Universidad de Oviedo

Departamento de Informatica

Monitorizacion del estado de flotas de motores usando analisis
inteligente de datos para informacion intervalo-valorada y posibilistica

Engine Health monitoring and prognosis of engine fleets using
intelligent data analysis for interval-valued and possibilistic data

Alvaro Martinez Gomez

08 Abril 2014



FOR-MAT-VOA-010-BIS

£3

[ o

{ ) UNIVERSIDAD DE OVIEDO

' \r f

b(fl ﬂﬁb Vicerrectorado de Internacionalizacion
bnhﬁﬁﬁ& r/ﬁlﬂ ho y Postgrado

RESUMEN DEL CONTENIDO DE TESIS DOCTORAL

1.- Titulo de la Tesis

Espafiol/Otro Idioma: Inglés:

Monitorizacion del estado de flotas de motores | Engine Health monitoring and prognosis of
usando analisis inteligente de datos para engine fleets using intelligent data analysis for
informacion intervalo-valorada y posibilistica interval-valued and possibilistic data

2.- Autor

Nombre: Alvaro Martinez Gomez | DNI/Pasaporte/NIE:

Programa de Doctorado: Ingenieria Informatica

Organo responsable: Comisién Académica del Programa de Doctorado

RESUMEN (en espaiiol)

El analisis de los datos de vuelo. es hoy dia primordial dentro de la industria acrondutica. Ha habido distintos
métodos de andlisis de estos datos, pero solo recientemente se han orientado no solo a interpretar las prestaciones y
grado de riesgo sino ademas para entender el tipo de operacion empleada por el operador y las condiciones generales
del motor.

Aun asi, ¢l analisis de datos de vuelo para la optimizacion de los costes totales de vida del motor interpretados como
extensiones de operacion y reducciones de mantenimiento, no se ha analizado en detalle debido a varias razones y
circunstancias. La primordial. es sin embargo. la falta de datos completos y constantes de las flotas y el tipo de
estrategia seguida por los operadores para ¢l mantenimiento de sus motores. La introduceion de nuevas estrategias
para el mantenimiento de motores hacia TotalCare ha influido directamente en la importancia actual del andlisis de
los datos de vuelo y el desarrollo de nuevos métodos para su interpretacion.

Este trabajo desarrolla un nuevo método de andlisis de datos y su prognosis con la intencién de mejorar el
conocimiento respecto al nivel de mantenimiento de cualquier motor antes de su mantenimiento. Ademds, la
prognosis permite realizar esta interpretacion sobre el motor a nivel modular con varios ciclos previos, para su
posible consideracion con respecto al nivel de deterioro. costes de mantenimiento y prioridad dentro de la flota, lo
cual no es posible hoy dia.

Los métodos de analisis de datos de hoy dia se centran en la identificacion de las prestaciones de los motores y el
grado de riesgo que contienen para contener sus posibles implicaciones de una mancra reactiva. Los métodos
desarrollados son una interpretacion proactiva del analisis de los datos completos de vuelo sin filtrado previo para asi
determinar el estado interno preciso de cada motor de forma individual a nivel modular.

La aplicaciéon de métodos existentes como Separacion de Sefales con Fuente Ciega y un filtrado posibilistico scguido
de un clasificador fuzzy han permitido una interpretacion de las condiciones internas del motor mediante la
combinacion de todas sus variables. El sistema de clasificacién ha permitido la asociacion del grado de deterioro de
cada motor a ese determinado defecto dentro de una base de datos de deterioro. De esta manera se ha podido asociar
el grado de deterioro de un motor a los gastos estimados de mantenimiento. y el listado completo de material
requerido para su posible mantenimiento.

El analisis inicial. lincal de eventos o condiciones que modifican el estado interno del motor no reflejan con precision
el estado de deterioro del motor. Asi pues, sc ha aplicado un analisis de mineria de datos secuenciales. Este andlisis
de mineria de datos sobre el resultado del método anterior se ha generado para determinar si determinadas secuencias
podrian estar asociadas a cambios especificos, deterioros o incluso a condiciones de no-cambio.

Este nivel de conocimiento sobre el estado interno de cada motor, es en si mismo, un cambio sustancial con respecto
a las herramientas actuales. Ademas, ¢l método de prognosis desarrollado. determina la vida atil del motor, como la
integral de la velocidad instantdnea de deterioro del motor segiin el modelo y la vida 1til de construccion.

Los métodos de identificacion y clasificacion del estado de los motores, y su prognosis permitirdn asi optimizar la
capacidad limitada de las bases de mantenimiento y determinar en detalle el nivel de mantenimiento y las horas de
trabajo necesarias para la vuelta a servicio de cada motor. Ademds. estos métodos permiten valorar, el estado y nivel
de mantenimiento requerido por todos y cada uno de los motores de la flota para asi optimizar la vida util de cada
motor con respecto a su nivel de deterioro y costes asociados.
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RESUMEN (en Inglés)

Engine health monitoring data is at the current core of the civil acronautical business. The use of engine health
monitoring systems has existed for several years, however it is only now that the in-flight knowledge gathered
through this means is being used to address not only safety and reliability but to also understand customer operation
and the overall engine condition.

The assessment of EHM data for optimized life cycle cost, this is, the extension of an engine’s time on wing and
reduction of maintenance costs. has not yet been fully exploited due to several reasons. The main reasons however
have been the lack of available data and the time and material type of maintenance operation common until now.
Modern technology and a change towards TotalCare have influenced the current importance of EHM and its detailed
assessment developments.

This thesis develops a new EHM assessment methodology and its associated prognosis with the main objective of
improving the level of engine maintenance required detail for a given engine prior to its maintenance shop visit, In
addition. the prognosis methodology provides a significant long term capability on the state of the engine at module
level which enables trade studies, not possible today.

The existing EHM assessment capabilities concentrate on the safety and reliability aspects of engine containment and
its reactive capabilities. The EHM methods developed are a proactive approach towards interpreting EHM data in its
full extent, without filtering, in order to determine the actual condition of an engine at a modular level.

The application of existing methods as BSS, and subsequently a possibilistic filter together with a fuzzy classifier,
have enabled a new approach at understanding the internal engine condition through the combined assessment of all
of the available variables. A subsequent classification method which enables the association of this level of
deterioration to a known state or level of deterioration allows for a prediction of the level of engine deterioration,
expected cost of maintenance and main exchanged parts to be replaced. to be performed.

The assessment of events or condition changes does not directly reflect the deterioration of the engine. A sequence
mining approach to the previous results obtained above was carried out to establish if certain sequences may be
associated to specific levels of deterioration, transitions or to no significant changes.

The additional knowledge provided through these methodologies to the current business is already a significant step
change. A prognosis however was developed associated to this engine condition assessment which further enables
the detailed understanding of the engine remaining useful life based on the integral of the instantaneous engine
deterioration speed and the life objective established on its release.

The result from this assessment is a new set of methods, which allows the maintenance facilities to optimize their
limited capacity and predict in detail the level of workscope and man-hours to be employed for specific engine
refurbishments. These methods also allow trade studies to be performed to optimize time on-wing versus over all
engine level of deterioration.

SR. DIRECTOR DE DEPARTAMENTO DE IN_FORMATICA
SR. PRESIDENTE DE LA COMISION ACADEMICA DEL PROGRAMA DE DOCTORADO EN INGENIERIA
INFORMATICA
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1 Executive Summary / Resumen

1.1 Executive summary

Engine health monitoring data is at the current core of the civil aeronautical business. The use
of engine health monitoring systems has existed for several years, however it is only now that
the in-flight knowledge gathered through this means is being used to address not only safety and
reliability but to also understand customer operation and the overall engine condition.

The assessment of EHM data for optimized life cycle cost, this is, the extension of an engine’s
time on wing and reduction of maintenance costs, has not yet been fully exploited due to several
reasons. The main reasons however have been the lack of available data and the time and
material type of maintenance operation common until now. Modern technology and a change
towards TotalCare have influenced the current importance of EHM and its detailed assessment
developments.

This thesis develops a new EHM assessment methodology and its associated prognosis with the
main objective of improving the level of engine maintenance required detail for a given engine
prior to its maintenance shop visit. In addition, the prognosis methodology provides a
significant long term capability on the state of the engine at module level which enables trade
studies, not possible today.

The existing EHM assessment capabilities concentrate on the safety and reliability aspects of
engine containment and its reactive capabilities. The EHM methods developed are a proactive
approach towards interpreting EHM data in its full extent, without filtering, in order to
determine the actual condition of an engine at a modular level.

The application of existing methods as BSS, and subsequently a possibilistic filter together with
a fuzzy classifier, have enabled a new approach at understanding the internal engine condition
through the combined assessment of all of the available variables. A subsequent classification
method which enables the association of this level of deterioration to a known state or level of
deterioration allows for a prediction of the level of engine deterioration, expected cost of
maintenance and main exchanged parts to be replaced, to be performed.

The assessment of events or condition changes does not directly reflect the deterioration of the
engine. A sequence mining approach to the previous results obtained above was carried out to
establish if certain sequences may be associated to specific levels of deterioration, transitions or
to no significant changes.

The additional knowledge provided through these methodologies to the current business is
already a significant step change. A prognosis however was developed associated to this engine
condition assessment which further enables the detailed understanding of the engine remaining
useful life based on the integral of the instantaneous engine deterioration speed and the life
objective established on its release.

The result from this assessment is a new set of methods, which allows the maintenance facilities
to optimize their limited capacity and predict in detail the level of workscope and man-hours to
be employed for specific engine refurbishments. These methods also allow trade studies to be
performed to optimize time on-wing versus over all engine level of deterioration.
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1.2 Resumen

El analisis de los datos de vuelo, es hoy dia primordial dentro de la industria aerondutica. Ha
habido distintos métodos de anélisis de estos datos, pero solo recientemente se han orientado no
solo a interpretar las prestaciones y grado de riesgo sino ademas para entender el tipo de
operacion empleada por el operador y las condiciones generales del motor.

Aun asi, el analisis de datos de vuelo para la optimizacion de los costes totales de vida del motor
interpretados como extensiones de operacion y reducciones de mantenimiento, no se ha
analizado en detalle debido a varias razones y circunstancias. La primordial, es sin embargo, la
falta de datos completos y constantes de las flotas y el tipo de estrategia seguida por los
operadores para el mantenimiento de sus motores. La introduccion de nuevas estrategias para el
mantenimiento de motores hacia TotalCare ha influido directamente en la importancia actual del
analisis de los datos de vuelo y el desarrollo de nuevos métodos para su interpretacion.

Este trabajo desarrolla un nuevo método de anélisis de datos y su prognosis con la intencion de
mejorar el conocimiento respecto al nivel de mantenimiento de cualquier motor antes de su
mantenimiento. Ademads, la prognosis permite realizar esta interpretacion sobre el motor a nivel
modular con varios ciclos previos, para su posible consideracion con respecto al nivel de
deterioro, costes de mantenimiento y prioridad dentro de la flota, lo cual no es posible hoy dia.

Los métodos de analisis de datos de hoy dia se centran en la identificacion de las prestaciones
de los motores y el grado de riesgo que contienen para contener sus posibles implicaciones de
una manera reactiva. Los métodos desarrollados son una interpretacion proactiva del analisis de
los datos completos de vuelo sin filtrado previo para asi determinar el estado interno preciso de
cada motor de forma individual a nivel modular.

La aplicacién de métodos existentes como Separacion de Sefiales con Fuente Ciega y un filtrado
posibilistica seguido de un clasificador fuzzy han permitido una interpretacion de las
condiciones internas del motor mediante la combinacidon de todas sus variables. El sistema de
clasificacion ha permitido la asociacion del grado de deterioro de cada motor a ese determinado
defecto dentro de una base de datos de deterioro. De esta manera se ha podido asociar el grado
de deterioro de un motor a los gastos estimados de mantenimiento, y el listado completo de
material requerido para su posible mantenimiento.

El andlisis inicial, lineal de eventos o condiciones que modifican el estado interno del motor no
reflejan con precision el estado de deterioro del motor. Asi pues, se ha aplicado un analisis de
mineria de datos secuenciales. Este andlisis de mineria de datos sobre el resultado del método
anterior se ha generado para determinar si determinadas secuencias podrian estar asociadas a
cambios especificos, deterioros o incluso a condiciones de no-cambio.

Este nivel de conocimiento sobre el estado interno de cada motor, es en si mismo, un cambio
sustancial con respecto a las herramientas actuales. Ademads, el método de prognosis
desarrollado, determina la vida util del motor, como la integral de la velocidad instantanea de
deterioro del motor segun el modelo y la vida util de construccion.

Los métodos de identificacion y clasificacion del estado de los motores, y su prognosis
permitirdn asi optimizar la capacidad limitada de las bases de mantenimiento y determinar en
detalle el nivel de mantenimiento y las horas de trabajo necesarias para la vuelta a servicio de
cada motor. Ademads, estos métodos permiten valorar, el estado y nivel de mantenimiento
requerido por todos y cada uno de los motores de la flota para asi optimizar la vida util de cada
motor con respecto a su nivel de deterioro y costes asociados.

Executive Summary / Resumen [}



Engine Health monitoring and prognosis for engine fleets using intelligent data analysis of interval-
valued and possibilistic data

2 Index
1 Executive SUMMAry / RESUIMIEI .....cccuiiiiiieiiieiiie ettt eee et siee e e et e sbeesnteesnteesnneeenneeesnneas 2
L.]1  EXCCULIVE SUIMIMATY ...eeoutieetieeiieetieenteeeeieesteesateesseessseeesseeessseessseessseesnseesnseesseeenseeessseesnseesnseen 2
L2 RESUIMEGI . ...ciiiiiiiiiiiiiteetee ettt ettt et e esan e e s sare e eateeenneenneesaneesenee s 3
R U T (<) OO OO PSP T PO P PP O PR PRRRPRRPPPON 4
I @ 1) 15To7 1 T TSRO 7
T B O o] o1 5 kSRS SRPS 7
4 SHIUCLUIE OVEIVIEW...eeuiiiiiiiiitenieenitenit ettt ettt st e et e esb e b e e bt e s bt e sbeesbe e bt e bt e bt esbeesbeenbeenbeenbeenseenseens 10
4.1 Description Of the STUCIUIE .....c.uieeiiiriieeiie ettt st et e e eate et e sereeseteesnteesseeeneeenns 10
5 Introduction tO ACTOCIZINES ......cccuueeriieriieeitieeitieeeiteeeteeeteeeteesteeesseeessseessseesseesseesseeessseesnseesseesns 11
5.1 HOW an engiNe WOTKS .....cociuiiiiiiiiieeie ettt ettt e st e et e eteeenteesnseeenes 11
5.2  Engine management and MAaiNteNaANCE ..........cecueereueerriieeriieerieerieesieesteesteeeteeeseeesseeesnseennnes 13
6 Introduction to Engine Health MONItOTrING . ......cceeeviieriiieriieiiie ettt e e 16
LT B 2 ¥ o Tl 010711 ¢ o) R UUSTS 16
6.2 FADEC/ Engine Control SYStEIM ........eeviiiriieiiieiiie ettt e siee st etee e ssaeesnseesenas 17
6.3 Types of data currently Managed ..........cceevuieiiiieiiiriiie et 18
7 Engine Health Monitoring MethodS.........ccoouiiiiiiiiiieiiie ettt eee e esnaee e 20
7.1  EHM data @SSESSIMENTS ....cc.ueriiriiriiiieiie ettt ettt ettt ettt st st st sttt esaeesate e 20
7.2 DETINIIONS ..ttt ettt et et sttt st st sttt sttt e 20
7.3  Review of System Diagnostic Methods .........cccueiviiiriiiiiiieiit et 22
7.4  Review of Prognosis Mmethods ..........ccuveeiiiiiioiiiiiic e 31
7.5 Sensors and SenSOr VAlidation ...........ccceoueriiiiiiiiiiriiiiieieee ettt 39
7.6 Aeroengine Specific Applied Methods .......c.coeiiiiiiiiiiiiiiece e 41
8 Existing Methods & Areas of Further Development............ccoocvvviiiiiiiiiiienieee e 61
8.1 Pros and Cons of Diagnosis Methods...........cocuieiiiiriieniieiiieeee e 61
8.2 Process History Based diagnosis Models..........ccccuveriiiriiiiiiieniiicie e 65
8.3  Comparison of Diagnosis Methods ...........ccueeiiiiriiiiiieriie e 66
8.4 Pros and Cons of Prognosis Methods ...........ccoviiiiiiiiieniie et 67




Monitorizacion del estado de flotas de motores usando analisis inteligente de datos para informacion

intervalo-valorada y posibilistica

8.5 Comparison of Prognosis Methods .........cccuiiiiiiiiiiiiieniie e 69
8.6 BUSINESS INEEAS...cueiiuiiriiiiiieiie ettt sttt 70
LI A O 1o 1115 AU 71
9 New Method Proposals — Theoretical ANalySis ........cccvercvieriiieriiieeieeeiee ettt 75
L NS (o153 1 Fed 1 S D 1S ¥ 1 R SUS 75
9.2 Objective 1 - Interval-valued blind source separation applied to Al-based prognostic fault
AEEECLION ..ottt ettt sttt st s bt bt e s bt e s bt bt e be e she e b e s b e e e 80
9.3  Objective 2 - Engine health monitoring for engine fleets using fuzzy RadViz..................... 91
9.4 Objective 2.1 - Sequential pattern mining applied to a€roengine ..........cocceeeeveeereereveenneens 104
9.5 Objective 3 - Engine Deterioration Prognosis Aeroengine prognosis through Genetic Distal
Learning applied to uncertain Engine Health Monitoring data............ccocceveenieniencncnnee. 118
10 New Method Proposal - Applied Method Validation ...........cccceeceeriiniiiiiiiniinnininciceiceeee, 126
10.1  Aeroengine DESIZM ....cccuiiiiiiiiieeiieeiie ettt e st e teeetee et e e et eesnteesbeesnseesnseesnseesneeesnseenns 126
10.2 Aeroengine deterioration and cost MOAElling ...........cceevueiiriiiniiiniieeiie e 133
10.3  Engine Health MONITOTING. ......ccecuiieriiieeiieerieeeieeeteeeiteeieeeeteeseteesneeesbeesbeesneeesnseesneeenneeenns 139
10.4 Objective 1 - Interval-valued blind source separation applied to Al-based prognostic fault
AEEECLION ..ttt ettt et ettt et ettt et et e bt et et ettt eateea 144
10.5 Objective 2 - Engine health monitoring for engine fleets using fuzzy RadViz ................... 150
10.6 Objective 2.1- Sequential pattern mining applied to aeroengine diagnosis with uncertain
Engine Health Monitoring data...........cccccoveiiiiiiiiiiieeie e 158
10.7 Objective 3 - Aeroengine prognosis through Genetic Distal Learning applied to uncertain
Engine Health Monitoring data............ccccoeeiiiiiiieiiieeiie et 161
11 BUSINESS APPLICALIONS ..eeeuviiiiiiiiiieiiieeiteetieeiee et ettt e st e st ee s bt eeseeeenbeessbeesaseesnseesnseeenseesnseesnsens 166
11.1 BusSiness IMProVEMENL ........cccuiiiiuiieiiieeieerie et e eieeeteeeieeeiteeteeeseeesbeesbeesnteesseesneeesnseenns 166
11.2 Maintenance IMPIOVEMENL. ........ceeeriieriieriieeteeeieeeeteeeieeeeteesteeesneeesbeesbeesneeesseesnseeesnseenns 167
12 Conclusions and FUture WOrk........cocooiiiiiiiiiiiiiiiiicee ettt 168

12.1 Objective 1 - Interval-valued blind source separation applied to Al-based prognostic fault
ELECTIOM 1.ttt et e 168

12.2  Objective 2 - Engine health monitoring for engine fleets using fuzzy RadViz ................... 168

12.3  Objective 2.1- Sequential pattern mining applied to aeroengine diagnosis with uncertain
Engine Health Monitoring data..........coccovieriiniiniiniinieeneneeneeeeseesieese e 169




Engine Health monitoring and prognosis for engine fleets using intelligent data analysis of interval-
valued and possibilistic data

12.4 Objective 3 - Aeroengine prognosis through Genetic Distal Learning applied to uncertain

Engine Health Monitoring data...........ccccceeeiiiiiiieiiie e 169

12.5 Knowledge Database. .........ccccuiieiiiiiiiieiiiecie ettt ettt e st e st e e st e seeesneeesnaeenes 170

13 Publications, Patents and AWATAS .........euuueeimimiieiiiieiieiiieiieeeeeeeeeeeee et e e ee e e e e e e e e e e e e e e et e e e e e e eeeeeeeeasaans 171
13,1 PUDBICATIONS ..ttt sttt ettt et ettt e st 171
13.2 Patents and aWards ......c..cooierieiiiiniieneeee ettt 173
13.3  ACKNOWICAZEIMENLS ......eeeitiieiiieeiie ettt ettt e tee et et e et e et e e st e sateesnteesnseesnaeesnseenns 173

L S 310 e 421 0) 1) P RRUS 174
LT 2 P (N T [ QO SRUS 189
LN o] 153 416 PP USRTS 193
16.1 Appendix 1 — Engine deterioration assessment based on Strip reports .......c..ccoceereereennnennee 193

17 AtEACRIMENES ..ottt ettt sttt et st st sttt sttt s 216
17.1 Interval-valued blind source separation applied to Al-based prognostic fault detection..... 216
17.2 Engine health monitoring for engine fleets using fuzzy RadViz ........c..ccccccoininiinnnnnnn 233

17.3 Improved Life Cycle Cost — Reduced engine maintenance through engine health monitoring
genetic fuzzy system — method validation and case study ........cccoccevvciiriieiiienieecieeee 241

17.4 Sequential pattern mining applied to aeroengine diagnosis with uncertain Engine Health
MONIEOTING AALA....eeeiiieiiieiii ettt ettt et e st e st e s bt eebeeesaeesseeessseesnteesnseesnseeenseean 254

17.5 Aeroengine prognosis through Genetic Distal Learning applied to uncertain Engine Health
MONIEOTING AALA....eeeiiieiiieiiieeie ettt ettt et e st e st e s teeeteeesaeesseeessseesnseesnseesnseesnseean 290




Monitorizacion del estado de flotas de motores usando analisis inteligente de datos para informacion
intervalo-valorada y posibilistica

3 Objectives
3.1 Objective

Equipment or Engine Health Monitoring (EHM) of aeroengines as that, used in the automotive
industry today has evolved substantially in recent year. EHM on aeroengines has evolved from
simple direct cabin inputs managed and monitored by the third pilot to over 250 variables being
monitored today at any one moment during every flight.

The assessment of this data has also evolved over the years, especially with the introduction of
Power-By-The-Hour and other such engine maintenance services, by which the OEM manages
the engine maintenance for an hourly fee. This change has encouraged engine manufacturers to
look at EHM data not only as a means to maintain reliability and improve safety but also as a
means to saving operational costs.

Current EHM development has been structured in two main areas. The main objective of the
first is on-wing safety and reliability, based around the assessment of engine data against known
failure or significant event scenarios, which are used to identify engines where a precautionary
inspection is required. The other is established to determine the possible level of deterioration
of the engine in order to understand the fleet and the level of engine maintenance required by
any one engine.

3.1.1 Engine Deterioration over Time

Engine fleet data is typically assessed by computers, and only in those cases where a significant
change in a variable or a specific event is identified, is the data actually assessed by an engineer.
Several methods of assessment are available to establish the state of an engine at any one time.
However there are very few methods which combine all several parameters in order to
determine the overall state of an engine. As a result the evolution of an engine over time is a
common unknown.

The main EHM assessment methods available are only able to plot a limited number of
variables for its subsequent assessment. These methods carry out engine to engine or an engine
to fleet comparison, or monitor the complete fleet worth of data to subsequently extrapolate
fleet-wide conditions. However in no case are there currently methods available which are able
to assess the complete engine level of deterioration for a specific in-service engine.

A method is therefore required, which based on the available EHM data from a given engine is
able to plot an engine’s evolution over time. Subsequently the method is to be used in
combination with the service experience available from engine development and sampling
programmes to determine the engine’s proximity in level of deterioration to other known engine
states in order to enable read-across assessments of the original unknown engine.

3.1.2 Engine Classification

EHM data assessments are typically performed at individual variable level. Specific engine
variables are assessed for their trends or limits, or engine to engine comparisons are carried out,
however these are as well performed at variable level. This is appropriate in order to identify
faults or significant engine events where a substantial internal engine change has occurred.
However engine deterioration over time is not possible through this means, as the combinations
of variable changes need to be assessed.
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Module level assessments are also not generally performed as the internal evolution of the
engine is continuously compensating itself over time. As a result of this, determining the actual
state of an engine module has not been pursued. Its understanding would however be a
substantial step change in the understanding of the engine condition, reliability and maintenance
requirements.

The current engine classification methods are deemed to be rudimentary and oriented towards
the safety and reliability aspects of EHM assessment. This is, the main objective of the existing
methods attempt a reactive assessment of the engine data in order to avoid running the engine
under unwanted conditions or to limit the possible secondary damage caused by a significant
event that may be clearly identified through a step change or a significant trend shift in the data.
These methods are however limited by the identification of the optimum variable to assess, the
data availability and the actual occurrence of the event.

A method is therefore required, which is capable of performing a simultaneous assessment of
several variables in order to assess small engine levels of deterioration over time. The method
should not require previous engine knowledge to determine the overall state of the engine,
although it is deemed to be a read-across of the service and operational experience for other
reasons would be of value. In addition, module and not only engine level assessments would
also be beneficial.

3.1.3 Engine Feature Sequence Classification

The assessment of engine data is based on identifying engine trends, step changes or limit
exceedances. Specific engine conditions may be determined this way, however in some cases,
the actual engine event or condition will not occur simultaneously across all of the variables.
The changes will in reality occur as a cause-effect sequence across the engine.

Sequence mapping, is not applied to EHM data assessments. These methods are common
practice in other areas as DNA sequence assessments, however not in EHM. This is mainly due
to the actual lack of a requirement, and lack of understanding of the actual internal working
condition of the engine and its interactions. In addition, there are no existing methods which
enable these methods to be applied which in turn has reduced the development of these in the
civil aeronautical industry.

A method is therefore required, which is capable of identifying engine events or significant
conditions where the effect is detectable as a sequence of changes in time where the internal
evolution of the engine over time is the actual condition to be determined and identified. The
method should be able to distinguish between engines where changes occurred and those where
the same events in a different sequence do not relate to an actual engine condition change.

3.1.4 Engine Remaining Life

Engines are manufactured and introduced to service with very few life limitations. As such,
only the life limited parts will impose an engine refurbishment, however the life of these
components is for this same reason generally substantially high. An engine event will therefore
be the most likely root cause of an engine shop visit. This on-condition engine policy however
is not ideal for maintenance facility capacity planning. Operational conditions are therefore
typically imposed, based on service experience from the fleet or as a read-across from other
similar fleets. This establishes an average utilization and removal so that engines are planned at
maintenance intervals based on policies and not strictly on the actual engine condition.

Objectives
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The assessment of the remaining useful life is established in detail within the aeronautical
industry in order to establish the life of critical parts. Its application on the EHM environment is
also developed due to the safety and reliability emphasis EHM has had to date. As such
understanding the number of event worth of reaction time, once a significant change has been
identified is crucial to the current EHM capabilities. The determination of a maintenance RUL
when no significant event has occurred has however not been developed for an engine specific
application.  Fleet-wide assessment and predictive methods have been developed for
preventative planning, but none exist which are able to determine the remaining life of a normal
in-service engine where no significant condition has occurred.

A method is therefore required, which is capable of establishing the overall engine deterioration
over time which may subsequently be translated into the actual average engine remaining life to
a known overall engine state.

Objectives
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4 Structure Overview

4.1 Description of the structure

The development and application of each of the engine health monitoring data assessment
methods here described, was the result of an initial study which determined that the existing
methods were not capable of fully addressing the business needs.

This thesis in therefore compiled to outline, describe and validate the new methods developed.
However, due to the business specific needs and the industry specific environment an
introduction to both the aeroengine configuration and maintenance as well as engine health
monitoring itself is included in the first sections so as to aid the understanding of the context for
the following parts.

A detailed review of the current engine health monitoring data assessment methodologies is
subsequently described. This section follows on to determine and weigh the pros and cons of
each exiting method. In addition, the assessment also outlines the business requirements and
areas where further development to the existing method is required so as to meet these needs.
The conclusions from this section therefore serve to establish the specific objectives of the
thesis in each of its individual parts.

The theoretical development and understanding of the new methods developed is subsequently
described by means of a description of the actual objective to be addressed and the starting point
of development with regards to the existing methods and the development itself.

The new theoretical methods have been subsequently applied to specific examples for their own
validation. The theoretical methods have also been applied to real life examples so as to allow
the understanding of the exact differential level of detail between the new and old methods and
how well the business needs are addressed.

A review of the results has been carried out solely from the business point of view to establish
the benefits of these new methods developed.

The final conclusions section, reviews the new methods developed and how these have
addressed both the initial set objectives as well as the business needs. The degree of accuracy
and benefit of these new methods is also reviewed to establish future areas of further
development. This section also describes other new areas where further developments may be
required.

Structure Overview
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S Introduction to Aeroengines
5.1 How an engine works

Aeroengines can be divided into low or high bypass ratio engines, Figure /. In civil operation
aeroengines are typically now a days high ratio bypass engines. In this assessment the use of
engine or aeroengine may be used indifferently and will always relate to high bypass civil

aeroengines unless otherwise stated.

Aeroengines are used to continuously push air so that as part of the second law of physics,
through its reaction, an airplane may be pushed forwards. In order to do so, the fan is used to
carry out two functions, the first to use the energy to push air through the core and the second to
use energy to push air through the bypass.

Figure I Typical civil engine design overviews (Low, and High By-pass ratio engines, and open
rotor

5.1.1 High Bypass Engines

High bypass engines are composed of a core, a fan and a bypass. The air pushed through the
core is used to generate the power required to move the fan. The fan is used to push the air
through the bypass, which due to its exhaust nozzle design is optimized to generate the
maximum push whilst reducing the operating noise produced by both the core and the fan.

Introduction to Aeroengines
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5.1.2

The remaining section of the engine, the core, is where the power is generated. The core is
composed of a compressor and a turbine, with the turbine being subdivided to differentiate the
generation of power to maintain the engine working efficiently from that used to generate the
power to move the fan and thus the overall engine thrust.

In order to simplify the design definition and due to the similarities between engines, these are
subdivided into engine modules. A two shaft engine is most commonly composed of the
following modules, Figure 2:

Fan or LP Compressor

HP Compressor
Combustion and HP Turbine
LP Turbine

YV VYV

Figure 2 Engine modular schematic overview

Whilst a three shaft engine will be composed of the same modules it will also include one
additional set of intermediate compressor and turbine, IP compressor and IP turbine
respectively. In this assessment there will be no distinction between a two and a three shaft
engine and unless otherwise specified, will always relate to a two shaft engine.

Working Configuration

All aeroengines generate thrust through a generic suck-squeeze-bang-blow configuration [1].
This is in line with any other internal combustion engine, like that of a car. The air is
absorbed and compressed, so that a high pressure is achieved and appropriate combustion air
concentrations are met. Fuel is then injected into the high pressure air, the combustion then
combines high pressure and high temperature air onto the turbine where the air is allowed to

expand.
Introduction to Aeroengines
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The engine cross section of temperatures and pressures shows the overview of how the engine
works [1]. The air running through the engine bypass is compressed, however due to the low
compression ratio; no significant temperature increase is associated to it.

On the other hand, the air running through the core of the engine is initially compressed by the
fan blades, but then sustains the highest compression when going through the HP compressor.
Due to the high compression ratio the associated temperature also increases. By the time the
air reaches, the combustion chamber, the air temperature is exceeding 800 degrees Kelvin,
Figure 3.
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Figure 3 Internal engine working conditions

Combining the compressed air with the engine fuel has no substantial effect at this high level
overview. The main impact comes after or during the combustion where there is a small
pressure loss and a significant temperature increase. By the time the air reaches the HP
turbine the temperature is well above 1500 degrees Centigrade.

The air is subsequently allowed to expand through both the high and the low pressure turbines,
by when the pressure has substantially reduced whilst the exit temperatures are still high
considering the entry conditions.

At the engine exit depending on the engine configuration, the relatively high core exit
temperature air may be used in combination with the bypass air in order to gain an additional
proportion of thrust with the use of an exit nozzle.

5.2 Engine management and maintenance

Aeroengines, in much the same way as all mechanical systems need to be maintained in order to
assure their safe and reliable working conditions. In addition, it is in the operator’s interest to
maintain the engines in a good overall working condition so as to assure the best possible fuel
consumption [2] and operating costs.

Due to the size, complexity and skilled work force required for the maintenance of these
engines, the appropriate management of the maintenance is crucial to any airline operation.
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5.2.1

5.2.2

5.2.3

Engine Maintenance

Since the beginning of civil air travel as we currently know it, operators may acquire a new
aircraft, and with it, select the engine system that best suits their operation within the given
range of the aircraft. At an aircraft level several maintenance and management inspections are
then required, however this is outside of the scope of this thesis and therefore will solely
concentrate on the management and maintenance of the engines [3].

The maintenance programme of the engines needs to be agreed by the operator with the local
airworthiness authorities in order to assure the appropriate management of the engines is in
place before the engines may be certified. This is, the operator is expected to have an
engineering department, which will monitor and manage the engine maintenance throughout
its operating life.

This requirement means operators are required to have the constant costs of keeping a
complete engine management related department as well as confronting the variable costs of
each engine maintenance shop visit, which in many cases may rise above a million dollars.

This methodology is still followed by many operators, however in order to support the
industry even further engine manufacturers have developed a maintenance free method of
operation. This is, engine manufacturers offer to manage the engine maintenance on behalf of
the operator. There are several different names for these agreements depending on the
services contracted however the most common are “Total Care”, “Corporate Care” or “Fly-
By-The-Hour” [2].

The key aspect of this maintenance methodology is that the engine manufacturer needs to
appropriately manage the flight income from the operator in order to confront the future
maintenance costs of the engine. The more knowledge on the engine, the more accurate the
budget for the future shop visit, and therefore a greater profit.

Types of engine shop visit

There are only a limited number of facilities worldwide which can refurbish engines, and these
have limited capacity. Managing and planning this capacity appropriately is therefore key.
Improving the reliability of the fleet is also in the manufacturers’ interest in order to avoid
unplanned shop visits.

The overall engine management methodology agreed with the operator and with their
airworthiness authorities outlines the level of work that will be carried out on an engine for a
given life. The life of an engine or component within an engine is monitored though cycles, or
hours flown, depending on the deterioration method.

Engine Deterioration

Inspection methods, limits and intervals are designed to manage and improve reliability within
the fleet. This assures that no significant finding will be missed or that it will not be allowed
to propagate into an unsafe condition before the following inspection. This is, service
experience has shown that there are different interim stages in a component or engines’ life
that depending on the findings will require a different type of maintenance reaction.
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5.2.4

In a visual form Figure 4, a general Weibul based deterioration plot, can clearly show the
different stages of deterioration and the reaction time and impact to consider. Based on
maintenance cost, inspections would be preferred early in order to maintain as much of the
original material as possible, however based on utilization reduced on-wing inspections would
be performed.

Experience within the fleet or engine family will give guidance with regards to where these
individual lines are, with respect to each other and will allow certain fleet-wide policies to be
considered. However this will be an average point of view for the fleet and not an individual
engine assessment for each of the engines within a given fleet.

Percentage

Time

Figure 4 Engine or component deterioration Weibul plot
Engine Deterioration Equilibrium

Internal engine damage due to erosion, impact or thermal distress will always have a direct
effect on the engine working conditions. Substantial amounts of damage will cause a
significant step change in the engine working conditions which will be picked up through the
alerting systems. These may be significant spikes in the working temperatures, or increased
vibrations. In any case, the pilot or the ground crew will identify a significant finding which
they will need to address.

Small amounts of internal damage, however, will have subtle effects that may not be seen or
even identified by the current monitoring systems. The effect on efficiency will however
exist. As the engine is subsequently operated in this condition, the engine will need to
compensate this efficiency loss. There is therefore a certain equilibrium that the engine seeks
between the compressor and turbine in order to reach an appropriate balance.

Compressor damage will reduce the compression efficiency and reduce the temperature at
which the air is delivered to the combustion and turbine system, all of these effects will be
assessed in more detail in following chapters. Due to this temperature loss, the combustion
system must compensate so that the turbine work and delivered energy is maintained, a higher
fuel flow is therefore delivered. However in doing so, the turbine working temperature is
increased, directly affecting the turbine working conditions and deteriorating the turbine faster
than in the previous conditions.

This will follow until the turbine efficiency is lower than that of the compressor, then the
compressor will need to compensate a turbine efficiency loss, by turning faster in order to
deliver higher flow air increasing the deterioration of the compressor components
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6 Introduction to Engine Health Monitoring
6.1 Engine Controls

Engine controls have evolved substantially throughout the years, in the 1980s Pratt & Witney
started developing digital controls in their engines, however it was with the introduction of the
Olympus engine for the Concord that Rolls-Royce introduced the first civil FADEC engine.

FADEC or Full Authority Digital Engine Control [4] is the term used for the controls system on
all modern aeroengines. The main components within any FADEC system are the EEC or
Engine Electronic Controller and the surrounding units dealing with the fuel and oil supplies as
well as the aeroengine settings through bleed valves and variable stator vane actuators, Figure 5.
In addition and in order to determine the individual conditions required at any one time the
system also includes all of the engine sensors.

Figure 5 Schematic engine overview with the location of the main FADEC components

The subsequent engine development once digital engine controls were established was the
introduction of the EVMU or Engine Vibration Monitoring Unit which monitors and records not
only engine vibration data but also the data from all of the other engine sensors. This set of data
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6.2

is what is known as EHM or Equipment Health Monitoring data. In many cases due to the
specific use of EHM on aeroengines, it is also known as Engine Health Monitoring data.

Engine health monitoring data in modern aircraft is a given. However the number of variables
measured and the number of data points collected over time for each of these variables has
substantially increased in recent years. This has in turn, increased the complexity of the
assessment methods and models required.

The main use of engine data is to control and manage the engine [5]. This is, to monitor engine
parameters in order to avoid running the engine under undesired conditions. The built-in system
knowledge within the engine and aircraft is configured to trigger alerts to highlight the need for
pilot or maintenance crew action or to directly shut the engine down if a significant condition
would be encountered.

In addition, engine data is also monitored for its development over time. The variables measured
and the number of data points taken over time for each of these has also evolved through the
years, making it necessary to have specific types of analysis software available to assess and
monitor the flying fleet [6].

FADEC/ Engine Control System

The main objective with the introduction of digital engine controls was and still is safety [7].
This was implemented in order to reduce the amount of pilot input required, who in addition
was not capable of monitoring the engine for small changes several times per second with an
immediate reaction time [§].

In addition, FADEC controls have also contributed to other overall engine improvements,
improved fuel efficiency, as the engine is optimized for the specific ambient and internal
conditions of the engine, automatic engine protection in the case of encountering an unsafe
condition, care free handling allowing the pilots to concentrate on flying the aircraft and not on
the engines, also reducing the amount of parameters to be monitored by the crew during each
flight [1]. In addition, it also managed a semi-automatic engine start, monitored a greater
number of parameters for a more accurate fault isolation system and had an inbuilt emergency
response in case required.

The reaction time with which FADEC data is used also defines the type of task or improvement
it addresses, Figure 6. This way, and as shown in the chart, immediate reaction is carried out by
the FADEC system itself to optimise the engine working conditions improving the operating
costs. It also continuously monitors the engine, giving warning messages to the crew for pilot
consideration and mainly contains the auto-protection system to react in case of a hazardous
condition.

Long-term, the digital engine control is centred on the Engine Health monitoring (EHM) or
condition monitoring of the engine.  This way, the EHM data assessment helps identify
imminent working conditions where operation should be avoided, which in turn helps operators
plan final routes for engine maintenance, avoiding maintenance outside of the main
maintenance base, improving maintenance costs [9].
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Figure 6 Engine controls capability and reason versus reaction time chart
6.3 Types of data currently managed

There are several different types of engine data recorded and monitored, Figure 7. Depending
on the operation point of the aircraft, the engine monitor will carry out a different type of engine
data assessment and management.

Continuous data is monitored throughout the complete flight. This is, the engine control
system reviews all of the data points and optimizes the operation of the engine for the given
working conditions and pilot requirements.

Semi-continuous data is monitored and recorded at key flight phase points. During take-off and
landing and also if exceedances are identified the monitored data is physically recorded so that
assessments may later be carried out.

Snapshots of data are also recorded during each flight. A reduced number of data points are
recorded at certain steady state conditions throughout the flight and at different points of the
flight profile. These are used for trending purposes.
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Figure 7 Overview of the main types of controls data gathering

The assessment of this data in any of the three forms may be used to assess the condition of the
engine [10]. Maintenance information may be gathered to determine engine faults and
determine if on-wing maintenance may be required. Life cycle counting , may also be
determined to manage the number of cycles at a certain working condition that specific group A
parts may have encountered in order to optimize the engine time on-wing.

The data recorded throughout each flight is also different depending on the flight phase. As an
example, during take-off approximately 164 different engine parameters may be recorded and
monitored. During climb however, a reduced number, 131 parameters may be recorded.
During cruise the parameters monitored and recorded would be once again reduced to 54.
These parameters and the number of parameters per phase will change depending on the
operator or the fleet; however they serve as examples of the level of detailed recorded during
each flight phase.

Trend assessments are typically carried out through the assessment of cruise data [11]. This is
due to the fact that the engine is at a steady working condition, reducing the transient effects
when comparing data from several different flights over several different years. Even though
54 different parameters are recorded there are several key parameters that have been determined
to give an appropriate level of detail about the engine working conditions. The remainder of the
parameters either enhance the level of knowledge about specific subsystems or allow a more
detailed assessment if a certain deviation has been identified.
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7 Engine Health Monitoring Methods

7.1

7.2

EHM data assessments

The Engine or equipment health monitoring assessment reviews not only the individual working
conditions but also the trend over time to identify rapid levels of deterioration. This engine
monitor is typically carried out by the OEM, by an operators own engineer or is outsourced to a
specialist EHM consulting company, [12].

The assessment carried out is typically a comparison of the new engine data against those
parameters identified to be characteristic of known engine conditions or against design limits,
[13]. However understanding the design limits for a new engine or predicting the engine
parameter deterioration levels over time is complex and as a result several methods have been
developed.

The most common methods developed to assess EHM data are based around Gas Path Analysis
(GPA), which considers the variability of the engine parameters based on the engines’ own
design, internal damage and deterioration, [14]. Linear and subsequent non-linear assessments
based around GPA have helped develop filtering mechanisms to detect step changes in the
internal working conditions of the engine. Due to the increase in the number of variables
monitored and to improve the time before an engine is required to be removed from service
from the point a trend shift is identified, assessments have used fuzzy logic and neural networks
to develop pattern recognition methods [15].

The aim of these methods has consistently been to filter the variables in order to identify engine
trends and step changes as early as possible. Then, based on previous experience, faults may be
diagnosed early and a prognosis time before engine maintenance is required, may be provided in
order to plan the required maintenance accordingly, thus avoiding a more significant engine
event.

Engine development over time has also been assessed through deterioration modelling and
probabilistic simulation, [16]. The main objective of this type of assessments, early in an
engine programme however is to determine the optimum engine maintenance interval and
assure appropriate levels of reliability for the new fleet.

In the past these two types of assessment have been developed and used independently. The
first concentrating on engine specific safety and reliability and the second on fleet management,
however neither actually considers long-term engine specific maintenance management. The
introduction of maintenance contracts as Power-By-The-Hour where the engine maintenance
management is the responsibility of the OEMs has emphasized the need for the early diagnosis
of engine specific deterioration. This is, further development in the assessment of EHM data
has been highlighted so that small trends and shifts in the variables are identified, even when the
values are within the appropriate reliability levels of the specific parameters. This way, the
level of engine deterioration at the time of engine maintenance may be determined and
prioritization of fleet maintenance may be performed ahead of time based on the specific levels
of each engines own deterioration.

Definitions

Diagnosis and prognosis have several different definitions, however within the EHM
aeronautical community the definitions of these are as follows. The diagnosis of engine faults
consists in the identification and classicisation of a component or subsystem within the engine.
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The prognosis of an engine fault is on the other hand, the capability of establishing not just the
fault but the actual progression of said fault over time, in order to define the component or
subsystem fault [17] [18] [19] [20]. This is, for a diagnosis, an engine fault has already
occurred, whereas for a prognosis, the fault itself does not yet have to have occurred. As such,
system diagnostics may provide a direct benefit on their own. However prognostic systems
require an initial diagnosis in order to add value.

As such the diagnosis of a component fault within a system will detect the fault, identify the
fault and classify the fault. This in itself will allow action to be taken, and as discussed is
already of value. The prognosis of the system however, will be able to build on this fault
classification, to carry out a prediction of the evolution of the fault over time, so as to establish
the Remaining Useful Life, RUL. This is clearly shown in Figure 8, [17] [18].
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Figure 8 Degrees of complexity for Diagnosis and Prognosis models
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7.2.1 Fault Types

Independently of the type of diagnostic or prognostic method used, the detection of faults will
always require the identification of a variable, or combination of variables which deviate from
a norm which may be monitored and assessed. The deviation will be a step change, a drift or
an intermittent fault over time, Figure 9. Defining the norm and the time required to
acknowledge these changes as faults, is the basis of all of the available methods [21].
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Figure 9 Types of variable deviation, step change, drift or intermittent fault

However, as these types of assessments are typically used on complex systems, faults should
not be expected to be unique. As such faults must be considered as combinations of each
other within the system. These combinations may be additive or multiplicative depending on
the faults, the sub-systems and the complexity of the complete system.

Each method of assessment will look for certain symptoms characteristic of each fault. These
may be limit value exceedances, signal analysis or process analysis. They are all specific and
mathematically based on the exact variable value measured. However there are certain other
methods, which will use qualitative data. These other methods use maintenance information
or even subjective inspection criteria within the assessment in order to establish a diagnosis of
an engine fault.

7.3 Review of System Diagnostic Methods

The diagnosis of faults methodology is directly linked to the type of knowledge readily
available with regards to the system under assessment and the diagnostic strategy to be pursued,
[22]. On the other hand, the diagnostic strategies are directly proportional to the system
knowledge. This is, the more detailed the knowledge is about the system, the lower the
complexity of the diagnostic method. Diagnostic methods can therefore be classified dependant
on the amount and type of knowledge available, as has been outlined by R Isermann [21] first,
and later by V Venkatasubramanian et al. [22] .

The basic type of knowledge that is required is a database through which relationships may be
generated between system and specific faults, Figure /0. This knowledge may be implicit
within the diagnostic system, as a look up table. This type of knowledge is referred to as model-
based knowledge. There are other methods which utilize these knowledge databases of past
experience, or experience from other similar systems to create these fault relationships. This
type of knowledge is referred to as History-Based knowledge.

In addition, model-based methods may be subdivided into qualitative and quantitative methods.
Qualitative models, typically mathematically relate the inputs and outputs of a system, as a
bases for the assessment. Quantitative methods, on the other hand, are typically generating
qualitative relationship functions around specific units within a process.
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History based methods, are used when the system or system process is ignored or is too
complex to allow specific inputs to be used. As such, these methods require substantial
amounts of historic knowledge in order to establish the fault relationships and understanding of
the norm. The methods through which the diagnostic systems extract or transform the required
knowledge, is known as feature extraction.

This feature extraction is performed to enable the subsequent diagnosis. The feature extraction
process may once again be subdivided into qualitative or quantitative. In addition, the
quantitative extraction processes can once again be subdivided into statistical and non-statistical
feature extraction methods.
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Figure 10 Classification overview of Diagnosis methods
7.3.1 Quantitative Model Based

Fault detection and isolation (FDI) methods, will typically require a two-stepped approach.
The first will be the generation of inconsistencies between actual and expected behaviours.
These inconsistencies or “residuals™ are the potential faults required to generate the database
of relationship to specific system known conditions [22]. The second step is the diagnostic
rule base of the assessment relating these conditions to specific faults.

