11994 good good 
ESV-568 20.07.2009 18259 good good 
ESV-569 30.03.2001 2487 good good 
ESV-570 01.06.2003 5268 good good 
ESV-571 01.08.2003 2607 good good 
ESV-572 25.03.2004 3640 good good 
ESV-573 13.05.2005 8422 good good 
ESV-574 12.08.2011 18433 good good 
ESV-575 29.11.2004 8857 good good 
ESV-576 30.12.2008 17311 good good 
ESV-577 07.10.2009 16981 good good 
ESV-578 21.05.2009 16946 good good 
ESV-579 01.01.2000 376 good good 
ESV-580 13.06.2005 4934 good good 
ESV-581 28.06.2009 16274 good good 
ESV-582 13.07.2009 18394 good good 
ESV-583 25.05.2011 18266 good good 
ESV-584 13.06.2010 17474 good good 
ESV-585 21.01.2009 18491 good good 
ESV-586 26.04.2009 15430 good good 
ESV-587 04.12.2005 10040 good good 
ESV-588 24.02.2009 16715 good good 
ESV-589 07.07.2009 15781 good good 
ESV-590 29.01.2010 18071 good good 
ESV-591 07.10.2011 20819 good good 
ESV-592 01.04.2003 4789 good good 
ESV-593 05.05.2010 16428 good good 
ESV-594 01.11.2010 17944 good good 
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ESV-595 24.11.2009 13682 good good 
ESV-596 18.10.2008 16274 good good 
ESV-597 29.06.2010 19217 good good 
ESV-598 17.01.2012 19050 good good 
ESV-599 28.06.2009 17791 good good 
ESV-600 01.04.2002 4585 good good 
ESV-601 17.06.2009 18041 good good 
ESV-602 15.05.2009 15172 good good 
ESV-603 01.12.2004 4249 good good 
ESV-604 07.07.2011 19004 good good 
ESV-605 21.11.2008 18400 good good 
ESV-606 03.03.2010 12984 good good 
ESV-607 13.04.2010 16086 good good 
ESV-608 14.07.2009 14956 good good 
ESV-609 02.12.2009 15083 good good 
ESV-610 01.09.2009 16195 good good 
ESV-611 03.12.2011 18282 good good 
ESV-612 08.03.2010 18365 good good 
ESV-613 08.12.2009 18227 good good 
ESV-614 21.09.2002 5894 good good 
ESV-615 08.05.2008 17369 good good 
ESV-616 26.05.2009 14600 good good 
ESV-617 07.07.2011 20926 good good 
ESV-618 01.10.2001 7 good good 
ESV-619 19.10.2011 17520 good good 
ESV-620 26.09.2002 3732 good good 
ESV-621 01.09.2004 979 good good 
ESV-622 07.12.2009 7115 good good 
ESV-623 14.12.2010 7717 good good 
ESV-624 26.10.2009 17019 good good 
ESV-625 01.09.2003 2416 good good 
ESV-626 19.12.2009 13971 good good 
ESV-627 09.06.2011 18143 good good 
ESV-628 01.09.2008 17803 good good 
ESV-629 23.06.2009 14327 good good 
ESV-630 01.09.2010 16510 good good 
ESV-631 30.09.2009 15624 good good 
ESV-632 07.02.2011 20224 good good 
ESV-633 20.11.2003 2645 good good 
ESV-634 02.04.2002 2944 good good 
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ESV-635 19.07.2009 16776 good good 
ESV-636 15.08.2002 2160 good good 
ESV-637 02.09.2009 13746 good good 
ESV-638 22.08.2006 8312 good good 
ESV-639 07.06.2009 12668 good good 
ESV-640 16.07.2010 17778 good good 
ESV-641 25.04.2003 5152 good good 
ESV-642 19.12.2009 18750 good good 
ESV-643 10.10.2004 5372 good good 
ESV-644 27.02.2010 17498 good good 
ESV-645 20.07.2007 12408 good good 
ESV-646 23.07.2010 16250 good good 
ESV-647 15.10.2009 16929 good good 
ESV-648 15.08.2005 8819 good good 
ESV-649 18.05.2008 14141 good good 
ESV-650 22.06.2010 18661 good good 
ESV-651 20.06.2009 15993 good good 
ESV-652 27.07.2009 14959 good good 
ESV-653 18.01.2002 3724 good good 
ESV-654 10.10.2008 25241 good good 