As such the difference between quantitative methods is typically based on the method through
which the residual identification is performed. The detection of redundancies where the same
measurement is performed by two or more sensors is Hardware redundancy. In these cases, if
one of the sensors deviates from the norm, then a fault may be detected. This however is a
costly method, both on direct cost and on physical space within a system, which may not be
possible due to size, or weight.

The other method of identifying redundancies is through mathematical relationships between
sensors. This is, through the understanding of the system under assessment, and through the
understanding of the basic functioning principals of the system, a model may be generated,
which by using the identical input data is able to generate a computed output prediction or
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estimation. This value may therefore be compared against the real output and be assessed for
deviations, as a method of fault identification.

These computed predictions will require certain detailed knowledge of the system under
assessment. Direct modelling of the processes is possible, however systems where data
monitoring is required are typically complex and as such these methods are also very complex.
Statistical methods are therefore applied to allow for model approximations to be generated.
However in doing so the interpretation of the output results is in many cases not possible, as
the resulting system does not directly represent reality.

The assessment methods will therefore need to extract the required features from the system
and consider the additive or multiplicative nature of the complex system faults. In addition,
the non-linearity of the variables will require an initial “linearization™ for their subsequent
analysis.

The identification of residuals within the system in order to compile the diagnosis method
implies the use of steady state conditions in order to establish the norm and the difference to a
cause-effect condition to be assessed. However the use of transition conditions may also be
used for clarification or detail within the prediction.

7.3.1.1 Observers

There are several different types of Observer models, however they are all based on
algorithms that monitor a variable [21]. Under normal conditions the deviations will be
small and close to zero. However when an event or failure occurs, higher values will be
identified, which will trigger the fault.

The combination of several of these algorithms will provide the capability of not only
detecting a fault but also classifying the fault, as depending on the triggered variable or
combination of variables, fault isolation and classification may be carried out.

The fault isolation capability of observer models is based on the isolation of each individual
fault and the error deviation from the remainder of observers. This is, the service experience
together with the engineering understanding of the engine will enable a model database of
triggers and trigger combinations, which in turn will enable fault isolation.

In addition, as there are additive and multiplicative types of faults, Kalman filtering is
generally applied in order to reduce the systems’ inherent error. Least squares methods are
in addition applied to reduce the possible error from multiplicative faults.

Any unique fault signature will be detected through a change to the output and associated
error estimation which may are considered as the residuals in these methods. This is the
basis of current monitoring techniques.

Dedicated Observers

Different types of methods may be determined based on the filtering methodology applied:

* Single output observer

This method is used to detect individual faults — The observer is defined to be variable
sensitive. This is, the method is defined around an individual output sensor to identify
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and classify a specific fault. A predicted output signal is constructed, and the real
system output is compared for fault detection.

e Kalman Filter

This method is able to assess signals with multiple influences. Under normal
conditions, the output signal is generic white-noise, however when a specific fault
occurs, quantifiable deviations from the norm, known covariances, will be detected. A
Kalman filter may be used to minimize the noise and measure the Kalman filter gain
over time through a covariance error matrix. Developments into extended Kalman filter
have introduced adaptive redundancies into these models.

* Bank of observers — Multiple excitations

Several generic dedicated fault observers are defined and combined in a fault database.
Faults are detected thorough the questioning of the output against this database or bank
of faults.

* Bank of observers — Single excitations

Several fault-specific observers are defined and combined in a fault database. Faults are
detected through the questioning of the output against this database or bank of faults.

* Bank of observers — Multiple excitations except one

Several generic fault observers are generated around a sensor which does not excite the
output. The method will monitor several variables and identify a fault when there is a
change to all variables except in one.

Fault Detection Filters

These methods make use of the control signal to create fault specific observers. The
resulting fault signal will change in a predetermined way, identifying the possible fault. As
such the output signals will be transformed into these specific pre-determined fault planes so
that the fault isolation may be easily carried out

Output Observers

These methods are used when the system under assessment is unknown. The method is
based on the comparison between the real and the simulated outputs, which are designed to
be independent. As such, a dependency would only occur if a fault exists.

These Output observer-based methods are of great value as they do not require prior
knowledge about the actual system being assessed. On the other hand however, generating
independent fault-specific observers is increasingly difficult in complex systems [23].
Linear and subsequent non-linear methodologies have been applied, to establish the
independence between fault cases and track the Eigen values of the control system output to
determine fault-free states. These observer-based methods are typically applied to broad and
generic cases of on-line “live” control systems which monitor limit exceedances or step

change faults.
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7.3.1.2 Parity Equations

7.3.1.3

7.3.1.4

Parity equation methods are based around the input-output relationships within a system
itself. The control model input-output is built such that if the input is changed, the output
from the system and the control model will be the same. This consistency between the
model and reality is what’s known as the parity of the model. Once this parity model is
available, it may be re-arranged in such a way that fault isolation may be optimized [22].

Initial transformation methods employed short-term average equations of the steady state
conditions, and used residuals to determine gross faults. Further developments have
however evolved into vector and directional influence of specific faults. In these cases, the
models are transformed into a state in which the identified faults are orthogonal to each other
and validated through their own independence.

This input-output orthogonality has also been applied to state-space plots for dynamic
systems [24] [25]. The control model in these cases is capable of minimizing the general
system noise and therefore detecting drift changes over time.

These methods are ideal for additive type faults where the influence over time of single
faults may be detected. However multiple faults will show as deviations on multiple signals
and no fault isolation will be possible. In addition, this method is also not valid for step
changes in the system due to the nature and construction of the model itself.

Signal Models

The system variables under assessment usually contain a certain natural oscillation to them
due to system noise, rotational vibration or other influences. As such, fault isolation may
also be carried out through the assessment of the signals themselves. The assessment of the
signal amplitude and or amplitude density for a given bandwidth may be considered and
developed to generate band-pass filters [26].

Other signal transformations may also be applied to differentiate the average system noise
from other events for fault detection reasons. These models identify a maximum entropy
estimator against which to compare the real output signals. These are known as
autoregressive moving average methods [27].

The application of these models is valuable for fault isolation of certain sensor specific
faults. However when used at system level these method are a useful indicators for fault
detection, but not of fault identification, as deviations may be identified but are complex to
associate to specific known faults.

Additional Remarks

Other quantitative methods exist, as:

* Parameter estimation, for variables which are not directly measureable

*  Hardware redundancy and voting schemes [28], to determine sensor faults and
establish appropriate inputs to be considered

* Enhanced residuals, through directional [29] and structural methods [25], to
isolate specific faults and generate a structured parity method which selects

specific faults for specific sub-spaces.
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As previously discussed these fault detection and isolation models are typically centred on
the detection of a deviation as a drift or a step change. Substantial model development has
been carried out to establish, clarify and define these limits and thresholds, as high limit
values will reduce the robustness of a given model and low limit values will generate false
alarms. Fuzzy sets have subsequently been introduced to address this issue and allow limit
transitions between high and low limit values [30]

7.3.2 Qualitative Model Based

7.3.2.1

Qualitative FDI methods are based on expert knowledge to extract rules or theories which
define the service or predicted faults. These methods, review the subjective system
condition, to establish rules which are considered as fact, by generating conditional trees
where IF something occurred THEN something is to be expected. As such, because of the
subjective nature of these methods, and their distance from the actual physical system being
assessed, new failure modes cannot be detected or processed, through the direct
understanding of the method. A new rule or a revision of a rule would be required, for each
new fault.

Based on the type of subjective rules proposed, these methods, may be subdivided into
Abductive, when the reasoning is based on the output understanding and the selection is the
weighted most likely reason, or inductive, by compiling all rules which are similar to a
known system fact; or default, where a rule is established based on the available data at the
time of the assessment, but is allowed to change or be modified as further experience is
gathered.

These qualitative methods which make use of this service experience to establish system
rules in order to monitor and manage systems may be subdivided again into Casual models
and Abstraction hierarchy methods [31].

Casual Models

Casual model, do not consider the actual physics of the system under assessment, nor do they
make use of mathematical relations between inputs and outputs. The casual qualitative
methods solely review the experience gathered and collate it in a reasoning format where
future assessments and assumptions may be considered. These types of models may be
subdivided into Digraphs, Fault Trees and Qualitative physics methods.

Digraphs

The visual representation of observed cause-effect relationships or digraphs is known as
signed digraphs (SDG) [32]. These charts show the relationships between variables and
conditions. The relationships are in addition considered to be directional, which allows for
an improved understanding of the cause effect mechanism.

In these representations, each node is a variable. As such these nodes may be cause or effect
nodes, and they are related through directional arcs. Nodes, can have, only outputs, outputs
and inputs or only inputs, depending on the characteristics of the variable they represent.

Further extensions of this methodology have also considered partially known relationships
and multiple probable relationships to bridge the gaps of subjective reasoning or experience
[33]. More recent developments have also made use of fuzzy reasoning, to further clarify

these multiple subjective relations [34] [35].
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7.3.2.2

These models are useful as control related methods, as they revise the on-line system to
verify the correct functionality. However due to their complexity and multiple possible
relations on bigger scale systems, their use is limited.

Fault Tree

Fault tree methods may be understood as an extension of digraphs. Fault trees are a detailed
graphical representation of the actual working system. These methods require an accurate
representation of the system under assessment to subsequently model all possible faults
relating an initial deviation through AND — OR relation to actual faults.

In addition, the progression through the fault tree may be carried out through probability
trails, which are directly based on experience. As such these models are typically used for
safety and reliability assessments to determine the probability of specific known faults, as a
means of system validation strategies [36].

These models are limited by the capability to represent the system and the experience to
define all possible faults and relations. As such these models will serve as control
mechanisms to verify systems, but cannot be read across to similar systems nor are they
capable of independently identifying new faults.

Qualitative Physics

Due to limited system knowledge or lack of actual variable measurements, qualitative
physics models have been developed. These models allow the application of the first law
rules to the system under assessment, with qualitative values. This is, “a big increase” may
be modelled instead of an actual number value within a performance equation.

However as modelling and understanding of complex systems through detailed equations
with qualitative data is not possible due to the complexity and in most case unknown details,
these equations are limited to addition, subtraction and multiplication. Equations or rules
can then be established as system monitoring methods where “a big increase in X” + “a
smaller increase in Y” = 0, to suggest that these qualitative increases are not relevant to a
fault [37].

These methods are descriptive of the system, and are limited by the complexity of the
systems under assessment and the limited algebra available for their modelling [38]. The
other limitation is the qualitative data itself, and the requirement for probability
understanding for non-linear variables [39].

Abstraction Hierarchy

Complex systems are typically made up of smaller subsystems which perform a certain
function in the overall flow. Under this assumption, abstract hierarchy models divide
complex systems into subsystems by modelling their structure or function. This is, the
model represents the input to output transformation or the input to output relation, without
having to fully understand the exact mechanisms within the actual subsystem being
represented.

Structural Hierarchy

These methods understand the internal mechanism of each subsystem under assessment to
establish the transformation of the inputs as the bases of the model. The inter-connections of
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these relations across the different subsystems represented to model the complete system are
subsequently used as the basis of the method.

There is increasing value in these methods as they are able to quickly identify areas of
concern or isolate possible faults, however due to the modelling complexities, these methods
are typically only applied at high sub-system levels and not to small detail therefore
restricting their fault identification capabilities.

Functional Hierarchy

The representation of subsystems as a function of the inputs is useful when considering
subsystems with known effects [40]. This is, in an electronic environment the effect of a
resistance to the voltage may be represented as a function of the current.

As previously, these methods can represent the actual physical changes that occur throughout
the system when compiled together, however the complexity of the systems to be assessed is
their inherent limitation. However they are widely used as a first point of contact fault
isolation methodology for complex systems.

7.3.2.3 Additional Remarks

Qualitative methods are of great use when detailed knowledge about the system under
assessment is unknown or not fully known in sufficient detail to model. However through
the partial knowledge or through relationships between input and outputs, these methods are
capable of designing representative models which reflect reality.

The application of these models is limited due to their broad representation of the real
system. As such targeted representation of known system faults for validation strategies or
high-level fault isolation strategies may be considered from these models. Detailed
assessments are not typically considered for complex systems through these methods solely
due to their modelling difficulties.

7.3.3 Process History Based

In contrast to the other qualitative or quantitative methods where the understanding of the
system at hand was a valuable asset for the model, in Process History based methods, the data
is monitored and managed in order to carry out the assessment. However the amount of data
required in order to carry out an accurate prediction of the system fault is increasingly high.
Feature extraction, determines which knowledge is extracted from this high volume of historic
processed data. This extraction may be performed through two main methods; qualitative and
quantitative.

The understanding of these different methodologies as exposed by V. Venkatasubramanian et
al. [41] is further exposed.

7.3.3.1 Qualitative Process History

The main methods of qualitative feature extraction are expert systems and trend modelling
methods.
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7.3.3.2

Expert System

Expert systems are simple data driven rule based models. These models collect the data
from the system under assessment, and through the knowledge database available, represent
the running system so that diagnostics may be carried out, through rule base approaches.

The structure, with which the data is collated, may be hierarchical, or network based. This
way, the fault isolation is performed through the established rules [42] which zone-in and
both identify and classify the fault simultaneously.

These rule-based models later gave way to the application of Fuzzy logic and neural
networks, where the required fault isolation rules are not imposed within the model, but
learnt, giving way to Fuzzy rule based models [43].

The limiting factor of these expert models is that they are system specific and are therefore
not transferable to other even similar systems. They are however a very simple and straight
forward to collate and develop due to their structure and transparency. In addition, and also
due to their structure-base, faults are aligned to specific, troubleshooting processes or
procedures, which are a valuable asset when assessing complex systems.

Qualitative Trend Analysis

The extraction of trend monitoring data is typically associated to time series. These can
easily be filtered to remove the inherence system noise and detect faults. Trend analysis can
also be performed to identify known system trends and sensor combinations [44].

First and second derivative methods are also applied to these time series to determine trend
changes through the first derivative or zero crossings through the second to clearly notify of
a signal change [45].

These methods are typically used with good results. Service experience is required to
establish a solid fault database, however the filtering and fault associated technique is
appropriate in many environments. The computational time to review multiple complex
signals is however high and is deemed to be a limiting factor on the application of these
methods.

Quantitative Process History

Feature extraction through quantitative methods is also known as pattern recognition. This
is, the method identifies specific patterns within a signal which are subsequently classified,
this way providing the fault isolation.

Quantitative feature extraction methods may be subdivided into two main groups.

Statistical Feature Extraction

Complex systems are typically unpredictable. This is, historic or even present data does not
directly relate to the next future state or condition. As such, statistical methods allow the use

of probabilities to determine the next likely states or conditions of the working system.

These methods are typically used for system control through the use of thresholds which
identify and perform the required change in order to optimize the system working conditions.
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Statistical tools have been applied to these models to reduce the noise effect, and transform
the data into smaller subsets which may be easily assessed.

*  Principal Component Analysis / Partial Least Squares

PCA and PLS methods are based on the statistical analysis of data [46]. PCA methods
are capable of performing an orthogonal decomposition, which in essence reduces the
unformatted data into the main characteristic directions. This way, the principal
components may be considered [47] as the main drivers, or smaller directions of less
weight may be dismissed, reducing the number of variables under assessment [48].

. Statistical Classifiers

Statistical classifiers may be applied for fault isolation. These can be based on
parametric or nonparametric density estimation, be distance based, etc. The conditional
class probabilities are related to the distance to known conditions, thus establishing the
fault isolation [49].

Neural Networks

Neural networks are one of the main areas of current development for fault isolation
techniques. Depending on the model structure, neural networks can substantially reduce the
amount of effort required to determine a possible solution, through estimation techniques and
connection weights. These weights may be learnt, through experience or unsupervised
neural network processes [50].

Pattern similarity is a subsequent area of development which enables nearest neighbour
assessment to establish robust pattern recognitions and associations [51].

7.4 Review of Prognosis methods

A system prognosis is the answer to the next natural question after a fault has been diagnosed in
order to determine the remaining useful life (RUL) of the component, so that appropriate action
may be carried out. This is, a fault needs to be identified for a prognosis to be made. The fault
does not necessarily need to be classified, however for a prognosis to be considered a failure
needs to have occurred or must at least be initiated. As such, prognosis methods can be seen as
an extension of the diagnosis methodologies previously discussed.

In order to generate an appropriate prognosis, several questions need to be addressed. Is a
component degraded? Is it a known failure mode? Is the fault classified? At what stage of
degradation is it at? These are all diagnosis questions that should already be addressed and are
not part of the prognosis.

The prognosis phase, will address other questions as “does this fault have a known failure mode
prognosis?” Or “does it have a future failure mode prognosis?” And “what’s the post-action
prognosis?” These questions will help determine the time to failure, or RUL. Identifying the
most likely failure mode to establish an even higher accuracy or confidence in the RUL as well,
as the appropriate actions which could be considered in order to retard the existing fault, are
respectively shown in Figure 8.

Depending on the level or degree of accuracy required in the prognosis, different levels of
insight may be considered. On a high level prognosis or Level 1 an RUL is provided based on
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the extension of the known failure mode. On a Medium prognosis or Level 2, a descriptive
outcome of all of the different failure deterioration modes is assessed and an RUL calculated for
all possible cases, with the worst case scenario provided as the outcome of the assessment. On
the most detailed prognosis level, level 3 maintenance actions are considered in order to provide
a detailed assessment of not just the RUL, but also of how this RUL may be influenced through
alternative or additional maintenance actions and how the RUL will subsequently evolve.

As with the diagnosis methods, prognosis methods are also dependant on the type and quantity
of data or knowledge available. As such four main classes of prognosis methods have been
identified [17]as a means of classification, Figure 1.
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Figure 11 Classification overview of Prognosis methods
7.4.1 Knowledge-Based Models

These models may be further subdivided depending on the method through which the
knowledge database of faults and fault progressions is applied.

Fixed Rules

The fixed rules, or expert system methods, are based on service experience and expert
knowledge. As such, direct If-Then rules can be applied, as historical evidence has shown the
clear path of these specific faults. The limits are typically broad in order to assure an accurate
prognosis, and as such, the RUL is also considered to be too pessimistic [52]. However, these
methods do provide a good guideline and a first level approach as to the RUL to be considered
for the fault identified.
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7.4.2

Fuzzy Rules

In order to bridge the gap between the fixed rules requirement and the imprecise data that is
typically available, fuzzy rules have been applied in order to gain the capability to use
incomplete data or even confidence limits as to where the system may actually be.

As such the strict If-Then rules may now also be applied. However their application will now
consider the imprecise inputs, in order to provide a range of outcomes with their associated
degrees of certainty. In addition, several of the fixed rules required for the assessment may be
combined, and as such, the fuzzy methods typically require a substantially reduced number of
rules [53].

The RULSs as such, are still considered as those from the knowledge database, but in the fuzzy
method, the outcome is the selection of the most likely prognosis.

Further more recent development in Fuzzy logic has expanded the use of Fuzzy rules of
imprecise data to the application of learnt rules over imprecise systems. This enables the
assessment of systems, where the actual rule base is learnt directly through a sample dataset
and then used to monitor the system.

The RULs of these are not different than before however the method may now be applied to
more complex systems, where no detail data is available, or where substantial expert
knowledge would be required.

Life Expectancy Models

Once a fault has been diagnosed and classified, the prognosis assessment is carried out in
order to determine the RUL. In life expectancy models, no maintenance is considered [52].
As such, the direct RUL of the specific fault identified is carried out, as if nothing within the
system would be modified, with regards to the system maintenance, or operation. This is
supported by recent which studies which have established the limitation of these models to
predict long-term maintenance, [53].

As such, these models provide a baseline to the RUL should no action be considered. Trade
studies would subsequently be possible to determine the effects on RUL of on-wing actions
which may be implemented, however these would be outside of the capabilities of these
models [54]. These models solely consider the state of the system against a known limitation,
and not the previous history or influence of other external factors.

7.4.2.1 Stochastic Models

These reliability based methods provide a mean time between failures (MTBF) approach to
their prognosis. This is, in cases where a substantial number of non-failures have occurred,
these may also be considered as a part of the knowledge or experience in order to provide an
appropriate RUL. The accuracy of these methods may also be modified. As such,
depending on the fault the actual RUL may be modified by altering the confidence in the
result, which determines the number of critical faults before a certain time, based on
experience. In addition, due to the mathematical methods used, the failures or events
considered must be statistically independent, in order to be able to assure a single fault

condition.
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Aggregate Reliability Functions

These methods are not fault specific, but rather holistic to the system. Based on the system
experience and the knowledge of the faults, these methods are able to establish a generic
distribution of when certain faults will occur as well as their likelihood. Weibul functions of
faults are the typical examples of these methods, where reliability conditions for families
may be considered or maintenance planned as part of policy requirements and are not
specific to system faults [55], Figure 12.

WEAR-IN RANDOM WEAR-OUT
FAILURES FAILURES FAILURES

Hazard
Rate

t b Age
Figure 12 Weibul based reliability function chart

These methods, require however substantial experience and expert knowledge in order to
make the appropriate connections and interpretation of the faults, their interactions and the
specific associated RULs. In order to ease their assessment or generation, several
programmes are available which automatically generate these prognosis models.

Conditional Probability Models

Based on the information available and the method through which the data is used to
generate a prognosis model, several different conditional models exist.

* RUL probability density function

This is the most basic out of all of the Bayesian methods. Based on the aggregate
method, a fleet density function is obtained in order to determine the condition at
which no failures have been identified As such this density distribution which is
updated for every new fault condition identified, is a predictive density function based
model based on which the remaining useful life may be determined. All subsequent
Bayesian methods will refine this distribution, but the principal will be the same.

Depending on the system monitoring requirement as the accuracy on the prediction
and the RUL confidence values are inversely proportional these may be modified and
improved to meet the necessary requirements [56]. In addition, depending on the
signal transformations and filtering, several other detailed methods may be considered,
Figure 13, details this differentiation through a significant classification difference

between linear and non-linear methods.
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Figure 13 RUL overview of Bayesian methods

* Static Bayesian Networks

Static Bayesian methods are based on the original knowledge based models. Through
this graphical representation, the Bayesian networks sweep this assessment to generate
a list of plausible states or conditions. The benefit of this method is the probability
results returned for each failure condition, already contain an assessment of the
confidence in said result.

In order to provide these results, experts are required to establish the links and
methodology, and as such, the method is not readily transferable [57]. In addition, this
method will provide a general indication of the RUL for the fleet, but will not be able
to identify imminent faults or step change fault conditions.

* Dynamic Bayesian Networks

Dynamic Bayesian networks on the other hand are prognosis orientated, and allow for
time-series forward thinking based method. This is, based on the current state and the
known failure mode probabilities, a prognostic, time series based RUL may be
provided. There are several different methods to perform this assessment, however
the most common are:

Markov Model — This method is capable of working with incomplete data and is
reasonably simple to implement, however it is only capable of assessing non-time
dependant types of deteriorations [58].

Hidden-Markov — Their main developments have been for their application as speech
processing methods [59]. These methods, allow for the modelling of states or
conditions, where no change is considered. However more variables and complexity
are required in order to model these appropriately. In order to simplify their
computational complexity, principal component analysis and learning vector
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quantification are typically used in order to reduce the number of variables whilst
maintaining the accuracy of the result [60].

Kalman Filters — Are used to dismiss noise within signals. As such, these may be used
to assess signals in order to determine a state condition. Non-linear methods have also
been developed as Extended Kalman filters. This way independently of the type of
signal the filter will converge on a signal state condition, which may be subsequently
assessed or further processed [61] or extrapolated from known conditions.

Particle Filters - These method is aligned to the Kalman filters, the main difference is
that a Monte-Carlo simulation is here proposed as the method of providing an RUL
prediction [62].

7.4.2.2 Statistical Models

These methods use an estimate of the initial failure condition and a service experience based
progression of the damage in order to provide an RUL, through forecasting the deterioration
Figure 14. These are typically considered as an alternative to artificial neural network based
methods, when a physical model is not availableInvalid source specified..

Trend Evaluation

This is the most basic of these methods. Based on service experience from a single
parameter, deterioration over time a prediction chart may be proposed. Based on engine and
maintenance knowledge an RUL limit may be proposed against which the parameter is to be

monitored.

These methods are simple to establish, however not all failure modes may be represented
under a single parameter, and not all faults may have precise limit boundaries.

RUL (Alarm 2) /

Degradation Parameter

Interpolation
feasidie

Extrapolation
required

Equipment age (time units)

Figure 14 Trend evaluation example overview
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Autoregressive Models

These methods consider the RUL prediction as a linear function of the current and previous
system conditions [63]. In order to establish an appropriate forecasting model, three main
steps are required;

1 — Model identification within a time series

2 — Optimization of the parameter conditions to be assessed — typically a least squares
approximation or similar mathematical method is used.

3 — Model validation

These methods are useful for known failure conditions; however as they so not consider the
actual working condition of the system, other faults or general running conditions, may
trigger false alerts in complex systems. However these methods are useful for long term
RUL predictions.

Proportional Hazard Modelling

The main benefit of these methods is the combined approach to gather graphical as well as
analytical data. In general, system data is not well structured and the use of multiple sources
is seen as a benefit. In addition, this method is able to assess both time dependant as well as
independent conditions. The complexity of the systems, however require the manual
identification of guidelines or the specification of the parameters to be assessed. In addition,
these methods are only capable of identifying known faults and as such are directly
dependant on service knowledge [64].

7.4.3 Artificial Neural Networks

Artificial neural networks, used for forecasting RUL may be classified into feed-forward,
static networks or dynamic networks,

Figure 15. Static networks are established and only consider the inputs of the conditions
assessed immediately prior to the network decision point. Dynamic networks on the other
hand consider not only the previous network as an input but also a complete decision loop
[64].

These types of networks have been applied in the past to correlate results in a human like
decision process. Their use in current models is in general reduced due to their restrictive
structure.

Overall system delays are still used for prognosis methods as they provide an overview of the
deviation of the system against itself. This simple comparison provides a signal shift which
may be assessed for both fault identification as well as for RUL system prognosis.
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Figure 15 Neural Network classification — Feed-forward networks, Static networks and
Dynamic networks

Static networks are typically used for pattern recognition and classification. The majority of
the artificial neural network based models for the forecasting of RUL are based around these
[65]. Dynamic methods have not typically been used, however they provide a substantial
advantage in assessing time delays and re-occurrences.

The main challenge with artificial neural networks is the requirement for a training data set of
substantial size, which contains several if not all of the faults to be assessed and has a known
and consistent structure.

The main downside, of artificial neural networks is their inherent inability to provide
prediction confidence limits. Several error predicting methods have been developed to this
effect, known as confidence prediction neural networks or others as game learning techniques.
On the other hand, these methods allow for the direct modelling of systems without the
necessity of the detailed physical system knowledge.

7.4.3.1 RUL Forecasting

Direct RUL forecasting is the most common of the artificial neural network methods due to
their simplicity and accuracy. The neural network prediction is tasked with predicting the
next point in a sequential time series data set. Based on this prognosis and fault
identification techniques, the extrapolation of the failure point is subtracted from the last
known data point and the RUL calculated.

These networks may be directly applied when numerical non-linear data is available.
However in many cases, the data may be in a linguistic state or condition. In such cases,
these neural network methods have been associated to fuzzy algorithms and logic in order to
bridge the qualitative data gap [66], [67].
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7.4.3.2 Parameter Estimation

There are some instances, where a fault is known to be directly represented by a single
parameter or by a specific algorithm [68]. However this parameter or a parameter within this
algorithm may not be specifically known. Artificial neural networks have been applied in
these cases in order to predict the parameter value, establish the algorithm progression and
ultimately the RUL.

7.4.4 Physical Models

Physical models are those that represent the actual system directly through mathematical
equations. As such the RUL is solely based on mathematical and physical limits of the
system. These models are therefore very accurate, as they are deterministic and based on
precise system specific data and knowledge [69].

The method employed to determine the RUL once the model is established is to simply apply
the same inputs to the model as those provided to the system and determine the error,
deviation or residuals to establish the RUL from the existing state to the predicted failure
condition.

These methods are accurate and simple to understand, as the results directly represent a
physical condition, however compiling a model for a complex system or even modelling
complex faults is in many cases not possible.

7.5 Sensors and sensor validation

Engine sensors translate the actual physical condition within the engine into a measurable
quantity. Through these, engine sensor information on air flow, fuel flow and oil flows may be
gathered. In addition parameters as pressures and temperatures are measured, together with
torque values and other parameters that have been identified through service experience
throughout the years, as being of value for the understanding of the engine.

In addition, there are also other types of engine signals that are also monitored. Acoustical
changes and shaft vibration or engine electrical and magnetic charges are some examples of
other possible measureable variables.

The signal input from these sensors will be used to assess and predict the state of the engine.
Detailed understanding of the raw data is therefore key to mitigating any uncertainty the data
may contain due to the sensor itself. There are several different sensor validation technics
commonly used, Figure 16 to this effect, which may be subdivided into two main groups signal
processing and physics based validation. These range an increasing level of accuracy, but also
of complexity [70].
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Figure 16 Sensor validation technique overview

7.5.1 Signal processing approach

A signal processing validation may range from a signal autocorrelation to a complex matrix
subset of correlations. A signal autocorrelation is a simple limit or range filter, which
monitors the data based on a fixed range. This way, should the data exceed this limit, an alert
action may be raised [71].

High pass filtering validation is capable of accounting for physical system response. This
method is capable of assessing intermittent faults or spikes to determine if a certain type of
deterioration has occurred. These signal filters range from a simple data limit value to more
complex digital signal filters which assess the data for significant signal changes that may
occur at a significantly different rate than normal. An example of this would be a standard
deviation filter. Through these filters clipping, spiking or noise within the signal data may be
assessed.

Correlation matrix and response statistics is an interim type of validation between the signal
processing and the physics based approach. This method is based on a comparison of the
original data against a set of limits or validated data ranges. In addition, it is capable of
carrying out such validation processes across different subsystems or work environments.
This is, the data may be validated through a cross examination across transient and steady state
phases.  This type of method requires not only detailed knowledge of the engine, but also of
its in-service variations across its life cycle and utilization.

A cross-correlation data validation model would require the original signal data to be
normalized, in order to create a baseline. The correlation between the baseline and the data
would then be monitored [72], [73]. The deviation could be considered as the trigger, to

determine if an event had occurred.
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Other methods would carry out a statistical assessment of the data in order to determine if
there had been a continuous trend over time or a shift to the working condition. Signal
processing where the signal data contains substantial noise, may be resolved through a
statistical plot of the data in order to determine the range of a signal and determine if there is a
shift to the normalised value range.

7.5.2 Physics based approach

Based on the correlation matrix, other more complex validation methods are the statistical
neural network and a fuzzy logic rule base models. The statistical neural network allows for
optimization through trade studies between the validation rules and limits and the models
actual sensitivity. This is, the sensitivity and value of the variables within each of the data sets
are also considered to contain meaning of the evidence under assessment. Complex
relationship networks are therefore established based on statistical service experience and
engineering knowledge.

Fuzzy rule based validation allows a further step to be taken on the neural network. This is,
interim decision taking points between known states may also be considered in order to
identify true transitions which may otherwise be ignored or trigger untrue events. In reality,
however a combination of all of these methods is used. Fuzzy logic may in addition be
applied to complex systems, to generate these rules through direct system learning and not as
imposed expert rules.

Simple sensor data validation is carried out and then the range and statistical processing is
performed. The subsequent clustering and selection of network relations through principal
component and other reduction techniques allow the complete processing of the data and to
maximize the overall engine understanding.

7.6 Aeroengine Specific Applied Methods

The aeroengine environment requires substantial validation in order to meet the compliance
requirement of the aviation world. As such several of the techniques described may be directly
employed, or may need to be modified. In addition, data and data availability is one of the key
restrictive factors when applying these methods, and as such changes may be required in the
method or in the condition proposed within a method.

7.6.1 Alternative Method Classifications

There are several other classification overviews available [74], [75], [76] within the
aeronautical environment that may be used, which may be more focused on the technique to
be applied or the classification technique to be used for the fault isolation itself [77]. However
the techniques and methods themselves are in many cases the same Figure 17, as well as their
approach to forecasting the reaming life to a certain fault condition.
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Figure 17 Aero-Industry applied Fault Isolation Techniques

Maintenance Based Classification

Fault isolation and RUL knowledge is required during all stages of an engine’s life cycle.
During an engines’ development, the understanding of the engine as a system and its
reliability risks establish the predicted maintenance intervals. These have a direct business
implication. During service, the fault isolation and RUL knowledge help not only reliability
but also reduce the predicted maintenance costs.

The objective of these two distinct environments drive for distinct methodologies, as shown
in Figure 18. In addition, once the engine is in-service and service data and knowledge are
available, fleet assessments to re-iterate the fleet optimum life as well as engine specific
assessments to establish the reliability of an engine are required [78], and may be performed.
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Figure 18 Maintenance model classification overview

The methods applied however are in general the same [79]. Physics based or experience
based modelling approaches as described in the other classification overviews. The main
difference however is the introduction of usage or load based maintenance. The engine
utilization is not identical from operator to operator or even from flight to flight, even if it is
only due to the external flying conditions, Figure 19 these methods are used to identify these
differences and generate a more accurate maintenance RUL prediction [80].
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Figure 19 Operational risk and Maintenance cost potential trade assessment visualization

There are several different types of maintenance dependant on the, calendar time, usage,
usage severity, load based or even condition based maintenance. The objective of these is
generally applied at fleet level to determine the optimum maintenance interval to manage the
overall fleet reliability. In a calendar time, the objective will be to reach a certain time
period of 10 or 20 years, with low levels of fleet reliability. In a usage or usage severity, the
operator service experience the environment in which they fly will be used.

However condition based monitoring is oriented towards a dynamic application, where the
engine and fleet conditions are assessed in order to optimize the fleets’ maintenance. This
method is however very complex and is generally either not applied or simplified to a fleet
level for general average best practice understanding or guidance.

7.6.2 Fault Isolation Techniques

Due to the possible severity and implications of events and the general public awareness
towards the civil aeronautical industry, several engine specific fault isolation techniques have
been further developed to match the specific environmental conditions of the engines.

7.6.2.1 Kalman Filtering Algorithms

The Kalman filtering method is understood to be a de-mixing method to reduce the amount
of noise or variability within a signal [81]. These methods utilize system entry data to
propose an output which is then compared against the real system output [82]. Kalman
filtering methods therefore verify the modelled output against the real output to establish a
signal difference which is subsequently assessed for fault identification.

The inherent error due to the system outputs is a complexity which the methods need to
compensate. As such, each model will require an algorithm to reduce the output signal
noise, which will directly influence the error difference. The algorithms may be hidden
within the model, as variable specific rules or as additional hidden variables, which
continuously monitor and compensate the output signal.
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7.6.2.3

This methodology does not work on non-linear signals and alternatives are therefore
required. The main objective of Extended Kalman filters is to assure the signal difference is
stochastic [83] [84]. No model enhancement will be possible, if the signal difference is
random.

Stochastic results may be subsequently reduced to remove the noise influence on the signal
so as to assure a convergent result. This will generally be done by providing the model with
the noise signal estimation.

On complex systems, where the signal difference may be random, Unscented Kalman filters
may be used. A weighted version of the non-linear function based mean and covariance
transform are considered [85]. Each signal point is associated to a weight, to which the
mean and the covariance are approximated. In addition, as further points are considered, the
approximated mean and covariance will change. However, the final mean to be considered
will be the weighted average of the transformed points and the weighed covariance product
of the transformed points.

Kernel Principal Component Analysis

Gas Turbine Generator System (GTGS) is a similar engine model base on which following
methods are applied. Typically these models are ANN based, however an innovative feature
extraction technique, based on kernel PCA has been developed [86] which is capable of
reducing the redundant features to ease the qualitative trend wavelet transform based
assessment.

Other alternative also exist [81], as compensation distance evaluation techniques, or genetic
algorithms, however identifying the optimal CDET [82] threshold is deemed to be difficult
to set and the GA [83] results are unrepeatable. As such, KPCA [84] is deemed to be an
optimal method of generally reducing irrelevant or redundant date from a previousfeature
extraction process.

The basis of KPCA, is to identify the results from the algorithm being assessed, without the
actual variables [85]. Once the non-linear results are obtained, KPCA requires no actual
non-linear optimization. KPCA solely requires the eigenvalue to be resolved, with the aid of
the different kernels available without knowing the actual number of original variables to be
identified.

Fuzzy AHP / TOPSIS

Fault isolation or classification is also valuable in order to establish the overall condition of
the engine [70]. Analytical hierarchical processes (AHP) have been used in combination
with fuzzy logic to extract the conditions of specific features of interest through a decision
matrix [86]. The results of this assessment are weight related features which are used
through the technique for performance by similarity to ideal solution (TOPSIS). This tool
allows for different engines to be represented and assessed, Figure 20.
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7.6.2.4

Engine SNo. Performance states Fault states Time states Initialized weights
1 0.048 0.0352 0.1872 0.026
2 0.1248 0.1696 0.2236 0.031
3 0.0672 0.176 0.1976 0.031
4 0.1312 0.2336 02132 0.037
5 0.1312 0.144 0.1898 0.03
6 0.0704 0.0608 0.234 0.03
7 0.1216 0.1312 0.208 0.028
8 0.0768 0.1632 0.1924 0.051
9 0.0736 0.1056 0.1742 0.026
10 0.0672 0.128 0.1742 0.029
Radar image

Figure 20 TOPSIS example visualization

Along these same objectives, hybrid neural networks may also be applied to structure engine
specific experience and define a fuzzy model which is subsequently tasked with the
assessment of the engine signal [87]. This way, the engine complexity, may be reduced by
vague fuzzy logic rules and connections that ANN models generate. The assessment or
problem resolution is therefore reduced to an ANDOR classification, Figure 21.

- Perceptron's
... Decision Line

Figure 21 Visualization of an ANDOR Classifier
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Multi-Class Pattern Classification

Classification techniques between two choices are common; however multiple choice
models are substantially more complex. These, typically apply support vector machines and
artificial networks, to correlate the engine data and determine a most likely class.

Multiple neural network classification models have also been developed built on existing
two-choice methods as one-against-all (OAA) or one-against-one (OAQO) which are already
common though algorithms as back propagation [89] or even P-Against-Q (PAQ)
algorithms. These have been all extended to multiple classification models, by applying the
method as many times as classes exist [90].

These models have shown that for multi-pattern recognition classifications, problem-
dependant networks provide the best results. However, in order to obtain good results a
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substantial sample of training data is required. In addition, it is also required that this sample
data sustains a good distribution of the faults and classes.

The application of the simple two-choice models has been associated with dynamic neural
networks [91] in order to sweep all possible combinations. System limitations, can then be
reduced to combinations of individual variable thresholds in order to identify and classify
faults.

As an example, different system performance losses may be associated to specific
combinations of variable limitations within a fault database. The model would then review
the system data against this database of known faults. The benefit of these models is that
they allow the identification of faults through the combination of variables, which when
individually assessed would not trigger a concern, Figure 22.
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Figure 22 Multi-variable / Multi-class pattern classification

However these pattern recognition methods [88] are limited by their knowledge database.
As such, they are not able to provide an assessment to unknown failures or condition. The
complexity of accurately establishing a component fault is too high as such, these methods
are generally used at module level only. However they are an optimal method of fault
isolation and troubleshooting.

Adaptive Estimators

Kalman filters have shown good results at filtering out noise signals in order to allow for
their further processing. Experience has shown that these methods are good at predicting
long term deterioration but are not optimal when detecting step changes.

An adaptive diagnosis method, has however been developed that is able to do just this, [89].
Based on the Kalman filtering method, an adaptive estimator is generated by modifying the
Kalman filter bandwidth. Based on this, a difference between the short term and long term
filter result can be carried out to determine the resulting error or difference and establish if a
step change in the parameter has occurred. This Kalman filtering method has therefore
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7.6.2.6

extended the long term capabilities of the general Kalman filters to a short term fault
detection capability.

Examples of this method have been carried out with good results. The application of this
method to several parameters simultaneously offers the possibility of estimating engine
conditions and comparison of thresholds across several parameters simultaneously. This has
enabled a more accurate classification, based not only on single parameter limits but on
multiple combinations of limits across several parameters, Figure 23.
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Figure 23 Multiple parameter fault detection

Blind Source Separation

Fault isolation in many cases is complex due to the variability within the engine or
subsystem under assessment. The constant change in external condition, pilot demands, as
well as the general internal condition of the engine, make for the resulting measurement
signals to be extremely volatile. To this effect one of the first methods to be applied to these
measurement signals is a Kalman filter, which reduces the signal noise. However this
method is parameter specific and reduces the amount of information within the actual signal.

Blind source separation on the other hand is an alternative technique which moves away
from the actual signal itself and attempts to read and understand the actual component or
subsystems it must interpret [90]. As such these methods consist of two steps. The first step
is to isolate the signal into its parts or de-mix the signal. The other will be to assess the
isolated trend signal for fault detection.

The de-mixing capability of blind source separation is based on the identification of
independence. One of the main methods applied to carry this out is independent component
analysis (ICA) through which the signals will be decomposed into the source signals from
the subsystems to be interpreted which will be statistically independent.

This methodology has the inherent benefit of identifying the most significant sources which
can subsequently be reduced through PCA. The resulting subsignals are also generally linear
which is an additional benefit for the subsequent failure isolation process [91].
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K Nearest Neighbour

In more complex systems or when considering the complete engine, non-linear signals will
still result from the blind source separation. Kernel independent component analysis (KICA)
may be applied in these cases, and a wavelet transform or other decomposition methods
applied to reduce the non-linear signals to their feature vectors. In addition, even under
linear classifications, due to the limited 3D view, multiple patterns across multiple variables
are extremely complex to visually identify, Figure 24.
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Figure 24 3D Visualization of Nearest Neighbour approach

Once the linear feature vectors are obtained through ICA, KICA or other BSS methods, a K-
nearest neighbour technique may be applied for pattern recognition, [96]. In order to
improve the assessment of the vague resulting data a fuzzy K-nearest neighbour classifier is
applied. This method is optimal in order to identify a classification pattern with overlapping
data signals. The result is a fuzzy classifier which clearly identifies several multiple classes

7.6.3 Prognosis techniques

Gas path analysis or GPA is a physical model based technique, were by the engine is
represented by the GPA model. Based on this model different techniques may be applied in
order to address specific requirements.

7.6.3.1 Weibul Based ANN

Engine specific knowledge can be gathered from service or engine development. System
failures taken without other boundary condition assessments may off-set reality when
considering state distributions. As such, Weibul based assessments are considered to offer
an optimum approach to service knowledge as they not only provide a failure distribution,
but also appropriately represent reality by considering not only the failures but also the non-
failure cases [92].

In addition, this method also offers the possibility to knowingly modify these distributions, if
a substantial known change has been introduced. This is of particular interest on new engine
developments or for modification introduction, in order to establish the change implications
in the overall engine predicted life, life cycle cost, and reliability.
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However these methods are generally very detailed and engine-fleet specific. In addition
they are generally physics based models which requires for all or at least all of the main
components to be identified and associated to a known deterioration or failure distribution,
which is not always known.

Condition-Based Maintenance / Prognosis

This method is based on engine historic data, with which a linear or non-linear progression
of the fleet may be compiled. Based on these and service experience data, a modelled
distribution may be considered at the last known condition, in order to generate a prognostic
outcome and this way determine the RUL, Figure 25.

Regression line

:--R--
1

ol
.
A
|
|
I
I
» !
Model
Transition
Point

Figure 25 Distribution based RUL prognosis

The accuracy of this model increases as the distance to the fault reduces. As such it is
determined to be a good technique for fault isolation and clear limit based approach to faults.
However it does not provide good long term results. In addition, it is typically single
parameter based, which reduces its possible applications at reduced levels within the engine.

Ant Colony Algorithm

An example of how this service experience may be compiled in order to generate a prognosis
are ant colony algorithms. The exact and precise evolution of an engine fault cannot be fully
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defined, as there may be several possible root causes for similar fault or different
propagation paths from identical faults.

Ant colony algorithms are used to assess this vague inconsistent data. Based on service
experience probabilities of the most likely path to be followed are considered. In addition,
and based on experience, as the fault further develops the probability of the path to be
followed is increased. The basis of this type of modelling is a dynamic Bayesian model
which utilizes the ant colony methodology to establish the fault propagation paths [99]. This
applied to a hazard and operability framework is the basis of the HAZOP model, Figure 26.

H
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Figure 26 Ant-model example applied to an operational hazard model

Fuzzy logic may also be applied to these ant colony based models in order to bridge the gap
within complex systems as engines [93] where the rough level of data or the level of
granularity required to understand specific components is a known constraint. The fuzzy
logic is used to understand the engine parameters and reduce the number of variables
considered.

State Space Modelling

The prognosis process which leads to an estimated or proposed RUL has been shown to
require substantial engine knowledge. In many cases, a physical event has occurred, and the
model detects this change. It is however, only when the damage has reached a critical state
that the RUL proposed reaches a high confidence condition. In other cases, there is no
physical damage as such, and a critical point of inflexion cannot be determined.

In these cases a state space model may be generated which combined with a health index
algorithm is able to determine the health state of the engine [94]. This Markov process is
resolved through the application of a state distribution. This is a conditional density based
distribution. A Bayesian method is subsequently applied to resolve the problem and provide
a state estimation and the associated probability of said result.
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However as most engine parameters result in non-linear signals, under these conditions the
dynamic results are not correct. A joint state condition is preferred as it considers, if
available, sufficient statistics of a given parameter. Through this method of sufficient
statistics, the parameter itself is not tracked but the Sufficient Statistics of it are, as sequential
parameter estimation.

Following this same methodology the prognosis of the RUL is the resulting distribution of
probability density functions. Once the limit or threshold is known, from the classified
failure mode, the RUL may be interpreted as the cumulative time density function until the
predicted failure. However in cases where the signal is not a simple straight line, a Monte-
Carlo simulation of the possible RULs is required in order to generate an approximation to
the state distribution, Figure 27.
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Figure 27 RUL Monte-Carlo simulation prognosis
7.6.4 Most recent techniques/advancements in FDI,

Engine health monitoring still has a secondary utilization within the aeronautical environment.
This is due to the stringent validation requirements which in many cases electrical systems
cannot fulfil. However in recent years, further developments have confirmed the capability of
engine health monitoring not just as an over-and-above measure for reliability, but also as a
direct tool with which safety and optimized life cycle cost are may assessed.

Several techniques are now commonly applied whilst others are still at their infancy.
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7.6.4.1 Engine-to-Engine Assessments

In some cases engine specific assessments may be required. The engine ehm data may be
assessed in order to help determine a fault root cause [95]. In a single engine event [96], the
most typical first method of assessment used is the comparison of the data from the affect
engine to the data from another engine. In many cases the information from the sister engine
is used. This is the comparison is performed between the affected engine and the other
engine on the same aircraft where an event did not occur, as this engine was working under
the same external conditions. The most utilized method is engine to engine comparison
within the same aircraft, Figure 28. Deviations will then be assessed to determine the most
likely root cause or at least narrow the root cause understanding to a certain module or

subsystem.
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Figure 28 EHM data comparison between engines for root cause understanding fault location
7.6.4.2 Engine Physical Limits

Physical limits within EHM are not typically considered, as this is seen to be more of an on-
wing FADEC assessment with a safety objective. In these cases, a limit or Red Line
limitation is generated based on the engine internal physical knowledge, and used by the
FADEC system to assure the engine safety.

In the example, Figure 29, the TGT parameter is shown and an engine measured signal
simulated. This value does not have to be the same as the one the pilot will see in the
cockpit, due to the trimming process which is carried out during an engine pass-off test, as
the cock pit indications need to show similar engine temperatures and most of all have an
identical temperature limitation.
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7.6.4.3

On the other hand, EHM does monitor the remaining margin. TGT remaining margin is one
of the main engine characteristics which directly represent deterioration. Due to this, TGT
remaining margin is one of the main monitored parameters.

TGT_MW = TGT_MNW - DTGT_M

RED LINE
TGT_MW
WORST
7 — CASE (TGT_MNW)
' NOMINAL
© I+ X=DTGT_M MARGIN
Actual TGT '
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THRUST LIMITED @ DAY TEMP.