ESV-655 11.10.2009 27987 good good 
ESV-656 13.12.2010 30907 good good 
ESV-657 03.04.2002 4405 good good 
ESV-658 12.05.2008 24239 good good 
ESV-659 26.04.2010 30616 good good 
ESV-660 25.03.2002 4160 good good 
ESV-661 07.09.2008 23568 good good 
ESV-662 16.06.2010 28938 good good 
ESV-663 19.04.2002 4650 good good 
ESV-664 16.03.2003 4956 good good 
ESV-665 13.07.2009 14412 good good 
ESV-666 17.10.2011 17715 good good 
ESV-667 18.06.2008 12016 good good 
ESV-668 26.05.2009 16019 good good 
ESV-669 08.02.2012 18511 good good 
ESV-670 13.05.2009 14023 good good 
ESV-671 22.06.2011 17089 good good 
ESV-672 11.11.2003 3289 good good 
ESV-673 01.06.2009 13927 good good 
ESV-674 18.07.2010 15728 good good 
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ESV-675 29.11.2011 18152 good good 
ESV-676 09.07.2003 6513 good good 
ESV-677 16.09.2009 26361 good good 
ESV-678 03.09.2011 32637 good good 
ESV-679 02.09.2009 15188 good good 
ESV-680 06.11.2009 17677 good good 
ESV-681 30.06.2006 8800 good good 
ESV-682 10.11.2009 16555 good good 
ESV-683 21.06.2011 17753 good good 
ESV-684 20.12.2008 23145 good good 
ESV-685 16.11.2009 26018 good good 
ESV-686 21.03.2011 30492 good good 
ESV-687 04.06.2002 4454 good good 
ESV-688 29.09.2008 13763 good good 
ESV-689 28.04.2010 16795 good good 
ESV-690 31.10.2011 19587 good good 
ESV-691 29.10.2009 16451 good good 
ESV-692 17.09.2003 2961 good good 
ESV-693 21.02.2002 3022 good good 
ESV-694 09.03.2009 24050 good good 
ESV-695 25.02.2009 26236 good good 
ESV-696 25.10.2010 30804 good good 
ESV-697 27.08.2011 13891 good good 
ESV-698 28.06.2009 15862 good good 
ESV-699 07.01.2010 14893 good good 
ESV-700 14.11.2011 22261 good good 
ESV-701 01.09.2001 1072 good good 
ESV-702 15.01.2010 28562 good good 
ESV-703 03.11.2009 19375 good good 
ESV-704 18.03.2009 22448 good good 
ESV-705 22.02.2010 25642 good good 
ESV-706 03.09.2002 4488 good good 
ESV-707 02.02.2010 26030 good good 
ESV-708 01.01.2009 25369 good good 
ESV-709 16.11.2009 27088 good good 
ESV-710 23.03.2011 30228 good good 
ESV-711 01.09.2008 24453 good good 
ESV-712 15.06.2009 27435 good good 
ESV-713 07.04.2011 33442 good good 
ESV-714 05.11.2011 34782 good good 
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ESV-715 20.04.2009 12742 good good 
ESV-716 29.09.2011 19100 good good 
ESV-717 16.12.2008 16351 good good 
ESV-718 22.08.2010 19432 good good 
ESV-719 27.07.2009 14816 good good 
ESV-720 20.03.2010 13259 good good 
ESV-721 28.01.2012 14890 good good 
ESV-722 01.10.2008 22679 good good 
ESV-723 17.04.2008 20394 good good 
ESV-724 06.01.2009 25530 good good 
ESV-725 21.12.2009 28576 good good 
ESV-726 02.03.2006 8781 good good 
ESV-727 10.10.2011 18923 good good 
ESV-728 26.02.2011 18628 good good 
ESV-729 09.07.2010 16922 good good 
ESV-730 15.10.2009 11553 good good 
ESV-731 11.07.2010 13082 good good 
ESV-732 27.06.2010 9087 good good 
ESV-733 25.09.2010 11841 good good 
ESV-734 06.05.2011 12713 good good 
ESV-735 04.02.2010 9338 good good 
ESV-736 11.12.2006 9527 good good 
ESV-737 28.06.2011 16105 good good 
ESV-738 01.10.2010 14774 good good 
ESV-739 10.01.2007 9707 good good 
ESV-740 02.12.2011 18402 good good 