Figure 29 Parameter overview example of the actual, delta, and limit values

Through this trimming, the cockpit indications may be operated to the generic TGT limits
defined in the certification documentation. This limit is the same as the one certified during
the 150 hour endurance test. In addition, this trimming allows generic relationships between
engines to be measured, reducing the hardware scatter effects due to tolerances and
modifications [97].

Combined Engine Parameter Assessments

In cases where the comparison to the sister or a baseline engine does not reflect a single
result Figure 30, the delta parameters and the residual margins will be assessed [98]. Based
on previous service experience and the known engine performance, there are tables which
identify the most likely root cause for several of these working condition deviations.

If the fault or event is not clear within these tables, generic fleet issues will be assessed in
further detail. These assessments however are carried out over long periods of time as all of
the parameters need to be assessed and correlated back to the shop visit findings and the
actual engine time on-wing experience.

In most cases these assessments result in a new fault reading in the form of a redline or a
trend over time which will subsequently be recorded on the list so that other similar engines
are in the future identified [99].

In addition, generic EHM assessments may also be carried out at a fleet level to determine
the overall engine utilization. This is, the assessment or model will identify the types of
altitudes at which take-offs are carried out, determine if derated operation is used, and other
design information that may be used for future engine designs and customer awareness.
These models may also be used to determine the level of deterioration of the fleet or identify
sub-fleets amongst operators or within an operator’s fleet which may provide additional
information on the overall engine planning of the business [100].
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7.6.4.4
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Figure 30 Typical example of EHM troubleshooting table

Scatter Plots

EHM data is typically represented as a time plot. This is, all of the data points for a given
parameter are plotted on a time chart, giving the overview of a certain parameter over time.
This type of plot is appropriate to identify step changes or trend changes. It is also very
valuable when comparing engine trends to represent them side by side and “measure” the
differences under similar working conditions. However this type of plot is of limited use
when several different parameters need to be assessed in combination.

Multiple scatter plots are used which are a matrix type representation of several different
parameters on several different engines shown simultaneously, Figure 31. This helps
determine sub-fleets and specific types of operation. However it is limited to the amount of
information that may be correlated across several different parameters in combination to the
assessment of a certain working condition [101].

Other plots used represent the data on a calendar or map, to determine the number of flights
over certain regions, or time periods or the types of routes followed. These are of increasing
interest to the business as they determine the sub-fleets within given engine types and
operators, which will in turn determine sublevels of average deterioration within the fleets.
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Figure 31 Typical example of a scatter plot assessment between two engines

Single Parameter Assessments

The identification of the combined set of parameters and their respective values as a
threshold for a certain type of deterioration has shown to require a long time and has
returned limited value due to its uncertainty and variability between engines within a mature
fleet. These models require a substantial amount of service data from several distinct
engines, where the level of deterioration is known. Based on this data a visual assessment of
the engine parameters may be carried out in order to determine the specific thresholds. In
this case, a detailed performance understanding of the engine and of the module specific
working conditions is key so as to understand the deviations and in turn limit the number of
parameters reviewed and assessed.

In addition, due to the operational effects of the flight schedule or the required on-wing
maintenance effects on the engine data and the interaction of the complete system on the
engine parameters, this method is very complicated. The thresholds achieved are generic
and in most cases they either don’t detect all of the affected engines or detect engines where
no fault truly exists.

The other type of EHM assessment currently performed is based on establishing algorithms
that will detect or enhance trend changes [102]. This type of assessment requires the initial
assessment of determining the key parameter to assess as it can only be carried out on single
or a reduced numbers of parameters as the results need to be subsequently processed.

New methods are still being developed to further refine the way single variables are assessed
against running limitations. A recent patent, [103] has combined the a Bayesian extreme
value assessment together with a standard deviation model to generate an algorithm which is
able to generate a limitation for a running variable, Figure 32. In this case, if the real value
is above the calculated standard deviation, maintenance is deemed to be required. This
method has shown 60% prediction accuracy.
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Figure 32 Process overview and example of single variable assessment

The calculation of model based thresholds requires a substantial amount of root cause
understanding and a significantly distinct signal on at least one parameter, so that the effects
can clearly be defined.

It is however clear that neither of these two methods is optimized for the identification of
general engine deterioration where deviations are small and generally combined across
several parameters. These methods may, and have been used however due to the amount of
information available and the variability between engines; the results to date have not been
sufficiently accurate to establish them within the general daily working practices.

Engine Deterioration Assessments

Simple engine deterioration plots are also used for engine deterioration and evolution
assessments. These plots are generally straight forward variable comparisons, where
multiple engines may be compared side-by-side.

The limitation for these plots is the visual 3D space, as well as the difficulty in identifying
the optimum variables which represent the fault or deterioration to be assessed. This is, no
more than three different variables may be considered and as such their selection is crucial to
the actual value of the plot represented. In addition, when several engines with several
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different conditions are represented together specific fault isolation is difficult and different
parameter combinations are generally required.

The simplicity of these plots is however their key benefit, and as such are of general use for
direct engine to engine comparison, and may also be used to assess the engine evolution over
time, Figure 33, [104].
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Figure 33 Visual multi-variable GPA engine deterioration assessment
Deterioration Diagnostic networks

Engine deterioration assessments have also been developed in recent years due to the
importance of Life Cycle Cost. Due to the qualitative data available these types of
assessments are typically performed through neural networks, and have been engine specific.

These engine models are based on pattern recognition techniques, [105]. This is, multiple
variable limits and trends are assessed, monitored and combined in order to identify an
engine known symptom which may be classified, and diagnosed, Figure 34.

There are several existing methods through which variables are assessed but the main ones
used are:

. Exponential weighted moving average — to statistically calculate the mean and
standard deviation

. T-Test — to identify shifts in baseline performance

. Single point feature detection — variable limit alerting

. Long term deterioration detection — seeks important notified levels of change, and
may be capable of considering on-wing maintenance

. Principal component analysis — to identify small multiple variable deviations

The complexity however of these model to appropriately represent a complete engine, limit
their capability and are therefore either too generic or are subsystem specific. In addition,
due to this same complexity, these models are not easily transferable to other engine types

even within the same family.
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Diagnostic Symptoms
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Figure 34 Diagnosis network methodology overview

Fleet Deterioration Modelling

Understanding the engine reliability and optimum maintenance interval for a flying in-
service fleet is difficult. However once the engine design is known and together with some
level of service experience, models may be generated which can represent the engine.

These same models are of interest mainly for new engine developments as they provide the
capability of performing design trade studies early in the design in order to release an
optimum engine. Through detailed engine and system knowledge links may be generated to
align a baseline design to certain known features and deterioration models.

DMTrade [106] is a Weibul based optimization model or a trade study tool generated
through this methodology. The known or extrapolated engine design reliability inputs and
softlives are used as inputs. Then based on the engineering judgement of similarities in the
design to other existing knowledge a simulation model is generated. The model logic is
neural network based, and is also part of the detail required by the model in order to generate
a decision tree which may then determine the new fleet fly-forwards reliability, and optimum
maintenance interval, Figure 35.

These models are very complex and subjective to the engineer who is generating the data and
establishing the level of similarity of the new designed hardware to that of an existing
engine. As such, the level of accuracy of the output should not be considered directly, but
only as a baseline for the trade studies in order to determine if a change is an improvement or
not.

However they are of critical value during an engine development programme and entry into
service periods, where no engine specific data is available and changes are performed. In
addition, the possible maintenance implications as well as determining the optimum engine
removal times at fleet levels are an important set of knowledge in order to assure
maintenance capacity and reduced costs.

Engine Health Monitoring Methods



Engine Health monitoring and prognosis for engine fleets using intelligent data analysis of interval-
valued and possibilistic data

Other Com- Actual Shop Component Age
ponent Shop |-------reememoaaians . Visit Cause
Visit Cause Maintenance
I
}
Module

tencssidecassisasennasa - Exposure
Maintenance

Secondary Proximity Soft Life on Min. Workscope Soft Life
Damage Workscope Module Opening on Module Time Dependency Only
Actual Shop Vist Cause Actual Shop Vist Cause (Time and M odule Opening
Dependency Only Dependency Only Exposure Dependency) M odule Exposure
Dependency Only
E g m
0
- g 0 3]
Repair s Inspection
Definition Definition
0
=
.z N
N i Bpicton
Rezar ot raang
sozcerit!
N R 15
Renewal of Component Repair of Component Inspection of Component Time Continued

Figure 35 DMTrade underlying network correlations

Engine Health Monitoring Methods



Monitorizacion del estado de flotas de motores usando analisis inteligente de datos para informacion

intervalo-valorada y posibilistica

8 Existing Methods & Areas of Further Development

8.1

All of the methods reviewed are capable and appropriate when determining a diagnosis or a
prognosis as the case may be. However it is identifying the optimum method or model to
follow that is generally the greatest difficulty or obstacle.

Depending on the complexity of the engine or system to be modelled and the data available, the
selection of method is generally resolved. However in most cases the subsequent selection of
variables to monitor or the detailed engineering understanding required to establish the model
are the limiting factors.

Data availability in aerospace is always one of the prime limitations. Due to the sole
aftermarket methodology implemented in the early years of civil aviation, engine monitoring
data for OEMs is generally scarce for the current in-service fleet. The new technologies and the
implementation of TotalCare only a decade ago have however managed to change this and
increase the importance and amount of flight data available.

On the other hand, the actual engine condition when the engine is overhauled is fairly well
known as under either of the two methodologies, the number of maintenance and overhaul
facilities worldwide has always been limited. As such the OEMs, understanding of the
maintenance of engines has always been in general good. The quality of the data however is
another restrictive aspect as it is generally a qualitative description of the maintenance findings
and in most cases an incomplete overview.

Pros and Cons of Diagnosis methods

In order to establish an accurate comparison of the values of each of the methods reviewed, a
standard list of method qualities is necessary for consistence. A detailed review carried out by
V. Venkatasubramanian, [107] identified the following as key aspects to be considered:

Quick detection and diagnosis — This is to value how quickly a diagnosis is reached. In safety
oriented models, this is a crucial aspect to consider, where as in deterioration models, this
characteristic will not be as important.

Isolability — This is to value the classification capability of the model. This is, in many cases
the failures or failure modes will be very similar or even contained within each other. The
Isolability will determine how well each method is capable of distinguishing between failures.

Robustness — This characteristic assures that the diagnosis proposed by the model is not abrupt
and the diagnosis does not shift with every additional point. A smooth transition between
diagnoses is preferred. This is to adjust to the inherent signal noise every engine and system
measurement has.

Novelty identificability — This is the capability of the model to establish that even if the faulty
diagnosis is not one contained within the model’s database, it would still determine that the
engine is not functioning correctly. This is, the model is capable of identifying new failure
modes or abnormal conditions.

Classification error estimate — This is an important aspect of an engine diagnostics or
prognostics model capability. This is the capability to readily establish the confidence of the
diagnosis proposed. Not all diagnosis will be firm, and in many cases, the models offer a trend
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towards which the deterioration of the engine is going. This error capability would determine
the most likely failure mode and with how much confidence this is likely to occur.

Adaptability — This is to allow for the model to be easily upgraded in line with the upgrades the
engine that it is being monitored may sustain over its in-service life.

Ease of Explanation — This is to classify the ease with which the diagnosis may be correlated
with the physical understanding of the internal or external engine conditions.

Modelling requirements — This is to quantify the effort required to establish a solid working
model, as well as the degree of expert, engine detail required.

Storage and Computational requirements — Engine or aircraft weight is one of the most crucial
limitations in any design. Any EHM system generated which requires a substantial amount of
storage will require a hard drive which will add weight. However on off-line systems this
limitation is not as critical. However the computational time required to generate a diagnosis
will be a direct measure of the methods capabilities.

Multiple fault detection — This is to establish the capability of the method to identify more than
one individual fault at any one time, as in any running system faults generally occur in
combination of other faults or other system deviations.

8.1.1 Quantitative Model Based Diagnosis Methods

A quantitative model is based around the identification of residuals which are typically of zero
value of close to zero. Any deviation from the zero value would highlight a residual which
would be classified to determine the associated fault. This residual identification may be
carried out as a comparison of the engine to a model or from physical measurement
redundancies.

There are several different types of quantitative models available, however their capabilities
are in general the same. Their main capabilities involve the use of linear signals, and although
there are specific non-linear models that have been developed, their methodologies are the
transformation of the original non-linear signal into a linear one which is subsequently
assessed through the linear methods. As such their diagnosis capabilities are reduced.

The signal processing capabilities are limited and as such the model is generally a simple
comparison of signals. This reduces the models capability to identify and diagnose against
additive signal noise, as engine disturbances are generally multiplicative. In addition, due to
their limited modelling capability the actual diagnosis doesn’t actually have to be directly
related to the symptoms identified. This is, a fault may be known to be correlated to a signal
deviation, but it may not directly explain the correlation between the fault and the actual
variable change. This is a restriction to the subsequent trouble shooting requirements.

In addition, these models are limited to their knowledge database. When a new fault occurs
these models are not be capable of identifying a possible fault deviation. This is because the
variables or signals been monitored, do not contain a shift, and as such will not show any
residual shift.

The modelling complexity of these systems is directly dependant on the number of variables
monitored and the database of known faults. This is not seen to be a limitation to these
models and they are easily updated as they do not directly reflect the engine physical state, and
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8.1.1.2

only monitor specific variables against a database. The computational requirements are also
not deemed to be critical in these types of models for the same reasons stated.

Observer Models

These models are simple and dedicated to individual faults or signal limiters. The direct
signal through single output observers, or Kalman filter generated signals are directly
assessed. In some cases multiple faults may be detected through the combination of these
individual signal models, however the underlying model is the same and directly dependant
on the fault knowledge database

Fault detection filters are also single variable observers, where the model transforms the
signal or variable into a known plane where a limit is imposed as the triggering value. This
is, in general the same as with output observers, whereas the actual physical model is ignored
and the variable is independently assessed against a given limit.

These types of models are of extended use in control systems, due to their simplicity and in
general low computational requirements. Their objective within controls and safety
monitoring is basically the representation of direct known engine limiters which based on the
engines’ design. Their accuracy with regards to the variable measured is in general very
high, with low error levels.

Their main limitation is their exponential complexity when an assessment across several
different signals is required. As such these models only monitor reduced numbers of
variables and are not used for full engine or system modelling. Their application in current
day aviation is mainly for on-wing engine safety monitoring.

Parity Equations and Signal Models

These models assess the engine solely through its inputs and outputs without attempting to
model the actual engine itself. As such these models are easily updated with any engine
upgrade and are able to assess the engine against a given model which utilizes the same
inputs as those of the engine itself. In this same manner, signal models only assess the
signals to identify possible general deviations.

These models are complex to establish but then easily upgradable. Their accuracy is high as
they solely review the direct signal against itself or against a model baseline, and as such will
be able to trigger trend shifts or changes. In addition, as they assess deviations, even if the
fault cannot be classified, a trigger will be generated to determine an abnormal engine
running condition.

These models are currently used for trend shift changes. In more limited use, these models
may also be used as a troubleshooting guide if the deviation of the engine from the baseline
model is understood, although this is in general a complex step.

8.1.2 Qualitative Based Diagnosis Models

These methods attempt to carry out a qualitative assessment of the actual engine or systems
which is being monitored. Due to the qualitative data they use they are generally broad in
their assessments with no single direct diagnosis.
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The complexity of these models is high due to the representation of the engine through
combined correlations. However the computational time and space requirement of these
methods is low due to the capability to reduce the number of variables considered through
qualitative rules.

As these models represent the actual engine monitored, the possible fault trigger may be
directly correlated to a specific subsystem. This allows the actual system fault to be
physically inspected to verify or refute said fault.

Casual Models

Casual models assess the direct cause-effect relations of the observed changes to faults. The
Diagraph and fault tree models do this. Their initial complexity to establish a working
model which is capable of representing the engine or engine fleet is substantial but through
expert knowledge the system may be compiled. Subsequent updates will be easier to
incorporate with an average level of understanding of the engine and the model.

The main advantage of these models is their capability to gather all of the engine working
knowledge and combine it to provide a single overview. The computational requirements
are not deemed to be high, but the complexity of the qualitative relations require a significant
calculation time.

Due to the fact that they gather service information from all operators and engines, their
main capability is for general fleet assessments, where reliability changes and trade-offs may
be better understood.

In addition, they are generally used in combination with other quantitative methods in order
to limit the assessment boundaries or reduce the number of variables to be considered. The
main limitation of these models is the initial level of complexity and difficulty to transfer
existing models to other engine types.

Physics models attempt to reduce this significant gap through the application of qualitative
equations to ease the complexity of the engine modelling, however the transferability to
other engine types is still not addressed.

Abstraction Hierarchy

An improvement to casual models is abstraction hierarchy, which subdivides the assessment
or modelling of the complete engine into smaller subsystems which are easier to model.
This way, interim assessment steps may be performed, which subsequently ease the
adaptation of the model for future updates.

In hierarchical systems, structural or functional, the individual subsystems are modelled and
then combined through their known possible outputs. As such, when representing a
complete engine or even a complete subsystem, these models are extremely complex and are
system specific. In addition, any change to the actual engine will also need to be carried out
on the model.

These methods are typically used in current civil aerospace to model the complete controls
system, where the input and output relation of the individual units may be represented and
further combined in order to establish the complete subsystem. This way reliability
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modelling may be carried out in order to assure the system requirements and the times
between maintenance are met.

8.2 Process History Based diagnosis Models

Process history models a centred on feature extraction. In order to carry this out, however, vast
amounts of data are required in order to generate a sufficiently accurate diagnosis with a
sufficient level of isolation.

8.2.1 Qualitative Process History

Qualitative history methods are generally simple rule based models which combine a
substantial knowledge database with a well-structured neural network. This in turn is
generally associated to fuzzy logic due to the qualitative associations which are required in
order to gain modelling robustness.

These models are system specific due to the specific network connections which are required
to simulate the engine working conditions. In addition, due to the detailed modelling and the
un-divided level of construction, these models are not easily maintained nor are they easy to
transfer to other similar engine types. They are however straight forward to use, once they are
correctly implemented.

The main use of these methods in current aerospace is within EHM modelling. These models
are the current back bone of engine monitoring through the association of limits and delta
values and their network combined association in order to diagnose specific engines. In
addition, due to their vast database most faults and deviations will be identified. In addition,
deviations from previous experience will also be identified and will trigger for the requirement
of further manual assessment.

A high degree of expert service experience is required to establish a solid fault database. The
computational time to review multiple complex signals is high and is deemed to be a limiting
factor on the application of these methods.

8.2.2 Quantitative Process History

This Quantitative approach is closely related to pattern recognition, where the actual feature
extraction is a pattern within a signal or combination of signals. The use of PCA and or PLS,
allows for the number of variables to be reduced with small levels of data loss, in order to
enable the identification of delays or factors which trigger specific faults. In addition, through
the application of density function, fault isolation modelling may be carried out in order to
ease and accelerate troubleshooting.

This has been one of the areas of greatest development over the past few years with a special
interest within the medical environment for its diagnosis capabilities. Probabilistic reasoning,
Bayesian methods or fuzzy logic are the main methods used by these models. One of the most
accepted methods is the use of a finite model in order to establish the first and second
derivatives [108], in order to carry out a hierarchical representation. Other multivariate
statistical methods make use of PCA and PLS in order to deal with non-linear signals.

These methods are however complex rule-based algorithms, which require a substantial
amount of data for the algorithm training in the initial phase in order to generate the fault base.
The computing time as such is also deemed to be normally high.
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8.3

Due to the complexity and amount of required data, this type of method is not of widespread
use within the aeronautic environment, as the level of detail, non-transferability and general
lack of utilization have not required for this level of modelling.

Neural Networks

The application of neural networks on diagnosis models is also common nowadays
specifically for classification and approximating methods. Their general use in these fields
highlights their robust diagnosis detection properties and isolation capabilities. However are
restricted to the pre-determined fault database, and are not easily transferable to other engine
fleets. In addition, they are not capable of detecting multiple faults and their diagnosis is not
directly traceable to engine symptoms

Comparison of Diagnosis Methods

As a general overview of the diagnosis methods that have been here assessed, the following is a
quick visual interpretation of these, Figure 36. It can clearly be seen how there is no single
optimum method for all cases and as such one must be selected which will best suit each
individual need [107].

Observer Digraphs Abstraction hierarchy Export system QTA PCA Neural networks
Quick detection and diagnosis v ? ? f V 7 v
Isolability v Vv v x v
Robustness 4 Vv 7 v v Vv v
Novelty identifiability ? V v X v N
Classification error x x X
Adaptability V v x x
Explanation facility X Vv Vv Vv V X
Modelhing requirement ? v v N, ~ V
Storage and computation N v V Vv V
Multiple fault identifiability v Vv v X

V. favorable: x. not favorable: 2. situation-dependent
Figure 36 Methods of Diagnosis comparative overview

The use in aeronautics of simple fault isolation techniques as Kalman filtering, or KPCA are
simple methods that are transferable across engines, identify faults quickly and have high levels
of robustness. Their low storage requirements are ideal for on-board control systems, where no
long term data is needed, and immediate assessments are required.

However their limitation to actually classify errors, and specifically identify faulty working
conditions which have not been previously considered does not highlight them as methods to be
used for long term deterioration.

Single variable assessments may also be used for deterioration over time as a trend limitation on
a single variable. However high levels of technical understanding are required to select the
most representative variable and then identify a filtering method which will limit the signal
appropriately to limit the number of false faults.

In these cases, Diagraph models where engine to engine, engine against baseline or engine
limitation models may be applied, are not as good to quickly identify a fault, but are robust and
generally used for long term deterioration. Due to the general overview of these methods, they
are also capable of detecting engine faults not previously classified highlighting abnormal
working conditions- They are easily transferable to other engine types and are self-explanatory
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when a fault is detected. Their main limitation is the high level of expertise required to generate
and interpret these models as well as the high classification errors generated.

Scatter plots are typical engine to baseline or engine to engine fleet visual methods used to
determine the similarity of the engine to previous service knowledge. These models are also
quick to determine if an engine has an abnormal working condition but are limited on the
information returned on their diagnosis for the actual origin of the deviation.

Multi-class pattern classification methods are a hierarchical model which also enables long term
deterioration modelling with higher levels of robustness. The main driver for their use is the
traceability of the detected fault to the specific origin of the fault, greatly benefiting the
subsequent engine troubleshooting. The high level of data storage however is a limitation to
their wider use.

Adaptive estimators and blind source separation are general methods used to reduce the amount
of data storage and primarily computational time required to carry out these multiclass pattern
models. Their reduced computational times, enable quicker diagnosis of long term faults whilst
reducing their isolation capability and maintaining their robustness. However due to the
reduction in variables, the classification error is increased these models are also engine fleet
specific as they are individually optimized by an expert in both the modelling and the engine
design.

Neural network methods as TOPSIS enable a more detailed modelling of the engine and its
inherent faults. They are complex, engine specific networks which directly correlate to the
engine and as such highlight the specific area of concern when a fault is identified. However
they cannot identify new faults that have not been modelled, and require a substantial amount of
data to validate.

Other methods as combined engine parameter assessments bridge the gap between the Kalman
filtering methods and allow for a simplified multivariable assessment which may be considered
neural network based. However this is a rudimentary neural network methodology and is
limited in it use.

Whole engine deterioration methods combine the single variable assessment or the rudimentary
neural network methods, in order to correlate several variables and establish abnormal engine
running conditions. They are however limited to the 3D space when attempting their visual
representation. Once the main variables to be used are selected the engine trend over time may
be isolated and an overall engine understanding extracted. These methods may be understood
as early patter recognition or feature extraction methods, as they enable a whole engine over
time assessment.

Pros and Cons of Prognosis methods

In order to establish an accurate comparison of the values of each of the methods reviewed, a
standard list of method qualities is necessary for consistency.

Data Requirements — This evaluates the amount of data and data point required in order to
generate a prognosis

Prognosis Scatter — This is to determine the scatter within the prognosis determined which could
also be interpreted as isolation or robustness of the actual prognosis.
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Isolation - This will determine if the method is capable of appropriately classifying faults in
order to generate a valid prognosis. This will enable appropriate operational assumptions to be
made as an early maintenance may be considered if the specific fault is known and understood.

Multi-Fault Assessment — This is to value the capability of the method tracing several
simultaneous faults to generate a single prognosis for a given engine. This will ease the manual
assessment of selecting a worst case fault which may change over time.

8.4.1 Knowledge-Based Models

These types of prognosis models are based on previous service experience. Substantial expert
knowledge is therefore required to modify this experience so as to align it to a new system or
modification of an existing system.

These methods are not able to generate a prognosis if they fall outside of previous service
knowledge, nor are they capable of assessing multiple faults. On the other hand, this is
compensated through high levels of isolation capability.

These types of prognosis models are ideal for known failures, generally associated to high
risk, or high impact safety and reliability driven scenarios. Due to their service experience
base, the RUL prognosis is detailed, however scatter may be influenced by operator specific
deviations. This is generally not of a concern as due to the safety and reliability objective of
these, a conservative prediction is typically generated.

8.4.2 Life Expectancy Models

This type of prognosis model is very simplistic, and is a direct fly-forward of the last known
deterioration trend. As such, the prognosis model is simple to set up but the associated scatter
is high as it does not compensate for the reality of the working system. This method may be
used at a whole engine level, and as such will be capable of generating the prognosis of the
overall engine or subsystem independently of single or multiple fault effects, however the
isolation of individual faults will not be possible.

These methods may be subdivided into stochastically or Statistical methods.

Stochastic Models

These methods are generally used to predict the mean time between failures. This is, the
estimated time between which no maintenance will be required on the engine or subsystem
being considered. These models may be combined to enable a full engine overview, however
the resulting prognosis will not be directly traceable to the key root cause of the limitation.

These stochastical methods are based on expert knowledge and further improve their
prognosis capabilities, through the optimized use of service experience and mathematical
algorithms. To this effect the use of detailed deterioration Weibuls, which assess not only
failures but also non-failures, the use of Kalman signal filtering methods, and Bayesian
networks, enable a more detailed assessment of the overall system.

However the final outcome is still limited to a multi-fault prognosis with no isolation. The
greatest benefits of these types of prognosis methods are the simple trade studies that may be
generated. These models are not easily transferable and are engine fleet specific.
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8.4.3

8.4.4

8.5

Statistical Models

Statistical models are used when unknown deteriorations are identified. The classification of
these faults or their isolation is not possible, however their deterioration visualized through a
single variable may be limited by mathematical algorithms within the actual signal.

Based on trend values, fly-forward limitation may be generated as a way of limiting the
possible prognosis fault. On the other hand, if it is a known parameter with a known
limitation a trend fly-forward will directly be identified and the RUL calculated.

In each case, service experience and engine knowledge are the basis of these predictions.
Artificial Neural Networks

These are elaborate models compiled from several neural network connections which require
detail engine design knowledge. These models allow for not only detailed assessment but also
pattern recognition, due to the model architecture. The main capability of these methods is
being able to determine the most likely next state of the system or engine.

The methods are capable of multiple faults assessments, however their isolation capability is
inversely proportional to their scatter. As they are complex engine specific systems, they are
complex to transfer to other engine types.

Physical Models

These models are typically not used to represent the complete engine due to its complexity.
However they are of general use within the controls environment, as the physical
transformation of inputs is known and may be compiled. However these models are not only
engine specific but specific also to the engine standard, and as such their ease of transfer is
very low and require high levels of expertise to update.

Their results however are very accurate and contain low error levels. Once implemented,

these models are able to isolate and identify multiple faults and also correlate them to specific
root causes and generate based on the component physical understanding a prognosis.

Comparison of Prognosis Methods

As a general overview of the prognosis methods that have been here assessed, the following is a
quick visual interpretation of these, Figure 37.

Artificial
Life E - Life E
Knowledge-Based ife xpecta_ncy ife xp.ec.tancy Neural Physical
Stochastic - Statistical

Networks
Data Requirements ? x v x x
Prognosis Scatter ? v v v v
Isolation v x x ? v
Multi-Fault Assessment v ? x v ?

v -Favorable / X - Not Favorable / ? - Case Dependant

Figure 37 Methods of Prognosis comparative overview
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The use of these prognosis models is generally two fold within current aeroengine applications.
The fleet reliability oriented methods, aim to determine the most likely point at which a certain
reliability level will be exceeded in order to apply appropriate pro-active maintenance to the
fleet. As such these prognosis methods are not engine specific.

Weibul based and even physical based models are used in these cases based on known service
experience, combined with the engine detailed design knowledge in order to generate the
appropriate reliability prognosis.

An extension of these methods is condition based modelling which not only predicts reliability
prognosis RULs, but is also capable of performing trade studies in order to optimize the actual
engine maintenance to be carried out. However once again, these methods are only used at fleet
level as engine specific assessments are not possible due to operator and engine specific
differences.

The other type of prognosis is the in-service engine-specific models, the most utilized models
are knowledge database structured, where once a fault type is identified, within the database,
and a prognosis may be generated. This is carried out through density functions to determine
the most likely fault root cause and RUL prognosis to be used. Due to the structure of the
method, individual or multiple fault prognosis is possible. The complexity for a detailed engine
level model and the limited detailed service experience to isolate faults and determine their RUL
is however a limiting feature of these models.

In the occurrence of a previously unknown engine fault, the ant colony algorithm is capable of
detecting deviations from the normal engine average fleet. This forecasting artificial neural
network method is able to establish through service experience probabilities the most likely next
point at which the engine will be in its deterioration. Deepening on the accumulated
likelihoods, actions may be put in place within the system to alert of abnormal running
conditions and establish a most likely RUL if no other inputs are known.

Business Needs

The vast amount of engine health monitoring method developments to date have been carried
out in order to support and / or improve engine safety and reliability. The introduction of Total-
Care has increased the OEMs interest in understanding detailed engine overall deterioration in
order to optimize engine overhaul costs.

This is, there is a need to understand the detailed level of engine deterioration and engine level
of maintenance any given engine will require in order to optimize its individual engine
maintenance. Early similar attempts on this area have been solely based on service experience
or even operator specific service experience. As such only a gross approximation has been
possible and did not achieve sufficient levels of detail.

In order to optimize the reduced amount of engine maintenance, repair and overhaul capacity
available worldwide and also to improve the engine life cycle costs, detailed engine knowledge
is required. Forward planning of engine maintenance, will allow the overhaul shop to detail
plan, and prepare for each individual engine induction. Detailed knowledge, will improve not
only the engine turnaround time, but also the number of man-hours required on a single engine
refurbishment, as key decisions, may be made upfront of the engine induction.

In addition, detailed engine deterioration knowledge will improve the prioritization of engine
maintenance, not solely through their quantitative states (Group A part cycles flown, Average
fleet assumptions for a given life) but through detailed knowledge on the specific internal

Existing Methods & Areas of Further Development



Monitorizacion del estado de flotas de motores usando analisis inteligente de datos para informacion

intervalo-valorada y posibilistica

8.7

condition. This way, older engines with low levels of deterioration may be kept on-wing
increasing the company’s revenue, whilst younger engines, which may be deteriorated, may be
pulled early, in order to reduce operating costs.

There is therefore a requirement to establish a method which will be capable of not only
determining the level of engine deterioration but also allow for a fleet-wide optimization of
engine maintenance shop capacity through detailed engine-specific deterioration knowledge.
This, in turn will also imply the detailed engine knowledge of the actual engine level of
refurbishment required dependant on the time selected to carry out said maintenance. An earlier
maintenance would imply reduce maintenance and also reduced maintenance costs, where as a
late maintenance would imply higher maintenance cost, but also higher revenues. Engine and
fleet knowledge to carry out this optimization is required.

One additional benefit or improvement would be to determine the level of deterioration not just
at engine level, but to gain the capability to determine the level of deterioration at modular level
within the engine. This is, knowing and understanding the level of deterioration of an engine,
will be a significant improvement for today’s engine maintenance planning. However knowing
the detailed level of deterioration of a specific module within an engine, will allow for a
significant step change in the current engine deterioration understanding and engine
maintenance planning capabilities.

Objectives

The main overall objective will be to identify the level of deterioration of an engine within an
engine fleet in order to prioritize its maintenance. This is a similar approach to the Weibul
based methods or the existing DMTrade model, which currently exist, which are able to perform
these trade studies. However, this assessment needs to be extrapolated to a specific flying
engine fleet composed of single individual engines.

Engine health monitoring data is therefore deemed to be the only possible available input to
understand the flying fleet of engines. As the requirement is to further understand engine
deterioration over time, and the current methods which address safety and reliability are already
in place, this will be out of the scope of this assessment.

The aim is therefore to generate a fleet model that may be capable of determining detailed
deterioration knowledge at engine level and may be to module level. The output should in
addition be simple, so as to ease the task of the fleet support engineers.

This significant improvement to optimize engine maintenance is not currently available across
any fleet. As such, it is key that all engine fleets be able to consider this optimization
improvement. The new methods developed, should therefore be easily transferable between
engine fleets, with little or no expert engineering knowledge.

Engine deterioration is a long term study which in all literature is associated to low accuracy in
the diagnosis and prognosis results. There would therefore also be an improvement to the
current available methods, if knowledge with regards to the error or confidence with regards to
the diagnosis and prognosis results would be available. This information could in turn be used
or be considered in the overall fleet optimization as an additional secondary input.

Depending on the state within the life cycle of the fleet, the amount of engine data available
varies. A mature fleet will have engine health monitoring data and also direct hardware
knowledge from engine shop visits. A younger fleet may only have engine health monitoring
data but no actual direct hardware understanding due to a lack of shop visits to date. In this
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second case, assumptions, with regards to the engine design and architecture will be required to
bridge this knowledge gap. The BR700-715 Rolls-Royce engine fleet is a mature fleet where
substantial EHM and engine maintenance knowledge and data are available. As such the data
from this fleet should be used as the basis of the method development in order to prove the
method prediction and accuracy.

The development of a new method of engine health monitoring data modelling to determine the
level of engine and module deterioration and to provide a maintenance prognosis, will be
carried out through a stepped approach.

8.7.1 Objective 1 - Engine Deterioration

In previous models, engine deterioration has been assessed at fleet level only. This was
appropriate as the goal was to understand and appropriately plan engine maintenance of
engine fleets which were under development or at very early stages of their life cycle. As such
these methods provide a sound understanding of the cost and reliability implications of the
design and allow architecture trade assessments during the engine design phase.

Other existing engine deterioration methods have visually shown engine deterioration over
time, as a 2D or 3D relation of 2 or 3 variables respectively. These probabilistic, fault
classifiers methods, are deemed to be a good visual representation, limited by the number of
variables that may be considered, and as such by the actual optimized selection of variables to
represent the overall engine state or condition.

Scatter plots, are similar to the engine deterioration plots, however they also provide a
significant classification improvement for the engine diagnosis as they provide a fleet
comparison of previous engine states to consider.

A method is therefore proposed which will consider previous engine experience in line with
the scatter plots methods. Consideration of engine service experience and current EHM safety
and reliability limitations, will also be included. The new method to be developed will need
to optimize the variable assessment in order to provide a visualization of the engine over time,
in line with the engine deterioration plots.

However, the objective is to understand engine deterioration and gain the capability to carry
out module level assessments. No single variables should therefore be considered, but a
holistic overall engine condition, which may subsequently be used, to further assess the
detailed engine level of deterioration at modular level.

The engine level of deteriorating may therefore be considered as the variable to determine. As
such, blind source separation may be used to determine this level of deterioration variable
from all of the available measurement inputs provided through the EHM data. The intrinsic
use of process history statistical methods, as Principal Component Analysis, will therefore
provide the optimized variables to be considered for plotting the engine state.

Kalman filtering and Fuzzy logic will also be required in order to reduce the amount of EHM
data noise and the unknown or imprecise engine state conditions.
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Objective 2 — Engine / Module Deterioration Diagnosis

Subject to the proven capability to establishing an overall engine level of deterioration based
on all of the EHM data available without the individual selection of a single subset, a second
evolution of the method is required to address the deterioration diagnosis.

In line with the scatter plots, there is substantial BR700-715 engine maintenance experience.
This engine experience may be further assessed to subdivide engines within level of
deterioration. This can then be used to identify diagnosis correlations between the quantitative
EHM data and the known qualitative engine maintenance condition. The engine condition
report assessments should contain the engine overall level of deterioration, as well as the
module level of deterioration, in order to establish all possible combinations of overall engine
states.

Engine level deterioration assessments, have shown that long term trends may be used.
However they have also shown that the actual engine condition is unknown due to the internal
working conditions of the engine and the compressor-turbine interactions. As such when
considering all of the measurement values available, no data points should be dismissed.
Based on the first objective assessment, a second more detailed iteration is required.

A detailed individual variable assessment is required, to extract as much information as
possible. The Kalman filtering methods, are appropriate for trend assessments, however no
data points may be dismissed for deterioration assessments. A bandwidth sweep is therefore
proposed as the basis for the second method iteration. This individual variable sweep will
extract all of the knowledge from each variable for each given time point, and consider or
dismiss its importance individually.

A fuzzy assessment is subsequently proposed which will consider the different probabilities of
each variable state for each individual data point. The variable states may subsequently be
combined in order to classify them against the known engine maintenance states and as such
classify and diagnose each individual engine and module.

8.7.2.1 Objective 2.1 — Pattern Recognition

8.7.3

Engine deterioration is known to be a continuous compensation over time, of the compressor-
turbine states. This is, should the compressor deteriorate first, the turbine will need to work
harder to compensate the compressor loss. As such, over time, the turbine will therefore suffer
the consequences of this additional work, and be more deteriorated than the compressor. The
compressor will then need to work harder to compensate this turbine deterioration.

An emerging pattern of compressor-turbine deterioration overtime should therefore be
assessed to determine if more detailed statistical methods may be applied which would further
refine the classification results of the engine maintenance states.

Objective 3 - Engine Deterioration Prognosis

The final step of the assessment, once the level of deterioration has been identified and
classified, will be to determine the remaining time to failure or prognosis of time before which
engine maintenance will be required.
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Based on the classification of the engine and the individual engine modules, the engine level
of deterioration may be known. However in order to propose a deterioration over time, and as
such a prognosis for maintenance, a second knowledge point is required.

Based on the fact that engines are released at initial production or after maintenance with a
certain consistent build life objective, this original data point should be considered. Knowing
the original starting point and the evolution over time from the diagnosis which will provide a
higher or lower than expected level of deterioration, a prognosis will be possible.

This is, the detailed evolution of the engine over time, against the original build life objective
of the engine, will determine if the engine is deteriorating faster or slower than expected, and
as such will move the actual maintenance prognosis. In line with the quantitative trend
process history methods, the first and second derivatives will be applied to determine the trend
changes and establish the zero crossings respectively and therefore calculate the actual engine
deterioration against the given baseline.

This in turn, will enable the trade study consideration of several engine conditions at the time
of maintenance, in order to optimize revenue and maintenance costs. This is, by considering
different build life objectives, increased reliability levels of deterioration may be considered so
as to determine what-if scenarios of maintaining the engines on-wing longer due to optimized
costs, maintenance facility capacity or full utilization of engine and module life.
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9 New Method Proposals — Theoretical Analysis

The theoretical analysis has been carried out in line with the objectives established. The
ultimate goal of this analysis is the optimization of an engines’ maintenance and its prognosis,
in order to maximize its revenue.

However in order to understand the engines deterioration and optimize its life cycle costs, it is
first of all required to understand the engines’ attributes, architecture and limitations. The main
areas of deterioration as well as cost drivers are at the engines’ core, as such the core modules
and variables are used to associate theoretical variables to actual engine variables and as such
ease their understanding and correlation.

9.1 Aeroengine Design
9.1.1 Engine Modules

Engines are generally subdivided into sub-systems or sub-assemblies, [8] for their subsequent
ease of manufacture, assembly and maintenance, known as modules, Figure 38. The main
core modules are the HPC-M33 and the HPT-M41, the remaining modules generally sustain
lower levels of deterioration and as such are, based on service experience, not specifically
deemed to be engine drivers.

M33
M32 HP Compressor

Intermediate
Casing Module

M34

M51 LP Turbine
Module
M41
Combustion
and HP Turbine

M61 Module

Accessory

M31
Fan Module

Figure 38 Engine modular overview

9.1.1.1 M33 — HP Compressor

The HP Compressor or Module 33 is used to increase the air pressure. The overall
configuration of the module is tapered in order to have a convex casing to rotor design. The
HP compressor blades reduce in size from the front of the module to the rear. The number of
stages of compression will depend on the engine requirements.
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9.1.1.2

9.1.1.3

9.1.2

9.1.3

M41 — Combustion and HP Turbine

The combustion chamber and HP Turbine are used to increase the air temperature and to
start expanding the hot and high pressure air to turn the turbine blades. The combustion
chamber utilizes only a portion of all of the air supplied by the HP compressor and slows the
air down so that an appropriate flame can be sustained. After the combustion, the hot and
high pressure air is pushed onto the turbine. The HP turbine is tapered in order to have a
diffuser cross section design. The turbine blade and vanes increase in size from the front to
the rear of the module.

Remaining modules

Other modules like the Fan case, Module 34, the intermediate case Module 32, the accessory
gearbox Module 61 or the bypass duct Module 80 are not addressed as although they are part
of the engine design they are not required for this study.

Engine Design Established Stations

The overall engine design is fairly common throughout all aeroengine configurations, and
more specifically for most if not all civil high bypass ratio engines, Figure 39. The
nomenclature for the modules and more specifically the engine internal locations has been
established and is commonly used.

NOTE: *VARIOUS PRES/TEMP SIGNALS ARE TAPPED OFF AT THESE POINTS.
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Figure 39 Engine main stations
Parameter Inputs

The two main data inputs are:

FF — Fuel flow is continuously measured, monitored and controlled. The engine thrust is
controlled through the amount of fuel consumed and is monitored in order to maintain the
overall engine working conditions.
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9.1.4

9.1.5

P2T2 — Pressure and Temperature at position 2 just in front of the fan blades is taken as a
reference. The engine controls system will use this pressure and temperature to determine the
internal working conditions of the engine.

Parameter Qutputs

The main or most common parameters recorded as outputs are:

P30 — Compressor outlet pressure is measured to determine if the compressor pressure ratio is
maintained. A reduction in this pressure will indicate that the core is deteriorated.

T30 — The compressor outlet pressure is measured to determine if the compressor is
compromised when a pressure loss is identified

TGT — The turbine gas temperature or turbine entry temperature TET, or T4 is measured to
determine if there is deterioration on the turbine and to determine the actual engine working
temperature at its worst internal point.

P50 — The low pressure turbine outlet pressure is measured to determine the overall efficiency
of the turbine and also of the engine.

In addition, there are multiple other measurements taken throughout each flight. Other
significant parameters are:

N2 —High pressure system speed. This is the speed at which the high pressure compressor and
turbine are turning at.

N2V — This is the vibration off-set of the N2 shaft. It is significant to determine small
unbalanced deviations within the high pressure system

Engine management and maintenance

Aeroengines, in much the same way as all mechanical systems need to be maintained in order to
assure their safe and reliable working conditions. In addition, it is in the operator’s interest to
maintain the engines in good working condition so as to assure the best possible fuel
consumption [2] and operating costs.

Due to the size, complexity and skilled work force required for the maintenance of these
engines, the appropriate management of the maintenance is crucial to any airline operation.

9.1.5.1 Types of engine shop visit

The overall engine maintenance may be divided into two main groups, on-wing maintenance
and off-wing maintenance.

On-wing is all of the work that is carried out on an engine while it is still attached to the
aircraft. This will include all of the routine inspections and replacement of parts. In
addition, it also includes routine inspection of the internal condition of the engine, carried
out with borescope equipment.
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9.1.5.2

9.1.6

9.1.7

Off-wing maintenance on the other hand is when the engine is removed from the aircraft.
Engines are replaced and shipped to an overhaul facility where detailed maintenance work
may be carried out. There are only a limited number of facilities worldwide which can
refurbish engines, and these have limited capacity. = Managing and planning these
appropriately is therefore key and associated to improving the reliability of the fleet which is
also in the manufacturers’ interest in order to avoid unplanned shop visits.

The overall engine management methodology agreed with the operator and with their
airworthiness authorities outlines the level of work that will be carried out on an engine for a
given life. The life of an engine or component within an engine is monitored though the
cycles, or hours flown, depending on the deterioration characteristic.

This level of maintenance is detailed at a module level within each engine. This is, even if
an engine is inducted into an overhaul shop, it does not immediately mean that it will be
disassembled completely to individual piece part, but that each engine module will be treated
independently.

Levels of engine maintenance

There are three main levels of maintenance dependant on the level of workscope required in
order to return the engine to service [109]. The current methodology used to determine the
level of strip requirement for any given engine, follows a stepped approach. The main driver
is the objective of the shop visit. This is, the engine build life which once released the
engine is expected to meet. Based on this customer or business requirement, a review of the
group A part or critical part lives and level of deterioration of the engine will be considered.

The individual module softlives, are based on previous service experience, and assure that
parts are inspected at an interim time in the expected life of the module or engine. This is
also one of the main drivers for a shop visit level of strip, as neither the group A part lives
nor the module level of strip are typically waived.

Deterioration plot

Inspection methods, limits and intervals are designed to avoid and manage reliability within
the fleet. This assures that no significant finding will be missed or that it will not propagate
into an unsafe condition before the following inspection. This is, service experience has
shown that there are different interim stages in a component or engines’ life that depending on
the findings will require a different type of reaction.

Experience within the fleet or engine family will give guidance about where these individual
lines are with respect to each other and will allow certain policies to be considered. However
this will be an average point of view for the fleet and not an individual engine assessment for
each of the engines within a given fleet.

Engine condition reports

An engine condition report is created for each and every engine shop visit. This report
contains a high level overview of the shop visits’ most relevant findings and requirements. In
many cases these reports also contain photo evidence of the main issues, a repair and replace
overview, as well as a small summary of the most relevant findings.
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Through the assessment of these reports it is considered that a qualitative distinction in the
level of deterioration of each individual module is possible. As such, the HPC level of
deterioration has been divided into:

* High

* Normal to high
*  Normal

* Good to Normal
*  Good

* Bad

Whilst the HPT into:

* High

* Normal to high
*  Normal

* Good to Normal
*  Good
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9.2 Objective 1 - Interval-valued blind source separation applied to AI-based
prognostic fault detection

The main driver of this theoretical analysis is the proposal of a new method which will consider
previous engine experience in line with the existing scatter plots methods. The new method to
be developed will need to optimize the assessment of the different variables in order to provide
a visualization of the engine over time, in line with existing engine deterioration plots.

9.2.1 Objective

Engine deterioration models have generally been carried out at fleet level only. Engine
specific deterioration plots are limited by the number of variables which may be
simultaneously assessed. Scatter plots are a combination of these as they are carried out at a
fleet level through the assessment of specific variables in order to understand engine specific
differences.

The objective of this method is to understand engine deterioration and gain the capability to
carry out module specific assessments. In addition, this should be a holistic engine level of
deterioration understanding and not a variable specific in order to gain as much information as
possible from the data and knowledge available.

The engine level of deteriorating may therefore be considered as the variable to identify and
assess. Blind source separation may be used to determine this level of deterioration variable
from all of the available measurement inputs provided through the EHM data. The intrinsic
use of process history statistical methods, as Principal Component Analysis, will therefore
provide the optimized variables to consider when plotting the engine state.

Kalman filtering and Fuzzy logic will also be required in order to reduce the amount of EHM
data noise and the unknown or imprecise engine state conditions.

9.2.2 Overview

An initial review of the EHM data available and its associated engine state performance
meaning, determined that the data analysis required, where a single state needs to be extracted
from data from multiple sources, was not very different from that typically proposed for blind
source separation.

The two most typical examples where blind source separation is applied are sound signal
separation from different sources typically multiple microphones, or the separation of images
as that used on a foetal eco-graphy machine. The case presented was deemed to be similar to
these, as the state of the engine was to be extracted through the multiple different signals that
monitor the engine.

Blind source separation consists on identifying the main parameters that define a signal and
correlating these to a datum. Several different analysis methods exist, however independent
component analysis is one of the most common methodologies applied. In essence, this
method is the application of blind source separation to the assessment of engine EHM
combined variable data to determine the single state of the engine. The method may be
subsequently used to track the engine deterioration over time and its similarity of any other

given engine of known state.
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9.2.3

9.2.4

Blind source separation

A single engine event, in the form of general engine or component specific deterioration, will
influence the engine overall working conditions. As such it is to be expected that in these
cases, more than one variable will be affected by this change. The change in parameters may
be directly visible through a significant step change in a single key variable for a given mode,
however in reality it will most likely be a combination of subtle changes across several
variables.

The individual changes of event engines with different types or levels of deterioration may
also be assessed in this form. These may subsequently be collected and compiled into a
database of failure or event modes to be used as a baseline, or example of the type of damage
to be associated for a given profile.

An engine will fly and collect data from every flight; however significant deterioration or step
changes in the variables will not occur unless a significant change is initiated. Once this
begins a trend detailing the evolution of the engines’ deterioration will be generated within the
data. It is therefore only this final trend of data that is of interest as all of the earlier records
only show a normal working engine.

In addition, the engine data will be monitored for individual parameter limit and range values.
However in most cases it will also require a combination of several values under different data
ranges which will determine the specific known state.

EHM data is not the direct signal measured or if it is, cannot be directly compared against
another engine or even against itself. This is, EHM data is unique to the overall engine
conditions both external and internal at the time of the flight. The ambient temperatures and
pressures, the pilot settings and the aircraft configuration at the time of the data extraction will
all influence the resulting data point. As such, the flight data and measurements are given as a
delta between the real measurement taken during the flight and a common baseline flight
where the data is extrapolated to the engine working conditions. This baseline flight data is
common to all engines within a given fleet and used consistently throughout the service life of
the engine.

The data is therefore variable from flight to flight within a given band and with an overall
trend that is deemed to be appropriate to provide a good overall indication of the engine
condition. However, it is considered that through the appropriate detailed assessment of the
complete signal additional knowledge may be gained about smaller deviations related to
deterioration.

The blind source separation problem

Blind source separation is a technique commonly used to isolate or recover a signal which has
previously been mixed or which contains noise, by isolating the signal from different linear
combinations, without knowledge of the original signal itself or of its weight within the
original data set.

A typical example of the application of blind source separation is that used to individually
identify the signal of a single instrument within a band through the assessment of the sound
signals of the recordings of several different microphones distributed around a studio [110].
The actual instrument is not known, and the actual microphone which best determines a
specific instrument is also not known, however through the assessment of the signals the
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9.2.5

individual instruments may be identified. As such the individual signals may be extracted
even though the original recording signal was “blind” to the actual input instruments.

The application of blind source separation is the mathematical equivalent of that which the
human brain performs when listening to a conversation. The signal is filtered to remove all
noise and is isolated. The cocktail party example is exactly this. Blind source separation is
used by the user to extract the single signal of interest within a room full of different
conversations taking place simultaneously. An independence analysis allows this individual
signal to be identified and extracted from the noise within the room, so that the conversation
may be followed.

The main goal of blind source separation is the definition of independence. This is, to identify
and determine all of the independent signals. In a conversation, this method would identify all
of the participants and the background noise. In a music studio, Figure 40 it would be capable
of singling out a musical input from each individual instrument.

m Xi(f, 1)
f f

% st-DFT

Y(f.1) Separated
’\: W(f) X(f.1) signals

~ > vi(f.1)]
W) [Y(f, b :

> — V> (f. )]

Optimize W( f) so that |
Yi(f,t)and Ya(f, 1) |
are mutually independent |

Figure 40 Blind Source Separation — Recording studio example

In the case of assessing EHM data, it is expected that this method will be capable of extracting
the exact change within each variable on each individual flight. The application of blind
source separation to EHM variables provides the exact deterioration effect of the engine to be
extracted from the noise or from the variability of the signals generated during its extraction
processing.

Solving the blind source separation problem

Blind source separation techniques are all based on the independence of the signals. This is,
by identifying the most independent signals within a given source, this method is capable of
determining all of the different input signals Figure 40. The methods used to solve this
problem therefore either attempt to maximize the independence of signals, or try to minimize
the correlation between them.

The most common mathematical methods used are principal component analysis, single value
decomposition, independent component analysis, dependant component analysis and non-
negative matrix factorization; all of these methods, however only maximize or minimize the
signal independence or dependence respectively.
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9.2.5.1

9.2.5.2

9.2.5.3

Principal component analysis (PCA)

The principal component analysis method is based on establishing the independence of
signals [111]. This method transforms the original source into perpendicular signals (if there
are only two) or orthogonal signals (more than two). This is, the method is used to separate
as much as possible all independent signals, so that they may be subsequently extracted or
assessed.

Independent component analysis

The independent component analysis method [112], is used to separate multiple signals into
subcomponents, with the assumption that the subcomponents will be non-Gaussian and
statistically independent. These resulting subsignals will not be directly representative of the
source signal, however they will be statistically independent and may be subsequently be
used as the basis of further filtering assessments which could not be performed on the
original source signal [113].

The independent component analysis method consists of an initial pre-processing of the
signal as a method of centring of the data [114], by subtracting the mean value. This is
typically done through eigenvalue decomposition. Once this is done, a dimension reduction
may also be applied in order to simplify and reduce the complexity of the actual problem.
This may be achieved through principal component analysis or single value decomposition.

Singular value decomposition

Singular value decomposition is one of the most common methods used within independent
component analysis [115]. The overall methodology consists in identifying a factorization
matrix M which will provide the eigenvectors for each of the variables from the original
vector data set V. This is performed through the following formula, where U is a unitary
matrix, and X is a diagonal matrix.

M=UXV"®

The eigenvalue decomposition and single value decomposition are very closely related as the
/ ¥ *
columns of U are also the eigenvectors of MM and the columns of V are also the
¥ * /
eigenvectors of MI" M.

Considering the special square matrix case, on a limited 2D model, and considering the
original data is contained within a circle, this method would rotate, scale and rotate the circle
into a new 2D form [116]. This is, the coordinates within the circle would be initially
rotated, a transformation of the circle into an ellipse would then occur, establishing the
principal components of the matrix and then one final rotation would be carried out Figure
41.
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Figure 41 Simplified 2D single value decomposition
9.2.6 Blind source separation of interval valued data

The typical blind source separation examples of identifying a single musical instrument
through several different microphones, or the party conversation, where a single conversation
needs to be extracted from all of the others, is consistent in the fact that a single source needs
to be extracted from the system [117] [118].

Engine health monitoring data is logged as a method of monitoring the single engine system.
When a deviation in the engine working conditions occurs, several different variables show
this deviation. As such, extracting specific engine events and deviations, through the use of
EHM data may be considered a typical blind source separation case.

The current EHM methods are used to detect mayor deviations from the engine working
conditions [109] [119] [120] [121] [99] [122] [123] [124] [125]. This is, EHM is used for the
identification of engine deterioration levels of a high reliability concern. As such, these
methods begin by smoothing the variable inputs as the variable trends are sufficient to
determine the internal state of the engine.

The objective of this assessment however, is to identify engine deterioration or the evolution
of this engine deterioration over time. As such, the deviations that need to be assessed are
substantially smaller and in most cases, not visible through a single variable, as they are a
combination of small changes on several variables that are not required to occur
simultaneously.

The typical blind source separation problem is complicated with the use of the complete data
set of the variables and the need for a combined variable assessment. However, the variable
inputs are collected during every flight and are dependent on the internal and external engine
working conditions. Due to the engine design the variable values are also known and
constrained to a certain interval value, which varies from variable to variable.

A revision of the blind source separation problem resolution methodology was therefore
performed in order to gain the capability to apply specific interval valued inputs of the EHM
data to the blind source problem proposed.

9.2.6.1 Extension of blind source separation to interval valued data

Blind source separation, is used to identify the linear combinations of N different
independent variables also known as independent components. As such, linear independence
between the signals is therefore assumed.
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The resulting latent variables are assumed to expand throughout a multivalued time series Sy,
where t = 1;...; T, and the multiple different values S are as sk=(sik; ...; snk), k=1; ...;N.

In much the same way, the original input observed data is assumed to expand throughout the
similar multivalued time series Xy, k = 1;...; T where the multiple different input variables are
Xk = (x1k;...; xNk)with the same time series being used.

Following the general blind source separation methodology an unknown matrix of N by N
rows and columns is assumed in order to mix the X and S matrices of [xik] and [sik]
respectively through

X=AS.

The blind source separation methodology therefore consists in identifying a de-mixing
matrix W such that the rows of the output matrix are statistically independent and where W
and A are related by scale and rotation transforms.

Y=WX

The most common method of resolving blind source separation is through independent
component analysis [126]. This has previously been used in combination to neural networks,
gradient learning, maximum likelthood and other such mathematical methods [127].
However not in combination with interval valued data [128].

Principal component analysis has previously been used together with interval valued and
fuzzy data [129] [130] [131] [132] [133], however the blind source separation problem
resolution through independent component analysis has not been generalized. As such, this
new methodology has been established to expand the resolution of blind source separation to
interval value data through independent component analysis.

Interval-Valued Data

The interval valued, observed data is an interval based input, composed of [x} , X'y ], k =
1....T, where X is each of the different input variables with x = (X'jx...X nk) and X =
(x+1k...x+Nk) and ranges from 1 to N and K is the time series which ranges from 1 to T.

For each variable and for each time point, the variable signal has a maximum and a
minimum value, no average or mean or tolerance has been assumed as it is not applicable to
the subsequent EHM case and is considered to be a subset of this generic case. As such,
these intervals are arranged in a matrix X; whose elements are intervals [Xy, x+ik], i=1...N.
Each term of the product AS will therefore be contained within the corresponding interval of
X

The application of the blind source separation methodology would therefore result in

N

o E " S < pt
a ik = Qi Sak :J.'k

=1

Where each term of the AS product will be contained within the corresponding interval term
of X. As such, the notation may be simplified into

AS € X
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Following the established methodology, the objective of blind source separation is to identify
a de-mixing matrix W of N different independent random variables Y, where Y, to Yy are
composed of a random sample of (yi;, yir). Each of these Y variables would in addition be

- - + .
Yik € [ Uik of interval valued data, where

N
[-U;_k' y::_] — {Z WiaTak | Tak € [I(Tkz:k]}

a=1

This way, the resolving algorithm is established following the original methodology, where
the terms of each of the matrices are in interval form.

Y= WXy

The linear independence between signals is assumed as an inherent consequence of applying
the blind source separation methodology. Under independence, the cumulative distribution
function and the probability density function are product of their marginal distributions and
densities. Testing for their independence therefore depends on a divergence between the
estimated joint cdf or df and the product of the estimated marginal [134].

This same premise is applicable to the independent component analysis principals of
maximum likelihood, mutual information minimization and information maximization [135]
[127]. In particular, infomax or maximization criterion is equivalent to the minimization of
the Kullback-Leibler divergence between the distribution of Y and the product of its
individual marginals.

In order to keep the resolution as general as possible, the Y; matrix will be assumed to
provide only incomplete information about the complete sample distribution of Y. Each
possible W matrix will therefore be associated to a different set of Kullback-Leibler
divergence values.

The Y matrix may therefore be considered such that it is a sample vector y, with Y; being an
interval-valued matrix with elements [y, y+ik] such that

yik € (Vi i)
In addition, it is also assumed that Y is unknown thus all the available information about Y is
given by Y; . Considering S.(yo) as a sphere of radius € centred in a point yo = (Yo1... Yon), if
a sample Y = [yi] of V was available, then the density function of Y in y could be

approximated by the fraction of the sample elements that belong to Sc(yo) divided by the
volume of this sphere [136]. As such, if

‘ 1 ifreA
La(z) =
0 else

Then

1 Z l{( Ylhes--s Uni)ES, (Yo)}

T vol(e) 7

y(w) =
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Where vol(e) is the volume of S.(yy). As a particular case, the nearest neighbour (NN)
estimation consists in defining € as the distance between y, and the nearest column of Y thus
the numerator of the above equation is always 1.

The extension of the NN estimator to interval data consists in defining two functions f *,and
f "y that bound the values of Iy (y). Let Vi be acell

Vie ={(21,...,2) | = € [y, vk}

And let € be the radius of the smallest sphere centred in y, that completely contains one of
the cells Vi, then

l\
p L _
€ = min { max {( E (zik —yok)?)® | 2ix € [y vk}
2
k=1

The upper and lower estimations of fy(y0) are

= 1 > Liv,ns, (40) #0}
s )—4— - K « (Yo )7
Py(w)™ =7 vol(e)

= 1Y Lvesiwe))
s ) — w2 Yo
Py(w)™ =7 vol(e)

Limiting the preceding case to one dimension, the NN estimations of the marginal
distributions are,

3 + 1 Z l{[!/,-,‘.~.‘I,»',‘.]""[.'I<>i.- — €. Yor+€]#0}
f)--‘k(!/nk) = = ,_
1 2¢

2 Lt 5 1C ok — € von+el.}
2¢

~ 1
Fye(wor)” = T

Which in terms of the definitions established is,

~4 A1 .....?,'}+
KL (YY) = / /fy(yl ..... yn ) log b f\',ll - YN diyy ... dyn
=1 JYk(Uk)~

~ — fo(ya, ... yN)~
KL (Y/)Z//f).-(y,.....y,\v)l()g b f\',ll = yn) dyy .. .dyn

=1 Jyk(yk)*

Where [ y 1s unknown. Nonetheless a Monte Carlo estimation of the bounds of the KL
divergence may be carried out as follows:

r

-~ } I TEEEE )")+

KL ()~ > log b (_;',“ oo TN
i=1 Hk:l f)’k(!/:k)_
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i=1 | P AT

Each matrix W has been associated with the upper and lower bounds of the KL divergence,
given by the above equations. In order to find the most appropriate matrix W the following
issues need to be addressed ahead of the calculations in order to appropriately resolve the
possible conflicts:

* An order must be chosen that enables a consideration between two matrices whose
divergence estimates are overlapping intervals.

*  The proposed estimator changes if the data from X; or the matrix W are scaled, because
of the properties of the NN estimator.

The first point can be solved by using the uniform dominance [137]. The second
consideration however, is addressed by introducing two requirements:

*  The data matrix Xj is standardized.
*  The search of the matrix W is restricted to the space of matrices with unity eigenvalues.

The numerical search in this restricted space will be carried by a real-coded genetic
algorithm, [138]. To comply with the unity eigenvalue requirement, crossover and mutation
operators are followed by a repair operator that applies a Procrustes transformation to the
data [139],

repair( W) = repaif UXV?) = UV!
Where W = UY.V'is the Singular Value Decomposition of matrix W.
The standardization of an interval-valued data matrix is established by applying Principal
Component Analysis to the centre points of the data considered. The calculation is
subsequently extended to the interval data.

Let X = [xi] be the matrix of centre points of X,

—— -t
I ik + 2 ik

Tik = 2

Let p be the vector mean of the columns of X and let C = [ci] be the covariance matrix of
the columns of X. Let C = V AV ' be the single value decomposition of C. This is, V
contains the principal components of X, and A is a diagonal matrix whose elements (A;;..;
An) are the variances of the principal components. As such, resulting in

) |
S =V -diag(—=)
VA

As C' = S'S, the standardized centre points matrix is
Xe=8(X —[pty..., i),

Which in turn, is the PCA solution to the BSS problem when all intervals are replaced by

their centre points.
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The proposed extension to interval-valued data is carried out through the matrix X' = (x"i,
x*"i), minimizing the distance

d(ST X} X1 — g, ..., ),

Where

1 N
d([ag. af). b b)) =D 0 (ag, — b)* + (af, — bj)?

i=1 k=1

And

N
(ST Xk =P s @ [rp.x,). with S71 = [si],

a=1
e ,a" @b b ]={a+blac|a",a’),becb,b"]},
[a=,a™]@ b=, b ={ablac|a",a"],be [b~,b]}.

The elements of X° minimizing the distance are found through a greedy algorithm with a
starting point in

a(0)

XV =8(Xr— ... 1))

Where

N
»8(0) o [aB— 8
(X, = E Sia @ (220 — pe, 2% — pk)-

=1

The interval valued problem is therefore resolved, through the identification of the sphere
centre point average of the variable and through the identification of its radius as the
minimum distance between elements.

Through the application of this extended method, the blind source separation problem for
interval valued data is resolved.

An initial validation of the model with precise known inputs was carried out in order to show
the method capability. This was then expanded to actual engine health monitoring data.

9.2.7 Interval value methodology trial

In order to visually confirm the methodology, a trial case was established to determine the
feasibility and applicability of this extension of the blind source separation problem. Three
distinctly different input signals were proposed, a sinusoidal signal, a square wave and random
noise signal, first row of the proposed example, Figure 42.

In order to establish the input to this trial case example, all three signals were mixed, as shown
in the second row of the worked example. This would entail the input data which would be

contained within the data matrix X.
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The third row shows the extraordinary results of the application of the algorithm proposed in
line with the new methodology outlined, where the original signals can clearly be
reconstructed except for a scale factor and a permutation in the order of the result.

This case, is a clear demonstration that the methodology used was appropriate, and is capable

of extracting the original data sources as required, as well as demonstrating the physical
applicability of the method.
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Figure 42 Interval-valued blind source data worked example

A second additional iteration of the case was performed. The forth row of results is a
demonstration of the interval valued input data method resolved through the new methodology
outlined, where by an input interval valued error was introduced half way through the signal.
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In this example, once again it is shown that the resulting interval from the methodology
applied returns an upper and a lower boundary which contains, black and red lines
respectively, following the original input signal.

As a comparison to the current working capabilities, the final fifth row are the results to the
same input signals using the most up to date principal component analysis capabilities. The
resulting signals are shown to substantially deviate from the original inputs.

9.3 Objective 2 - Engine health monitoring for engine fleets using fuzzy
RadViz

The existing engine level deterioration assessments and models, have shown that the actual
engine condition of specific engines is still today unknown. This is due to the variable and
undetermined internal working conditions of the engine and the compressor-turbine interactions.
These models consider a reduced subset or a smoothed version of variable values in order to
establish long term and overall fleet assessment, but in no case are they used for short term,
engine specific analysis.

There is therefore a requirement for a new method to provide the capability of understanding
small engine deviations and determining if these are within the overall engine working
conditions or may already be conceived as initial deviations due to deterioration.

9.3.1 Objective

The objective of the new method developed is to establish a detailed individual variable
assessment so as to extract as much information as possible. The Kalman filtering methods,
are appropriate for trend assessments, however no data points may be dismissed for
deterioration assessments. A bandwidth sweep is therefore proposed and the basis for the
second method iteration. This individual variable sweep will extract all of the knowledge
from each variable for each given time point, and consider or dismiss its importance
individually.

A fuzzy assessment is therefore proposed which will consider the different probabilities of
each variable state for each individual data point. The variable states may subsequently be
combined in order to classify them against the known engine maintenance states and as such
classify and diagnose each individual engine and module.

9.3.2 Overview

Overall engine deterioration is a combination of the deterioration of each of the individual
modules. However the engine doesn’t deteriorate evenly or simultaneously. A single module
will initially deteriorate faster than the others, due to a weak link in its material, build or due to
a different root cause. This will be a small deviation that the rest of the engine will need to
compensate.

The next module, suffering from the increased load, will then deteriorate, and so on. In
essence, the engine will deteriorate one step at a time. However from a performance point of
view, the engine is actually compensating itself in order to work under the best possible
conditions for the state in which it is in.
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9.3.3

The core modules of the two shaft engine assessed basically evolve in this manner. Should the
HPC module deteriorate first, a known signal drift would occur that could be identified.
However the HPT would subsequently react to this deterioration and compensate which in
turn would deteriorate the HPT. The signal assessment in this second reaction would not be
clearly visible as the signal would now be a combination of the two deteriorated modules.

The aim of this assessment is therefore to address these small, interim deterioration trends or
patterns, so that they can be classified and quantified in order to determine the precise level of
deterioration of the engine.

Simultaneous signal assessment

General pattern recognition today is limited to the assessment of a single variables’ trend. At
most a combination of two or three variables can be performed; however the trend changes
need to be substantial in order for the step change to be visible, as this is currently performed
as a manual task.

The first requirement is therefore to identify an automated method which is capable of
assessing several signals simultaneously where the trend changes are not required to occur at
the same immediate point in time, and where the changes are not required to be of a
substantial magnitude. This is due to the fact, that the objective of the assessment is general
deterioration and not that which may be associated to an event or a substantial material
release.

The full set of signals is therefore assessed simultaneously. Each full set of EHM data will
therefore be a combination of several different patterns over time which will show the
deterioration evolution of the engine and which combined will establish the actual state of the
engine at the time of the assessment.

The assessment has been limited to the core modules of a two shaft engine. The pre-
assessment performance understanding has also determined that a total of five parameters
DFF, DN2, DP30, DTGT and DT30 are the main variables that will define the evolution of the
engines’ core. The diagnosis will therefore assess the combination of these five variables, in
order to establish smaller time series of the complete signal, which will in turn be the interim
working states.

The states can subsequently be classified in order to identify their meaning and the level of
deterioration of the engine through the individual understanding of the engines’ individual
module levels of deterioration.

9.3.3.1 Fuzzy feature extraction

Based on an EHM engine signal composed of these five variables, each variable will be
composed of several different sequences. These individual variable sequences are named r;°,
t=1,....N, i =0,..,4 which will be engine specific over a specific smaller time series. In
addition, each variable is expected to contain a number of different patterns I, in this
example limited to 4 different patterns.

Each variable within the EHM signal is a measurement of a different pressure, temperature
of flow of a different part of the engine. This is, each variable, has a different baseline,
average and tolerance range as well as different actual measurement bandwidth [140]. The
assessment method is therefore required to assess each variable individually and consider its

individual bandwidth.
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9.3.3.2 Signal filter

A bandwidth kernel is used to address this issue. This is, a boundary function is used to
assess the actual size of each of the individual variable bandwidths. This may be performed
through a cloudy data filter, which would in essence review all of the data and determine the
function which would encompass all of the data [141]. However it is deemed not to be
required in this case due to the fact that further processing will be subsequently performed.

A Monte-Carlo estimation of the bandwidth kernel has therefore been applied. This is, a
function is generated which reviews the individual variable signal bandwidth sweeping all of
the possible bandwidth values. The result from this assessment is a bandwidth-dependant
filtered signal.

To

fild)= Y v K(r,A)

T=—To

The filtered signal however still does not convey an appropriate subset of information. This
is due to the fact that the variables assessed are not the direct measured value and are
actually delta values of the actual measurement. This is required in order to pre-filter the
engine working conditions from the actual measurement considered. In these cases, the
external ambient conditions together with the actual pilot and aircraft settings are assessed in
order to establish the extrapolation parameters required to convert the known pass-off test
result baseline data into the baseline engine values for the engine at the point of
measurement.

The delta value signal assessed is in actual fact the deviation of the original parameter values
measured to those extrapolated from a known engine to the working conditions at the time
the measurement is taken. This is current common practice as the use of cruise EHM is
limited to the understanding of shifts and trend changes over relatively small time periods
[124].

As such, the data itself is of limited value in its current state. Even considering the variable
specific bandwidth-dependant filter, each variable has a different baseline value dependant
on the engine working conditions at the time each measurement is taken [142]. A trend
assessment of the data is therefore deemed to be more appropriate and to convey a
substantial increase of information to that of the original signal [143].

The trend signal may therefore be in turn approximated through the derivative of the filtered
signal. This is, the combined set of bandwidth-dependant patterns is derived in order to
obtain the trend values instead of simply using the filtered data. The derivative of the family
of kernels is therefore established as the slope of the straight lines of a least square filter to
each point of the smoothed signal [144]. This is however done through the Monte Carlo
estimation window in order to maintain the bandwidth dependant kernel.

far,A)=f(A) +a-(r—t)
This is in line with the standard of signal processing of EHM data currently carried out. A

least squares approximation of the data is performed and the resulting individual variables
are assessed for trends and shifts in order to determine if the engine under assessment has a

substantial level of deterioration.
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However when considering the complete variable bandwidth, it can be clearly appreciated
that this least squares approximation is highly dependent on the bandwidth filter used. An
error to this approximation is therefore introduced to account for this data loss.

err(a, e i, t, A) = Z (fe (A)—a-(r—t)+ f5(A)? - K(1,A)

T=—To

This error is once again dependant on the engine under assessment, the slope of the actual
function, the trend assessed, the time period and the actual variable bandwidth. The
derivative of the least squared approximation error is carried out in line with the baseline
function. Through this, a minimum error value of the baseline result approximation is
obtained.

si(A) = argminerr(a, e, i,t, A).
a

This is a very similar approach to that previously discussed, where Principal Component
Analysis was used, in order to obtain an orthogonal transformation of the data.

The result of applying this signal filter however is very dependent on the actual bandwidth
considered. The smoothed signal in its current form is therefore not considered to be
appropriate for the actual assessment of a fleet, as the variability from engine to engine and
even from flight to flight within the same engine, would be too gross to be able to establish
specific deterioration patterns.

Soft Discretization

A more detailed method of filtering of the signal is therefore deemed to be required in order
to determine the precise effect of the bandwidth and of the residual signal error in order to
establish a method that is equally valid for all signals independent of the variable measured,
or the method by which it is obtained.

The simplification of the signal is therefore applied to the original function of family of
bandwidths, for each of the patterns within a given EHM data set. A straight forward filter
using a hard discretization could be applied which following a similar methodology to that of
Ruspini’s fuzzy partition, would allow the EHM original signal to be processed. Each
variable would be smoothed using the filtering method above outlined, but then dependant
on the actual slope of the curves at each time period; individual hard discretization values
could be allocated.

P(O I'x) P(1 1x) P(2 1x)

-0.0001 0 0.0001

Figure 43 Ruspini’s fuzzy partition

This is, if the smoothed signal has a negative slope, it can be associated to a 0 value. If the
smoothed signal has no slope it can be associated to a value of 1, and if the smoothed signal
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has a positive slope, it can be associated to a value of 2, Figure 43. Through applying this
hard discretization to all of the variables, we can obtain a 5 variable combination of these 3
distinct values.

As an example, using the five different variables previously discussed, each EHM individual
data time point could be reduced to a ternary number which would be a combination of the
hard discretization values of each of the individual variables Figure 44. In turn, this state
value can be used as a state identification value which can subsequently be used for trend
assessment [145].

n

W]
o[ ] 2 > 2121062100
va[]

=

Figure 44 EHM Value reduction to a single state

However in reality, no two engines will have the same identical pattern sequence, due to the
fact that several factors affect both the internal and external working conditions, as well as
the fact that the actual variable baseline data is actually dependant on the flight conditions
and is not a fixed baseline as such. It is therefore required to develop a method which will
allow the assessment of similar and not identical engine trends.

A soft discretization is therefore preferred in order to gain the capability of assessing the
complete variable bandwidth together with its associated error. Ruspini’s fuzzy partition is
therefore used together with the combined associated probabilities for each of the possible
variable trend values.

This results in a new function, which is a probability distribution of the set of state
identifiers. This is, for each of the EHM data variable time points, the filter, not only returns
a single value but a combination of all of the possible values, together with its associated
probability of each of these. The assessment, using the derivative of the variable function,
and considering the slope at each time point, together with the effect of the error for this
same time period, takes into account the Monte Carlo estimation value sweep of the
bandwidth, in order to produce the probability of each specific state.

As such, the resulting filter is a probability distribution of the sum of all of the different
states of the variable that may be found within a given EHM signal, which in turn considers
the combination of probabilities of a certain discrete state and associated error. All of which
are dependent on the variable specific bandwidth.

1

1
PAA(ID =id) = Y { [ P(d:|siA)) :id =) d; -3}

i=0 i=0
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The possible state probabilities of the combined individual variable states would in turn
result in a chart where the overall engine trend over time could be assessed and which would
consider not only the baseline least squares approximation, but also the error associated to
this bandwidth dependant approximation.

9.3.4 EHM filter example

The different levels of signal filtering discussed were applied to a single EHM data set in order
to determine the quantity and quality of the knowledge gained through each methodology.

The initial chart, Figure 45 shows the original EHM data set composed of five different
variable signals of different values and bandwidths. No significant assessments can be carried
out with the data in this state.

0 100 200 300 400 500 600

Time
Figure 45 Initial raw set of EHM data

The first standard filtering method of a least squares approximation, Figure 46 shows
smoothed out versions of the variables. On this chart, it can be seen that the engine has a
slight deviation trend starting approximately at time period 100 and returning to its original
working conditions at approximately time period 600. This could be considered as that
although there has been a slight deviation the engine has returned to normal working
conditions.
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Figure 46 Initial least squares filter application

The second filtering method, Figure 47 is carried out through a signal filter which not only
considers the least squares approximation, but that it does so by also considering its associated
error and its dependency to the variables own bandwidth. This is, the derivative of the
smoothed signal is computed by fitting a line by least squared regression to a window centred
in the estimation point. This methodology allows a more detailed assessment and inside
knowledge of the engines state. The engine is seen to deviate from time period 100 where at
least one of the variables, changes its trend. The engine is then seen to stabilize on a different
working condition by time period 600.

— DFF

04

DP30

0.0

S DTGT

0.002

-0.004 -0.002 0.000
|

T T T T
0 100 200 300 400 500 600

Time
Figure 47 Second filter with a bandwidth of 2000 following proposed methodology

The final methodology outlined, utilizes a soft discretization to combine all of the variables
that make up the EHM data set into a single individual time point state. Through the use of
probabilities the soft discretization of the least squares approximation and of the associated
error, for each of the individual variables, this method returns a probability state value. The
representation of this state value is performed through the representation of the value
probabilities.

The first main characteristic of this method is that it is an overall view of the engine. No
manual assessment is required to combine the individual effects of each of the different
variables. In addition, it is a clear representation of the engine for each time period. In this
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case, Figure 48 it is significantly easier to establish that the engine sustained a slight deviation
at the beginning after its entry into service, which could be due to the bedding of the different
engine components. A significant time period then shows that no significant changes occurred
until time period 300 where a significant step change in the engine working conditions
occurred. The engine then compensated itself to return to a stable working condition from
time period 500 onwards.

160 200 240

State

30 60 90 120

0

0 100 200 300 400 500 600

Time
Figure 48 Single state time plot representation

This is a clear example of the substantial differences on the conclusions that may be made of
the internal condition of an engine, dependant on the type of signal filtering method used. The
first was not able to establish that the engine had deteriorated, the second determined that a
working condition transition began at time period 100 and then recovered by time period 600,
whereas the soft discretization method has been able to visually represent the engine
deterioration over time in sufficient detail to establish that the actual deterioration transition
occurred from time period 300 to 400, to then be compensated just after time period 500.

In addition, this method also provides a clear representation of the actual engine overall
condition. The combination of these individual states can be used to establish distinct engine
patterns which may be associated to engine specific identification sequences. These may in
turn be associated not only to engine deterioration but also to any other state of interest.

Distance to other known states

The new method discussed, has shown that a trend sequence may be generated for each
individual variable. Not only this, but a soft discretization of the trend sequence may be
performed in order to establish the probability values of each state for any individual variable
for each individual time period.

A comparison could therefore be made from this probable state value to other known states or
trajectories, by determining how close each state is, to other known state values. This is, a
minimum distance value is seeked in order to determine the proximity of our variable to other
known cases.

New Method Proposals — Theoretical Analysis E



Monitorizacion del estado de flotas de motores usando analisis inteligente de datos para informacion
intervalo-valorada y posibilistica

The minimum distance value will be zero if the actual variable state is contained within the
engines’ trajectory. In any other case the distance to each possible known state needs to be
measured in order to establish the one of minimum distance.

Actual values cannot be used to determine this distance due to the soft discretization used. A
set of probabilities is therefore required to determine the probability of a distance between
state identification values.

N A
dist (id,{ID }=1,.,v) = min { 3 di — et :

i=0

4 4
id=3"d,-3, IDg:Zd?-S"}.
=0 =0

In addition, and in line with the hard discretization previously performed, the different
variable probability states may be combined in order to establish an overall state that defines
the engine. As such and considering the five different variables and the three possible variable
states, there are a total of 243 different possible combinations that may define the engines’
individual state.

The engine state sequence is therefore transformed into a set of probabilities, which in turn
represent the probability of the sequence of engine states qy,...,qn.

N
Pi{aqt}i=1...n) = Hl’;'_\(f]t]
t=1

In line with the process defined for the individual variables, the same is applicable to the
overall engine sequence. The probability of a certain minimum distance between the engine
under assessment and one of the 243 different possible states is therefore established as the
sum of all of the probabilities of each sequence of state and their individual distance to a
known state trajectory. This is, each of the individual variable possible states is assessed and
combined, and the distance is measured against all 243 different possible state values. When a
combination aligns to one of the 243, p=q, then the distance value is 1, in any other case, the
value is zero. In this case, the probability value of this sequence combination is conveyed for
further assessment.

242 242

PE(dlid) =" - > PR({a}e) - 0uttia arye)

q1=0 gn=0

The final step is therefore to determine to which of the 243 different possible states, the engine
under assessment is closest to, for any given time point. The resulting value will therefore be
the engine state with the highest probable value out of all of the different state combinations
and all of the different bandwidth assessments.

pia(d) = Ile(dfid) = sup P5(d | id).
AE[AminnAmax]

The distance distribution will sweep all of the different probabilities of a state for each given
variable, and measure the combined possible engine states distance to each of the 243
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possibilities Figure 49. In addition, this will be done whilst sweeping each variables’
individual bandwidth.

o _|
-—

—— min
— avg

distance

0 20 40 60 80 100

state

Figure 49 Minimum fuzzy distance plot (black - centroids, red and blue - supports)

Classification

An engine deterioration knowledge database has been compiled, which has reviewed the
condition of over 1000 engine shop visits. An assessment has in addition, been made to
determine the overall condition of the core engine modules individually. As such, the HPC
modules have been classified into 6 different deterioration levels of Good, Good to Normal,
Normal, Normal to High, High and Bad. On the other hand the HPT modules have been
classified into 5 different deterioration levels, Good, Good to Normal, Normal, Normal to
High and High.

The fuzzy feature extraction method has in addition, been applied to the EHM data from all of
these engines in order to obtain a set of standard shifts, trends and patterns for each of the
individual levels of deterioration defined.

Based on these results and for the HPC module six different possible levels of deterioration
are determined and distinct classes can be identified. These deterioration classes are defined
as Ay.

if x € A then class = G
if x € A, then class = GN
if x € Az then class =N
if x € A4 then class = NH
if x € As then class = H
if x € Ag then class = B

A simple fuzzy rule classifier can now be applied with a learning algorithm which is based on
the Linear Discriminant Analysis methodology, in order to align the engine assessed to each of
these possible determination states [146]. Other more complex methods as cost-based
boosting may be applied [147], however the LDA approach is deemed to be sufficiently
accurate for the purpose of the analysis.
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Linear discriminant analysis seeks in a Gaussian problem, the minimum error of the Bayesian
classifier. In addition, due to the methodology used, the special condition is contained that all
of the possible classes have the exact same probability matrix and covariance matrix. As such
a much simpler approach may be carried out, to determine the minimum distance to a certain
level of deterioration or class. This is through identifying the case of maximum Gaussian
density [12].

The general Gaussian density function is

1 2
K(x)=—==¢exp L

2 2

However in our case, a combination of engine sequences is considered, which run for several
different time points each. Considering (x°,.....x"n), when e = 1,...,M, of M instances, each
consisting of m crisp features.

The Gaussian multivariate density can therefore be applied for each of the crisp individual
engine states, against the average centre values cx of each of the different levels of
deterioration, or patterns previously determined.
1 1 -

= awnl DT

e o~ 3@ e S - a).
As the actual distance to a class is not required, the formula may be further reduced, by
removing all of the terms that are not class dependant.

ia, () = <'-\’P( — sz —e)TE Yz - ’W"))

A final maximum vote assessment is considered in order to establish the actual class to which
the engine is most similar too.

argmaxa, (ze)

In the overall problem however, for crisp data, the scaling matrix used is the covariance matrix
of the complete data set of features and centres of each of these features [136]. These centres
are considered as the mean value of all of the elements within each knowledge database class.

Based on the fuzzy data we are managing, this methodology may be extrapolated. This is, a
new covariance matrix and new sample mean centres may be considered within the fuzzy sets,
which in turn minimize the misclassification of the method. A ranking method is therefore
required. The fuzzy data ranking method is proposed as a common approach [148], through
applying the extension principle; the member function of the number of misclassifications is
converted to:

A
M !

mc(n) = max{ minyg(z.):n = g &
e=1

e=1

class,

arg maxy g4, (x,)
k

However this methodology is not considered appropriate as considering the 243 possible states
and the 6 different knowledge database classes established this would account for over 60000
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parameters. In addition, the covariance matrix is also not appropriate for further
transformations, as several of the distances of some states to the system trajectories will be
similar amongst themselves.

The full optimization of the data is therefore not pursued. If we consider each individual data
instance as a list comprising a weighted average of the distances to each of the 243 states,
where the weights are the respective membership functions,

- >_a dug(d) L 2od At345(d),

U ams(d) T T Y mse(d)

The crisp data centre of the sample data would therefore be equivalent to

Laclass =k Te

1

Cp =

Luclass . =k
And the crisp data being assessed would be

M
=1 Te

lve=

M

Cp =

As such the covariance matrix of the engine data assessed would be
M
Yo = Z(I" — (;()“Ij (ze — ¢o)
e=]1
Which is equivalent to
.\_-:u == 1" J\n[’
Where matrix P is orthogonal and matrix A is diagonal.

The crisp fuzzy data from the engine may therefore be classified through
3 1 s AT pA—1pt 50 )
pa, () =exp ( — 3{.1' —ep)t PN Pz — ¢ ,))

This way, and due to the fuzzy rules previously established, there are only 243 diagonal terms
in matrix A which are easily found through a fuzzy fitness genetic algorithm [149].

Visualization of the results

A common visualization method for data classification is Radial Coordinate Visualization,
also commonly known as RadViz [150]. This method is based on plotting the data inside a
circle, with the different classification intervals in the circumference.

The RadViz representation is based on a physical analogy related to springs Figure 50. Each
data point is anchored to each of the different possible classes on the circumference through
springs. The value of the data against each class equates to the force with which each spring is
loaded, with all of the spring forces in equilibrium.
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GN NH

Figure 50 Radial Coordinate visualization

Considering an example of two anchors at the circumferential positions (cos(2kn/p),
sin(2kn/p)), and with values of vi (vy,...v,) the data point would be mapped to

7 7

(Z£=l vk cos(2km /p) by Uk sin(2k7r,,""p])
2ok=1Vk 2ok=1 Vk

This method is useful, in order to determine data associations, as depending on the location of
the different classifications on the circumference different results and conclusions may be
reached. The main objective of RadViz is therefore to push the data outwards from the
circumference centre, so that associations may be made.

The application to the fuzzy data obtained through the previous assessments is applied to this
RadViz representation method through an extension to imprecise data. The proposal is
therefore established that each of the six pre-defined deterioration classes are equally spaced
around the circumference and each engine is represented by a normalized vector of values as

( /1.»l| (Inl II,-\Q(‘T:'\,I II.-L;(II'] )

""" maxg fta, (Te)

However through the approach outlined, further data may be transferred with regards to the
actual state of the engine. This method has established the class; however a further iteration of
the data may be carried out in order to also represent the confidence in the result provided. As
such, the fuzzy set data membership can be carried out as

(21, 22) = r%ﬁl 5(dy) : 71 = Sh_i fi(do, ... daas) cos(2km /p) oy — Sob_y fr(do, ... day2)sin(2kn /p)
UMAP(Z1, T2 D frq(dg) * T1 S fu(do,- ., daaz) Shoy fr(do,. .. d2ao)

Here, the fuzzy sets are displayed as ellipses which best fit the respective support. This is, the
engines represented will not only be shown to be closer to a certain class the higher the
confidence, but will also have an associated ellipse representing the uncertainty of the fuzzy
association to the given class.
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9.4 Objective 2.1 - Sequential pattern mining applied to aeroengine

Sequential pattern mining is a common data mining method used to identify and dismiss events
and conditions. It is considered that this methodology will enable a further refinement in the
understanding of engine deterioration assessments, as it may be used to understand events or
conditions that are only of concern under a specific sequence.

This is a similar study to that performed on DNA data mining assessments. This work has been
carried out as a collaboration, where the application of the method and result interpretation
where the tasks performed whilst the method itself was developed by Ana Palacios.

9.4.1 Objective

The existing methods as well as the methods here proposed are all dependant on the
understanding of the internal working conditions of the engine. However the deterioration of
the engine is not linear and is dependent on the overall system interactions.

The previous method developed, allows the visualization of the overall engine deterioration,
however events are assessed as they occur and considered equally. Sequence mining however
allows the interpretation of these individual events in order to further refine the understanding
of the engine condition.

The objective of this collaboration is to understand this level of refinement, and understand the
potential sequence mining will enable in the assessment of EHM data. A new set of rules will
therefore be proposed which will establish and determine the meaning of certain sequences of
events and translate these into actual engine condition classes or not.

9.4.2 Sequence mining

The previous model transforms EHM data records, sampled in a certain time lapse and for a
given aeroengine, into a single sequence of symbols (State-Ids). This is a convenient
conversion because there are many different algorithms which already exist that can be applied
to data expressed in this format.

Sequence mining algorithms comprise a wide family of methods that efficiently process
and help understand long sequences composed of a limited alphabet of items. For example, in
computational biology, DNA or protein sequences can be decomposed into structural units,
and detecting a particular symbol in a sequence is not as relevant as finding an ordered list of
symbols associated to a marker. In particular, sequential pattern mining was introduced by
Agrawal and Srikant [151], and was intended to discover frequent sub sequences of patterns in
a sequence of records. This may be directly read across to EHM data. The current available
catalogue of methods is substantial. As a result of this, different sequence-mining methods
have been reviewed to assess their suitability for the diagnosis problem.

A sequence database stores records that are sequences of ordered events. In the following,
sequences will be records with the following format:

[Transaction ID, (Ordered Sequence of Events)].
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In turn, each event in a sequence has one or more items. The purpose of the sequence mining
algorithm is to detect certain sub sequences of events, with the rule-base structure provided by
the previous method.

For instance, the subsequence ((TGT=UP P30=DOWN) (TGT=SAME T30=UP) (P30=UP))
means that three events are searched for in Engine #1. In the first event, the turbine
temperature TGT increases and at the same time the compressor pressure, P30 decreases. In
the second event, TGT does not change and the compressor temperature T30 increases. In the
third event, P30 increases. The following transaction would therefore match this sequence:

[El, ((TGT=UP P30=DOWN T30=UP) (TGT=UP P30=DOWN T30=UP)
(TGT=SAME P30=SAME T30=UP) (TGT=SAME P30=UP T30=UP))]

Observe that additional events are allowed independently of the searched ones.

On the other hand, the following transaction does not match the sequence in this example,
because these same events are disordered:

[EZ, ((TGT=UP P30=DOWN T30=UP) (TGT=SAME P30=UP T30=UP)

(TGT=SAME P30=SAME T30=UP) )]

As such the intention of this method is to, based on a sequential database be D, and a set of

items be [ = { ,ik} find all of the frequent sequences S in D comprising of items in I.

iy
Where “frequent” means that the support of the sequence, i.e., the fraction of transactions in D
that match the sequence, is higher or equal than a given threshold.

The first sequential pattern-mining algorithm was the algorithm AprioriAll [151], adapted
from the Apriori algorithm [152]. Many other different algorithms exist, like AprioriSome
[151], GSP (Generalized Sequential Patterns) [153] or SPADE (Sequential Pattern Discovery
using Equivalence classes) [154], which are based on the Apriori property [155], i.e. “All
nonempty subsets of a frequent itemset must also be frequent”. According to [156], there are
three different families of sequential pattern-mining algorithms, Figure 51:

1. Apriori-based
2. Pattern-growth, e.g. FreeSpan [157], PrefixSpan [158] or SPARSE [159]
3. Early-pruning, e.g. HVSM [160] or LAPIN [161].

In addition, there are also hybrid algorithms. For instance, PLWAP [162] is a hybrid between
pattern-growth and early-pruning, however these will not be assessed.
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Sequential Pattern Mining
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Figure 51 Hierarchical overview of sequential pattern-mining methods.

There are studies that favour the algorithm PrefixSpan, which is pattern-grow based [156] over
the mentioned families in terms of execution time, memory consumption and number of
frequent sequences found. PrefixSpan demands less computational resources than Apriori, in
both time and memory, and is also faster than other pure or hybrid pattern-growing techniques,
like WAP-mine or PLWAP [163], albeit less memory efficient. In addition PrefixSpan has
also shown to improve FreeSpan [163]. Apart from this, early-pruning techniques are an
alternative with more efficient algorithms (LAPIN_ Suffix [161]).

As such, it is considered that the PrefixSpan algorithm is the best algorithm to mine the
sequences of EHM data. However, this algorithm cannot be directly applied to the previous
model results and some modifications must previously be performed in order to manage
uncertain data.

Mining uncertain sequential patterns

There is a high level of uncertainty in the gas path measurements that the mining process has
to consider. As such the data may be so noisy that a clear decision cannot be made between a
pair of conflicting condition as “TGT=UP” and “TGT=SAME.” In order to address this
conflict, a fuzzy discretisation of numerical data may be performed [164], [165], [166], where
by, “truth(TGT=UP)=0.7" and “truth(TGT=SAME)=0.3.”
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9.4.3.2

Emerging pattern mining with uncertain data

The main objective of this assessment is to identify frequent sequences. This is, ordered
sequences of state-ids that appear only when a certain degree of deterioration occurs.
Emerging Patterns (EPs) are itemsets whose support significantly changes from one class to
another, which have been successfully used to establish robust classifiers. The first of these
algorithms was CAEP (Classification by Aggregating Emerging Patterns) [167], [168],
[169], [170].

CAEP partitions the training set in a one-versus-all manner, defining the target EPs as
specific patterns of a given class. Test instances are classified by finding all target EPs
contained in an instance, and then aggregating the conditional probabilities of the EPs
appearing in each possible output class.

The method proposed will use a combination of the CAEP and PrefixSpan capabilities in
order to assess EHM data. The PrefixSpan algorithm will be used to mine frequent sequences
of State-Ids that appear with a probability which will depend on the degree of deterioration
of the engine. In the second step, a classifier will be built to diagnose the engine by searching
for EPs in the test pattern, and then finding the class for which these EPs are more likely to
appear.

Notations and definitions

The meaning of the symbols that will be used in the following section is described here. D is

a dataset of m attributes and n classes, where Ci is the i-th class (1<i<n) and DC are the
i

instances of the i-th class.

*  Support of an itemset X, support D(X): The quotient between the number of instances
that contain or are compatible to X, countD(X), and the number of instances in D,
denoted by |D].

count p(x
support (X) = TID()

. Growth rate of an itemset X from DC to DC , (s,i=1,...,n and s#i):
K i

support pe, (X)
_—

GRp, —Dc; (X) = support,, , (X)

If both supports are zero then GRD —D (X)=0. If supportD (X)20 and supportD (X)=0
Cs Cj Cj Cs
then GRDC _>DC (X)=0o.
s i

The following abbreviated notation is used when appropriate:

GRp, (X) = GRpg_ p, (X)

where D C 1s the set of instances of classes different than Ci'
i
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*  Emerging pattern (EP): Given a threshold o>1, if GR D (X)=0 then an EP is
c,~Pc,

s i
obtained from D ., to D

C, o

* JEP: Jumping Emerging Pattern: If GR (X)=c0, the itemset X is called a

D~ —D
Cs Ci

Jumping EP from D Cs toD Ci'

*  Growth rate improvement: The Growth rate improvement of an EP e, Rateimp(e), is
defined as follows:

Rateimp(e) = ming.{GR(e) — GR(¢')}

»  Aggregate score: Given a test instance (tl.ns) and a set Ei of EPs of the class Ci’ the

t re of t. for C.is:
aggregate score of 7, _fo Cz S

SCOTC(tins,C
normScore(ti,s, Ci) = sy 4

yasedScore(c;)

where

GRopy, (€)

score(ting, Ci) = D GRp,, (€) +1
c; \©

eClins,e€F;

-support p,, (€)

and baseScore(Cl.) is the median of the scores of the training instances of class Ci [169].