ESV-741 28.10.2008 20997 good good 
ESV-742 18.05.2009 23834 good good 
ESV-743 23.02.2003 1165 good good 
ESV-744 15.04.2007 9093 good good 
ESV-745 27.05.2009 13086 good good 
ESV-746 07.12.2002 23 good good 
ESV-747 06.01.2009 13532 good good 
ESV-748 27.09.2010 16583 good good 
ESV-749 25.09.2008 20856 good good 
ESV-750 09.09.2010 26893 good good 
ESV-751 04.12.2008 24224 good good 
ESV-752 19.10.2009 26968 good good 
ESV-753 28.11.2011 33290 good good 
ESV-754 01.11.2010 16943 good good 
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ESV-755 13.01.2002 124 good good 
ESV-756 30.04.2002 505 good good 
ESV-757 20.11.2009 15836 good good 
ESV-758 05.07.2011 18341 good good 
ESV-759 09.01.2010 18840 good good 
ESV-760 01.08.2008 22448 good good 
ESV-761 01.09.2011 18965 good good 
ESV-762 09.05.2008 21530 good good 
ESV-763 11.05.2009 24826 good good 
ESV-764 08.07.2010 27814 good good 
ESV-765 11.10.2011 30956 good good 
ESV-766 01.08.2002 968 good good 
ESV-767 25.08.2011 18184 good good 
ESV-768 28.02.2005 5558 good good 
ESV-769 17.09.2009 14746 good good 
ESV-770 20.12.2010 16835 good good 
ESV-771 22.04.2009 13645 good good 
ESV-772 04.06.2009 14125 good good 
ESV-773 20.07.2011 17103 good good 
ESV-774 25.08.2003 1518 good good 
ESV-775 16.08.2007 9684 good good 
ESV-776 15.06.2009 13134 good good 
ESV-777 16.11.2009 14328 good good 
ESV-778 14.12.2011 17839 good good 
ESV-779 11.05.2009 13945 good good 
ESV-780 02.11.2010 16311 good good 
ESV-781 28.02.2010 17510 good good 
ESV-782 26.12.2011 19898 good good 
ESV-783 08.08.2010 15786 good good 
ESV-784 24.06.2009 13362 good good 
ESV-785 18.02.2007 9056 good good 
ESV-786 23.09.2008 12792 good good 
ESV-787 11.09.2011 16544 good good 
ESV-788 09.12.2002 7 good good 
ESV-789 21.06.2008 10628 good good 
ESV-790 29.09.2009 13772 good good 
ESV-791 11.06.2009 12973 good good 
ESV-792 01.08.2009 13027 good good 
ESV-793 30.03.2009 23843 good good 
ESV-794 24.02.2010 26848 good good 
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ESV-795 21.06.2009 12970 good good 
ESV-796 10.12.2008 11940 good good 
ESV-797 01.05.2009 11037 good good 
ESV-798 05.12.2011 11725 good good 
ESV-799 19.02.2010 12733 good good 
ESV-800 03.03.2010 10511 good good 
ESV-801 04.03.2010 11105 good good 
ESV-802 08.04.2010 14340 good good 
ESV-803 09.06.2010 11524 good good 
ESV-804 15.08.2010 12169 good good 
ESV-805 30.12.2010 12456 good good 
ESV-806 07.05.2010 10805 good good 
ESV-807 03.08.2011 12965 good good 
ESV-808 01.08.2011 13337 good good 
ESV-809 14.05.2010 11051 good good 
ESV-810 26.01.2010 9886 good good 
ESV-811 18.06.2010 10871 good good 
ESV-812 04.06.2010 10053 good good 
ESV-813 16.09.2009 7720 good good 
ESV-814 17.02.2010 8943 good good 
ESV-815 30.03.2011 11340 good good 
ESV-816 02.06.2008 4581 good good 
ESV-817 19.02.2009 5222 good good 
ESV-818 27.02.2012 6719 good good 
ESV-819 11.07.2009 5808 good good 
ESV-820 06.11.2008 4319 good good 
ESV-821 11.03.2009 5928 good good 
ESV-822 04.03.2009 5672 good good 
ESV-823 10.07.2010 6405 good good 
ESV-824 01.08.2008 4950 good good 
ESV-825 05.12.2010 8102 good good 
ESV-826 14.04.2008 4020 good good 
ESV-827 25.11.2008 4442 good good 
ESV-828 18.01.2012 4917 good good 