9.4.4 Proposed method

The PrefixSpan algorithm is used to extract frequent sequential patterns, from which some will
be the desired EPs. As previously highlighted the previous model data output will be assessed
in order to identify patterns and sequences, however the confidence and difference between
State-Ids may not always be clear. As such a rise in turbine temperature, that was denoted
TGT=UP may also be expressed as

TGT = {UP/0.8,SAME/0.2},

Where TGT is UP with 0.8 confidence and SAME with 0.2 confidence. Following with the
same example, the subsequence ((TGT=UP P30=DOWN) (TGT=SAME T30=UP)
(P30=UP)) would match the following list of uncertain perceptions of the EHM signals
with confidence 0.8:

((TGT={UP/0.8,SAME/0.2} P30=DOWN T30=UP) (TGT=UP P30=DOWN
T30=UP) (TGT=SAME P30=SAME T30=UP) (TGT=SAME P30=UP T30=UP))

Partial matches are combined with a t-norm operator, like the product or the minimum. For
instance, the degree of matching of the mentioned subsequence with the list

((TGT={UP/0.8,SAME/0.2} P30=DOWN T30=UP) (TGT=UP P30=DOWN
T30=UP) (TGT=SAME P30=SAME T30=UP) (TGT=SAME

P30={UP/0.4,SAME=0.6} T30=UP))
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is 0.8A0.4=0.4 (if the minimum is used).

An initial pseudocode of the PreFixSpan algorithm is shown in Figure 52 in order to
subsequently identify the modifications needed for its application to EHM data.

Algorithm1 (PrefixSpan)

Input: A sequence database D, and the minimum support threshold ©
Output: The complete set of sequential patterns

Method: Call PrefixSpan(().0.D)

Subroutine: PrefixSpan(a.le.D| )

Parameters:
a: a sequential pattern
le: the length of ©

D ,: The a-projected database, if o is different than (); otherwise, the sequence database D

Method:

1. Scan D|, once, find the set of frequent items b such that
(a) b can be assembled to the last element of o to form a sequential pattern; or

(b) (b) can be appended to o to form a sequential pattern.

2. For each frequent item b. append it to o to form a sequential pattern o', and output o';

3. For each a', construct the o'-projected database D). and call PrefixSpan (o'.le+1.D )

Figure 52 Pseudocode of the PrefixSpan algorithm

9.4.5 Revised definitions

The following definitions are required for the extension of the PrefixSpan algorithm to
uncertain EHM data:

1. Linguistic Item: A linguistic item is the pair [xl.,lj], where X; is an item and lj is a

linguistic label. There are m different items (also called “features™), as such i=1...,m.

Each item can take " different linguistic values lj’ jzl...,nl. where for example

[TGT, UP], written as TGT=UP, is considered a linguistic item.

2. Fuzzy Transaction: if the value of the item X; is uncertain, and the degree of truth of the

assert xl.:Zj for a given linguistic label lj is the fuzzy membership W (xl.). The available
J
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knowledge about the value of X; is given by a fuzzy subset of the set of labels {ll,. . .,In }s
i
that is

Xi=Y_ )/l

J
However, the notation

Xi:{ll/“ll(xi)""’ln-/ul ()}
1 I’Zl'

is more convenient in this context. For instance:

TGT={UP/0.8,SAME/0.1,DOWN/0.1}.

However the set TGT={UP/1} may also be abbreviated as TGT=UP.

Considering a sequence as (XZIX'Z2 XZT ) which describes the temporal evolution of the
value of the i-th item X A fuzzy transaction E & may be identified as a record, composed

by three parts:

(a) The identification of the aeroengine

(b) A sequence comprising the fuzzy sets describing the knowledge from the values
taken by each item at different time lapses, i.e.

1
Ek:[k,((Xl,...,X’ln)...(X{,...X;))].

(c) The diagnosis of the aeroengine after the shop visit, or “class” of the engine.

As such a valid fuzzy transaction may be considered in the following form,

[1,((TGT={UP/O.8,SAME/O.2} P30=DOWN T30=UP) (TGT=UP P30=SAME
T30=UP) (TGT=SAME P30=SAME T30=UP) (TGT=SAME

P30={UP/0.4,SAME/0.6} T30=UP)), EXPECTED COMPRESSOR LIFE =
1000 CYCLES]

In this example nl.:3, 1<i<3, three items xlzT GT, x2:P30, x,=T130, T=4 time lapses, and

3
three linguistic labels “UP”, “SAME” and “DOWN” for each of the items, thus

3. Compatibility between a Linguistic Item and a Fuzzy Transaction: The compatibility
between a Linguistic Item [xl.,lj] and a fuzzy transaction £ X is defined as:

- T t
compatibility(E © [xl.,lj]):V =18 l] (xl. k)'

For instance, the compatibility between the Linguistic Item TGT=UP and the preceding
fuzzy transaction is

(0.8V1VOV0)=1
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4. Linguistic Multivariate Item: A Linguistic Multivariate Item (LMI) is a tuple of
linguistic items, for instance (TGT=UP P30=DOWN).

5.  Compatibility between a Linguistic Multivariate Item and a Fuzzy Transaction: The

compatibility between a LMI and a fuzzy transaction £ X is defined as:

T
compatibility (F, LMI) = \/ /\ /llj(ilff:k)
t=1 (4,5):[x;,l;]€eLMI

where the symbol A denotes a t-norm combination. The compatibility between (TGT=UP
P30=DOWN) and the preceding fuzzy transaction is

((0.8A1)V(1A0)VOV0)=0.8

6. Support of a Linguistic Multivariate Item: considering S as a set of fuzzy transactions
S:{El’Ez" . .,EnS}.

The support of a Linguistic Multivariate Item LM/ in the set S is defined as:

ns

1
supportg(LMI) = — > compatibility( £y, LMI)
NS k=1

This is, considering the set D of fuzzy transactions:

[1,((TGT={UP/O.8,SAME/O.2} P30=DOWN T30=UP) (TGT=UP P30=SAME
T30=UP) (TGT=SAME P30=SAME T30=UP) (TGT=SAME

P30={UP/0.4,SAME/0.6} T30=UP)), 1000]

the support of (TGT=UP P30=DOWN) in D would be

0.8+1
i =0.9

support ,((TGT=UP P30=DOWN)) =

7. Linguistic Multivariate Itemset: A Linguistic Multivariate Itemset is a set of LMIs, for
instance { (TGT=UP P30=DOWN), (TGT=SAME P30=DOWN) }.

8. Compatibility between a Linguistic Multivariate Itemset and a transaction: The
compatibility between a Linguistic Multivariate Itemset and a transaction is the t-norm
composition of the compatibilities between each of the elements of the itemset and the
transaction, i.e.

p
compatibility (Ey, {LMI,, ..., LMIp}) = /\ compatibility(Ej, LMI)
k=1

This is, the compatibility between the first transaction of the preceding set and the itemset
{ (TIGT=UP P30=DOWN) (TGT=SAME P30=DOWN) } would be

0.810.2=0.2

9. Support of a Linguistic Multivariate Itemset: The support of a Linguistic Multivariate
Itemset is the average of the compatibilities between the itemset and the set of
transactions,
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supportg({LMIy, ..., LMIp}) =
1 nsg
— Z compatibility(Ey, {LMI, ..., LMIp})
NS k=1

The support of the itemset { (IGT=UP P30=DOWN), (TGT=SAME
P30=DOWN) } in the set of transactions previously defined would be

1 .
5 (087 02+1) = 0.60

10. Linguistic Sequential Patterns: A Linguistic Sequential Pattern (LSP) is an ordered
sequence of the elements of a Linguistic Multivariate Itemset, as ((TGT=UP
P30=DOWN) (TGT=SAME P30=DOWN) ).

11. Compatibility between a Linguistic Sequential Pattern and a transaction: Let “tail”
denote the last item in a sequence, and “head” be the subsequence formed by all items but
the last. The recursive definition of the compatibility function would be

compatibility(E k,LSP):max {min(compatibility(tail(E k),taiI(LSP)),
compatibility(head(E k),head(LSP))), compatibility(head(E k),LSP)}

and the base cases would be two:

(a)  The compatibility of a LSP with an empty transaction is zero,
compatibility(9,LSP)=0
(b)  compatibility(tail(E k),tail(LSP)) is the degree of truth that the last LMI of the LSP

matches the last element of the fuzzy transaction Ek' which in the stablished

notation would be,

tail(Fy) = (X5, ..., XT), with X% = {I,/m, (%), .. o bng /Bt (z2)}
compatibility(tail( Ey), tail(LSP)) = /\ /I,[J(.’l?;-lk..)
(4,7):[24,1;] €tail (LSP)
As such, the compatibility between the LSP ((TGT=UP P30=DOWN)
(TGT=SAME P30=SAME) ) and the sequence

((TGT={UP/0.8,SAME/0.2} P30=DOWN) (TGT=UP P30=SAME)
(TGT=SAME P30=SAME) (TGT=SAME P30={UP/0.4,SAME/0.6}))

Would be

max{0.6A0.8,0.8}=0.8.

The compatibility between an LSP with a transaction is lower or equal than the
compatibility between the itemset comprising the elements of the sequence and the same
transaction. In this particular case, the compatibility of the itemset { (TGT=UP
P30=DOWN) (TGT=SAME P30=SAME) } is also 0.8A1=0.8.

Whereas the compatibility between a different LSP comprising these same items but in a
different order ((TGT=SAME P30=SAME) (TGT=UP P30=DOWN)) would be 0.

12. Support of a LSP: The support of a LSP is the average of the compatibilities between
the LSP and the set of transactions, i.e.
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supportg((LMIy, ..., LMIp)) =
1 s
— Z compatibility (Ey, (LMIy, ..., LMIp))

ng k=1

13. Emerging pattern: One of the main differences between the proposed extension and the
original CAEP algorithm lies in the definition of EP. It is suggested that EPs are not
associated to a single class but to a set of classes.

As such, a Linguistic Sequential Pattern LSP will be considered an EP if one of the
following conditions apply:

(a) There are not EPs that are subsets of LSP. The set of classes of the EP comprises the
classes of all transactions compatible with LSP.

(b) There exist at least an EP e that is a subset of LSP whose growth rate improvement for
some of its possible classes is greater than 0. In this case, the class of the EP is the
class Ci for which Rateimp c (e) is higher.

i

Another deviation from the original definition of EP is that the support of the EP will be
computed with respect to all transactions compatible with the set of classes associated to
it.

14. Aggregate score: Considering a test transaction £, and a set S of EPs, the aggregate

k

score of £ X for the class Ci will be

score( B, C;) = Y ccs truth(e, C;)

where the truth value of the EP e in the class Ci is computed as:

e If e does not have subsets that are also EPs

GRp,, (e)

truth(e, Ci) = R~y + 1

-support . (€) - supportp(e)

» If there is a subset e'Ce that is also an EP,

GRp.. (e
truth(e, C;) = ‘ ((;RDD%

(;R[)C‘_((’/)
CRD(&' ((’I) +1

-support ., (€) - 511})1)()1'1,,)((’,))) —

- support ., (') - mlppm‘t,,,((:')) ‘

9.4.6 Fuzzy PrefixSpan with uncertain data

The Fuzzy PrefixSpan algorithm is designed to process a dataset made up of fuzzy
transactions. Considering only two EHM variables, TGT and FF, the following would be
considered as a valid element of a fuzzy transaction:

(TGT={UP/0.8,SAME/0.2} FF={SAME/0.1,DOWN/0.9}).

However, EHM signals are numbers and not linguistic labels and membership values must be
obtained by filtering EHM values through a conversion interface. In this interface, each
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linguistic label is associated to a possibility distribution, which is in turn defined by means of
a fuzzy set, Figure 53.

DOWN SAME up

-3 0 3

Figure 53 Fuzzy memberships compatibilities associated to “DOWN”, “SAME” and “UP”
for any given variable

If the value of the EHM variable is considered to be the number X0 and L is a linguistic label

(i.e. “SAME”, “UP”, or “DOWN?”) the degree of truth of the condition “xo 1s L” would be

understood as that the value of X0 is a possibility distribution I1 L(xo):u L(xo).

This possibilistic structure would therefore also be valid for uncertain measurements of the

EHM signals as the degree of truth of the condition “x +€ is L” could be interpreted as:

0

HL(:E() == 6) = Supzé[mg—e,zg-}-c] IIL(I)

And as a result of this kind of representation of the uncertainty, missing values will have
membership 1 to all labels.

The pseudocode in Figure 54 describes the proposed implementation of the PrefixSpan
algorithm for generating rules in the EHM-based diagnostic problem.
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Algorithm?2 (Fuzzy-Support-PrefixSpan)

Input: A sequence database D, and the minimum support threshold ©

Output: The complete set of fuzzy sequential patterns and the set rules extracted from these patterns
Method: Call Fuzzy-Support-PrefixSpan ({).0.D)

Subroutine: Fuzzy-Support-PrefixSpan(a.le.D| )

Parameters:
a: is a Linguistic Sequential Pattern
le: the length of o

D|: The o-projected database, if o is different than (); otherwise, the sequence database D

Method:

1. Scan D/, once, find the set of frequent items b such that

(a) The support of b is higher than ® and
(b) b can be assembled to the last element of o to form a sequential pattern; or
(c) (b) can be appended to o to form a sequential pattern.

2.Ifd'isan EP

- compute the truth values of the EP for each class.

3.Foreacho'.

- construct fuzzy o'-projected database T},
- call Fuzzy-Support-PrefixSpan(a'le+1.T)
Figure 54 Proposed method adapting PrefixSpan algorithm to uncertain data

9.4.7 Descriptive example

An example is partially worked to describe the application of PrefixSpan to uncertain EHM
data. A total of seven aeroengines were considered, with ten cycles each. Two EHM signals,
TGT and FF were assessed.

In order to reduce the explanation, the following letters were assigned to LSPs of size 1:

([TGT,DOWN][FF,DOWN])=a ([TGT,DOWN][FF,SAME])=b ([TGT,DOWN][FF,UP])=c
([TGT,SAME][FF,DOWN])=d ([TGT,DOWN][FF,SAME])=e ([TGT,DOWN][FF,UP])=f

(ITGT,UP][FE.DOWN])=¢  ([TGT,UP][FF,DOWN])=h (ITGT,UP][FF,UP])=i

A fuzzy value a/0.8,6/0.2 means that (TGT=DOWN and FF=DOWN) is associated with to a
confidence of 0.8 and (TGT=DOWN and FF=SAME) to a confidence of 0.2.

These memberships could result, for instance, if TGT=3, FF=1 and RrGT-D 0WN(3):0.9,

Rerop OWN(I):O.S and p FF-SA ME(I):O.2 (assuming the t-norm “minimum”).
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The example dataset is reduced and assumed as follows:

Cycle

1D 1 2 3 4 5 6 7 8 9 10 HPC Health
1 a/05,b/05 e f e f e i i i h GOOD

2 a b a d i i i i g g BAD

3 b c d d d i i f e d GOOD

4 ¢ f e f 1 i i h g h BAD

5 c ¢c d d d d e f i1 d BAD

6 a b a ¢ a b ¢ ¢ ¢ <« GOOD

7 d d d d a b a ¢ ¢ b GOOD

For ease of the method example, the only uncertain item is the first sample from the first
engine. The stages of the proposed algorithm are:

1. The supports of all LSP of size 1 are computed. The associated values are:

1-LSP  Support

a 3.5/7
b 4.5/7
c 4/7
d 4/7
1 47
f 4/7
g 2/7
h 2/7
i 5/7

Suppose that the minimum support threshold is ®=0.4. In this case, g and h are not the
starting element of any frequent sequence because their support is too low.

2. All of the LSPs a, b, ¢, d, e, fand i are EPs because they do not have subsets and their
support is greater than the threshold. The fuzzy rule obtained from the first one is computed

as follows:
S t . 1/3
GRpan(a) = Suppor BAD(") =. / — 0.5
supportyor pap(@)  2.5/4
GReoop(a) = supportgoop(@) B 2.5/4 _ 188

supportyor coop(@)  1/3

(}R(:()()l)(")
(;R.(;()()l)((l) { l

1.
_ 188 0625-0.5=0.203
1.88 + 1

truth(a, BAD) = %&%}()_"_3_1

~0.53
T 0.53+1

truth(a, GOOD) = - supportsoop (@) - support(a)

- supportgap(a) - support(a)

-0.333 - 0.5 = 0.058

The fuzzy rule extracted from the EP a is:

if TGT is DOWN and FF is DOWN then HPC-health = (GOOD,BAD) with confidences
(0.203,0.058)
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3. The database is projected for each of these LSPs a, b, ¢, d, e, fand i. The first of these
projections is:

ID 1 2 3 4 5 6 7 8 9 10 HPC Health

1 b/05 e f e f e i i i h GOOD
2 b a d i i i i g g BAD

6 b a ¢ a b ¢ ¢ ¢ ¢ GOOD
i § b a ¢ « b GOOD

4. The algorithm is called again to find those LSPs of size 2 whose first element is a; the
supports of these sequences are:

1-LLSP  Support

a 3/4
b 3/4
c 2/4
d 1/4
¢ 1/4
f 1/4
i 2/4
b 0.5/4

thus the sequences (aa), (ab), (ac) and (ai) are considered. Each of these sequences is
evaluated to check whether they are EPs. For instance, support({ab))=0.5>0.4, thus it is a
frequent sequence. (ab) has the subsets (a) and (b) and both are EPs. However the GR of {(ab)
is

supportgoop ({ab)) 2/4
GR 300 ( ab ) = =—=1.5
Geeniih) supportyor goon({ab))  1/3

which is lower than the GR of the EP a; therefore, (ab) is not an EP and a rule beginning with:
if TGT is DOWN and FF is DOWN and later
TGT is DOWN and FF is SAME then ...

will not be produced.
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9.5 Objective 3 - Engine Deterioration Prognosis Aeroengine prognosis
through Genetic Distal Learning applied to uncertain Engine Health
Monitoring data

The final step of the assessment, once the level of deterioration has been identified and
classified, will be to determine the remaining time to failure or prognosis of time before which
engine maintenance will be required.

Based on the classification of the engine and the individual engine modules, the engine level of
deterioration may be determined. However in order to propose a deterioration over time, and as
such a prognosis for maintenance, a second knowledge point is required.

9.5.1 Objective

The objective of this method is to establish the engine remaining useful life. In order to
understand this however a baseline or starting condition is required. Using the fact that
engines are released after initial production or after maintenance with a certain consistent build
life objective, this original data point is considered. As such, knowing the original starting
point and the evolution over time from the diagnosis which will provide a higher or lower than
expected level of deterioration, a prognosis is possible.

This is, the detailed evolution of the engine over time, against the build life objective of the
engine, will determine if the engine is deteriorating faster or slower than expected, and as such
will determine the maintenance prognosis. In line with the quantitative trend process history
methods, the first and second derivatives will be applied to determine the trend changes and
establish the zero crossings respectively and therefore calculate the actual engine deterioration
against a given baseline.

This will in turn enable the trade study consideration of several engine conditions at the time
of maintenance, in order to optimize revenue and maintenance costs. This is, by considering
different build life objectives, increased reliability levels of deterioration may be considered so
as to determine what-if scenarios of maintaining the engines on-wing longer due to optimized
costs, maintenance facility capacity and full utilization of engine and module life.

9.5.2 Overview

Engine events or significant engine conditions are not always associated to a combination of
delta variations. As such, there are methods which aim to detect trend shifts in the variables
[165] or signatures that are combinations of slope changes in the EHM deltas known to be
associated to specific events or conditions [171].

These techniques are effective diagnostic systems, which can detect the presence of abnormal
events or significant engine conditions. However, the prediction of an engine’s remaining life
is a wider problem.

An engine that repeatedly operates under unfavourable conditions has smooth levels of
deterioration over time which inherently shorten the engine’s life. However smooth
deterioration trends are not manifested as combinations of EHM signals, and as such are not
detected by the current existing methods.
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9.5.3

A new method has therefore been developed which, determines the level of deterioration of an
engine or module through the integral of r(t), where r(t) is the deterioration rate model of a
component as a function of the EHM variables:

t
Remaining cycles(¢) = Initial life — / r(7)dr
Jo

For example, if the HPC has a constant deterioration rate r(t)=2, and considering an initial life
of 5000 cycles, then the engine would need to undergo maintenance at 2500 cycles as the
Remaining cycles(2500)=0. Deterioration rates lower than 1 are also considered, for those
engines which flying in above-average conditions. The cyclic or hourly remaining life
calculation would be dependent on the actual data available.

The resulting method is therefore a prognosis indicator which is capable of estimating the
remaining life of an engine, through a prediction of its individual deterioration rate.
Extrapolating these rates is considered will allow the dynamic re-scheduling of maintenance
checks specific to each individual engine.

Distal learning of FRBS

Modelling the prognostic indicator through the integral of the instantaneous deterioration rate
of an engine enables the identification of not only sudden events but also of smooth levels of
deterioration. The simplest version of the estimator for the remaining cycles is obtained by
assuming that the last known deterioration speed is constant throughout the remaining life of
the engine. As such, is determined by resolving the integral to identify the value T0 for which

the Remaining cycles(TO):O.

An FRBS is used to link EHM data to deterioration rates. Learning the KB of an FRBS
requires a training dataset with samples of the input and output variables. This set would
typically consist of a sample of engine measurements which would link the EHM variables to
the specific known deterioration rates. However, as the deterioration rate is not an observable
parameter the sample dataset cannot be compiled. The KB must therefore be indirectly learnt
from the available information, this is

1. The sequence of EHM variables considered are those measured in the time lapse between
two shop visits.

2. The remaining life is based on the condition of each component at the end of the
sequence, which is determined through the inspections carried out at the engine shop
visit.

3. An estimation of the release life of each component at the beginning of the sequence can
be made after each shop visit.

This indirect learning task could be deemed to be a type of supervised learning problem also
known as “Distal Learning” [172]. In this kind of problems, Figure 55, target values are
available for the distal variables (the “outcomes”) but not for the proximal variables (the
“actions”). In the EHM prognosis case, the target values will be the life expectations. Whereas
the proximal variables will be the deterioration rates, which are related to the distal variables
through an ageing model of the engine.
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9.5.4

The ageing model has memory, and as such the outcome depends on the history of the actions.
This is, the age of the engine depends on the sequence of deterioration rates. The learner,
which in this case is the FRBS, is adjusted so that the output of the ageing model at the end of
an EHM data sequence matches the measured level of deterioration of the engine.

A Pitts Genetic Fuzzy System [173] based rule learning process where the fitness function is
modified in order to include the ageing model is therefore developed to determine the engine
deterioration prognosis.
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Figure 55 Distal supervised learning problem overview.

The proposed KB comprises rules that map combinations of slope changes in EHM deltas and
deterioration rates, as:

IF TURBINE TEMPERATURE DECREASE
AND FUEL FLOW INCREASE THEN
DETERIORATION RATE OF THE HPC IS LOW.

The main purpose of the learnt FRBS is estimating the remaining cycles of the engine in
combination with the ageing model mentioned. As such, the FRBS is a by-product of the
learning task. However, in this particular application the FRBS is in itself a model of the
instantaneous deterioration rate as a function of the EHM signals, which can in addition be
used to gain an insight of the relationship between the values of the EHM variables and the
engine’s operating conditions.

Proposed method

An algorithm which is used to learn the expression of a prognostic indicator using Genetic
Fuzzy Systems (GFSs) is proposed. The training data consists of historical EHM data from
sampled engines from the same fleet but from different operators.

The method proposal is developed in four parts, Figure 56:
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» the procedures for cleaning, discretizing and transforming the uncertain input data into a
sequence of fuzzy numbers

 the structure of the FRBS learnt

* the fitness function that the Genetic Algorithm (GA) is required to optimize, including the
definition of the ageing model

 the definition of the prognostic indicator in terms of the learnt FRBS.
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Figure 56 Proposed method strategy overview
9.5.4.1 Cleaning, discretizing and transforming input data

EHM data is noisy and is not expressed in absolute values. The state of an engine is
estimated from the deltas between an engine’s own measurements and those from a known
baseline engine. It can therefore be assumed that the deterioration rate depends on the speed
of change of the EHM signals and the derivative of the signals may be used as inputs to the
deterioration rate model.

Using the previous developed models’ output, the smoothed value of a signal would be
determined by its convolution with a Gaussian kernel function K, whose bandwidth A is
related to the cut-off frequency of the filter. For instance, the smoothed value of TGT is:

TGT(t) = i TGT(t + 1) - K(r, A)

T=—70

Following with the same example, estimating the derivative of TGT would be determined
through the slope of a line locally fitted to TGT. This line could be determined by weighted
least squares. In turn the slope a and the y-intercept b of the best-fit line, for a given value
of time t and bandwidth A would be determined by establishing the minimum of:
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9.5.4.2

err(a,b) = Z T/G\T(z‘ +7) = (at + b))% - K(1,A)

T==—70

The sequence of slopes a(t) is therefore considered to be an estimate of the derivative
dTGT/dt or the derivative of an arbitrary health. The combination of the individual variable
derivatives for all signals considered (TGT, FF, P30, T30 and N2) may also be referred to as
the state of the engine.

As a rule-based model is required, the state must be discretized and a finite set of defined

combinations and each numerical value of a derivative replaced by a label, defined as
“DOWN”, “SAME” or “UP”.

The soft discretization considers that if the state is X and L is a linguistic label, the degree
of truth of “xo is L” is a possibility I1 L(xo):uL(xO) and consequently the degree of truth of

the assert “xois is L” (this will be needed later in this section when processing interval-

valued data) is“l.(-r() = () = '\.lll),rel.l‘n*l.J'n':"(J /II.("')'
In addition, within this kind of uncertainty representation, missing values have membership
1 to all labels.

Each set of 5 linguistic labels is assigned a number. This number is called the “State-ID”
which may sustain one of three possible slopes. Considering the three slopes and the five
variables, there are 243 different possible State-Ids (three to the power of five), where a
base-3 numbering scheme, with the digits down=0, same=1, up=2 is respectively used to
assign a label to each variable. For instance, the set of labels (down, same, up, up, down)
would be assigned in base-3 the number 01220, whose corresponding State-Id would be 51
in base 10.

Each combination of EHM variables is in turn not assigned a precise State-ld but a fuzzy
subset of all the possible Ids as a result of the soft discretization. In turn, this subset is also
dependent on the selected bandwidth, as such an arbitrary value of the bandwidth was not
selected. The soft discretization therefore considers a sweep of a range of bandwidths and
then combines their corresponding fuzzy State-Ids into a discrete sequence that is
subsequently considered by the deterioration rate model.

The numerical procedure for sweeping the range of bandwidths is based on a Monte-Carlo
simulation with multiple repetitions of the whole filtering and discretization process, for
different values of A. The set of values obtained are combined into a single fuzzy set, whose
membership defines a possibility distribution over the set of State-Ids. Through this method,
the EHM data of an engine is transformed into a chain of fuzzy numbers

Stateld(t) = (u1(t), p2(t), - - -, p2az(t))

This chain is the input to the rule-based model used to predict the specific HPC and HPT
deterioration rate.

Structure of the FRBS modelling the deterioration rate

Two different FRBSs have to be learnt, to model the HPC and HPT respectively. Each of
them is considered to have five inputs, dTGT/dt, dFF/dt, dP30/dt, dT30/dt, and dN2/dt,
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which are discretized into the linguistic labels “down”, “same” and ‘up”, and Mamdani-type
rules can therefore be used, as:

IF dTGT/dt=SAME AND dFF/dt=UP AND dP30/dt=UP AND dT30/dt=DOWN
AND dN2/dt=UP
THEN
DETERIORATION RATE OF THE HPC IS LOW
WITH CONFIDENCE FACTOR 0.8

which would be the same as

IF STATE-ID=12202 THEN
DETERIORATION RATE OF THE HPC IS LOW
WITH CONFIDENCE FACTOR 0.8

No fuzzyfication or defuzzification interfaces are required through this method. The degree
of truth of the k-th antecedent is the membership value uk(t) in the input chain of fuzzy

numbers Stateld(t)  The output of each FRBS is therefore not a number but an interval

r (t):[r_(t),r+(t)] due to the fact that the inputs are not crisp.

As such, as the fuzzy State-1d has a possibilistic interpretation, where the output interval will
range the possible outputs of the FRBS when the degrees of truth of the rules in the KB are
the probability distributions dominated by the possibility distribution of State-Ids,

243

‘I_'(f) = Z])k cwp - R |
k=1
243

Zpk =1, 0<pi < fuxlt)
k=1
where Rk and ® i are the modal point of the linguistic label in the k-th consequent and the

weight of the rule whose antecedent refers to the 4-th State-Id, respectively. This interval of
values is then passed on to the ageing model to compute the fitness function.

9.5.4.3 Ageing model and fitness function

The simplest form of the ageing model consists in integrating the deterioration rate over
time. As such the number of remaining cycles would be

RemainingCycles(t)=InitialLife—EstimatedAge(t)

Considering that r (£)c[0,0), the following would then be true:

Lo

to
/ r~ (1) dr < Estimated Age(t) < / rt(r)dr

0 0
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In practical cases, the ageing model also needs to account for engine events (which may
cause a sudden change to the estimated age) or even an on-wing maintenance operation. The
discrete form of the ageing model is therefore deemed to be

Remaining Cycles(k) = Initial Life +
k
+ » (maintenance(7) — events(7))

7=0

This is, given a sample of N aeroengines whose expected life was fl when inspected after ¢

cycles, the fitness of the FRBS may be evaluated by means of an interval-valued function,
as:

N
fit = {Z |t; — fi| : t: € Remaining Cyclcs((',:)}
i=1
Considering the encoding mechanism in the GA, and given that each of the KBs are made up
of a maximum of 243 rules, all parameters can be jointly encoded in the same genotype
(Pitts-style GFS) with a reasonable computational efficiency. However, a nonstandard GA is
required to optimize the interval-valued function to determine the parameters which define
the KB, because interval-valued nature of the function. In addition, instead of modifying the
membership functions of the labels “UP”, “SAME” and “DOWN?” the fuzzy rules were
weighed.

9.5.4.4 Definition of the prognostic indicator

The prognosis indicator is intended to estimate the remaining life of an engine, through a

~

prediction of its deterioration rate. For an extrapolated rate "(T)for ©>¢, the prediction at
time ¢ of the useful life 7(¢) of an engine will be the solution to the following integral
equation:

t i
Initial life —/ r(r)dr —/ r(r)dr=10

0 t

Considering an 0-th order prognosis indicator 7| O(t), and a constant rate of deterioration rate

ri7)="1¢ forv =%

Initial life — [ r(7)d
To(t) =t + Jo r(r)dr
ro

Different strategies could be used for assigning a value to o’ the last known rate r(r), the

e i -
average deterioration ro = 1/t f 0’ (t)dt or the unity value, to name a few. Higher order
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prognosis models were defined by using time series models to extrapolate »(f) or the EHM
variables, however it was found that the accuracy of the higher order models did not
significantly improve the 0-th order model with an extrapolated unity deterioration rate.

New Method Proposals — Theoretical Analysis WA



Engine Health monitoring and prognosis for engine fleets using intelligent data analysis of interval-
valued and possibilistic data

10 New Method Proposal - Applied Method Validation

The new methods proposed have been validated through the use of predetermined models and /
or actual engine health monitoring data in order to verify the validity, accuracy and possible
interpretation of the model results.

In addition, and in order to put into context and gain the capability of interpreting the engine
results, a more detailed introduction into the actual engine variables and levels of deterioration
as well as the actual data available is described. The assessments are then carried out in the
same order as the one in which the Objectives have been proposed.

10.1 Aeroengine Design

The actual engine design and architecture will not be detailed as these have been outlined in
previous sections. The emphasis of this section will be on engine maintenance and engine
deterioration, as well as the qualitative assessment performed in order to gain the additional
engine deterioration knowledge associated to actual EHM trends.

This is the knowledge database which has enabled the detailed assessment and validation of the
models as the physical understanding of the engines in order to understand and interpret the
model results.

10.1.1 Engine Design Established Stations

The overall engine design is common throughout most civil high bypass ratio engines, Figure
57.

Due to the engine intake configuration which allows the air to be slowed, high bypass ratio
engines consider both the ambient conditions at position 0 as well as the conditions directly
prior to the fan blades, position 2.

Position 1 is left for the intermediate position where the diffused intake air transitions from the
intake to the fan case. In most cases position 1 and position 2 are considered to be identical.

In some other cases, Position 1 is given to the location just prior to the fan blades and Position
2 to the location just after the fan blades coinciding with the compressor intake conditions.
However following the guidelines from the overview given these alternative numbering
positions will not be considered within this assessment.

ACCESSORY
GEAR BOX

Figure 57 Engine main stations
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10.1.2 Parameter Inputs

The two main data inputs, Figure 58 are

FF — Fuel flow is continuously measured, monitored and controlled. The engine thrust is
controlled through the amount of fuel consumed and is monitored in order to maintain the
overall engine working conditions.

P2T2 — Pressure and Temperature at position 2 just in front of the fan blades is taken as a
reference. The engine controls system will use this pressure and temperature to determine the
internal working conditions of the engine.

\\/
Operator Instruments
Commands

Fuel
—_—

CONTROL
SYSTEM

|anition Mechanical Drives
Power B

Air
—_—

Crank

Figure 58 Engine and pilot settings to cockpit visualization of main variables monitored
10.1.3 Parameter Outputs

The main or most common parameters recorded as outputs are

P30 — Compressor outlet pressure is measured to determine if the compressor pressure ratio is
maintained. A reduction in this pressure will indicate that the core is deteriorated.

T30 — The compressor outlet temperature is measured to determine if the compressor is
compromised when a pressure loss is identified

TGT — The turbine gas temperature or turbine entry temperature TET, or T4 is measured to
determine if there is deterioration on the turbine and to determine the actual engine working

temperature at its worst internal point.

P50 — The low pressure turbine outlet pressure is measured to determine the overall engine
efficiency of the turbine but also of the engine.

Other significant parameters which may be considered are:
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N2 —This is the speed at which the high pressure compressor and turbine are turning.

N2V — This is the vibration off-set of the N2 shaft. It is significant to determine small
unbalanced deviations within the high pressure system

10.1.4 Engine Management and Maintenance

Aeroengines, in much the same way as all mechanical systems need to be maintained in order
to assure their safe and reliable working conditions. In addition, it is in the operator’s interest
to maintain the engines in a good working condition so as to assure the best possible fuel
consumption [2] and operating costs.

Due to the size, complexity and skilled work force required for the maintenance of these
engines, the appropriate management of the maintenance is crucial to any airline operation.

10.1.5 Engine Maintenance

Overall engine maintenance may be divided into two main groups, on-wing maintenance and
off-wing maintenance.

On-wing is all of the work that is carried out on an engine while it’s still attached to the
aircraft. This will include all of the routine inspections and replacement of parts. In addition,
it also includes routine inspection of the internal condition of the engine, carried out with
borescope equipment.

Off-wing maintenance on the other hand is when the engine is removed from the aircraft.
Engines are replaced and shipped to an overhaul facility where detailed maintenance work is
carried out.

10.1.5.1 Types of engine shop visit

There are only a limited number of facilities worldwide which can refurbish engines, and
these have limited capacity. Managing and planning this capacity appropriately is key.
Improving the reliability of the fleet is therefore also in the manufacturers interest in order to
avoid unplanned shop visits.

The overall engine management methodology agreed with the operator and with their
airworthiness authorities outlines the level of work that will be carried out on an engine
within a given life. The life of an engine or component within an engine is monitored
though cycles, or hours flown, depending on the deterioration characteristic.

The level of maintenance is detailed at a module level within each engine. This is, even if an
engine is inducted into an overhaul shop, it does not immediately imply that it will be
disassembled to piece part level, but that maintenance of each engine module will be
determined independently.

10.1.5.2 Levels of engine maintenance

Each module will have at least three levels of workscope detailed which are the basis of the
maintenance of the engine. These are in line with the level of maintenance that the operator
expects for the TotalCare rate paid.
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The initial level of maintenance is an external visual inspection. This is, the module is
externally inspected as a subassembly. Should any findings be noted, they would
immediately require the next level of inspection.

The intermediate level of maintenance is also known as a check and repair. This is, the
module is only partially disassembled, in order to gain access to the area that needs to be
fixed and then re-assembled.

The final level of strip is the most detailed. Should an engine module require this level of
strip, each component will be disassembled completely to a piece part level and inspected
before being re-assembled.

The difference between each level of maintenance is crucial as it does not only affect the
direct cost of the engine refurbishment but also the man-hours required and the capacity of
the maintenance facility. The yearly capacity for each facility is monitored in order to keep
the facilities to their maximum capacity without over loading the work.

In addition, identifying the level of maintenance required for each of the modules before the
engine is inducted into the facility is also important. If additional work is required on any of
the modules, this will delay the engine refurbishment time, and in addition increase the cost
of the engine maintenance, which in turn will also increase the engine turnaround time back
to the operator and the lease engine costs.

In order to keep engine maintenance creep to a minimum, substantial efforts have been
carried out, however in all cases service experience is required to determine and substantiate
the results. On older more mature engines where several iteration of engine maintenance
have been carried out, this is possible and accurate. However on new or less mature engines,
the deviations and variability from the mean of each maintenance cost is greater and
unacceptable as a business input.

10.1.6 Engine deterioration

Engines deteriorate naturally due to their use. However understanding this deterioration
allows the engine manufacturer to determine the level and time at which maintenance is
required. If an engine is inducted into an overhaul facility too early, the engine will be
refurbished loosing possible revenue on material that was still capable of further flying.

Planning the engine induction too late, would directly increase the reliability risk of the
engine, increasing the possibility of a significant event, or causing increased amounts of
damage which would result in replacing more parts that initially considered. In addition, if
an event occurred, the engine would require an immediate shop visit when overhaul facility
capacity may not be available, increasing the lease engine costs.

Understanding each of the possible deterioration cases for each of the engine components
and determining the life of each of those is therefore critical for the appropriate planning and

management of the engine and fleet maintenance.

Erosion

There are several types of erosion that may occur across the engine. Due to the difference in
temperatures throughout the engine and the running clearances, the most critical types of
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erosion are contact rubs, in the high pressure compressor and thermal erosion in the high
pressure turbine.

Erosion may also occur on the remainder of the modules in the form of small impacts,
however this type of erosion may be directly attributed to utilization and is mainly
concentrated in the low pressure compressor blades or first stages of the HP Compressor,
where leading edge erosion is directly visible and therefore the use of engine health
monitoring data for its assessment is not required. Based on the environment at which the
engine is used, and the type of operation flown, leading edge erosion may be significant,
however inspection and repairs are available for this type of engine deterioration.

High pressure compressor erosion is mainly driven by the ingestion of small particles
causing leading edge erosion in the same way as to the fan blades. However this erosion will
also impact the blade and vane chordal width [174]. A reduction in blade chordal width will
have a direct impact on the amount of air that a single blade or vane is able to push and will
therefore be directly responsible for a loss of compressor efficiency.

In addition, the compressor design is such that the running tip clearances are as small as
physically possible in order to reach the chocked state in each of the interim blade and vane
stages of the module. This is, the engine is designed in such a way that the air ingested is
always the maximum possible by design.

Figure 59 HPC Liner loss condition over time

In order to do so, the high pressure compressor case and rotor are lined with sacrificial
material, Figure 59, this way the blade and vanes will rub their individual pattern within each
stage thus reaching the tightest clearances. However this also causes direct erosion damage
to the blade and vane tips. In addition, further engine running will increase the deterioration
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of the sacrificial material, not only causing secondary damage as it is released, but also
increasing the running tip clearances.

The loss of tip clearances in the high pressure compressor is one of the most important
aspects to be avoided for appropriate engine running. Increased tip clearances in the
compressor may ultimately lead to an engine surge, where by air is not pushed back through
the engine but is for this sequence pushed forward. In doing so, the flame from the
combustion chamber or the high temperature air is pushed through the compressor causing
severe damage.

Dust ingestion, or ingestion of very small particles contained in the air is not of deemed to be
associated to severe consequences for the compressor.

Thermal distress

Thermal distress or deterioration due to temperature effects is typically sustained within the
combustion chamber and turbine [175]. The compressor modules may also run at high
temperatures, however none sufficiently severe to highlight under normal conditions as a
deterioration factor.

Figure 60 HPT NGV condition over time

Thermal distress is the effect of temperature on a material. Typical combustion chamber and
turbine working temperatures are above 1500 degrees; this is above the base material melting
point. Thought the use of coatings and cooling flows the design is capable of creating a
protective surface that will avoid the rapid deterioration of these components.

Dust ingestion or the ingestion of small particles has negative effects to this engineering
solution. The ingestion of external particles or small particles from the engine during its
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typical working wear may affect the cooling flows and cause rapid deterioration or severe
damage.

The most typical example of this is HPT NGV burnback [176], Figure 60 this is caused when
material within the cooling flows blocks one of the cooling holes, creating an initial stress
point [177]. At these high temperatures a simple grain of sand will be converted into glass
and firmly attach during a run down, blocking the hole for the following engine run.

The worst case of dust ingestion is the ingestion of volcanic ash. This ash will enter the
turbine cooling flows and will rapidly deteriorate the vanes and blades.

Impact deterioration

Impact damage may be caused externally by the ingestion of a foreign object, or internally
due to the release of material from an internal component.

Foreign objects may be anything from a bird to a small rock, as the aircraft is taxing or
taking off, material from the runway can also be ingested. The engine is designed in such a
way that most of this material will be pushed outwards and will flow through the bypass of
the engine, however in some cases this material may flow through the engine core.

In such cases, it is the compressor blades and vanes that will sustain most of the damage
[178]. Damage to a blade or vane aerofoil may initiate a crack that will subsequently
propagate and release a section of aerofoil, or it may bend the aerofoil, causing an alteration
to the flow, increasing the stall effects. Turbine damage due to foreign object damage is
rare.

Damage due to internally released material is also common on the compressor, the release of
a section of aerofoil, Figure 61 [178] or of a platform due to the tight clearances used, will
result in substantial additional secondary damage. This will affect the efficiency of the
engine, and also release additional material which may cause further downstream damage.

Figure 61 FOD Damage
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Damage to the combustion and turbine systems due to impact will typically cause an
initiation point in an aerofoil. This will however rapidly deteriorate further as the damage
will affect the air flow increasing the thermal deterioration or will cause a crack initiation
which will propagate.

10.1.7 Engine Deterioration Equilibrium

Internal engine damage due to erosion, impact or thermal distress will always have a direct
effect on the engine working conditions. Substantial amounts of damage will cause a
significant step change in the engine working conditions which will be picked up through the
alerting systems. These may be significant spikes in the working temperatures, or increased
vibrations. In any case, the pilot or the ground crew will have a significant finding which they
will need to address.

Small amounts of internal damage however, will have subtle effects that may not be seen or
even identified by the current monitoring systems. The effect on efficiency will however
exist. As the engine is subsequently operated in this condition, it will need to compensate the
efficiency loss. There is therefore a certain equilibrium that the engine seeks between the
compressor and turbine in order to reach an appropriate balance.

Compressor damage will reduce the compression efficiency and reduce the pressure at which
the air is delivered to the combustion and turbine system. Due to this pressure loss, the
combustion system must compensate so that the delivery temperature to the turbine is
maintained, a higher fuel flow is therefore delivered. However in doing so, the turbine
working temperature is increased, directly affecting the turbine working conditions and
deteriorating the turbine faster than before.

This will follow until the turbine efficiency is lower than that of the compressor, when the
compressor will need to compensate a turbine efficiency loss, by turning faster in order to
deliver higher pressure air increasing the deterioration of the compressor components.

10.2 Aeroengine deterioration and cost modelling

The state of the engine will directly affect the reliability of the engine. Safety is taken as a
must, as no unsafe condition would be allowed for continued flight under normal conditions for
the fleet. An older or more deteriorated engine will be more strained into delivering the
required power and thus will always have a higher level of unreliability. Reliability therefore
may be managed through engine maintenance.

In order to maintain a reliable fleet, engines must be inducted before their individual risk is
high. However based on the current tools available this may only be carried out through service
experience and in some obvious cases through engine data. On the other hand, there are other
aspects to be considered as the engine must be kept on-wing for as long as possible and the shop
visit costs should as low as possible [179].

A balance is required between a proactive engine life management (PELM) of the fleet and
unplanned engine shop visits due to reliability issues.

10.2.1 Product Attributes

In order to assure a long term business case for the engine programme, a product attributes
document is generated for each engine type. This document contains all of the fleet engine
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data, and the predictions and assumptions made in order to determine the maintenance and
operating costs of the fleet until the end of the TotalCare contracts.

This document contains all of the fleet assumptions in terms of levels of deterioration, levels
of utilization and associated expected levels of strip that each of the engines will require over
the following contracted years.

The assumptions made carry a direct relevance to the profitability of each programme. In
addition, this document is also the substantiation to the in-year profit made by each
programme. Any change to these assumptions will imply a direct impact to the underlying
profit margin of the programme.

The assessment into the level of deterioration of each of the engines and modules is therefore
determined to clarify, substantiate or reduce the current assumptions made. A clarification of
the assumptions would allow improved planning to reduce operational costs which may not be
predicted today [180]. Additional substantiation will allow assumptions to be taken as a real
cause of impact to the programme and action in the form of a modification or an alternative
means of compliance may be pursued in order to mitigate an issue. A reduction of current
assumptions, will allow a more flexible approach to engine maintenance and reduce the costs
from average or even higher conservative maintenance predictions to tailored assumptions
made on engine specific knowledge.

10.2.2 Engine condition reports

During and engine shop visit, data is recorded to manage and monitor the requirements of each
part through the overhaul process. This is, the reason for scrap, repair or acceptance for each
individual part is recorded.

Shop visit report

An engine condition report is created for each and every engine shop visit. This report
contains a high level overview of the shop visits’ most relevant findings and requirements. In
many cases these reports also contain photo evidence of the main issues and a repair and
replace overview.

An analysis of over 1000 engine condition reports was carried out, in order to create an
exhaustive service experience database of shop visit findings. The engine type assessed was
the BR700-715 fleet, a two shaft engine, composed of 7 different modules. However the main
shop visit drivers are deemed to be contained within the HP core modules [181],

The assessment of the high pressure system was subdivided into compressor and turbine. This
is due to the fact that the reliability and cost issues are substantially different and is the main
areas where the new methodology is expected to clarify the distinct levels of deterioration.

The cycles since new, and the date of the shop visit were logged together with the reason for
the shop visit for further processing. In addition the planned or unplanned reason for the shop
visit was also recorded as this directly determines if the engine sustained an in-service issue or
not.

In order to carry out a consistent assessment across all of the different condition reports,
different levels of deterioration were identified with a small overview of their meaning [182].
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These were similar but not identical across the compressor and turbine and have therefore also
been detailed.

The High Pressure Compressor levels of deterioration were defined as follows:

* High
This was associated to compressors where significant internal damage was identified.
This is, instances where a material release event may have incurred significant secondary
damage. The scrap rates associated are significantly higher than average.

*  Normal to high
This was associated to compressors where specific deterioration issues where identified,
as may be liner loss or material releases with no significant secondary damage. The
material assessment was also considered where a significantly higher than average scrap
rate was identified.

*  Normal
This was associated to compressors where the material scrap assessment suggested an
average level of deterioration was sustained and the shop visit findings identified several
common areas of damage, with no substantial significant issues.

*  Good to Normal
This was associated to compressors where the findings suggested that the compressor was
in good condition but where the material scrap assessment suggested some level of
deterioration was sustained

*  Good
This was associated to compressors where no hardware was exchanged and where the
findings suggested the compressor was in good condition.

* Bad
In some cases Bad has also been recorded however this is typically associated to an
engine event where material has been released causing severe internal engine damage.

The High Pressure Turbine levels of deterioration were defined as:

* High
This was associated to turbine modules where all of the high pressure nozzle guide
vanes sustained high levels of burnback, or blade deterioration, significantly influencing
the engine working conditions

*  Normal to high
This was associated to turbines where a significant level of deterioration was identified
during the engine strip with one or two HPT NGVs showing signs of burnback but no
significant blade issues

*  Normal
This was associated to turbines where the findings suggest an average level of
deterioration and where no burnback was identified, but it may however sustain vane
discolouration of combustor deterioration

*  Good to Normal
This was associated to turbines where the strip condition suggested a good overall
turbine condition, but where the material assessment showed an average level of scrap
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*  Good
This was associated to turbines where the condition report suggests a good overall
turbine state and where the material assessment also confirms that no significant
amounts of hardware where replaced.

In some cases Bad has also been recorded however this is typically associated to an engine
event where material has been released causing severe internal engine damage and as such has
not been used.

The engine condition report assessment therefore resulted in an exhaustive database of high
pressure compressor and turbine detailed level of deterioration assessment Appendix 1, where
several different engine condition combinations were made in order to pursue a detailed
engine health monitoring assessment signature for each of the associated states.

Invoice database

In addition to the engine condition reports, overhauls shops also keep record of all of the
associated findings. A scrap, repair or acceptance database for each engine shop visits was
therefore also assessed. This separate database associates the engine shop visit against a level
of strip and the set of material data.

The data is recorded with percentages and associated costs in order to determine the relative
importance of the parts going forward. On the other hand it does not directly reflect the reason
for scrap of a part. Detailed engineering judgement is therefore required in order to associate
scrap rates between engines for similar components.

This assessment has been limited to material; a similar assessment would be possible to
determine labour requirements for levels of strip, inspection, repair and build. However this
has been deemed to be outside of the scope of the current assessment as it further supports the
findings but does not in itself improve the final result achieved.

Due to the size of the file and the confidentiality of the data this spreadsheet is not here shared.

Combined Data Set

The original data from both sets available was subsequently cross referenced and associated to
provide a list of engines where the level of deterioration has been assessed and in addition
contains the hardware condition details. The full list of engines was subsequently subdivided
into the different combinations of levels of deterioration.

The list of all of the possible combination levels of deterioration for the high pressure system
then contained all of the material and cost data. A summary overview for each of these was
created in order to reduce the amount of detail required. The overview, Figure 62 shows the
HPC and HPT left and right respectively, Level 3 shop visit costs associated to the different
degrees of deterioration identified.

The data combinations therefore allowed each module to be assessed for level of deterioration,
cost, material and level of strip carried out. Subsequent assessments of the remaining data
help determine the root cause of these similarities and deviations.
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Figure 62 HPC and HPT Cost overview depending on the level of deterioration
10.2.3 Associated cost assessment

Based on the original set of shop visit reports available, the invoices and strip reports were
reviewed to correlate the level of strip and the level of deterioration associated to the hardware
inspection and rejection rate, to the costs of each respective shop visit.

Due to limitation in the data available a total of 272 HPC refurbishments and 267 HPT
refurbishments were used for the final compilation of the data.

The associated cost data for each of the engine shop visits, was organized to align to the
associated level of deterioration assessed based on the information available through the strip
reports. In addition, it was subdivided once again depending on the specific module level of
strip as this also has a direct influence on the refurbishment costs.

A good module should always have a reduced level of strip where as a deteriorated module is
always expected to have a higher level of strip. Deviations in this association would highlight
a significant cost reduction gap which the new methodology proposed may prove to be a
means of mitigation through the detailed understanding of the module level of deterioration
prediction.

The cost data associated to each of the determined levels of deterioration and levels of strip
were added to generate the overall module cost of refurbishment. All of the data for each of
the subgroups was subsequently added to generate a module refurbishment cost table with the
average, max, min and standard deviation cost of refurbishment [183].

This assessment showed the wide range of costs involved in an engine shop visit and its
independence from its level of deterioration. An assessment carried out based on the average
costs, showed that engines with a good, good to normal and even normal levels of
deterioration have a similar range of costs associated to their shop wvisits. This is,
independently of the level of deterioration of the engines, a similar amount of work is carried
out on them. This may not be required in some cases and is therefore within the objective of
this assessment. In addition, compressors with a normal to high, high and even bad levels of
deterioration, also show similar associated costs.

The turbine refurbishment cost data shows a similar independence from the level of
deterioration. In this case however engines with a level of deterioration qualified to be good
have lower average associated costs, as would be expected. Good to normal, normal and
normal to high deteriorated turbine modules all show similar associated costs. High and bad
are again associated to similar higher costs, than the ones with normal levels of deterioration.
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This association within the data shows that the current costs of refurbishment and level of strip
associated to an engine at its induction is independent from the engines’ true level of
deterioration. This is a clear indication of the value of this new methodology to assess the
detailed level of deterioration for each engine induction and optimize the shop visit cost.

10.2.3.1 Qualitative assessment

During a module refurbishment, parts which are determined to be scrap will be replaced or
repaired. However there are also many components that are replaced in order to meet the
build life objective of the engine, even though the inspection results would be positive. This
is, the material utilization within the specific module was not optimized.

The material assessment therefore shows that the parts replaced throughout several different
modules, with different levels of deterioration is relatively consistent [184]. This is, parts are
replaced independently of their level of deterioration, or the levels of deterioration are not
clearly distinguished.

The review of all 1000 shop visit reports only identified 70 HPT modules and 27 HPC
modules where the complete material scrap data was available. Due to the limited amount of
data collected, the service experience from this assessment will not be considered to be
representative of the prediction assessments carried out but will nevertheless be quantified as
it provides an indication of the true values to be expected.

The material data available was divided into the level of deterioration identified and
subsequently subdivided into the level of strip carried out. As expected high levels of
deterioration show no low-levels of strip whereas low levels of deterioration show all of the
associated levels of strip. The data was reduced to the material replaced associated to each
individual shop visit and level of strip and re-assessed to determine the actual replaced parts
dependant of the level of deterioration.

The associated level of deterioration prediction was associated to the knowledge database
allowing a cross-reference of parts which will most likely require replacement dependant on
the level of deterioration and maintenance.

10.2.3.2 Quantitative assessment

The material data was also reviewed from a quantitative point of view in order to assess the
number of parts replaced in each case. This is a direct cross reference of the cost and
material data in order to further substantiate the service experience gathered.

The material data was associated by level of deterioration and level of strip performed.
Based on this, similarities between levels of deterioration and levels of strip were carried out
to determine cross references.

Once the associated level of deterioration prediction is determined an assessment to the
number of parts required for the main scrap drivers is possible, based on this knowledge
database.
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10.2.4 Associated part requirement assessment

The material utilization on engines with higher levels of deterioration is also seen to be higher.
Based on the level of deterioration, the associated quantities of scrap material replaced on the
modules assessed are seen to increase with the level of deterioration. In addition and under
normal condition, the level of utilization and the level of deterioration are on average
proportional.

There are several engine types, which have been in service for several years, where sufficient
service data has been gathered, which substantiates this assessment. This is, the engine
maintenance plans, already detail higher associated costs or an increase of these parts when
engines are kept on-wing longer. These engine types are able to substantiate for an average
engine refurbishment, how the refurbishment associated costs will be maintained and how
from a certain point in time, although the engine is reliable and working appropriately the
costs will substantially rise.

The data gathered above allows this such an assessment, however due to the lack of data the
specific point at which the costs increase and the specific incremental cost associated, would
not be truly representative.

However, the use of EHM data to determine the level of deterioration, allows a more detailed
use of the data as it does not represent the associated costs of an engine or module
refurbishment against the fleet average utilization but against the engine specific level of
deterioration. As deterioration may in some cases be independent of the actual utilization, this
allows a more engine specific and detailed approach to the same assessment, directly reducing
the associated costs.

In addition, due to the similarities between engine designs and the common data points
assessed, it may be possible to assume certain levels of deterioration and associated costs for
new engines where no service data is available. This is critical for appropriate planning not
just of the engines maintenance but also for the programme budget planning.

10.3 Engine Health Monitoring

10.3.1 FADEC

The main objective with the introduction of digital engine controls was and still is safety [7].
This was achieved with the FADEC as it reduced the amount of pilot input required and
monitored the engine for small changes several times per second with an immediate reaction
time [8].

In addition, FADEC controls also contributed to other overall engine improvements as,
improved fuel efficiency, by optimizing the engine for the specific ambient and internal
conditions of the engine, automatic engine protection in the case of encountering an unsafe
condition, care free handling allowing the pilots to concentrate on flying the aircraft and not
on the engines, as well as reducing the amount of parameters to be monitored by the crew
during each flight [1]. In addition, it also managed a semi-automatic engine start, monitored a
greater number of parameters for a more accurate fault isolation system and had an inbuilt
emergency response in case required, Figure 63.
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Figure 63 FADEC system overview of EEC, main units and connecting harnesses
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Figure 64 Engine controls capability and reason versus reaction time chart

The reaction time with which FADEC data is analysed also defines the type of task or
improvement it addresses, Figure 64. This way, and as shown in the chart, immediate reaction
is carried out by the FADEC system itself to optimise the engine working conditions
improving the operating costs, it also continuously monitors the engine, giving warning
messages to the crew for pilot consideration and also contains the auto-protection system to
react in case of a hazardous condition.

The short term reaction benefits of digital engine controls are based around the integral
condition monitoring of the engine. The warnings and alerts highlighted by the system allow
the maintenance crew to address these issues during overnight maintenance or at the
established aircraft maintenance checks removing any operational concerns and reducing
costs. In addition the auto-protection system also reviews deterioration limits and manages the
long and short term dispatch messages.
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Long-term, the digital engine control is centred on the Engine Health monitoring (EHM) or
condition monitoring of the engine. This way, the EHM data assessment helps identify
imminent working conditions where operation should be avoided, which in turn helps
operators plan final routes for engine maintenance avoiding maintenance outside of the main
maintenance base, improving maintenance costs [9].

10.3.2 Types of data currently managed

There are several different types of engine data recorded and monitored, Figure 65.
Depending on the operation point of the aircraft, the engine monitor will carry out a different
type of engine data assessment and management.

Continuous data is monitored throughout the complete flight. This is, the engine control
system reviews all of the data points and optimizes the operation of the engine for the given
working conditions and pilot requirements.

Semi-continuous data is monitored and recorded at key flight phase points. During take-off
and landing and also if exceedances are identified the monitored data is physically recorded so
that assessments may later be carried out.

Snapshots of data are recorded during each flight. A reduced number of data points are
recorded at certain steady state conditions throughout the flight and at different points of the
flight profile. These are subsequently used for trending purposes.

Figure 65 Overview of the main types of controls data gathering
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The assessment of this data in any of the three forms may be used to assess the condition of
the engine [10]. Maintenance information may be gathered to determine engine faults and
determine if on-wing maintenance may be required. Life cycle counting , may be determined
to assure the number of cycles at a certain working condition that certain group A parts may
have encountered in order to optimize the engine time on-wing.

The data actually recorded throughout each flight is also different depending on the flight
phase. During take-off 164 different engine parameters may be recorded and monitored.
During climb however, a reduced number, 131 parameters would be recorded. During cruise
the parameters monitored and recorded would be once again reduced to 54. These parameters
and the number of parameters per phase will change depending on the operator or the fleet;
however they serve as examples of the level of detailed recorded during each phase.

Trend assessments are carried out at cruise [11]. This is due to the fact that the engine is at a
steady working condition, reducing the transient effects when comparing data from several
different flights over several different years.  Even though 54 different parameters are
recorded there are several key parameters that have been determined to give an appropriate
level of detail about the engine working conditions. The remainder of the parameters either
enhance the level of knowledge about specific subsystems or allow a more detailed assessment
if a certain deviation has been identified.

10.3.3 Parameter and parameter correction and trimming

Each engine is unique, due to the different build tolerances and measurement tolerances of the
equipment. In order to address this acceptable variance, engines are tested to determine that
all of the parameters are within the appropriate working tolerances and then these are
corrected. This is carried out so that engines mounted on the same aircraft will show similar
working conditions of pressure, temperature and power, easing the pilots’ workload.
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Figure 66 Parameter overview example of the actual, delta, and limit values

One of the more critical parameters is TGT or turbine gas temperature; other parameters will
be treated in a similar way, Figure 66. During an engine pass-off test after first engine build
or after refurbishment, TGT will be recorded at a specific speed and power settings. This
parameter reading will be compared against a model. This model may be a worst case, a
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certification model or a sea level model of the parameter for that engine type. The difference
between the true reading and the model is called Delta-TGT.

In addition, there is a parameter redline. Working above this redline is not allowed as it would
directly affect the safety of the engine. Different parameters will have different read lines with
different concerns. The difference between the true TGT reading and the redline is known as
remaining TGT margin. This is, as the engine deteriorates, the TGT working temperature will
increase, reducing its TGT margin and thus limiting the engines’ remaining time on-wing.

The true TGT reading is therefore monitored and compared against the baseline model to
monitor its deviation from the model and against the redline to monitor its remaining margin.

In addition parameter trimming is also performed during the engine pass-off test. This is, a
parameter like TGT needs to be commonalised so that the generic threshold values can be
applied. This is performed by interpolating these parameters to the trimmed EPR check gates
and corrected to the appropriate ISA conditions.
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Figure 67 Cockpit view of engine status with both engine dials side by side

Through this trimming, the cockpit indications may be operated to the generic TGT limits
defined in the certification documentation. This limit is generally the same as the one certified
during the 150 hour endurance test. In addition, this trimming allows generic relationships
between engines to be measured, reducing the hardware scatter effects due to tolerances and
modifications [97], Figure 67.
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10.4 Objective 1 - Interval-valued blind source separation applied to AI-based
prognostic fault detection

The main objective of applying blind source separation to interval valued data was to determine
if the state of the engine could be interpreted from the values of the variables measured. The
new method proposed to address this first objective has made use of the existing tools and
methods to increase their capability to interval valued data.

This has resulted in a new method which enables the use of engine health monitoring data
without the direct mis-use of variable filtering. Thus enabling a more detailed understanding
and interpretation of the data available.

In addition, the new method is also able to combine any number of variables available and is not
limited by the visual space. It also enables the identification of known engine conditions and
limitations as well as previous known service experience.

10.4.1 Application of BSS to EHM interval valued data

This new method using interval-valued data is applied in order to determine if small deviations
to the engine working conditions may be identified, so as to gain the deterioration over time
evolution of an engine. This will determine if the small deviations of EHM data are visible in
order to assess engine deterioration, as the current state of the art assessments solely review
step changes in order to contain the safety and reliability of the fleet.

Engine health monitoring data is collected from the engines’ individual entry into service date.
As such, this method, will allow visualization of trend maps with shift signatures. Cruise data
for each of the individual variables of the engine being diagnosed, is expressed as increments
over time with respect to an engine model extrapolated to the same flight condition, Figure 66.
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Figure 68 Typical example of an EHM variable over time plot

Abnormalities may be detected when a signature is deemed to contain a high similarity to a
prototype or lies above a specified threshold. With the help of the proposed maps, a diagnosis
of known events and the subsequent assessment of deterioration is possible through visual
examination of the trends.
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Established or known abnormalities are expressed as thresholds that must not be exceeded.
These abnormality signatures are derived from service data and service experience, and are
expressed as thresholds that should not be exceeded. EHM data, prototype and abnormality
signatures are regarded as a mix of different sources and transformed with the proposed
procedure that extends Blind Source Separation to interval-valued data

The enhanced capability through the method proposed is gained where by it is now possible to
detect whether the predicted signature is likely to come near a prototype or lies out of the
confidence intervals defined by the current service experience knowledge database for the
given engine fleet or even engine family.

The EHM subset of cruise parameters is limited in this sample case to the assessment of the
engine core, as such and based on the associated engine performance relation, the following
six variables are considered:

*  FF - Fuel flow is a measure of the amount of work required.

* NI, N2 - are the speeds of the low (N1) and high (N2) pressure systems in a two shaft
engine.

* P30 - This is the high pressure compressor exit pressure. This parameter identifies the
amount of air that the combustion systems will receive. It also serves to determine how
much air the compressor has been able to compress, as due to the engine design intake
volumes can be assumed. The more deteriorated the compressor is, the lower P30 will be.

* T30 - This is the high pressure compressor exit temperature. This parameter will vary
depending on the amount of work required to compress the given volume of air and
therefore will also give an indication of the overall level of deterioration of the
compressor. The more deteriorated the compressor is, the lower T30 will be.

*  TGT - the Turbine Gas Temperature, is another way of understanding the amount of work
carried out by the turbine, in line with fuel flow, as the more fuel that is delivered, the
higher the TGT will be. However due to compressor flows and other factors this
correlation is not always followed.

Samples of FF, N1, N2, P30, T30 and TGT for two engines, Engine 1 and Engine 2 are shown
in the left hand side of Figure 69 and Figure 70 respectively. Each black trace is a sequence of
measurements taken from an engine. Green traces are prototypes of different events. This is,
each point of the green curves was sampled in a different plane. Red traces are subjective
intervals for different abnormality conditions. The right part of the figures, are the unmixed
sources of these signals, obtained through the proposed methodology.

The plot of the unmixed EHM parameters does not hold more information about the health of
the engine than the raw EHM data. However the engine path in phase space shows the
correlation between these signals and the deterioration of the engine.
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Figure 69 Engine 1 plot of the EHM variables and method assessment
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Figure 70 Engine 2 plot of the EHM variables and method assessment

The deterioration over time maps in Figure 71 and Figure 72, show the two first sources ICA1
and ICA2 overlapped one against the other. Engine data forms a blue path, along with the
prototypes of different events (green points) and interval-valued abnormality thresholds (red
rectangles). In the map in Figure 71 the signatures of the engine are far from both the
abnormality intervals and the prototypes. The change in the properties of the engine after a
shop visit are made evident by the jump in the engine trend to the right, marked with an arrow.
The data is concentrated into two main clusters, before and after this engine shop visit, and the
trend (data points near the label “ENGINE1-END”) do not indicate a probable short term

event.
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Figure 71 Engine 1, ICA 1 versus ICA 2 plot of deterioration over time

On the other hand the map in Figure 72 shows an engine that repeatedly encounters
abnormality thresholds. Jumps in the engine trend caused by shop visits have also been
marked with arrows. The evolution of the engine from the starting point “ENGINE2-START”
is shown in further detail in Figure 73. Here, it is clear how the relative position and size of
the abnormality thresholds depend on the engine data.
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Figure 72 Engine 2, ICA 1 versus ICA 2 plot of deterioration over time
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Figure 73 Engine 2 close ups of overlapped sections where trend is over known deterioration
areas

10.5 Objective 2 - Engine health monitoring for engine fleets using fuzzy
RadViz

The new method developed has enabled the use of the complete scope of variable measurements
to understand the engine working condition. This is, through the use of the bandwidth sweep
and the possibilistic assessment of the resulting data for each individual data point, a resulting
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condition is provided on a likelihood level which in addition is in a format which may be further
assessed.

As such, the method has been further refined into a classification and representation method
which enables the assessment of not only individual engine but also fleet and module level
assessments.

The method is initially used to assess the complete engine fleet with regards to the level of
deterioration at module level. This is, the engine health monitoring data is used and classified
with regards to the module levels of deterioration. The engines are subsequently classified in
these combinations of core module deterioration.

This is a significant step in the current use of engine health monitoring data as it already
provides a significant understanding of the internal engine working conditions, not available
today.

The method has been then subsequently applied to engine specific cases, in order to interpret the
actual module condition. This is, the method is applied not to understand the condition of each
module against the fleet, but the actual condition of the module specifically. This provides an
understanding of the actual level of deterioration of the engine and the actual modules within
the engine.

The complete set of data available and the additional use of the fleet experience are applied in
these cases to predict the actual level of workscope that may be required in the case these engine
would be inducted into an overhaul maintenance facility. A prediction of the costs and parts
required is also detailed within this prediction.

These two case studies show the significant step change in the understanding and interpretation
of the EHM data for the engine overhaul business. The prediction of the level of workscope, the
parts required and the actual costs of the shop visit which are a significant improvement to the
existing EHM predictions for engine maintenance.

10.5.1 Fleet Level Applied Example

The complete assessment method was applied to the EHM data of 435 engines where the
actual internal level of deterioration was known, as a means of establishing direct back to back
effectivity of the method.

The methodology was applied with the EHM data knowledge as the sole input and no further
details with regards to the engines, or operators associated to these. Each of the 435
compressor and turbine modules where individually represented and associated to a level of
deterioration class and its respective uncertainty ellipse. In order to further ease the plot
interpretation a colour coding was introduced in line with the associated class.

The initial expectation of misclassification was assumed to range from approximately 0,04 to
0,07 for the HPC module prediction and from approximately 0,06 to 0,10 for the HPT module,
solely based on experience from previous trials and due to the variability ranges and
bandwidths of the data.

A first run of results was assessed against the actual levels of deterioration in order to establish
the actual misclassification obtained. A total of 50 misclassification where identified, when
compared against the strip report assessment prediction. This is approximately a 10%
prediction mismatch.
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These specific mismatched results were reviewed in further detail. The methodology was re-
assessed with no substantial findings which would re-condition the results. On the other hand
the engine strip condition reports were also re- assessed. The qualitative strip report re-
assessment determined that the actual condition of 30 out of these mismatched engines could
be re-classified. The subjective nature of the engine condition classification is therefore
determined to be the root cause of more than half of the mismatched cases.

The resulting 20 engines worth of mismatch are therefore considered as the methods own
error. This is, a total of 6 HPC modules and a total of 19 HPT modules were deemed to be
misclassified.

The EHM diagnosis tool generated under this methodology is determined to be capable of
identifying HPC and HPT module deterioration states of normal to high, high and bad. Due to
the similarities and smaller deviations, the classification is determined to be less robust for the
good, good to normal and normal classifications of deterioration. However, if the centre point
of the output is considered as a correct classification, then the average percentage of correct
classifications is determined to be approximately 95% and 92% for the HPC and HPT modules
respectively.

The actual representation of the HPC and HPT modules of all 435 engines Figure 74, was
carried out, following the RadViz method described. The different classes anchored
equidistantly around the perimeter. Each individual engine module was then represented by
positioning not only its class but also its associated uncertainty ellipse. A large ellipse is
equivalent to low confidence classification. A change to the actual output may simply be
associated to the kernel smoothing of the bandwidth or to the actual derivative itself.
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Figure 74 Fleet RadViz and polar representation
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Independently of this, the plots in their current form, for each of the modules, show that the
average condition of the fleet is in a normal or good to normal state, due to the proximity of
the modules towards these classifications. It is also visible how specific modules deviate
substantially towards specific classifications and how the closer these are to a specific class,
the ellipses are substantially smaller.

Following the RadViz capabilities previously detailed, the charts were modified in order to
attempt an improved visual condition of the fleet. In this case, the classification was
represented in polar coordinates, with the especial condition, of the RadViz anchors being all
considered on the same plane. The first immediate improvement is that through this, change,
all of the different classes have an even representation, whereas in the previous circular
representation, good compressor modules where represented next to bad compressor modules.

In this way the classification of the level of deterioration of a module range from left to right
as it further deteriorates and bottom to top as the accuracy in the classification of the level of
deterioration is gained. In addition, and as in the previous representation, the ellipses convey a
methodology assurance on the level of confidence of the prediction. Larger ellipses are
obtained the further away from a single classification, due to the uncertainty of the prediction,
however the closer to a single prediction, the ellipses also become smaller.

This second form or representing the EHM data could also be used to establish the evolution
of a single engine or engine module over time. In this case, it would be possible to establish
its evolution from left to right and from bottom to top. This information could subsequently
be used to carry out predictions on the engines or modules possible future state.

10.5.2 Engine prognosis

The circumferential RadViz representation of the class and classification uncertainty of two
randomly selected engines was carried out. The engine selection was established out of
engines where the engine induction was planned to be carried out in the near future or had
already been performed so as to be able to have a baseline comparison of the prognosis
performed.

The engine prognosis method is not only capable of predicting the overall engine level of
deterioration, but it is capable of establishing a prognosis for the actual individual engine
modules. This prediction, due to the variables used is limited to the core modules of a two
shaft engine. A total of two plots are therefore provided for each engine as the resulting
prognosis of the method, one for the HPC and another for the HPT module.

10.5.2.1 Engine 1 Prognosis

The results for Engine 1, Figure 75 show that the engine was in a good overall condition,
with the compressor showing a level of deterioration deemed to be “good to normal” with
high confidence of this being the case and with a small level of uncertainty of the level of
deterioration being a different one. As for the turbine module, this module was deemed to
have a “good” overall level of deterioration. However the position of the result also suggests
that this level of deterioration may be progressing towards a “good to normal” state. The
level of uncertainty on the result however is low.
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Figure 75 Engine 1 Compressor and Turbine module deterioration plot

Based on this information, it may be suggested that neither the compressor nor the turbine
module directly require a shop visit solely based on their level of deterioration. However,
should a shop visit be required for other reasons, this assessment may also be used as a
prognosis tool. As such, it is also determined that if a full overhaul of the compressor
module is performed it would require approximately 150 new blades, 134 new vanes, at least
28 new VSV levers and the compressor case would need to be repaired. As for the turbine
module, it is expected that such a module would require a new set of HPT stage 1 vanes, at
least half a set of HPT stage 2 vanes, a low number of HPT stage 2 blades, as well as all of
the air and oil RBSS pipes. In addition, both the RBSS and the external cases would need to
be repaired and in a low number of cases replaced.

The overall prognosis of the overhaul cost suggests that the compressor module
refurbishment would be cheaper than that of an average shop visit. The turbine module
refurbishment costs are also deemed to be cheaper than those from average refurbishment;
however additional repair costs may be involved due to the state of the RBSS and the turbine
case.

10.5.2.2 Engine 2 Prognosis

The results from Engine 2, Figure 76 show that the engine was in an average overall
condition, with the compressor showing a level of deterioration deemed to be “normal” with
an average confidence of this being the case and with an average level of uncertainty of the
level of deterioration being a different one. As for the turbine module, this module is
deemed to have a “normal” overall level of deterioration. The position of the result suggests
that the exact level of “normal” deterioration is not precise; however the confidence of the
turbine having a “normal” level of deterioration is clear.
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Figure 76 Engine 2 Compressor and Turbine module deterioration plot

The overall “normal” state of both modules suggests that the overhaul of this engine is
optimal, before higher costs are incurred due to additional accumulated deterioration. A full
refurbishment of both modules is therefore suggested.

It is considered that based on the level of deterioration, a compressor refurbishment would
require approximately 293 new blades, 172 new vanes, at least 36 new VSV levers and a
compressor case. As for the turbine module, it is expected that such a module would require
a new set of HPT stage 1 vanes as well as half a set of HPT stage 2 vanes. At least one third
of HPT stage 2 blades are expected to be replaced together with most of the heatshield. The
combustion chamber is deemed will most likely need to be repaired; however in some
instances it is also replaced. The air and oil RBSS pipes will be replaced and the RBSS will
need to be repaired and in a low number of cases replaced.

The overall prognosis of the overhaul cost suggests that the compressor module
refurbishment would be the same as that of an average shop visit. The turbine module
refurbishment costs are also deemed to be the same as those from average refurbishment.

Engine maintenance findings

These specific engines were assessed in further detail not only to establish the module level of
deterioration but to also consider the amount and type of hardware that was replaced as a
result of the subject shop visit.

In addition, the associated costs of the complete engine maintenance were assessed, however
due to the limitation of the exercise to the core modules; a direct cost comparison was not
possible.
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10.5.3.1 Engine 1 Maintenance findings

The first engine was removed from the aircraft on the 16th Jun 2010 and inducted as part of
a planned shop visit on the 5th Jul 2010 in order to replace the HPT stage 1 blades. No other
in service issues were reported.

The compressor module was visually inspected and a borescope inspection carried out which
determined that the module was in a good overall state and that the strip of the module at this
shop visit would not be required. As such no further strip was carried out.

The turbine module was stripped to replace the HPT stage 1 blades, as such, this component
is not considered in the comparison. The module was deemed to be in a good overall
condition, with the following components replaced, full set of HPT stage 1 vanes, two thirds
of HPT stage 2 vanes, a full set of HPT stage 2 blades and all of the RBSS air pipes. In
addition, the RBSS and the turbine case were both repaired.

10.5.3.2 Engine 2 Maintenance findings

This second engine was removed from the aircraft on the 22nd Aug 2006 and inducted as
part of a planned shop visit on the 9th Oct 2006 in order to replace a time expired life limited
part. No other in service issues were reported.

The compressor module was fully stripped as part of this shop visit due to its life exceeding
the module softlife. The module was deemed to be in an average overall condition, with the
following components replaced, 2793 new blades, 183 new vanes, 97 new VSV levers as
well as the repair of all of the compressor cases. The module was deemed to be in a good
overall condition, however due to the number of parts replaced, it is considered to be normal
and representative of an average compressor refurbishment.

The turbine module was stripped to replace the HPT stage 1 disc due to its time expiry. As
part of the module refurbishment the following components were replaced, 1 HPT stage 1
vane, 11 HPT stage 2 blades and all of the heat shields and RBSS pipes. In addition,
however a high number of repairs were carried out, which include the combustion chamber,
the RBSS and turbine case, and all of the HPT stage 2 blades and vanes.

10.5.4 Prognosis Versus findings

The results from both engine predictions and the subsequent findings can now be compared
side-by-side in order to determine the level of accuracy of the method, both in predicting the
level of deterioration of each module as well as the number of parts required for the
subsequent refurbishment.

10.5.4.1 Engine 1 Maintenance findings

The results from Engine 1, show that the prediction deemed the HPC module to be in a good
serviceable state which was capable of further continued flight. The actual visual inspection
of the HPC module concluded the same statement with no further strip performed.

The turbine module results from Engine 1 also show a high level of accuracy between the
prediction and the actual shop visit findings, where the replacement rates of the stage 1
turbine vanes, and RBSS pipes, as well as the repair requirements of the RBSS and turbine
case were identified, Figure 77. The stage 2 prediction however with regards to the blades
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and vanes was lower than that found during the strip. Although the level of prediction for
the vanes is deemed acceptable, the blade prediction was lower than reality, this however is
considered to be due to the inspection of areas of the components with no direct effect on
deterioration, as is the blade bedding or root front face area which are not visible to this
method.

Blades  Vanes VSVs .NG_V-1 Blades-2 NGV-2

% Deviation from prediction

HPC | HPT

Figure 77 Engine 1 prediction versus scrap parts comparison

10.5.4.2 Engine 2 Maintenance findings

The results from Engine 2, once again show high similarities between the predictions and the
actual inspection findings. The number of predicted compressor blades and vanes closely
resembles that of the inspection findings, with the prediction in VSV lever replacement
falling short.

The turbine section prediction in this case shows a high level of accuracy with regards to the
heastshields, combustion chamber and RBSS, Figure 78. The prediction of the stage 2
turbine blade replacement is slightly lower than reality; however the vane prediction on both
stages is substantially lower than that found during the strip. It is however acknowledged
that there are a higher than average number of repairs carried out on both stages of vanes and
as well as on the stage 2 blades, suggesting that the actual state of the hardware was in an
interim state of deterioration.
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Figure 78 Engine 2 prediction versus scrap parts comparison
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10.6 Objective 2.1- Sequential pattern mining applied to aeroengine diagnosis
with uncertain Engine Health Monitoring data

The application of PreFixSpan to the engine health monitoring assessment method developed to
address the second objective is carried out to further refine the understanding in the variability
of the results. This method, similar to that used in DNA sequence mining methods is able to
review the engine state to identify specific sequences of substantial meaning or others of no
meaning what so ever in order to associate them to actual deterioration states or not.

This method makes use of the results from the previous method to associate sequence of
condition and not solely conditions in isolation. As such engine deterioration of the prognosis
of the deterioration may be assessed not on the individual deterioration but also though the
sequence of events throughout the in-service life.

The EHM data of seven-off engines where all of the overhaul data is known in sufficient detail
and where the conditions were deemed to be representative of the fleet were used for this
assessment. The assessment also used different version of the model to determine the accuracy
and benefit of the improved results.

10.6.1 Numerical results and discussion

Some diagnosis methods have been recently proposed that are based on the detection of
certain signatures, that are combinations of EHM values known to be associated to a specific
event [171]. The distances between each of these signatures and a sequence of EHM values
measured on an engine constitutes a feature vector which could be fed to a classifier in order
to predict the deterioration level of an engine.

Many engines can be diagnosed in this way, however some defects will not be detected by a
classifier operating under these principles, because the deterioration signatures are not yet
known. This particular problem has been solved by using an all-inclusive catalog of
signatures, in combination with a sample of engines where all of the sought defects are
present. Feature selection techniques are applied for finding the most relevant signatures, or
alternatively a classifier that implicitly performs a feature selection [185].

This second solution may be further developed, as not all defects are associated to a single
signature. This will address the continuous equilibrium of deterioration between the HPC and
the HPT where the combination of both effects masks the trend changes in EHM signals. In
this case, not only the presence of certain combinations of signals but also the order in which
they appear is relevant. In addition, the EHM combinations that are searched for, may appear
in different defects or planes without actual specific faults.

10.6.2 Experimental design

The level of deterioration of an engine is determined through the inspections carried out
during engine maintenance. The cycles at which certain events or findings occur are not
known, as such it is not simple to map deterioration levels to sequences of events: a training
sample made up of engines with the kind of faults that the proposed method can find is
therefore not possible.

New Method Proposal - Applied Method Validation



Monitorizacion del estado de flotas de motores usando analisis inteligente de datos para informacion
intervalo-valorada y posibilistica

As such, engines without a detectable signature were selected, with the aim that some may
contain the desired fault type. The experimental design in this section is guided to compare the
results of a state-of-the-art signature-based classifier against the proposed approach.

A total of 43 aeroengines were selected where the knowledge about the level of deterioration
from the HPC of these engines was used to define three categories: low, normal and high
levels of deterioration. The level of deterioration definition is changed however to define the
expected life and not the level of deterioration. A deterioration rate r has therefore been
associated as

6000—r - actual cycles=expected cycles

where “actual cycles” is the number of cycles flown since the last shop visit, and “expected
cycles” is the expected remaining life of the engine that is estimated on its release after
maintenance. Rates between 0 and 0.75 are labelled as “low deterioration rate”, between 0.75
and 1.25 are normal and higher than 1.25 are defined as abnormal deterioration rates.

10.6.3 Compared results

The procedure described in [185] has been applied initially to the sample of 43 engines as
previously described. Random forests were used for the classification task [186]. Two
different sets of EHM signals have been used. The dataset “EHMS5” composed by the five
signals TGT, FF, P30, T30 and N2, with two linguistic labels by variable. The dataset
“EHM?2” composed of two signals formed by compressing the five preceding values [171].
Three linguistic labels were used for discretising the compressed signals and 10-cv validation
was used in all comparisons. In addiiton, the proposed method allows for the EPs to be
assigned multiple labels and the output of the classifier to be consireded as a set of
alternatives, for example “either low or normal deterioration”. As such, the expected test
errors will not be numbers but intervals.

Dataset Average

EHM?2 0.56
EHMS5 0.60

Figure 79 Average accuracy (10-cv) for the datasets EHM?2 and EHMS5 using a signature-
based random forest classifier

Support  Average accuracy Rules Patterns

0.2 [0.325,0.325] 37 1.823
0.3 0.275,0.275] 21 196
0.4 [0.575,0.6) 12 46
0.5 [0.658,0.725] 5 12

Figure 80 Average accuracy (10-cv) for the dataset EHM?2 using PrefixSpan + CAEP

New Method Proposal - Applied Method Validation BEEE]



Engine Health monitoring and prognosis for engine fleets using intelligent data analysis of interval-
valued and possibilistic data

Support Average accuracy Rules Patterns

0.075 [0.491,0.491] 21 40
0.1 [0.416,0.416] 10 15
0.15 [0.3,0.325] 1 )

Figure 81 Average accuracy (10-cv) for the dataset EHM5 using PrefixSpan + CAEP

Support Average accuracy Rules Patterns

0.2 0.591,0.591] 37 1.823
0.3 [0.8,0.8] 21 196
0.4 [0.775,0.8] 12 46
0.5 [0.775,0.825] 5 12

Figure 82 Average accuracy (10-cv) for the dataset EHM? using PrefixSpan + ECAEP

Support  Average accuracy Rules Patterns

0.075 [0.716,0.716) 21 40
0.1 [0.75,0.75] 10 15
0.15 [0.508,0.558] 1 5

Figure 83 Average accuracy (10-cv) for the dataset EHM5 using PrefixSpan + ECAEP

In, Figure 80, Figure 81, Figure 82 and Figure 83 the accuracies of the different approaches
being compared are shown. The statistical relevance of the differences is graphically shown in
Figure 84. Six boxplots are used to establish the statistical relevance of the differences
between  signature-based  approaches, @ Fuzzy  PrefixSpantCAEP and  Fuzzy
PrefixSpan+Extended CAEP (ECAEP).

Figure 84 shows that approximately half of the engines in the training set are not properly
diagnosed by a signature-based classifier. The results of applying Fuzzy PrefixSpan in
combination with the original definition of EP improve these results for EHM2, however
sequence mining does not seem to benefit EHMS.

The support threshold for EHM2 was in turn high which meant that the number of frequent
patterns and rules was small and the generalization capability of the rule base was therefore
also high. The support of the frequent sequences for the best accuracy in EHMS is too low ,
due to the fact that some rules were supported by only three transactions and therefore the
classifier showed a poor test error.

A noticeable improvement can be seen with the extended definition of EP proposed. The test
error for the dataset EHM2 improves further and the results for EHMS5 (75% of hits in test) is
significantly better than that of the signature-based classifier (60%).

The difference between the results for EHMS and EHM2 with random forests is small,
however the sequence mining algorithms are significantly different. The proposed algorithm is
more efficient if the sequences comprise an alphabet of symbols of small size in relation to the
number of instances assessed. As a reduced alphabet would limit the new capability of the
method developed the compression of the signals before they are discretized is stablished.

New Method Proposal - Applied Method Validation &)



Monitorizacion del estado de flotas de motores usando analisis inteligente de datos para informacion
intervalo-valorada y posibilistica

08

0.61 [SESSSEEEE——

04

0.2

EHM2-CAEP  EHM2-ECAEP EHMS-CAEP EHMS-ECAEP EHM2-SIGN EHMS-SIGN

Figure 84 Boxplots showing, for the datasets EHM?2 and EHMS, the statistical relevance of the
differences between signature-based , PrefixSpan+CAEP and PrefixSpan+Extended CAEP

10.7 Objective 3 - Aeroengine prognosis through Genetic Distal Learning
applied to uncertain Engine Health Monitoring data

The final prognosis method has been applied at modular level to the engine fleet. This is to
understand not only the RUL at engine level but to gain the capability of performing trade-
studies and cost estimates, should a module remaining on-wing for an optimized overall engine
return.

The use of distal learning techniques to indirectly identify the engine and module deterioration
rate bridges the gap from the existing tools, which cannot differentiate between a deteriorated
engine or an engine working under unfavourable conditions. The comparison of the modelled
integral rate against the average predicted build life objective of the engine provides the
required prognosis understanding.

This new method was applied to a significant number of engine shop visits, where the level of
deterioration of the engine modules at the time of induction was known. However in addition,
both the EHM data and the build life objective were considered, in order to validate the method.

In addition, and in order to determine the additional value provided by this prognosis, the
current Service Experience based shop visit plan was used as a comparative baseline for the
results.

10.7.1 Individual Engine Case Study

The unfiltered EHM signals are shown in Figure 85, together with their filtered derivatives for
a particular bandwidth, as well as the outputs of the deterioration rate models and the outputs
of the prognostic indicators. The green curves in the two plots in the lower part of the figure
are the outputs of the deterioration rate model.
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The combination of EHM signals around sample 1500 show a particularly harsh set of
conditions for the compressor. In addition, it is also visible that the level of deterioration of
the compressor and turbine alternate with time.

The red curves are the integral of the deterioration. The initial life of HPC and HPT is
assumed to be 5000 cycles in line with the minimum build life objective. The circles at the end
of the red curves are the measured life of these elements as observed at the shop visit. The
difference between the height of these circles and the red curves are the centerpoint of the
fitness function defined.
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Figure 85 Chart overview showing the EHM signals, slopes of the filtered EHM signals for a
given bandwidth, HPC and HPT deterioration rates and prognostic indicators

10.7.2 Prognosis Results Comparison

The deterioration assessment method developed was applied to a sample of 43 engines where
the classification stage was replaced by a regression module that approximates the expected
life of either the HPC or the HPT. Random forests were subsequently used for the regression.
However the dispersion of the classification was not dismissed, to only consider the centroids
of the feature vector.

The baseline model used as reference considers a constant deterioration rate equal to 1. This
is, the expected life of the engine is considered as the difference between the initial life of the
module and the number of cycles the engine has flown. This is deemed to be in line with the
current policy based method of fleet management.

The Genetic Distal Learning of a FRBS was combined with a 0-th order prognosis indicator
and a unity extrapolated deterioration rate. A 10-cv validation was used in all comparisons.
The back to back assessment results are shown in Figure 86.
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The Distal Learning method is shown to be the optimum alternative for both HPC and HPT,
however the accuracy gain of the method with respect to the standard scheduling is improved
for the compressors (20% on average) more than for the turbines (4%).

Method HPC HPT
Distal 1330 1541
Signature 1426 1558
Standard 1651 1579

Figure 86 Average accuracy (10-cv) for HPC and HPT using a Distal Learning, a Signature-
based Random Forest regression model and the standard procedure

The relevance of the differences between the methods are illustrated in Figure 87, Figure 88
and Figure 89. Figure 87 shows three boxplots with the dispersion of the 10-cv test results
with the absolute differences between the HPC predicted life and the measured values for
Distal, Signature-based and Standard techniques for the HPC module. The same boxplots are

shown for the HPT in Figure §8.
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Figure 87 Dispersion of the 10-cv test results with the absolute differences between the
predicted life and the measured values for Distal, Signature-based and Standard techniques in

HPC
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Figure 88 Dispersion of the 10-cv test results with the absolute differences between the

predicted life and the measured values for Distal, Signature-based and Standard techniques in
HPT

The p-values of the paired differences between the standard method and the proposed
algorithm are negligible for both HPC and HPT, although the percent gain is much higher for
compressors. A boxplot with these paired differences is shown in Figure 89.

The figure also aids justify the p-value found in the statistical tests with regards to the
difference of the mean accuracy in both algorithms. The differences are lower or equal than
zero in all cases, highlighting that Distal Learning is a direct improvement to the standard
maintenance scheduling method.
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Improvement of Distal vs. Standard models

Figure 89 Boxplot of the paired differences between Standard and Distal algorithms, showing
that the proposed algorithm improved the standard maintenance schedule for all folds in the
validation.
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11 Business Applications

The current shop visit planning capabilities are limited to the engine fleet specific service
experience. Read across from other engine fleets is possible, however detailed engineering
knowledge is required and does not directly aid an in-year view required for maintenance
facility capacity planning.

Developments to further refine the engine fleet refurbishment intervals and associated
maintenance costs have been carried out in recent years, but these do not address engine specific
and in-year concerns.

In addition, the current drive for optimized costs has driven certain aspects of the business into
unknown areas. In addition, the trade-off effects between revenue, maintenance cost and unit
costs are not clear.

The tools here developed to determine the level of deterioration and associated level of
maintenance, together with the prognosis method to establish this level of deterioration at any
one time, are a substantial improvement to the business.

11.1 Business Improvement

The engine level of deterioration understanding does not solely affect the engine maintenance
planning and the safety & reliability of the fleet. Understanding the actual state and condition
of each engine within the fleet, also helps optimize the overall efforts required to manage the
in-service fleet.

The direct interactions between the service management areas for which these methods where
initially developed interfaces with other areas of the business which will also benefit from
these tools. As such, the business and financial areas, as well as the on-wing fleet
management operation departments will gain a new capability of assessment, of a substantially
improved level of confidence in the cost predictions for the fleet.

In addition, the method in which the data in compiled and assessed is also influenced through
these new methods developed, as it is the first direct link of EHM data to overhaul
maintenance shop data. This in turn will improve the forecast accuracy not just at a parts
utilization level but also at an engine unplanned removal, which will in turn directly influence
the number of required lease engines to support the fleet.
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Figure 90 Cross-business dependency of appropriate engine maintenance planning overview

These interlinks between departments and areas of the business extend the amount of
influence of the new methods developed further away from the direct maintenance cost
planning area for which they were initially proposed, Figure 90 due to the substantial
improvement they provide for the overall business plan and assumption assurance.

11.2 Maintenance Improvement

Aside from the overall business improvements detailed these new methods the initial goal was
the optimization and prognosis of engine deterioration for shop visit maintenance planning.
To this effect, the methods developed may be determined to have addressed the objectives set.

Overhaul facilities, may now, know the level of workscope required for an engine months
prior to its induction, allowing sufficient time to plan the work, request the main required parts
and most importantly reduce workscope creep during the engine refurbishment.

Based on the direct benefits of engine turn-around-time improvements and the improved
workscope prediction, reduced unnecessary maintenance, due to this forward planning gained
capability is deemed will contribute towards increased profits on the current planned engine
management costs for the fleets.

In addition, this work will also improve reliability as it will reduce the amount of time
currently required to identify a sub-fleet of affected engines against an event engine trend. A
comparison could now be carried out immediately across the complete fleet based on this
method, substantially reducing the reaction time and improving the granularity of the
assessment, reducing the number of affected engines only to those truly affected.

Business Applications BV
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12 Conclusions and Future Work

The new methods developed have been shown to address the objectives set. The business
requirements have been address and an improved method of understanding the flying fleet is
available which allows for long term planning, and detailed cost understanding.

In addition, and to address one of the main areas required at the beginning of this assessment,
the methods developed are easily transferrable between engine types and do not need detailed
technical understanding of the engine in order to establish and understand the results. This is a
key aspect as there are several similar engine fleets at different stages within the life cycle, on
which detailed understanding is not yet possible.

The transfer from the fleet assessment tools available to understand the optimized shop visit
intervals for fleet planning on engine fleets under development need to now be transferred to the
engine specific and shop visit capacity methods developed. The direct application of these
models to these new engine types is therefore a substantial benefit.

Further developments are however possible in order to improve the accuracy of the predictions
both from a mathematical point of view as well as from a qualitative data knowledge database
point. Improvements in either of these areas will directly influence the current method
capabilities.

12.1 Objective 1 - Interval-valued blind source separation applied to AI-based
prognostic fault detection

The numerical algorithm to carry out the blind source separation with interval-valued data
used an infomax criterion on the basis of an upper and lower bounds of the Kullback-Leibler
divergence which in turn, had dependence on a nearest-neighbour estimator of the density and
a Monte-Carlo simulation. The results obtained with synthetic data suggested the algorithm
was able to unmix certain signals whose combination was imprecisely perceived.

The technique was applied to the design of EHM data maps for prognostic fault detection of
engines, linking engine trend shift signatures with known failures and abnormality thresholds.
The resulting graph showed the impact of shop visits and the wear out of engines which could
be used to make short term predictions of the evolution of an engine.

In future assessments, by extending interval-valued BSS to possibilistic data, confidence
intervals of EHM variables could be used in combination with abnormality thresholds. Joint
maps of the planes within a fleet could be considered where these confidence intervals would
be part of an anomaly detector able to signal the presence of abnormal engines.

12.2 Objective 2 - Engine health monitoring for engine fleets using fuzzy
RadViz

A graphical map of the health of engine fleets was proposed. The diagnosis tool searched for
the presence of characteristic combinations of slopes in different EHM-related signals, by
means of a possibilistic pre-processing of the data and an LDA-inspired GFS which diagnosed

the deterioration level of an engine.
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The pre-processing was shown to be robust against noise in the data and the natural
differences between different types of engines. The map jointly displayed all engines within a
given fleet, and could also show the degree of confidence in the diagnosis along with the
robustness of the classification, understood as the variability of the outcome of the classifier
under changes in the bandwidth of the filter and the thresholds in the discretization of the
derivative of the signals.

In future work, the map could be used to predict the evolution of individual engines by
extrapolating the trend of different projections of the same engine.

12.3 Objective 2.1- Sequential pattern mining applied to aeroengine diagnosis
with uncertain Engine Health Monitoring data

This part of the assessment showed the potential to diagnose the level of deterioration or the
occurrence of a significant event on aeroengines through the use of EHM data applying
sequence mining techniques. Most of the engines will be diagnosed through the existing
techniques, but there are certain types of defects that will not be associated to a change in the
slope of the EHM data but as an ordered sequence of events which would be dismissed if
considered independently.