ESV-829 12.10.2010 3431 good good 
ESV-830 29.06.2009 3220 good good 
ESV-831 22.06.2010 6374 good good 
ESV-832 27.02.2011 2983 good good 
ESV-833 09.01.2012 989 good good 
ESV-834 22.08.2012 23750 good good 
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ESV-835 05.12.2012 16083 good good 
ESV-836 08.10.2012 19870 good good 
ESV-837 28.11.2012 34734 good good 
ESV-838 28.08.2012 19493 good good 
ESV-839 09.07.2012 11315 good good 
ESV-840 30.07.2012 7826 good good 
ESV-841 23.07.2012 11803 good good 
ESV-842 15.08.2012 7165 good good 
ESV-843 22.08.2012 23750 good good 
ESV-844 05.12.2012 16083 good good 
ESV-845 08.10.2012 19870 good good 
ESV-846 28.11.2012 34734 good good 
ESV-847 28.08.2012 19493 good good 
ESV-848 09.07.2012 11315 good good 
ESV-849 30.07.2012 7826 good good 
ESV-850 23.07.2012 11803 good good 
ESV-851 15.08.2012 7165 good good 
ESV-852 11.02.2007 5185 bad  bad 
ESV-853 12.10.2011 16735 bad  bad 
ESV-854 10.01.2011 9825 bad unknown 
ESV-855 27.12.2010 10688 bad unknown 
ESV-856 20.06.2010 15347 bad unknown 
ESV-857 20.12.2011 16206 bad unknown 
ESV-858 02.01.2012 18456 bad unknown 
ESV-859 23.02.2002 4878 bad normal to high 
ESV-860 23.05.2006 15499 bad normal to high 
ESV-861 28.01.2006 7413 bad normal 
ESV-862 02.03.2011 20472 bad normal 
ESV-863 09.12.2006 12243 bad high 
ESV-864 27.05.2008 20780 bad good to normal 
ESV-865 03.08.2004 3688 bad good 
ESV-866 24.07.2009 13096 bad good 
ESV-867 24.10.2002 2393 bad bad 
ESV-868 31.05.2007 3820 bad bad 
ESV-869 02.11.2004 7664 bad bad 
ESV-870 14.09.2004 7928 bad bad 
ESV-871 29.01.2008 8273 bad bad 
ESV-872 21.07.2007 8712 bad bad 
ESV-873 12.11.2004 8881 bad bad 
ESV-874 17.05.2005 9008 bad bad 
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Shop 
visit  

Date of 
removal CSN HPC condition HPT Condition 

ESV-875 15.08.2006 9396 bad bad 
ESV-876 04.11.2007 9679 bad bad 
ESV-877 27.08.2005 9942 bad bad 
ESV-878 22.08.2004 10040 bad bad 
ESV-879 20.02.2008 11994 bad bad 
ESV-880 01.12.2005 12079 bad bad 
ESV-881 16.07.2008 12343 bad bad 
ESV-882 16.07.2008 12343 bad bad 
ESV-883 28.07.2007 12351 bad bad 
ESV-884 06.04.2009 13089 bad bad 
ESV-885 04.12.2008 13266 bad bad 
ESV-886 22.09.2009 13361 bad bad 
ESV-887 27.02.2006 13465 bad bad 
ESV-888 27.05.2011 13675 bad bad 
ESV-889 13.11.2009 14395 bad bad 
ESV-890 08.04.2007 14833 bad bad 
ESV-891 28.05.2009 15275 bad bad 
ESV-892 15.10.2006 16118 bad bad 
ESV-893 27.09.2009 16620 bad bad 
ESV-894 20.01.2008 18958 bad bad 
ESV-895 10.09.2007 21008 bad bad 
ESV-896 13.10.2011 21498 bad bad 
ESV-897 04.12.2007 22208 bad bad 
ESV-898 19.08.2008 23228 bad bad 
ESV-899 21.05.2010 27119 bad bad 
ESV-900 13.04.2009 27515 bad bad 
ESV-901 27.02.2011 29923 bad bad 
ESV-902 10.02.2012 32037 bad bad 
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17 Attachments 

17.1 Interval-valued blind source separation applied to AI-based prognostic 
fault detection  
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17.3 Improved Life Cycle Cost – Reduced engine maintenance through engine 
health monitoring genetic fuzzy system – method validation and case 
study 
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