The PrefixSpan algorithm, adapted for uncertain data, has been used to mine sequences
composed of linguistic items, which in turn were fuzzy discretizations of EHM variables.
Some of the frequent sequential patterns found by this algorithm were identified as Emerging
Patterns, which were in turn established as fuzzy rules.

An extension of the characterization of an EP was proposed which improved the
generalization capabilities of the classifier for this particular problem. The results showed that
previous diagnostic methods could be improved by including the new algorithm in the
catalogue of diagnosing techniques.

In future works the prognosis problem could also be addressed in order to attempt to estimate
the remaining useful life of an engine, through a prediction of the deterioration rate of an
engine.

12.4 Objective 3 - Aeroengine prognosis through Genetic Distal Learning
applied to uncertain Engine Health Monitoring data

The prognosis method developed has shown the potential to predict the remaining life of an
engine through the use of EHM data applying Genetic Distal Learning techniques.

The supervised learning with a distal teacher paradigm, adapted for uncertain data and genetic
algorithms, has been applied in order to learn FRBS from sequences composed of fuzzy
discretizations of the different EHM variables. In turn these FRBS were used to predict the
deterioration rate of the HPC or HPT within an aeroengine.

An ageing model that integrates these instantaneous deteriorations was developed which
produced an online estimation of the remaining life of the engine. As a by-product of the
learning process, the FRBS showed that the combinations of EHM values were associated
with an increased level of deterioration for the HPC or HPT therefore detecting the cycles
where the deterioration was higher. The opposite was also shown to be true for those cases
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where reduced levels of deterioration were incurred. The results have been tested with a
representative sample of planes.

It was therefore determined that the results from previous prognostic methods could be
improved through the inclusion of the new algorithm in the existing available catalogue of
assessment techniques.

12.5 Knowledge Database

The cost of refurbishment of and engine and its associated level of strip is known determined
to be independent from its own individual level of deterioration. In many cases this is most
likely due to primary requirements in order to meet the engine build life objective or due to
group A parts being time expired. However there are many other shop visits, where the actual
costs do not align to the engines’ or modules’ own level of deterioration. It is here that this
assessment will avoid generic average workscopes and help tailor module specific workscopes
that will reduce refurbishment costs or predict with increased reaction time the amount of
workscope that the module will require.

Due to the lack of complete data, extrapolations have been made, in order to associate certain
levels of deterioration to the relevant cost and material data for engines with similar levels of
deterioration. The validation and cross reference of the number of parts replaced and cost of
refurbishment is deemed to be good substantiating evidence that the service experience
gathered to date is appropriate and although not directly representative of the engines assessed
is a good indication of the level of deterioration through the use of data from other engines
where similar levels of deterioration were identified.

In future developments, cross-references between engine types and the engine level of
knowledge needs to be updated in order to address these issues. The associated costs and their
understanding may be further refined in order to improve the accuracy of the actual hop visit
cost predictions.
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13 Publications, Patents and Awards

The assessments developed and detailed within this thesis have been submitted to several
journals and conferences and are at different stages of approval at the time of submission of this
thesis. The status here described is an actual status at the time of submission.

In addition, the innovative methodology developed to establish the possibilistic condition

understanding of an engine through the use of the multi-variable unfiltered has been the subject
of significant repercussion which is further detailed in the patents and awards subsection.

13.1 Publications

13.1.1 Interval-valued blind source separation applied to Al-based prognostic
fault detection

Authors: A Martinez, L Sanchez, I Couso

Reference: Journal of Multiple-Valued Logic and Soft Computing. Vol 22, Number 1-2, pp.
151-166 (2014)

This paper, Attachment 17.1 was raised to address the initial objective of establishing a
method which was capable of determining the distance of en engine to other known states.

This paper covered in detail the extension of blind source separation to interval valued data.

Impact factor 2012: 1.047
13.1.2 Engine health monitoring for engine fleets using fuzzy RadViz

Authors: A Martinez, L Sanchez, I Couso
Reference: Proc. FUZZ-IEEE 2013, pp 1-8. doi: 10.1109/FUZZ-IEEE.2013.6622420

This paper, Attachment 17.2 was raised to address the second objective of establishing a
method which was capable of utilizing the complete set of multi-variable data without
filtering in order to determine the deterioration condition of the engine. This paper covered
in detail the bandwidth associated fuzzy filter and its subsequent possibilistic utilization.
The paper then went on to establish a visualization method enabling a visual overview of
fleets based on their individual deterioration.

The paper was formally presented on the 8" July 2013 at the IEEE International Conference
on Fuzzy Systems 2013 conference.

Current State — Presented 8" Jul 2013 at conference
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13.1.3

Improved Life Cycle Cost — Reduced engine maintenance through engine
health monitoring genetic fuzzy system — method validation and case
study

Authors: A Martinez, L Sanchez, I Couso

This paper, Attachment 17.3 was raised to serve as a worked example and a more detailed
explanation of the paper on the use of fuzzy RadViz for EHM data management. The paper
then goes on to detail the cost and management improvements enabled by this level of
understanding prior to an engine induction.

The paper has been formally accepted for presentation on the 24™ February 2014 at the
ASME Turbo Expo 2014 conference.

Current State — Accepted, to be presented at conference

13.1.4 Sequential pattern mining applied to aeroengine diagnosis with uncertain

13.1.5

Engine Health Monitoring data

Authors: A Palacios, A Martinez, L Sanchez, I Couso

This paper, Attachment 17.4 was raised as a collaboration to determine the possible
identification of events within the engine which may only be of concern should they occur
on a specific sequence. This is, although the Compressor-Turbine equilibrium is known

there may be other unknown relations which may this way be identified and assessed.

The paper is currently under review by the Engineering Applications of Artificial
Intelligence journal

Current State — Submitted

Impact Factor 2012: 1.625

Aeroengine prognosis through Genetic Distal Learning applied to
uncertain Engine Health Monitoring data

Authors: A Martinez, L Sanchez, I Couso

This paper, Attachment 17.5 was raised to highlight the associated developed prognosis to
the possibilistic results obtained by the new deterioration identification and classification
method. The paper associates the possibilistic results to provide a prognosis of the level of
deterioration as the integral difference of the model and the original release life.

The paper has been formally accepted for presentation on the 5™ March 2014 at the 2014
IEEE International Conference on Fuzzy Systems conference.

Current State — Accepted, to be presented at conference
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13.2 Patents and awards

13.2.1 Patent

The method exposed as part of the fuzzy RadViz assessment of EHM data, Attachment 17.2
which addresses the second objective has been submitted to the European Patent Office for
formal review as a part of the patent application process. This patent application was filed
on the 10th October 2013 with an associated submission reference number 2342844 and an
application number EP13188188.

13.2.2 IEEE 2013 Outstanding Paper Award

13.2.3

This same paper, Attachment 17.2 was submitted and presented to the IEEE international
conference on fuzzy systems held at Hyderabad, India in July 2013. At this conference, the
paper was awarded the IEEE 2013 Outstanding Paper Award.

Rolls-Royce Deutschland Innovation Award — Publications

In addition, the paper, Attachment 17.2 was also awarded the First Price - Rolls-Royce
Deutschland Innovation Award — Publications.  This is a company-wide award which
includes all contributions from Rolls-Royce internally, the associated University Technology
Centres and from other associated contributions where Rolls-Royce may have had a
contribution or has shared knowledge.
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16 Appendix

16.1 Appendix 1 — Engine deterioration assessment based on strip reports

Shop Date of

visit removal CSN | HPC condition | HPT Condition
ESV-1 02.06.2006 | 8321 | normal to high | normal to high
ESV-2 15.10.2005 | 8798 | normal to high | normal to high
ESV-3 15.05.2007 | 9778 | normal to high | normal to high
ESV-4 13.10.2011 | 13426 | normal to high | normal to high
ESV-5 13.10.2011 | 13426 | normal to high | normal to high
ESV-6 06.05.2009 | 18629 | normal to high | normal

ESV-7 18.12.2008 | 7647 | normal to high | normal

ESV-8 01.05.2009 | 8361 | normal to high | normal

ESV-9 07.11.2006 | 10393 | normal to high | normal
ESV-10 06.06.2006 | 10965 | normal to high | normal
ESV-11 31.01.2008 | 11997 | normal to high | normal
ESV-12 19.10.2007 | 12100 | normal to high | normal
ESV-13 20.10.2009 | 14913 | normal to high | normal
ESV-14 10.09.2011 | 21082 | normal to high | normal
ESV-15 09.07.2012 | 22586 | normal to high | normal
ESV-16 09.07.2012 | 22586 | normal to high | normal
ESV-17 01.11.2005 | 7885 | normal to high | high

ESV-18 21.05.2005 | 8129 | normal to high | high

ESV-19 22.05.2005 | 9871 | normal to high | high

ESV-20 20.07.2005 | 11018 | normal to high | high

ESV-21 24.09.2007 | 21299 | normal to high | high

ESV-22 02.06.2006 | 4584 | normal to high | good to normal
ESV-23 09.06.2006 | 7311 | normal to high | good to normal
ESV-24 14.03.2007 | 9548 | normal to high | good to normal
ESV-25 04.03.2008 | 9844 | normal to high | good to normal
ESV-26 09.10.2007 | 9929 | normal to high | good to normal
ESV-27 19.12.2006 | 10181 | normal to high | good to normal
ESV-28 01.04.2008 | 10332 | normal to high | good to normal
ESV-29 18.01.2005 | 11115 | normal to high | good to normal
ESV-30 08.02.2006 | 12558 | normal to high | good to normal
ESV-31 06.05.2009 | 13168 | normal to high | good to normal
ESV-32 20.05.2005 | 13513 | normal to high | good to normal
ESV-33 29.09.2006 | 14705 | normal to high | good to normal
ESV-34 11.10.2008 | 14773 | normal to high | good to normal
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Shop Date of

visit removal CSN | HPC condition | HPT Condition
ESV-35 05.05.2011 | 17624 | normal to high | good to normal
ESV-36 21.02.2010 | 28218 | normal to high | good to normal
ESV-37 06.08.2012 | 19810 | normal to high | good to normal
ESV-38 28.01.2013 | 12994 | normal to high | good to normal
ESV-39 06.08.2012 | 19810 | normal to high | good to normal
ESV-40 28.01.2013 | 12994 | normal to high | good to normal
ESV-41 02.02.2003 | 4468 | normal to high | good

ESV-42 27.11.2003 | 3488 | normal to high | good

ESV-43 04.02.2004 | 3731 | normal to high | good

ESV-44 02.03.2003 | 3904 | normal to high | good

ESV-45 07.08.2002 | 3987 | normal to high | good

ESV-46 03.02.2003 | 4147 | normal to high | good

ESV-47 01.09.2003 | 4619 | normal to high | good

ESV-48 03.08.2004 | 4660 | normal to high | good

ESV-49 26.08.2004 | 5945 | normal to high | good

ESV-50 01.06.2004 | 6693 | normal to high | good

ESV-51 18.01.2005 | 6761 | normal to high | good

ESV-52 03.09.2003 | 7620 | normal to high | good

ESV-53 07.09.2010 | 15356 | normal to high | good

ESV-54 31.07.2010 | 17496 | normal to high | good

ESV-55 16.02.2006 | 12486 | normal normal to high
ESV-56 25.03.2009 | 19022 | normal normal
ESV-57 17.07.2007 | 9702 | normal normal
ESV-58 26.09.2008 | 13088 | normal normal
ESV-59 02.09.2008 | 16979 | normal normal
ESV-60 29.12.2006 | 10759 | normal high

ESV-61 15.01.2010 | 11096 | normal good

ESV-62 08.08.2012 | 17220 | normal good

ESV-63 08.08.2012 | 17220 | normal good

ESV-64 08.01.2010 | 14305 | normal nornal

ESV-65 24.04.2004 | 6127 | normal normal to high
ESV-66 29.06.2005 | 6675 | normal normal to high
ESV-67 21.02.2006 | 8959 | normal normal to high
ESV-68 06.07.2009 | 9094 | normal normal to high
ESV-69 23.06.2005 | 9225 | normal normal to high
ESV-70 27.12.2005 | 10435 | normal normal to high
ESV-71 31.01.2007 | 11076 | normal normal to high
ESV-72 28.04.2009 | 11181 | normal normal to high
ESV-73 28.03.2007 | 12060 | normal normal to high
ESV-74 29.04.2005 | 13061 | normal normal to high
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Shop Date of

visit removal CSN | HPC condition | HPT Condition
ESV-75 01.10.2005 | 13106 | normal normal to high
ESV-76 13.03.2007 | 13681 | normal normal to high
ESV-77 06.06.2007 | 13747 | normal normal to high
ESV-78 02.11.2008 | 13981 | normal normal to high
ESV-79 30.06.2007 | 14830 | normal normal to high
ESV-80 30.10.2008 | 15343 | normal normal to high
ESV-81 22.09.2008 | 15369 | normal normal to high
ESV-82 21.09.2007 | 15438 | normal normal to high
ESV-83 15.02.2009 | 17058 | normal normal to high
ESV-84 01.02.2007 | 17421 | normal normal to high
ESV-85 22.01.2011 | 19379 | normal normal to high
ESV-86 22.02.2012 | 20667 | normal normal to high
ESV-87 12.02.2009 | 22682 | normal normal to high
ESV-88 20.09.2012 | 34619 | normal normal to high
ESV-89 24.10.2012 | 20715 | normal normal to high
ESV-90 07.11.2012 | 19515 | normal normal to high
ESV-91 20.09.2012 | 34619 | normal normal to high
ESV-92 24.10.2012 | 20715 | normal normal to high
ESV-93 07.11.2012 | 19515 | normal normal to high
ESV-94 03.08.2002 | 3589 | normal normal
ESV-95 27.07.2003 | 4068 | normal normal
ESV-96 23.06.2002 | 4381 | normal normal
ESV-97 06.03.2003 | 4883 | normal normal
ESV-98 01.10.2004 | 4991 | normal normal
ESV-99 06.10.2003 | 5669 | normal normal
ESV-100 16.09.2004 | 6626 | normal normal
ESV-101 14.08.2005 | 7011 | normal normal
ESV-102 21.12.2003 | 7403 | normal normal
ESV-103 22.07.2004 | 7503 | normal normal
ESV-104 24.08.2008 | 7883 | normal normal
ESV-105 01.04.2005 | 8283 | normal normal
ESV-106 05.08.2008 | 8455 | normal normal
ESV-107 16.10.2006 | 8477 | normal normal
ESV-108 06.05.2008 | 8523 | normal normal
ESV-109 05.09.2008 | 8539 | normal normal
ESV-110 24.03.2007 | 8563 | normal normal
ESV-111 07.08.2008 | 8632 | normal normal
ESV-112 11.03.2009 | 8786 | normal normal
ESV-113 21.02.2006 | 8800 | normal normal
ESV-114 27.04.2007 | 8986 | normal normal
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Shop Date of

visit removal CSN | HPC condition | HPT Condition
ESV-115 01.08.2008 | 8996 | normal normal
ESV-116 31.10.2006 | 9268 | normal normal
ESV-117 22.04.2007 | 9309 | normal normal
ESV-118 04.04.2008 | 9355 | normal normal
ESV-119 02.10.2006 | 9356 | normal normal
ESV-120 02.02.2008 | 9428 | normal normal
ESV-121 14.11.2004 | 9436 | normal normal
ESV-122 05.09.2007 | 9490 | normal normal
ESV-123 25.04.2007 | 9503 | normal normal
ESV-124 21.07.2007 | 9724 | normal normal
ESV-125 06.06.2007 | 9734 | normal normal
ESV-126 04.03.2007 | 9780 | normal normal
ESV-127 05.10.2005 | 9836 | normal normal
ESV-128 02.04.2006 | 10230 | normal normal
ESV-129 07.08.2007 | 10300 | normal normal
ESV-130 02.05.2007 | 10351 | normal normal
ESV-131 29.09.2007 | 10457 | normal normal
ESV-132 11.11.2009 | 10567 | normal normal
ESV-133 01.05.2010 | 10815 | normal normal
ESV-134 24.06.2007 | 10823 | normal normal
ESV-135 27.06.2007 | 11151 | normal normal
ESV-136 22.08.2006 | 11373 | normal normal
ESV-137 02.11.2007 | 11513 | normal normal
ESV-138 16.09.2010 | 11731 | normal normal
ESV-139 09.04.2008 | 11734 | normal normal
ESV-140 22.03.2009 | 11933 | normal normal
ESV-141 02.04.2008 | 11975 | normal normal
ESV-142 25.06.2010 | 12234 | normal normal
ESV-143 13.01.2007 | 12417 | normal normal
ESV-144 15.03.2009 | 12662 | normal normal
ESV-145 08.03.2009 | 12663 | normal normal
ESV-146 30.10.2008 | 12726 | normal normal
ESV-147 24.02.2007 | 12970 | normal normal
ESV-148 11.02.2009 | 13100 | normal normal
ESV-149 31.01.2005 | 13162 | normal normal
ESV-150 04.04.2007 | 13206 | normal normal
ESV-151 19.11.2008 | 13234 | normal normal
ESV-152 11.06.2008 | 13284 | normal normal
ESV-153 07.07.2007 | 13354 | normal normal
ESV-154 22.02.2007 | 13361 | normal normal
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Shop Date of

visit removal CSN | HPC condition | HPT Condition
ESV-155 19.07.2007 | 13451 | normal normal
ESV-156 09.07.2009 | 13585 | normal normal
ESV-157 23.05.2006 | 13648 | normal normal
ESV-158 16.05.2012 | 13810 | normal normal
ESV-159 23.11.2008 | 13901 | normal normal
ESV-160 24.02.2008 | 14146 | normal normal
ESV-161 27.04.2008 | 14376 | normal normal
ESV-162 01.04.2009 | 14405 | normal normal
ESV-163 10.02.2009 | 14460 | normal normal
ESV-164 09.08.2009 | 14727 | normal normal
ESV-165 21.07.2007 | 14778 | normal normal
ESV-166 03.03.2010 | 15021 | normal normal
ESV-167 30.06.2008 | 15108 | normal normal
ESV-168 25.05.2008 | 15283 | normal normal
ESV-169 08.11.2007 | 15406 | normal normal
ESV-170 07.07.2009 | 15467 | normal normal
ESV-171 01.09.2010 | 16504 | normal normal
ESV-172 21.03.2009 | 16590 | normal normal
ESV-173 30.10.2008 | 16623 | normal normal
ESV-174 02.07.2008 | 16752 | normal normal
ESV-175 31.12.2009 | 16778 | normal normal
ESV-176 09.11.2012 | 16855 | normal normal
ESV-177 22.12.2009 | 16997 | normal normal
ESV-178 02.08.2007 | 17102 | normal normal
ESV-179 28.04.2009 | 17219 | normal normal
ESV-180 17.09.2008 | 17318 | normal normal
ESV-181 31.12.2010 | 17682 | normal normal
ESV-182 31.07.2009 | 18251 | normal normal
ESV-183 26.04.2011 | 18621 | normal normal
ESV-184 06.05.2007 | 19395 | normal normal
ESV-185 21.02.2008 | 19923 | normal normal
ESV-186 28.01.2008 | 20013 | normal normal
ESV-187 14.11.2007 | 20027 | normal normal
ESV-188 25.10.2007 | 20043 | normal normal
ESV-189 10.06.2007 | 20701 | normal normal
ESV-190 01.09.2011 | 21511 | normal normal
ESV-191 22.12.2007 | 21633 | normal normal
ESV-192 02.02.2009 | 22850 | normal normal
ESV-193 07.09.2010 | 26804 | normal normal
ESV-194 16.07.2012 | 19907 | normal normal
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Shop Date of

visit removal CSN | HPC condition | HPT Condition
ESV-195 26.10.2012 | 18895 | normal normal
ESV-196 11.11.2012 | 19781 | normal normal
ESV-197 14.01.2013 | 11483 | normal normal
ESV-198 04.02.2012 | 14453 | normal normal
ESV-199 28.02.2012 | 2526 | normal normal
ESV-200 29.06.2011 | 9645 | normal normal
ESV-201 16.07.2012 | 19907 | normal normal
ESV-202 26.10.2012 | 18895 | normal normal
ESV-203 11.11.2012 | 19781 | normal normal
ESV-204 14.01.2013 | 11483 | normal normal
ESV-205 04.02.2012 | 14453 | normal normal
ESV-206 28.02.2012 | 2526 | normal normal
ESV-207 29.06.2011 | 9645 | normal normal
ESV-208 08.01.2010 | 14305 | normal normal
ESV-209 14.11.2007 | 7360 | normal high

ESV-210 03.08.2005 | 10033 | normal high

ESV-211 30.04.2005 | 10604 | normal high

ESV-212 09.01.2006 | 14023 | normal high

ESV-213 20.04.2011 | 16227 | normal good to normal
ESV-214 29.10.2011 | 16613 | normal good to normal
ESV-215 12.02.2004 | 2883 | normal good to normal
ESV-216 10.07.2002 | 3096 | normal good to normal
ESV-217 18.08.2004 | 3107 | normal good to normal
ESV-218 01.07.2002 | 3527 | normal good to normal
ESV-219 04.11.2002 | 4128 | normal good to normal
ESV-220 02.06.2004 | 4348 | normal good to normal
ESV-221 16.01.2002 | 4620 | normal good to normal
ESV-222 01.02.2004 | 4793 | normal good to normal
ESV-223 08.06.2004 | 5007 | normal good to normal
ESV-224 01.04.2004 | 5354 | normal good to normal
ESV-225 21.12.2007 | 5510 | normal good to normal
ESV-226 15.04.2005 | 5966 | normal good to normal
ESV-227 15.04.2006 | 5966 | normal good to normal
ESV-228 09.03.2008 | 6620 | normal good to normal
ESV-229 28.08.2007 | 7110 | normal good to normal
ESV-230 28.09.2008 | 7130 | normal good to normal
ESV-231 10.10.2008 | 7865 | normal good to normal
ESV-232 06.11.2009 | 7974 | normal good to normal
ESV-233 21.09.2008 | 8053 | normal good to normal
ESV-234 28.04.2004 | 8346 | normal good to normal
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Shop Date of

visit removal CSN | HPC condition | HPT Condition
ESV-235 20.03.2008 | 8481 | normal good to normal
ESV-236 13.11.2008 | 8577 | normal good to normal
ESV-237 07.02.2008 | 8710 | normal good to normal
ESV-238 11.05.2008 | 9645 | normal good to normal
ESV-239 09.06.2007 | 9792 | normal good to normal
ESV-240 03.07.2007 | 10018 | normal good to normal
ESV-241 15.09.2007 | 10487 | normal good to normal
ESV-242 03.01.2005 | 11104 | normal good to normal
ESV-243 14.05.2008 | 11405 | normal good to normal
ESV-244 04.02.2010 | 11608 | normal good to normal
ESV-245 21.05.2008 | 11972 | normal good to normal
ESV-246 31.10.2008 | 12052 | normal good to normal
ESV-247 07.03.2007 | 12700 | normal good to normal
ESV-248 30.03.2008 | 12732 | normal good to normal
ESV-249 23.09.2007 | 13251 | normal good to normal
ESV-250 07.09.2008 | 13413 | normal good to normal
ESV-251 13.11.2011 | 13467 | normal good to normal
ESV-252 07.01.2009 | 13683 | normal good to normal
ESV-253 21.02.2009 | 14064 | normal good to normal
ESV-254 07.01.2007 | 14348 | normal good to normal
ESV-255 11.12.2009 | 15305 | normal good to normal
ESV-256 16.04.2012 | 16187 | normal good to normal
ESV-257 08.02.2011 | 16880 | normal good to normal
ESV-258 31.05.2007 | 17209 | normal good to normal
ESV-259 24.05.2011 | 17243 | normal good to normal
ESV-260 20.07.2009 | 18348 | normal good to normal
ESV-261 14.01.2008 | 18822 | normal good to normal
ESV-262 25.02.2012 | 19010 | normal good to normal
ESV-263 21.02.2007 | 20086 | normal good to normal
ESV-264 01.03.2011 | 20186 | normal good to normal
ESV-265 02.04.2012 | 21394 | normal good to normal
ESV-266 14.11.2012 | 23551 | normal good to normal
ESV-267 23.01.2013 | 20854 | normal good to normal
ESV-268 13.09.2012 | 19701 | normal good to normal
ESV-269 25.07.2012 | 19418 | normal good to normal
ESV-270 07.02.2012 | 12769 | normal good to normal
ESV-271 06.11.2012 | 9977 | normal good to normal
ESV-272 22.10.2012 | 6749 | normal good to normal
ESV-273 27.07.2012 | 10593 | normal good to normal
ESV-274 14.11.2012 | 23551 | normal good to normal
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Shop Date of

visit removal CSN | HPC condition | HPT Condition
ESV-275 23.01.2013 | 20854 | normal good to normal
ESV-276 13.09.2012 | 19701 | normal good to normal
ESV-277 25.07.2012 | 19418 | normal good to normal
ESV-278 07.02.2012 | 12769 | normal good to normal
ESV-279 06.11.2012 | 9977 | normal good to normal
ESV-280 22.10.2012 | 6749 | normal good to normal
ESV-281 27.07.2012 | 10593 | normal good to normal
ESV-282 03.05.2002 | 4755 | normal good

ESV-283 31.12.2009 | 16515 | normal good

ESV-284 15.05.2002 886 | normal good

ESV-285 01.11.2001 | 2345 | normal good

ESV-286 28.03.2003 | 2814 | normal good

ESV-287 28.08.2003 | 3021 | normal good

ESV-288 20.04.2004 | 3442 | normal good

ESV-289 16.09.2002 | 3930 | normal good

ESV-290 15.05.2003 | 5096 | normal good

ESV-291 29.07.2003 | 5199 | normal good
ESV-292 13.08.2003 | 5334 | normal good

ESV-293 01.02.2004 | 5416 | normal good

ESV-294 05.02.2005 | 5832 | normal good

ESV-295 06.04.2004 | 6066 | normal good

ESV-296 16.03.2004 | 6327 | normal good

ESV-297 17.06.2004 | 6482 | normal good

ESV-298 13.01.2005 | 6838 | normal good

ESV-299 15.08.2008 | 7681 | normal good

ESV-300 29.04.2009 | 7889 | normal good

ESV-301 17.03.2004 | 8486 | normal good

ESV-302 02.06.2006 | 8704 | normal good

ESV-303 08.07.2005 | 8794 | normal good

ESV-304 28.02.2007 | 9661 | normal good

ESV-305 29.07.2008 | 10020 | normal good

ESV-306 26.12.2006 | 12855 | normal good

ESV-307 30.04.2012 | 15159 | normal good

ESV-308 16.12.2010 | 15392 | normal good

ESV-309 03.05.2011 | 18644 | normal good

ESV-310 03.11.2010 | 19202 | normal good

ESV-311 21.05.2012 | 19521 | normal good
ESV-312 18.11.2010 | 20072 | normal good

ESV-313 08.06.2009 | 26157 | normal good

ESV-314 31.05.2010 | 26990 | normal good




Monitorizacion del estado de flotas de motores usando analisis inteligente de datos para informacion

intervalo-valorada y posibilistica

Shop Date of

visit removal CSN | HPC condition | HPT Condition
ESV-315 26.10.2012 | 24070 | normal good
ESV-316 28.08.2012 | 18649 | normal good
ESV-317 21.12.2012 | 20805 | normal good
ESV-318 06.12.2012 | 20930 | normal good
ESV-319 12.11.2012 | 13188 | normal good
ESV-320 24.01.2012 | 12166 | normal good

ESV-321 26.10.2012 | 24070 | normal good
ESV-322 28.08.2012 | 18649 | normal good

ESV-323 21.12.2012 | 20805 | normal good
ESV-324 06.12.2012 | 20930 | normal good
ESV-325 12.11.2012 | 13188 | normal good
ESV-326 24.01.2012 | 12166 | normal good
ESV-327 17.11.2001 | 3471 | high normal to high
ESV-328 30.12.2005 | 6781 | high normal to high
ESV-329 03.04.2010 | 9627 | high normal to high
ESV-330 17.02.2006 | 12915 | high normal to high
ESV-331 05.04.2006 | 11982 | high normal
ESV-332 08.04.2007 | 14141 | high normal
ESV-333 06.12.2005 | 5135 | high normal
ESV-334 15.11.2004 | 5223 | high normal
ESV-335 03.02.2003 | 5573 | high normal
ESV-336 01.12.2004 | 6250 | high normal
ESV-337 03.05.2009 | 6922 | high normal
ESV-338 26.03.2005 | 8719 | high normal
ESV-339 27.04.2006 | 9274 | high normal
ESV-340 06.04.2010 | 9278 | high normal
ESV-341 06.02.2008 | 11806 | high normal
ESV-342 09.06.2009 | 12697 | high normal
ESV-343 01.04.2009 | 13180 | high normal
ESV-344 12.10.2011 | 13426 | high normal
ESV-345 03.12.2009 | 14595 | high normal
ESV-346 22.12.2009 | 14766 | high normal
ESV-347 10.10.2008 | 15744 | high normal
ESV-348 24.07.2012 | 11878 | high normal
ESV-349 12.09.2010 | 6905 | high normal
ESV-350 24.07.2012 | 11878 | high normal
ESV-351 12.09.2010 | 6905 | high normal
ESV-352 16.04.2003 | 5242 | high high

ESV-353 28.10.2005 | 6538 | high high

ESV-354 01.12.2005 | 8224 | high high




Engine Health monitoring and prognosis for engine fleets using intelligent data analysis of interval-

valued and possibilistic data

Shop Date of

visit removal CSN | HPC condition | HPT Condition
ESV-355 19.09.2005 | 8740 | high high

ESV-356 01.12.2005 | 9772 | high high

ESV-357 17.10.2005 | 11094 | high high

ESV-358 27.02.2005 | 6339 | high good to normal
ESV-359 12.09.2010 | 6905 | high good to normal
ESV-360 05.02.2006 | 8692 | high good to normal
ESV-361 03.05.2006 | 10625 | high good to normal
ESV-362 16.05.2007 | 10999 | high good to normal
ESV-363 27.11.2009 | 14227 | high good to normal
ESV-364 10.08.2012 | 9812 | high good to normal
ESV-365 10.08.2012 | 9812 | high good to normal
ESV-366 24.03.2005 | 5317 | high good

ESV-367 15.03.2004 | 6674 | high good

ESV-368 01.07.2000 | 1145 | high good

ESV-369 26.03.2003 | 1792 | high good

ESV-370 06.04.2004 | 3707 | high good

ESV-371 19.10.2004 | 3938 | high good

ESV-372 10.07.2007 | 3998 | high good

ESV-373 10.03.2004 | 5745 | high good

ESV-374 04.04.2006 | 6190 | high good

ESV-375 03.04.2006 | 6386 | high good

ESV-376 03.04.2005 | 6991 | high good

ESV-377 11.03.2005 | 7264 | high good

ESV-378 10.04.2006 | 8274 | high good

ESV-379 26.03.2006 | 8719 | high good

ESV-380 08.12.2006 | 12640 | high good

ESV-381 23.02.2006 | 13846 | high good

ESV-382 12.12.2012 | 19588 | high good

ESV-383 19.11.2002 | 4951 | good to normal | normal to high
ESV-384 01.07.2007 | 5999 | good to normal | good to normal
ESV-385 17.04.2008 | 6654 | good to normal | good to normal
ESV-386 31.10.2003 | 4847 | good to normal | normal to high
ESV-387 04.12.2007 | 5499 | good to normal | normal to high
ESV-388 04.04.2008 | 9634 | good to normal | normal to high
ESV-389 02.03.2008 | 10725 | good to normal | normal to high
ESV-390 11.08.2005 | 12012 | good to normal | normal to high
ESV-391 13.02.2006 | 16028 | good to normal | normal to high
ESV-392 31.03.2007 | 19602 | good to normal | normal
ESV-393 03.09.2003 | 3629 | good to normal | normal
ESV-394 01.03.2002 | 3689 | good to normal | normal




Monitorizacion del estado de flotas de motores usando analisis inteligente de datos para informacion

intervalo-valorada y posibilistica

Shop Date of

visit removal CSN | HPC condition | HPT Condition
ESV-395 01.10.2001 | 3911 | good to normal | normal
ESV-396 01.01.2002 | 4065 | good to normal | normal
ESV-397 22.10.2002 | 4157 | good to normal | normal
ESV-398 23.07.2002 | 5052 | good to normal | normal
ESV-399 01.06.2005 | 8312 | good to normal | normal
ESV-400 03.07.2007 | 9514 | good to normal | normal
ESV-401 18.04.2007 | 9527 | good to normal | normal
ESV-402 28.01.2009 | 10929 | good to normal | normal
ESV-403 01.07.2010 | 13916 | good to normal | normal
ESV-404 01.09.2008 | 15579 | good to normal | normal
ESV-405 24.01.2008 | 18616 | good to normal | normal
ESV-406 24.03.2011 | 20243 | good to normal | normal
ESV-407 01.12.2007 | 21121 | good to normal | normal
ESV-408 06.09.2012 | 6501 | good to normal | normal
ESV-409 18.11.2011 | 14088 | good to normal | normal
ESV-410 06.09.2012 | 6501 | good to normal | normal
ESV-411 18.11.2011 | 14088 | good to normal | normal
ESV-412 05.04.2002 | 4256 | good to normal | high

ESV-413 30.05.2008 | 14577 | good to normal | high

ESV-414 20.08.2012 | 33517 | good to normal | high

ESV-415 20.08.2012 | 33517 | good to normal | high

ESV-416 01.11.2001 | 2336 | good to normal | good to normal
ESV-417 02.09.2002 | 4646 | good to normal | good to normal
ESV-418 28.05.2002 | 4913 | good to normal | good to normal
ESV-419 20.03.2005 | 6032 | good to normal | good to normal
ESV-420 15.05.2003 | 6666 | good to normal | good to normal
ESV-421 01.11.2008 | 8153 | good to normal | good to normal
ESV-422 04.02.2007 | 8459 | good to normal | good to normal
ESV-423 10.03.2009 | 9038 | good to normal | good to normal
ESV-424 07.11.2008 | 9115 | good to normal | good to normal
ESV-425 16.10.2006 | 9218 | good to normal | good to normal
ESV-426 04.02.2008 | 9564 | good to normal | good to normal
ESV-427 15.07.2007 | 10406 | good to normal | good to normal
ESV-428 20.04.2008 | 11281 | good to normal | good to normal
ESV-429 03.06.2008 | 12185 | good to normal | good to normal
ESV-430 29.06.2005 | 12383 | good to normal | good to normal
ESV-431 15.06.2008 | 12514 | good to normal | good to normal
ESV-432 21.10.2007 | 12813 | good to normal | good to normal
ESV-433 30.09.2007 | 12815 | good to normal | good to normal
ESV-434 29.04.2009 | 13255 | good to normal | good to normal




Engine Health monitoring and prognosis for engine fleets using intelligent data analysis of interval-

valued and possibilistic data

Shop Date of

visit removal CSN | HPC condition | HPT Condition
ESV-435 14.09.2008 | 14599 | good to normal | good to normal
ESV-436 01.02.2011 | 16962 | good to normal | good to normal
ESV-437 23.07.2011 | 18322 | good to normal | good to normal
ESV-438 21.02.2010 | 27858 | good to normal | good to normal
ESV-439 24.05.2012 | 35929 | good to normal | good to normal
ESV-440 01.08.2012 | 34942 | good to normal | good to normal
ESV-441 26.11.2012 | 15488 | good to normal | good to normal
ESV-442 22.03.2012 | 19875 | good to normal | good to normal
ESV-443 18.10.2012 | 20439 | good to normal | good to normal
ESV-444 20.12.2012 | 19607 | good to normal | good to normal
ESV-445 01.08.2012 | 34942 | good to normal | good to normal
ESV-446 26.11.2012 | 15488 | good to normal | good to normal
ESV-447 22.03.2012 | 19875 | good to normal | good to normal
ESV-448 18.10.2012 | 20439 | good to normal | good to normal
ESV-449 20.12.2012 | 19607 | good to normal | good to normal
ESV-450 18.11.2002 | 2436 | good to normal | good

ESV-451 27.07.2008 | 16565 | good to normal | good

ESV-452 02.11.2003 | 2162 | good to normal | good

ESV-453 18.11.2001 | 2422 | good to normal | good

ESV-454 17.12.2004 | 2783 | good to normal | good

ESV-455 01.10.2003 | 3048 | good to normal | good

ESV-456 30.09.2003 | 3200 | good to normal | good

ESV-457 27.03.2003 | 3744 | good to normal | good

ESV-458 01.09.2007 | 4062 | good to normal | good

ESV-459 22.05.2002 | 4155 | good to normal | good

ESV-460 08.12.2003 | 4251 | good to normal | good

ESV-461 15.12.2001 | 4377 | good to normal | good

ESV-462 03.02.2003 | 4469 | good to normal | good

ESV-463 11.07.2002 | 4530 | good to normal | good

ESV-464 30.08.2002 | 4992 | good to normal | good

ESV-465 14.11.2003 | 5093 | good to normal | good

ESV-466 02.12.2004 | 6171 | good to normal | good

ESV-467 01.02.2004 | 7622 | good to normal | good

ESV-468 05.09.2007 | 8607 | good to normal | good

ESV-469 01.04.2007 | 9044 | good to normal | good

ESV-470 18.09.2007 | 10159 | good to normal | good

ESV-471 16.11.2006 | 10180 | good to normal | good

ESV-472 04.12.2010 | 11809 | good to normal | good

ESV-473 08.11.2008 | 13898 | good to normal | good

ESV-474 18.12.2007 | 14425 | good to normal | good




Monitorizacion del estado de flotas de motores usando analisis inteligente de datos para informacion
intervalo-valorada y posibilistica

Shop Date of

visit removal CSN | HPC condition | HPT Condition
ESV-475 28.01.2011 | 17055 | good to normal | good
ESV-476 03.05.2011 | 32048 | good to normal | good
ESV-477 06.12.2012 | 21892 | good to normal | good
ESV-478 26.09.2012 | 23678 | good to normal | good
ESV-479 06.08.2012 | 12518 | good to normal | good
ESV-480 04.12.2010 | 11809 | good to normal | good
ESV-481 24.10.2012 | 20460 | good to normal | good
ESV-482 14.08.2012 | 19198 | good to normal | good
ESV-483 01.07.2012 | 10371 | good to normal | good
ESV-484 17.07.2012 | 14442 | good to normal | good
ESV-485 06.12.2012 | 21892 | good to normal | good
ESV-486 26.09.2012 | 23678 | good to normal | good
ESV-487 06.08.2012 | 12518 | good to normal | good
ESV-488 04.12.2010 | 11809 | good to normal | good
ESV-489 24.10.2012 | 20460 | good to normal | good
ESV-490 14.08.2012 | 19198 | good to normal | good
ESV-491 01.07.2012 | 10371 | good to normal | good
ESV-492 17.07.2012 | 14442 | good to normal | good
ESV-493 01.11.2011 | 9435 | good normal to high
ESV-494 18.09.2006 | 11714 | good normal to high
ESV-495 16.04.2009 | 18579 | good normal
ESV-496 07.08.2002 | 4394 | good high

ESV-497 26.06.2012 | 12859 | good good to normal
ESV-498 26.06.2012 | 12859 | good good to normal
ESV-499 18.11.2009 | 18249 | good normal to high
ESV-500 17.09.2010 | 21566 | good normal to high
ESV-501 29.05.2002 | 5057 | good normal to high
ESV-502 05.01.2003 | 5495 | good normal to high
ESV-503 01.03.2005 | 9362 | good normal to high
ESV-504 05.07.2002 | 2652 | good normal to high
ESV-505 01.01.2003 | 5065 | good normal to high
ESV-506 20.12.2003 | 5042 | good normal to high
ESV-507 24.06.2004 | 6841 | good normal
ESV-508 01.02.2011 | 14719 | good normal
ESV-509 29.03.2009 | 17613 | good normal
ESV-510 18.04.2006 | 12656 | good normal
ESV-511 24.06.2002 | 4967 | good normal
ESV-512 11.02.2008 | 17051 | good normal
ESV-513 18.09.2002 | 3748 | good normal
ESV-514 04.06.2009 | 14312 | good normal




Engine Health monitoring and prognosis for engine fleets using intelligent data analysis of interval-
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Shop Date of

visit removal CSN | HPC condition | HPT Condition
ESV-515 31.10.2011 | 18928 | good normal
ESV-516 03.06.2007 | 11087 | good normal
ESV-517 01.03.2003 | 4942 | good normal
ESV-518 08.04.2009 | 14152 | good normal
ESV-519 14.06.2005 | 8749 | good normal
ESV-520 27.04.2005 | 8791 | good normal
ESV-521 08.12.2009 | 14538 | good normal
ESV-522 02.09.2011 | 20497 | good normal
ESV-523 29.04.2002 | 2202 | good normal
ESV-524 01.01.2009 | 24077 | good normal
ESV-525 18.08.2009 | 15473 | good normal
ESV-526 03.03.2004 | 6195 | good normal
ESV-527 06.12.2011 | 11142 | good normal
ESV-528 15.11.2004 | 10252 | good normal
ESV-529 14.11.2008 | 13961 | good normal
ESV-530 01.12.2010 | 1747 | good normal
ESV-531 11.10.2010 | 21357 | good high

ESV-532 12.11.2004 | 10119 | good high

ESV-533 30.01.2013 | 36721 | good high

ESV-534 30.01.2013 | 36721 | good high

ESV-535 05.03.2002 | 4860 | good good to normal
ESV-536 13.06.2007 | 14102 | good good to normal
ESV-537 19.04.2010 | 17269 | good good to normal
ESV-538 01.07.2008 | 13029 | good good to normal
ESV-539 07.12.2011 | 17563 | good good to normal
ESV-540 01.03.2012 | 20427 | good good to normal
ESV-541 28.09.2006 | 12628 | good good to normal
ESV-542 14.10.2011 | 19502 | good good to normal
ESV-543 19.05.2010 | 17269 | good good to normal
ESV-544 29.04.2010 | 17021 | good good to normal
ESV-545 06.10.2003 | 5587 | good good to normal
ESV-546 24.10.2004 | 12112 | good good to normal
ESV-547 01.06.2010 | 16394 | good good to normal
ESV-548 13.07.2008 | 13728 | good good to normal
ESV-549 18.09.2007 | 12624 | good good to normal
ESV-550 20.06.2002 | 4144 | good good to normal
ESV-551 07.10.2008 | 13960 | good good to normal
ESV-552 15.01.2003 | 5382 | good good to normal
ESV-553 06.10.2003 | 3533 | good good to normal
ESV-554 04.02.2009 | 13281 | good good to normal




Monitorizacion del estado de flotas de motores usando analisis inteligente de datos para informacion
intervalo-valorada y posibilistica

Shop Date of
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ESV-555 01.12.2008 | 12947 | good good to normal
ESV-556 01.12.2010 | 16336 | good good to normal
ESV-557 16.02.2007 | 8789 | good good to normal
ESV-558 21.12.2010 | 14690 | good good to normal
ESV-559 30.04.2010 | 11613 | good good to normal
ESV-560 01.09.2010 | 7104 | good good to normal
ESV-561 18.06.2012 | 6800 | good good to normal
ESV-562 24.11.2009 | 8187 | good good to normal
ESV-563 29.11.2011 | 8305 | good good to normal
ESV-564 24.02.2009 | 5842 | good good to normal
ESV-565 15.01.2003 | 2146 | good good

ESV-566 03.01.2009 | 12774 | good good

ESV-567 10.08.2007 | 11994 | good good

ESV-568 20.07.2009 | 18259 | good good

ESV-569 30.03.2001 | 2487 | good good

ESV-570 01.06.2003 | 5268 | good good

ESV-571 01.08.2003 | 2607 | good good

ESV-572 25.03.2004 | 3640 | good good

ESV-573 13.05.2005 | 8422 | good good

ESV-574 12.08.2011 | 18433 | good good

ESV-575 29.11.2004 | 8857 | good good

ESV-576 30.12.2008 | 17311 | good good

ESV-577 07.10.2009 | 16981 | good good

ESV-578 21.05.2009 | 16946 | good good

ESV-579 01.01.2000 376 | good good

ESV-580 13.06.2005 | 4934 | good good

ESV-581 28.06.2009 | 16274 | good good

ESV-582 13.07.2009 | 18394 | good good

ESV-583 25.05.2011 | 18266 | good good

ESV-584 13.06.2010 | 17474 | good good

ESV-585 21.01.2009 | 18491 | good good

ESV-586 26.04.2009 | 15430 | good good

ESV-587 04.12.2005 | 10040 | good good

ESV-588 24.02.2009 | 16715 | good good

ESV-589 07.07.2009 | 15781 | good good

ESV-590 29.01.2010 | 18071 | good good

ESV-591 07.10.2011 | 20819 | good good

ESV-592 01.04.2003 | 4789 | good good

ESV-593 05.05.2010 | 16428 | good good

ESV-594 01.11.2010 | 17944 | good good
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ESV-595 24.11.2009 | 13682 | good good
ESV-596 18.10.2008 | 16274 | good good
ESV-597 29.06.2010 | 19217 | good good
ESV-598 17.01.2012 | 19050 | good good
ESV-599 28.06.2009 | 17791 | good good
ESV-600 01.04.2002 | 4585 | good good
ESV-601 17.06.2009 | 18041 | good good
ESV-602 15.05.2009 | 15172 | good good
ESV-603 01.12.2004 | 4249 | good good
ESV-604 07.07.2011 | 19004 | good good
ESV-605 21.11.2008 | 18400 | good good
ESV-606 03.03.2010 | 12984 | good good
ESV-607 13.04.2010 | 16086 | good good
ESV-608 14.07.2009 | 14956 | good good
ESV-609 02.12.2009 | 15083 | good good
ESV-610 01.09.2009 | 16195 | good good
ESV-611 03.12.2011 | 18282 | good good
ESV-612 08.03.2010 | 18365 | good good
ESV-613 08.12.2009 | 18227 | good good
ESV-614 21.09.2002 | 5894 | good good
ESV-615 08.05.2008 | 17369 | good good
ESV-616 26.05.2009 | 14600 | good good
ESV-617 07.07.2011 | 20926 | good good
ESV-618 01.10.2001 7 | good good
ESV-619 19.10.2011 | 17520 | good good
ESV-620 26.09.2002 | 3732 | good good
ESV-621 01.09.2004 979 | good good
ESV-622 07.12.2009 | 7115 | good good
ESV-623 14.12.2010 | 7717 | good good
ESV-624 26.10.2009 | 17019 | good good
ESV-625 01.09.2003 | 2416 | good good
ESV-626 19.12.2009 | 13971 | good good
ESV-627 09.06.2011 | 18143 | good good
ESV-628 01.09.2008 | 17803 | good good
ESV-629 23.06.2009 | 14327 | good good
ESV-630 01.09.2010 | 16510 | good good
ESV-631 30.09.2009 | 15624 | good good
ESV-632 07.02.2011 | 20224 | good good
ESV-633 20.11.2003 | 2645 | good good
ESV-634 02.04.2002 | 2944 | good good
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intervalo-valorada y posibilistica

Shop Date of
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ESV-635 19.07.2009 | 16776 | good good
ESV-636 15.08.2002 | 2160 | good good
ESV-637 02.09.2009 | 13746 | good good
ESV-638 22.08.2006 | 8312 | good good
ESV-639 07.06.2009 | 12668 | good good
ESV-640 16.07.2010 | 17778 | good good
ESV-641 25.04.2003 | 5152 | good good
ESV-642 19.12.2009 | 18750 | good good
ESV-643 10.10.2004 | 5372 | good good
ESV-644 27.02.2010 | 17498 | good good
ESV-645 20.07.2007 | 12408 | good good
ESV-646 23.07.2010 | 16250 | good good
ESV-647 15.10.2009 | 16929 | good good
ESV-648 15.08.2005 | 8819 | good good
ESV-649 18.05.2008 | 14141 | good good
ESV-650 22.06.2010 | 18661 | good good
ESV-651 20.06.2009 | 15993 | good good
ESV-652 27.07.2009 | 14959 | good good
ESV-653 18.01.2002 | 3724 | good good
ESV-654 10.10.2008 | 25241 | good good
ESV-655 11.10.2009 | 27987 | good good
ESV-656 13.12.2010 | 30907 | good good
ESV-657 03.04.2002 | 4405 | good good
ESV-658 12.05.2008 | 24239 | good good
ESV-659 26.04.2010 | 30616 | good good
ESV-660 25.03.2002 | 4160 | good good
ESV-661 07.09.2008 | 23568 | good good
ESV-662 16.06.2010 | 28938 | good good
ESV-663 19.04.2002 | 4650 | good good
ESV-664 16.03.2003 | 4956 | good good
ESV-665 13.07.2009 | 14412 | good good
ESV-666 17.10.2011 | 17715 | good good
ESV-667 18.06.2008 | 12016 | good good
ESV-668 26.05.2009 | 16019 | good good
ESV-669 08.02.2012 | 18511 | good good
ESV-670 13.05.2009 | 14023 | good good
ESV-671 22.06.2011 | 17089 | good good
ESV-672 11.11.2003 | 3289 | good good
ESV-673 01.06.2009 | 13927 | good good
ESV-674 18.07.2010 | 15728 | good good
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ESV-675 29.11.2011 | 18152 | good good
ESV-676 09.07.2003 | 6513 | good good
ESV-677 16.09.2009 | 26361 | good good
ESV-678 03.09.2011 | 32637 | good good
ESV-679 02.09.2009 | 15188 | good good
ESV-680 06.11.2009 | 17677 | good good
ESV-681 30.06.2006 | 8800 | good good
ESV-682 10.11.2009 | 16555 | good good
ESV-683 21.06.2011 | 17753 | good good
ESV-684 20.12.2008 | 23145 | good good
ESV-685 16.11.2009 | 26018 | good good
ESV-686 21.03.2011 | 30492 | good good
ESV-687 04.06.2002 | 4454 | good good
ESV-688 29.09.2008 | 13763 | good good
ESV-689 28.04.2010 | 16795 | good good
ESV-690 31.10.2011 | 19587 | good good
ESV-691 29.10.2009 | 16451 | good good
ESV-692 17.09.2003 | 2961 | good good
ESV-693 21.02.2002 | 3022 | good good
ESV-694 09.03.2009 | 24050 | good good
ESV-695 25.02.2009 | 26236 | good good
ESV-696 25.10.2010 | 30804 | good good
ESV-697 27.08.2011 | 13891 | good good
ESV-698 28.06.2009 | 15862 | good good
ESV-699 07.01.2010 | 14893 | good good
ESV-700 14.11.2011 | 22261 | good good
ESV-701 01.09.2001 | 1072 | good good
ESV-702 15.01.2010 | 28562 | good good
ESV-703 03.11.2009 | 19375 | good good
ESV-704 18.03.2009 | 22448 | good good
ESV-705 22.02.2010 | 25642 | good good
ESV-706 03.09.2002 | 4488 | good good
ESV-707 02.02.2010 | 26030 | good good
ESV-708 01.01.2009 | 25369 | good good
ESV-709 16.11.2009 | 27088 | good good
ESV-710 23.03.2011 | 30228 | good good
ESV-711 01.09.2008 | 24453 | good good
ESV-712 15.06.2009 | 27435 | good good
ESV-713 07.04.2011 | 33442 | good good
ESV-714 05.11.2011 | 34782 | good good
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Shop Date of

visit removal CSN | HPC condition | HPT Condition
ESV-715 20.04.2009 | 12742 | good good
ESV-716 29.09.2011 | 19100 | good good
ESV-717 16.12.2008 | 16351 | good good
ESV-718 22.08.2010 | 19432 | good good
ESV-719 27.07.2009 | 14816 | good good
ESV-720 20.03.2010 | 13259 | good good
ESV-721 28.01.2012 | 14890 | good good
ESV-722 01.10.2008 | 22679 | good good
ESV-723 17.04.2008 | 20394 | good good
ESV-724 06.01.2009 | 25530 | good good
ESV-725 21.12.2009 | 28576 | good good
ESV-726 02.03.2006 | 8781 | good good
ESV-727 10.10.2011 | 18923 | good good
ESV-728 26.02.2011 | 18628 | good good
ESV-729 09.07.2010 | 16922 | good good
ESV-730 15.10.2009 | 11553 | good good
ESV-731 11.07.2010 | 13082 | good good
ESV-732 27.06.2010 | 9087 | good good
ESV-733 25.09.2010 | 11841 | good good
ESV-734 06.05.2011 | 12713 | good good
ESV-735 04.02.2010 | 9338 | good good
ESV-736 11.12.2006 | 9527 | good good
ESV-737 28.06.2011 | 16105 | good good
ESV-738 01.10.2010 | 14774 | good good
ESV-739 10.01.2007 | 9707 | good good
ESV-740 02.12.2011 | 18402 | good good
ESV-741 28.10.2008 | 20997 | good good
ESV-742 18.05.2009 | 23834 | good good
ESV-743 23.02.2003 | 1165 | good good
ESV-744 15.04.2007 | 9093 | good good
ESV-745 27.05.2009 | 13086 | good good
ESV-746 07.12.2002 23 | good good
ESV-747 06.01.2009 | 13532 | good good
ESV-748 27.09.2010 | 16583 | good good
ESV-749 25.09.2008 | 20856 | good good
ESV-750 09.09.2010 | 26893 | good good
ESV-751 04.12.2008 | 24224 | good good
ESV-752 19.10.2009 | 26968 | good good
ESV-753 28.11.2011 | 33290 | good good
ESV-754 01.11.2010 | 16943 | good good
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Shop Date of

visit removal CSN | HPC condition | HPT Condition
ESV-755 13.01.2002 124 | good good
ESV-756 30.04.2002 505 | good good
ESV-757 20.11.2009 | 15836 | good good
ESV-758 05.07.2011 | 18341 | good good
ESV-759 09.01.2010 | 18840 | good good
ESV-760 01.08.2008 | 22448 | good good
ESV-761 01.09.2011 | 18965 | good good
ESV-762 09.05.2008 | 21530 | good good
ESV-763 11.05.2009 | 24826 | good good
ESV-764 08.07.2010 | 27814 | good good
ESV-765 11.10.2011 | 30956 | good good
ESV-766 01.08.2002 968 | good good
ESV-767 25.08.2011 | 18184 | good good
ESV-768 28.02.2005 | 5558 | good good
ESV-769 17.09.2009 | 14746 | good good
ESV-770 20.12.2010 | 16835 | good good
ESV-771 22.04.2009 | 13645 | good good
ESV-772 04.06.2009 | 14125 | good good
ESV-773 20.07.2011 | 17103 | good good
ESV-774 25.08.2003 | 1518 | good good
ESV-775 16.08.2007 | 9684 | good good
ESV-776 15.06.2009 | 13134 | good good
ESV-777 16.11.2009 | 14328 | good good
ESV-778 14.12.2011 | 17839 | good good
ESV-779 11.05.2009 | 13945 | good good
ESV-780 02.11.2010 | 16311 | good good
ESV-781 28.02.2010 | 17510 | good good
ESV-782 26.12.2011 | 19898 | good good
ESV-783 08.08.2010 | 15786 | good good
ESV-784 24.06.2009 | 13362 | good good
ESV-785 18.02.2007 | 9056 | good good
ESV-786 23.09.2008 | 12792 | good good
ESV-787 11.09.2011 | 16544 | good good
ESV-788 09.12.2002 7 | good good
ESV-789 21.06.2008 | 10628 | good good
ESV-790 29.09.2009 | 13772 | good good
ESV-791 11.06.2009 | 12973 | good good
ESV-792 01.08.2009 | 13027 | good good
ESV-793 30.03.2009 | 23843 | good good
ESV-794 24.02.2010 | 26848 | good good
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Shop Date of

visit removal CSN | HPC condition | HPT Condition
ESV-795 21.06.2009 | 12970 | good good
ESV-796 10.12.2008 | 11940 | good good
ESV-797 01.05.2009 | 11037 | good good
ESV-798 05.12.2011 | 11725 | good good
ESV-799 19.02.2010 | 12733 | good good
ESV-800 03.03.2010 | 10511 | good good
ESV-801 04.03.2010 | 11105 | good good
ESV-802 08.04.2010 | 14340 | good good
ESV-803 09.06.2010 | 11524 | good good
ESV-804 15.08.2010 | 12169 | good good
ESV-805 30.12.2010 | 12456 | good good
ESV-806 07.05.2010 | 10805 | good good
ESV-807 03.08.2011 | 12965 | good good
ESV-808 01.08.2011 | 13337 | good good
ESV-809 14.05.2010 | 11051 | good good
ESV-810 26.01.2010 | 9886 | good good
ESV-811 18.06.2010 | 10871 | good good
ESV-812 04.06.2010 | 10053 | good good
ESV-813 16.09.2009 | 7720 | good good
ESV-814 17.02.2010 | 8943 | good good
ESV-815 30.03.2011 | 11340 | good good
ESV-816 02.06.2008 | 4581 | good good
ESV-817 19.02.2009 | 5222 | good good
ESV-818 27.02.2012 | 6719 | good good
ESV-819 11.07.2009 | 5808 | good good
ESV-820 06.11.2008 | 4319 | good good
ESV-821 11.03.2009 | 5928 | good good
ESV-822 04.03.2009 | 5672 | good good
ESV-823 10.07.2010 | 6405 | good good
ESV-824 01.08.2008 | 4950 | good good
ESV-825 05.12.2010 | 8102 | good good
ESV-826 14.04.2008 | 4020 | good good
ESV-827 25.11.2008 | 4442 | good good
ESV-828 18.01.2012 | 4917 | good good
ESV-829 12.10.2010 | 3431 | good good
ESV-830 29.06.2009 | 3220 | good good
ESV-831 22.06.2010 | 6374 | good good
ESV-832 27.02.2011 | 2983 | good good
ESV-833 09.01.2012 989 | good good
ESV-834 22.08.2012 | 23750 | good good
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Shop Date of

visit removal CSN | HPC condition | HPT Condition
ESV-835 05.12.2012 | 16083 | good good
ESV-836 08.10.2012 | 19870 | good good
ESV-837 28.11.2012 | 34734 | good good
ESV-838 28.08.2012 | 19493 | good good
ESV-839 09.07.2012 | 11315 | good good
ESV-840 30.07.2012 | 7826 | good good
ESV-841 23.07.2012 | 11803 | good good
ESV-842 15.08.2012 | 7165 | good good
ESV-843 22.08.2012 | 23750 | good good
ESV-844 05.12.2012 | 16083 | good good
ESV-845 08.10.2012 | 19870 | good good
ESV-846 28.11.2012 | 34734 | good good
ESV-847 28.08.2012 | 19493 | good good
ESV-848 09.07.2012 | 11315 | good good
ESV-849 30.07.2012 | 7826 | good good
ESV-850 23.07.2012 | 11803 | good good
ESV-851 15.08.2012 | 7165 | good good
ESV-852 11.02.2007 | 5185 | bad bad
ESV-853 12.10.2011 | 16735 | bad bad
ESV-854 10.01.2011 | 9825 | bad unknown
ESV-855 27.12.2010 | 10688 | bad unknown
ESV-856 20.06.2010 | 15347 | bad unknown
ESV-857 20.12.2011 | 16206 | bad unknown
ESV-858 02.01.2012 | 18456 | bad unknown
ESV-859 23.02.2002 | 4878 | bad normal to high
ESV-860 23.05.2006 | 15499 | bad normal to high
ESV-861 28.01.2006 | 7413 | bad normal
ESV-862 02.03.2011 | 20472 | bad normal
ESV-863 09.12.2006 | 12243 | bad high
ESV-864 27.05.2008 | 20780 | bad good to normal
ESV-865 03.08.2004 | 3688 | bad good
ESV-866 24.07.2009 | 13096 | bad good
ESV-867 24.10.2002 | 2393 | bad bad
ESV-868 31.05.2007 | 3820 | bad bad
ESV-869 02.11.2004 | 7664 | bad bad
ESV-870 14.09.2004 | 7928 | bad bad
ESV-871 29.01.2008 | 8273 | bad bad
ESV-872 21.07.2007 | 8712 | bad bad
ESV-873 12.11.2004 | 8881 | bad bad
ESV-874 17.05.2005 | 9008 | bad bad
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visit removal CSN | HPC condition | HPT Condition
ESV-875 15.08.2006 | 9396 | bad bad
ESV-876 04.11.2007 | 9679 | bad bad
ESV-877 27.08.2005 | 9942 | bad bad
ESV-878 22.08.2004 | 10040 | bad bad
ESV-879 20.02.2008 | 11994 | bad bad
ESV-880 01.12.2005 | 12079 | bad bad
ESV-881 16.07.2008 | 12343 | bad bad
ESV-882 16.07.2008 | 12343 | bad bad
ESV-883 28.07.2007 | 12351 | bad bad
ESV-884 06.04.2009 | 13089 | bad bad
ESV-885 04.12.2008 | 13266 | bad bad
ESV-886 22.09.2009 | 13361 | bad bad
ESV-887 27.02.2006 | 13465 | bad bad
ESV-888 27.05.2011 | 13675 | bad bad
ESV-889 13.11.2009 | 14395 | bad bad
ESV-890 08.04.2007 | 14833 | bad bad
ESV-891 28.05.2009 | 15275 | bad bad
ESV-892 15.10.2006 | 16118 | bad bad
ESV-893 27.09.2009 | 16620 | bad bad
ESV-894 20.01.2008 | 18958 | bad bad
ESV-895 10.09.2007 | 21008 | bad bad
ESV-896 13.10.2011 | 21498 | bad bad
ESV-897 04.12.2007 | 22208 | bad bad
ESV-898 19.08.2008 | 23228 | bad bad
ESV-899 21.05.2010 | 27119 | bad bad
ESV-900 13.04.2009 | 27515 | bad bad
ESV-901 27.02.2011 | 29923 | bad bad
ESV-902 10.02.2012 | 32037 | bad bad
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The design of user-friendly plots of Equipment Health Manage-
ment (EHM) data for prognostic fault detection of aircraft en-
gines is addressed. EHM plots link trend shift signatures, orig-
inated in cruise data of the engine being diagnosed, either with
prototypes of specific known events or abnormal signatures de-
rived from service data. Abnormalities are expressed as thresh-
olds that must not be exceedad. EHM data. prototype and abnor-
mality signatures are regarded as a mix of different sources and
transformed with a new computational procedure that extends
Blind Source Separation to inerval-valued data.

1 INTRODUCTION

Air travel safety has always been imperative, however most if not all of the
safety containment is carried out within the context of mliability. The best
method to control reliability is through the continuous monitoring of any sy s-
tem. It is to this effect that Equipment Health Management (EHM) was intro-
duced to aero engines [23].
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EHM has evolved from an initial turbine temperature measurement to the
current complex number of possibilities when it comes to designing an asro
engine. EHM today is not only used as an engine gauge, but also to contin-
uously monitor its efficiency and reliability. In addition, EHM can also he
used as a predictive tool as it holds all of the engine deterioration data of the
engine. Early proactive engine shop visits will avoid possible events and will
improve the overall flzet reliability. Proactive engine pulls are however driven
based on experience. Based on the understanding of the engine deterioration
and previous experience on similar engines, it is possible to identify engines
with a higher level of deterioration. The use of the tools however is still at
its infancy for engine overhaul planning [1[3[[12]1[14][16][18][19][25][26].
The method to proactively identify deteriorated engines or engines which may
deteriorate in the long-term is still not established.

The eventual objective of this study is to use the EHM data from a proac-
tive perspective, identifying engine deterioration as it occurs. This is, to mon-
itor the engine from the moment it is releasad and to consider every data
point individually. Through this, the specific small daily accumulated levels
of deterioration will be identified. Once plotied in a user-friendly manner, an
engine ranking may be produced to comelate the most deteriorated engines
s0 that the limited number of available overhaul slots may be optimized. In
addition, the comrelation will also account for the cost of these future shop
visits, in order to optimize the engine ranking for (1) reliability but mast im-
portantly (2) for a cost effective and planned overview of the status of the fleet
and overhaul facility capabilities.

The present contribution deals with the first stage of the prognostic fault
detection, that is the design of a user-friendly plot of the EHM data points
and, in particular, the design of maps of trend shift signatures originated in
three different processes:

1. Cruise data of the engine being diagnosed, expressed as increments
with respect to an engine model at the same flight condition.

ra

. Data prototypes of specific failures, in the same format.

3. Abnormality signatures derived from service data, expressed as thresh-
olds that should not be exceeded.

Abnormalities are detected when a signature bears a high similarity to a
prototype or lies above a specified threshold. With the help of the proposed
maps. prognosis of known events and assessment of deterioration is possible
by visual examination of the tends in the evolution of the signature of the
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engine. It is possible to delect whether the predicied signature is likely to
cOme near a prototype or lies out of the confidence intervals defined by the
Performance depariment.

Most known events and deeerioration types influence more than one of
the variables being monitored at any one time, thus each variable must be
megarded as a mix of different effects. Monitored variables must be broken
down into their constituent pans, for these can be related to the evolution of
the health of the engine. This problem is analogous to Blind Source Separa-
tion (BSS) [5]. However, the conventional formulation of BSS is not com-
patible with data comprising intervals or thresholds. Because of this, the first
part of this study {Section 2) describes a new computational technique that
exiznds BSS to interval-valued data This technique is applizd to actual EHM
data in Szction 3, and the results discussed. The paper finishes in Section 4,
with the concluding remarks and future directions of research.

2 INTERVAL-VALUED BLIND SOURCE SEFARATION

There exist many practical situations where certain signals of interest cannot
he individually perceived but only scaled mixturas are available. For exam-
ple. the electrocardiogram of a pregnant woman contains both signals of the
mother and the unbom child, or radar and sonar data taken from differznt
places can be combined to build a map. In these two examples, the arrange-
ment of the sensors determines the weights of the different sources in the
compound signals.

Blind Source Separation (BSS) is a numerical method for isolating a set
of signals from different linear combinations of them. In doing so, linear in-
dependence between the signals is assumed. The adjective “blind” expresses
the lack of knowledge about the distribution of the original signals and about
their relative importances in the available mixes.

BSS aims to express data in erms of a linear combination of V indepen-
dent latent variables called independent components. Let the laent variables
or sources comprise 2 multivalued time series s, k= 1,..., T, with s, =

(g4 --.8np) & = 1,...,N. The observed data are x,, & = 1,...,T,

with ¢, = (Tyg. ..., 7). Lot X and 5 be the matrices |J.'|k: and :&Lg-].
mespectively, and let A be an unknown N = N mixing matrix such that

X —AS. i

The purpose of BSS is to find a de-mixing matrix W such that the rows of the
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outpul matrix
Y=wWX (2)

are statistically independent. W and A~ are related by scale and rotation
transforms. BSS is tackled through Independent Component Analysis (ICA}
techniques [10]. which in turn have been solved with neural networks, in-
formation maximization. gradient leaming. maximum likelihood, nonlinear
component analysis and other mathe matical methods [9].

As mentioned, interval-valued abnormality signatures [15] are present in
the problem at hand that cannot be addressed with ordinary ICA algorithms
[8]. There exists algorithms in the literature that solve principal component
analysis problems for interval-valued and fuzzy data [6] [11] [17] [22] [24]
however BSS has not been generalized yel. In this section a new BSS tech-
nique is proposad that may be applied to interval data.

21 Infomax-based BSS for interval valued daia

Let the observed data comprise iniervals e, x| &= 1.... T  withx, =
(T Ty and xf = (xf. . . cl ). These intervals are arranged in a
matrix X; whose elements are intervals [z, «}]. i = 1,... N. Each term
of the product 4.5 will be contained within the corresponding interval of X,

N
T, = Zam*?nk =, (3)
=1

or adopting a simpler notation
AS e Xy, )

The purpose of the proposed interval-valued BSS is to find a de-mixing matrix
W such that ¥ independent random variables )y, ... My exist, such that

(i ¥ ) is 3 random sample of ), and vy, € [y, v} ] where
N
lyﬁ.;!-l.-:l = { Z Wi Tk |In:k S II;J‘: I;k_} (3}
-

or, defining a matrix Y7 whose terms are the intervals [y, yfj‘
Y =WX;. (6)

Under independence, both the joint cumulative distribution function {cdf)
and the probability density function (df) are product of their marginal dis-
tributions or densities. Testing for independence often depends on a diver-
pence between the estimated joint cdf or df and the product of the estimated
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marginals [13]. The same premise applies to the different ICA principles
of maximum likelihood e stimation, mutual information minimization, infor-
malion maximization and negentropy maximization [4][9]. In particular, the
information maximization criterion (infomax) is equivalent o the minimiza-
tion of Kullback-Leibler (KL) divergence between the distribution of ¥ and
the product of their marginals. In the present contribution, it will be assumed
that ¥ provides incomplete information about the sample distribution of ¥,
and there fore each candidate matrix W will be associated with a set of values
of the KL divergence, as shown below.

1.2 Estimation of the KL divergence for interval data
Let the matrix ¥ be considered such that it is a sample of a random vector ,
and let ¥ be an interval-valued matrix with elements [y, 4} such that

Yok € [ Ul (7)

Let it also be assumed that ¥ is unknown thus all the available information
about ' is given by 7. Let S (yg) be a sphere of radius « centered in a
point wp = (wga, . ... uow ). IF 2 sample ¥ = [y of ) was available, then
the density function of ) in ¥ could be approximated by the fraction of the
sample elements that belong to S, (yp) divided by the volume of this sphem

71 Let
La(x) = {:] :;E . (8)
s = 13 Y, sl 5,000
Fotw) = 3 TR ©

whare vol(e) is the volume of Sc(wn). As a particular case, the nearest neigh-
bor (NN} estimation consists in defining e as the distance between yo and the
nearest column of ¥ thus the numerator of Eq. 9 is always 1.

The extension of the NN estimator to interval data consists in defining two
functions f; and 7, that bound the values of fy(x). Let Vy be a cell

Vi = {{z1.- -2 | 21 € [y il }- (10

Let e be the radius of the smallest sphere centered in 4, that completely con-
tains one of the calls 15, ie.

N
€ = min { ma—‘{{Z'{:lk —u)?)? | 2k € [ y,*;]}}. (1
k=1
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The upper and lower estimations of f];[yc.] are

E Livans, (o) 0}

Fylw)® vol{e) (12}
Iv,cs.0
f_‘.-':.'-'D," ZTT“JM (13)

Limiting the preceding case to one dimension, the NN estimations of the
marginal distributions are

: 1 2 Uiy witrigen —cum-+el#8)
. + - _ AT pel 1 L 14
FAYTRTY] T 5 (14)
1 2 Ly aih i ivon—cpmec+el]
- k1L lS
f}k{m} =7 3 (15)

In terms of the preceding definitions,

Pyl ..o )t
L= [ A, log =—r——=———d o 16
(¥r) f ff}'.'yl . ) log T Tyaln) yy ... dyy (16}

Bl uv )
KL (¥7) ‘f _{f}-.‘yt ..... y-\-,‘llog-}—a‘yt cdyw (17)
T Fomane)™
[y is unknown, nonztheless a Montecarlo estimation of the bounds of the KL
divergence can be produced as follows:

.
J— " +
RL'(¥7) m 3 log 200 o vN )7 (18)

Fylwas, - u )~
KL (¥7) = lng—; (19
= Z Ty Fomlu)

23 Nuomerical algorithm

Each matrix W is associated with the upper and lower bounds of the KL
divergence, given by Egs. 18 and 19. In order to find the most appropriaie
matrix W the following considerations apply:

= An order must be chosen that allows deciding between two matrices
whose divergence estimates are overlapping intervals.

= The proposed estimator changes if the data Xr or the matrix W are
scaled, because of the properties of the NN estimator.
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The first point can be solved by using the uniform dominance defined in
[20]. The second consideration is addressed by introducing two requirements:

1. The data matrix X ; is standardized.

2. The search of the matrix W is restricied to the space of matrices with
unity eipenvalues,

The numerical search in this restricted space will be carried by a real-coded
genetic algorithm, as described in [21]. To comply with the unity eigenvalue
rquirement, crossover and mutation operators are followed by a repair oper-
ator that applies a Procrusies transformation to the data [2],

repair( W) = repair(FEVY) = UV (20}

where W = UEV? is the Singular Value Decomposition (SV D) of the matrix
W,

Standardization of the data matrix
The standardization of an interval-valued data matrix begins with the Princi-
pal Component Analysis (PCA) of the center points of the data, followed by
an extension of this procedure w interval data that is described below.

Let X = x| be the matrix of center points of X,

Ty + :"'jl

-
let 2 be the vector mean of the columns of X and let O = [c,z] be the covari-
ance matrix of the columns of X, Let © = VAV be the SVD decomposition
of ., ie. V contains the principal components of X, and A is a diagonal

(21)

Tik =

matrix whose elements (A, ..., Ax) are the variances of the principal com-
ponents. et
- 1
§=V. diag(——= (22)
ag( v"«‘\_1]

thus &1 — 55, The standardized center points matrix is
Xe=8(X — |u....p]) (23)

which is the PCA solution to the BSS problem if all intervals are replaced
by their center points. The proposed extension (o interval-valued data is the
matrix X = [c¥ , =3 minimizing the distance

d(5 X7, X — [ o)) (24)
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where

T N
dffag. al]. by 1) = Z Z[al_k — b+ (af — ) 25)
=1 k=1

and
N

(S XD = P o ® lraw zaal. With S =[], (26)
=1

oot @6t ={atb|lac|a,at b b1]), @D

la”.a¥|@ b ,b"| = {ab|ac [a,at],be 6,67} (28}

The elements of X7 minimizing Eg. 24 are found with a gresdy algorithm
with starting point ‘
XP S xr — [ p])) (29)

whara

N
(X7 a =Y o1 ® [0y — s T0g — al- 30)
-1

In Figure | an illustrative example of the proposed method is shown, Three
different sources, comprising a sinusoidal signal, a square wave and random
noise (shown in the first row of the figure), are mixed. The second row shows
the results of the mix, this is the data matrix X, The third row is the result of
the application of the proposed algorithm. It can be sezn that the original sig-
nals are construcied except for a scale factor and a permutation in the order
of the results. The fourth row shows the results of the application of the same
algorithm to a different input data where an interval-valued error [—0.1,0.1]
has been added to the mixed signals beginning at period 250. Black lines
are the upper bound of the reconstructed signal, and red lines are the lower
bound. Lastly, the fifth row shows the PCA solution to the same problem.
Observe that PCA is unable to recover the original sources.

3 INTERVAL-VALUED BLIND SOURCE SEPARATION FOR EN-
GINE HEALTH PROGNOSIS

User-friendly plots of the EHM data points provide information about a pos-
sible trend shift of the engine being diagnosed within the “cruise” data, as
mentioned. Engine data is plotied along with prototypes of certain known
events and interval-valued abnormality signatures defined by the Performance
depanment. The EHM subset of parameters considerad in this study consist
of the following six variables:
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FIGURE |

Sinusoidal, square wave and rand om sounces (first row ) are mixed, in order to produce
the perceived data (second row). The proposed algorithm is able to recover the original
sources (thind row). When the perceived signals are interval valued, the proposed
method is still capable to produce sensible boundaries of the unknown sources (fourth
row ). The fifth row is the PCA solution to the same problem, which is unable to unmix
the sources.
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» FF - Fuel flow is a measure of the amount of work requined to be carried
out by the turbine to maintain a certain constant level of power. As
the compressor deieriorates and less air is compressed, more fuel will
be mquired to increase the emperature-pressure ratio delivered to the
turbine. The mome deteriorated the compressor is and the newer the
turbine is the more fuel that will be required to compensaie the air
pressure loss through a iemperature increase,

e NI, N2 - These are the speeds of the low (N1) and high (N2) pressure
systems in a two shaft engine. The high pressure compressor and high
pressure turbing are physically joint through the high pressure shaft.
The speed of the high pressure sysiem will also have a close come lation
to core deerioration.

P30 - This is the high pressure compressor exit pressure. This parame-
T identifies the amount of air that the combustion systeems will receive.
It also szrves to deermine how much air the compressor has been able
o compress, as due to the engine design intake volumes can be as-
sumed. The more deteriorated the compressor is the lower P30 will
e,

e T30 - This is the high pressure compressor exit iemperature. This pa-
rameter will vary depending on the amount of work required o com-
press the given volume of air and therefore will also give guidance of
the overall level of deterioration of the compressor. The more deterio-
rated the compressor is the lower T30 will be.

s TGT - the Turbine Gas Temperature, is another way of understanding
the amount of work camied out by the turbine, in line with fuel flow, as
the mome fuel that is delivered, the higher the TGT will be. However
due to extemal ambient temperatures and other factors this come lation
may not always be followed. It is also a mome direct method of corre-
lating the temperature to the actual wrbine metal deerioration.

Samples of FF, N1, N2, P30, T30 and TGT are plotied in the left parts of
Figures 2 and 4. Each black trace is a sequence of measurements taken from
an engine. Green races are prototy pes of different events, this is each point of
the preen curves was sampled in a different plane. Red traces are subjective
intervals for different abnormality conditions. In the right part of the same
Figures. the unmixed sources of these signals, obtained with the proposed
algorithm, are drawn.
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The plot of the unmixed EHM parameiers does not hold more information
about the health of the engine than the raw EHM data, however the engine
path in phase space shows the comrelation between these signals and the de-
terioration of the engine. The maps in Figures 3 and 5, show the two first
sources [CA1 and ICAZ plotted one against the other. Engine data forms a
blue path, along with the prototypes of different events (green poinis) and
interval-valued abnormality thresholds (rd rectangles).

In the map in Figure 3 the signatures of the engine are far from both the
abnormality intervals and the prototypes. The change in the properties of the
engine after a shop visit is made evident by a jump to the right, markad with
an ammow in the map. Data is concentrated into two clusters, before and after
the shop visit, and the trend (data points near the label “ENGINEI-END™}
does not indicate a probable short erm event.

On the contrary the map in Figure 5 shows an engine that repeatedly
crosses through the abnormality thresholds. The evolution of the turbing from
the starting point “ENGINE2-START™ is further detailed in the graphs in the
right part of the upper row and the map in the lower row. It may be observed
how the relative position and sizes of the abnormality thresholds depend on
the engine data: the relative positions of prototypes and abnormality thresh-
olds are kept, but this second map is rotated 130° with respect to the preced-
ing one. Jumps in the map caused by shop visits have also been marked with
AITOWS.

4 CONCLUDING REMARKS AND FUTURE WORK

A numerical algorithm for performing blind source separation with interval-
valued data has been proposed. An infomax criterion was formulated on the
basis of the upper and lower bounds of the Kullback-Leibler divergence, in
turn depending on a nearest-neighbour estimator of the density and a Monte-
Carlo simulation. The results obtained with synthetic data suggest that this
algorithm is able o unmix certain signals whose combination is imprecisely
perceived.

This echnique has been applied to the design of EHM data maps for prog-
nostic fault detection of aircraft engines, linking engine trend shift signatures
with prototypes of failures and abnormality thresholds. The resulting graph
shows the impact of shop visits and the wear out of engines which can bhe
used to make short erm predictions of the evolution of an engine.

In futurz assessments, by exiending interval-valued BSS to possibilistic
data, confidence intervals of EHM variables may be used in combination with

11
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| e

Left part Black traces are FF, N1, M2, P30 and T30 of a particular engine divided by
TGT. Green traces are protofypes of different known events. Red traces are intervals
for different abnormality conditions.
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FIGURE 3

Phase space of the two first unmixed signals of the first engine. The change in the
properiies of the engine afier a shop visit are made evident by a jump to the right,
marked with an amow. Data is concentrated in two clusiers, before and after the shop
visil, and the trend (data points near the label “ENGINE]-END™) does not indicee a
sheort term event.
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FIGURE 4

Left part Black traces are FF, N1, M2, P30 and T30 of a particular engine divided by
TGT. Green traces are protofypes of different known events. Red traces are intervals
for different abnormality conditions.
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FIGURE 5

Upper row, left part: map of the second engine. Upper row, right part and lower now:
details of the map. The engine repeatedly crosses through the abnormality thresholds.
The shop visits cause jumps in the map that are marked with amows. Afier the second
shop wisit, the engine is working in a highly deieriorated amca and the trend does not
allow discarding fusture events.
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abnormality thresholds. Joint maps of the planes within a fleet will be con-
sidered where these confidence intervals will be part of an anomaly detector

able to signal the presence of engines with a behavior significantly different
to that of the average.
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Engine Health Monitoring for Engine Fleets using
Fuzzy Radviz
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Abstraci—A mew algorithm for assessment of Engine Health
Monitoring (EHM) data in asircrafl is d. The diapnostic
tol quantifies step changes, shifts and trends in EHM data by
means of a transformation that aggregates concurrent readings
of EHM data into a single furzy state. A Genetic Fumy System is
used to delect the ocourance of a specific trend of interest in the
sequence of siates. The activation of the rules is represented in
a I map by means of an extension of the Radvie visualication
algorithm to furry data

[, INTRODUCTION

Engine monitoring data in modem aircraft is a given.
However the number of variables measured and the number
of data points collected during each flight for each of these
varighles has substantially increased in recent years. This
has increased the complexity of the assessment methods and
midels used. The main use of engine data is to control and
manage the engine. This is, to monitor engine parameters in
order to avoid manning the engine under undesired conditions.
The built-in system know ledge within the engine and aircraft
is configured to trigger alerts to highlight the need for pilot
action, maintenance action or directly shut the engine down if
a significant condition is encountered. In addition. the engine
data is also monitored for its development over time. this is
what is understood as Equipment Health Monitoring (EHM).
The variables measured and the nomber of data points taken
during each flight for each of these varizbles has increased
in recent years, making it necessary to have specific types of
analysis software available to assess and monitor the flying
feet Since the 1990°s engine management methods have
changed, with the introdoction of Power-By-The-Hour [1] op-
erators outsource the service management and refurbishment of
engines back to the Original Engine Manofacturer ((OEM). This
has in tum emphasized the OEM’s need to further understand
and develop EHM knowledge not only for safety and meliability
purposes but also to determine engine deterioration, to increass
the engine time on wing and reduce mainienance Costs.

The stucture of this paper is as follows: in Section II,
a brief meview of existing models is included. In Section
Il monitored parameters are discussed. Inm Section IV the
diagnostic tool is explained. Mumerical results are assessed in
Section V. Concluding emarks and future work are considered
in Section VL

II. EXISTING MODELS

Ther have been multiple methods of EHM data assessment
developed. The most common methods are based around Gas
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Universidad de Oviedo
Gijon, Asturias, Spain
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Inés Couso
Universidad de Oviedo
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Path Analysis (GPA), which considers the variability of the
engine parameiers based on the engines’ iniemal damage
and deterioration [2]. Limear and subsequent non-linear as-
sessments based around GPA have helped develop fillering
mechanisms to detect step changes in the intemal working
conditions of the engine. Due to the increase in the number
of variables monitored and to improve the time before an
engine is required to be removed from service from the point
a trend shift is identified, assessments have used furzy logic
and neural networks developing patten recognition methods
[3]. The aim of these methods has consistently been to filier
the variables in order to identify engine trends and step changes
as early as possible. Then, hased on previous experience,
fanlts may be detected early and engine maintenance planed
accordingly, thus avoiding a mome significant engine event.
Engine development over time has also been assessed through
deterioration modelling and probabilistic simulation [4]. The
main objective of this type of assessments, early in an engine
programme  however has been to determine the optimum
engine maintenance interval and assure appropriate levels of
melighility for the fleet In the past these two types of assess-
ment have been completely independent the first concentrating
on engine specific safiety and reliability and the second on fleet
management, however neither actually considers long-term
engine specific maintenance management The introduction
of maintenance contracts &s Power-By-The-Hour whenre the
engine maintenance management responsibility is retumed to
the OEM . has emphasized the need for the early diagnosis of
engine specific deterioration. This is, further development in
the assessment of EHM data has been highlighted so that small
trends and shifts in the variables am identified. even when
the valoes amre within the appropriate neliability levels of the
specific parameter. This way, the level of engine deterioration
at the time of engine maintenance may be delermmined and
prioritization of mainenance may be performed based on the
specific deterioration level of each individual engine within the
Aeet

I,  ASSESSMENT OF COMBINED PARAMETER SHIFTS
A, Engine lay our

A typical two shaft high by pass ratio turbo fan is depicted
in Figure 1. In this type of engine, the thrust is performed
by the air compressed by the fan blades and pushed through
the engine bypass. The air pushed through the com of the
engine is solely used to tum the fan. This is, the air is
compressad by the high pressure compressor (HPC) so that
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the optimum conditions are reached within the combustion
chamber to subsequently tum the high pressure turbine (HFT)
to maintain the high pressure (HP) system and subsequently
turn the low pressume turbine (LPT) which mowes the fan and
produces the engine thrust

The main stations depicted in Figure 1 follow the most
commonly used numbering comvention. Although single digits
are used to define the main stations, double digits ae used to
define interim positions. The first digit defines the main station
whilst the second, defines an interim position. Therefone, for
example station 2 may also be known as Station 20 or Station
3 may also be defined as Station 30 Depending on the context
these may be used indifferently and therefore at Station 2 the
pressure and temperature are measured by the PXT2 probe
whilst the emperatures and pressures at station 3 are known
at P30 and T30,

Station O This used to determine the ambient or
external conditions. These are generally measured by
the aircraft.

Station 1: Due to the design of the engine intake the
temperatures and pressure at station 2 are different to
those of station O and ame the actual engine intake
conditions which will be used as reference by the
controls system. The main variables at this station are
P2 and T2.

Station 14 This is used to determine the actual ef-
ficiency of the fan, as it solely monitor the =section
of air compressad by the fan which runs through the
engine bypass. No significant measurement are taken
af this position, as the engine thrust may be calculated
based on the engine design from the Engine Pressure
Ratio (EFR) or the N1 speed (speed of the LF sysiem)
defined below.

Station 25: This is the entry to the HPC. Depending
on the engine design a booster or and Inermediate
Pressure Compressor (IPC) may also be associated to

Crwmp

the low pressure (LF) system. Station 25 is therefore
defined as the entry to the HPC and not the exist of
the fan.

Station % This iz the HPC exit and the entry into
the combustion system. The conditions at this poink
are key for the comect functioning of the engine. The
main variables measured at this station are P30 and
T30

Station 4 This is the combustion chamber exit and
HFT entry. The temperature at this point is cne of the
main engine parameters. T4, may also be known as
Turbine Gas Temperature (TGT) or Intemal Turbine
Temperature (ITT)

Station 5 This is the LFT exit. The main variable at
this station is P50, This pressure is used to define EFE,
which is subsequently used to determine the overall
enging thrust. EPR is the relation of P50 to P20,

The LF system is the combination of the fan and the LFT.
The speed at which the LP system tums is defined as N1. The
HP system is the combination of the HPC and the HFT. The
gpead at which the HP system tums is known as N2

In addition, the amount of fuel consumed is also monitored
through fuel Alow (FFL

B. Engine deterioration Knowledge

The engine performance once the design is fully defined
may bhe assessed to determine the overall working conditions.
Eased on engineering knowledge and experience, deterioration
trends may be compiled which will help determine the condi-
tions to monitor once the engine is in service. Thenefore, based
on the engine design and performance definitions it is known
that deterioration of the HPC will show as an increase of T30,
TGT and FF with a eduction of M2 and P30, Detericration of
the HFT on the other hand would be associated to an increase
of TGT and FF but a reduction in P30 and T30. However in
meality both sysems will deteriorate simultane ously over time.
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The effects of one of the systems may therefore be hidden by
the counter effect of the other as the trends would be combined.
It is therefore key to monitor small changes over time in
order to keep account of which of the systems is deteriorating
before the other compensates the effect. In addition, service
and development experience have also helped to quantify these
step changes as in reality these trends may not always oocur or
may not be as clearly shown within the engine as staied by the
performance definitions and models. To this effect it is known
that although HPC deterioration is associated to a reduction in
P30, this drop does not need to be significant, whilst the same
drop in P30 associated to HPT deterioration is known to be of
a significant value.

IV. DMAGNOSTIC TOOL

The purpose of the tool is to identify characteristic patiems
(step changes, shifts and trends in the EHM data) in the
sequence of data in an automated way. Each paltern is a com-
hination of the slopes of the differences of FE. N2, P30, T30
and TGT against those of a standard engine. The preprocessing
of the data is described in the following paragraphs, followed
by the classification systems and the graphical visualization
technique.

A, Fuzzy fearure evrracrion

Letrf, t =1...,N,i=0...,4 be sequences of EHM
patterns, comprising samples of sime N of DFF, DNZ, DP30,
DTGT and DT30, taken from the e-th engine (see Figure
3, upper part for an example of the actual data). There is a
considerable amount of noise in this data, that must be Altered
in order to uncover the mends.

A family of kermmels with different bandwidth A will be
used for this purpose. Let

faa) = ¥ L K(r,4) m

T=—To

be the filtered signal (Figure 3, lower-left part). Applying a
=t of kernels with different bandwidths can be assimilated
to the application of a cloudy filter to the data [5], however
in this paper a Monte-Carlo estimation of the outcome is
preferred, because each bandwidth-dependent filtered signal
must be further processed.

The values of the filiered signal however do not convey all
of the desired information about the specific deterioration level
of the engine, because the engine variables are not measured
against a fived baseline model but against average values of the
wvarighle for the same working conditions at which the engine
is at the time of recording . The trend of the signal is there fore
considered to be more significant with regards to the amount
of information it conveys [6], and can be approximated by the
sign of the derivative of the fillered signals. The derivative is
computed by determining the slope of straight lines

FElrA) = fE(A) +a-(r—t) (2)

fitted by least squares to each point of the smoothed signal,
using a window that depends on the bandwidth of the come-

P(0 1) Pl 1x) P2 1%)

-0.0001 V] 0.0001

Fig 1 Soft discretiation of the derivative. Positive slopes ax ascigned the
mamber 2, rero slopes ax assigned the member |, negative slopes 2z assigned
the number (L

sponding kermel. Let
emla, e, i,t, A} =

‘i (ff_ (A) —a-ir —th+ fR(a)? - Kir,A) (3)

T=—To

be the sguared ermor of the mentioned lines, and therefore let
the derivative for a bandwidth A be estimated as

EALES argrrg'uem[u, i, Al )

The results of applying this procedure to the example data are
shown in Figure 3, lower-right part.

The sign of the derivative of the smoothed signal is highly
dependent on the bandwidth of the kemel. It is proposed not
to use the sign operator but a soft discretization, producing
either 07" (negative slope), “1™ (zemo slope) or “27 (positive
slope ) with the help of the Ruspini’s furzy partition depicted in
Figure 2, where the conditional probabilities P{0)z) = g x(z),
P{l|z) = px(z) and P(2|z) = pp(zr) are shown.

Omn the one hand, if a hard discretization was wsed, each
time period could be assigned a state identifier ID{¢t). as shown
in Figure 4. On the other hand, the soft discretization induces
a probability distribution on the set of stale identifers,

Po(D =id) =3 {[[ Pidisa(a)) :d =Y d -3} 5
=0 =

The function 5 (ID]t) for the same engine whose data was
plotted in Figure 3 is represented in Figure 5. In this figure it
is shown that the state of this engine smoothly changes from
the starting condition (1D=240) to an intermediate deterioration
stage (ID=220) and a deep change happens around =300 to a
different stage (ID=1). See Figure 4 for an explanation of the
I} coding.

The main hypothesis of the diagnostic tool proposed here
is that the presence of certain IDs in the sequence of states can
be melated to specific levels of deterioration or other events of
inerest § that the sequence of state D= of the e-th
engine, {ID); }t—1_. . was known In this case, the distance
between the state id and its nearest point in the state trajectory
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Fig 3. Preprcessng of signak. In this example the raw data (upper part) is smoothed by means of a kemel fileer with bandwidih A = 2000 {lower part,
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of the engine can be measumed as

4
OFF 2 \ N o
Aist (i (TS}, ..or) = i { 3 e — 7
=0
4 4
""D 1 =3 -2, m::Z:ﬂ'-:—;‘}. ()
=0 i=0
ml:l 2 > 21210p=21000 This value is zero if the state is contmined in the trajectory. In
amy other case, the city block distance to the nearest state is
produced.
] 1
The sequence of stale [Ds is only pertially known because
a soft discretization was used. A set of probabilities P, can be
deduced. The probability of the sequence of states g, ...,
um o ) " pro by q it qn
N
Fig 4 uinticn of the stabe identifier Positive sopes sgred the
n;hfﬁimm-ipdthmgﬁmlh:;:n-ipd P ({gchm, . ) = [] Plala) M
the number (. The temary number formed by joining the digits of DFF, DINZ, =1

DP30, DTGT and DTXD is the sinbe id

thus the probability that the distance between the sequence of
states of the e-th engine and the stale whose code is “id™ is
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Fig 5 Pumy siate ID for of the engine depicted in Figure 3 The grey
shade varies from Black (null probabilicy) to white (probability of onel. This
mepresenintion facilitres the detection of changes that occured o & group of
varisbles, see for instance the jump at & = 300L

equal to d is
M2 242
Fiidlid) =% Y PAek) Bupe iy (9
qu=0 gx=0

whered;:l if p =g, 0 otherwise.

Lastly, the probability that the minimum distance between
the trajectory and the state coded “id” is d is bound by the
possibility distribution IT, (d[id ), which is equivalent to a fuzzy
sal

Fi(d|id).

Sup
v yo—

pit () = Me(dlid) = (9
Asa

This furzy membership (see Figure 6) contains the most
relevant information about the presence of any state of interest
in the trajectory, and it does not depend on the number of
samples IV, nor the duration of the state of interest The use of
a soft discretization and a set of bandwidths allows, as it will be
shown later in the mumerical results section, a good robustness
of the algorithm with respact to the threshold usad for deciding
whether the slope of the signal is positive or negative, and the
bandwidth of the filter

B. Classification

The diagnostic tool can assign the labels “Good”, “Good
to Mormal ™, “Mormal”, “Mormal to High Deterioration™, “High
Deteriaration™ and “Bad™ to compressors, and “Good”, “Good
to Mormal™, “Mormal”, “Mormal to High Deterioration™ and
“High Deterioration”™ to turbines, on the basis of the discrete
firzy set defined over the set of stake IDs and distances that
has bean defined in the preceding section.

As a first approach to this problem, a simple fuzzy ruke-
bagsed classifier has been used, whose learning algorithm orig-
inates in the Linear Discriminant Analysis. The meults of this
classification method are megarded as a baseline result. Cther
classification methods (and in particular cost-based boosting
of fuzzy mles for imprecise data [7]) are planned for future
work.

Generally speaking, let (=5,.. ., £, e=1,...M beaset
of M instances, each comprising m crisp features. According
to the interpretation of LIM as the the minimum emor Bayes
classifier for a Gaussian problem, under the assumptions that
all classe s have the same probabilities and covariance matrices
[8], the discriminant function for class & is the Gaussian
multivariate density, centered in the average walues ¢y of the
patterns of the k-th class,

1 1 T 1

g P~ g - T E-a)). 0
Removing the terms that do not depend on the class, the furzy
<18

1
g () = exp (- = (x — ) TE iz — )
can be used for defining the following rule base:

(113

if x € A; then class = G
ifx € As then class = GMN
if x € Az then class = N
ifx € A, then class = NH
if x € Az then class = H
ifx £ Ag then class = B

Ohserve that the use of the maximum vote scheme, where the
e-th object is assigned the class

argmax By lZa) (12)
is numerically equivalent to the minimum ermor Bayes rule
under the mentioned assumptions.

For crisp data, the scaling matrix ¥ is taken as the
covariance matrix of the whole set of features and the centers
cp am the sampl mean of the elements of class k It is
proposed to extend this classification sysem to fuzzy data by
finding the values &y and X minimizing the firzy number of
misclassifications, wheme the meaning of “minimum”™ between
furzy numbers is given by a fizzy ranking [%]. Applying the
extension principle, the membership functicn of the number of
misclassifications is:

M o =lnn
FE(n) = mowx § minp(r) in= Y dipmigu, (e fr 09

o=l
where elass; is the true class of the e-th instance.

In this particular problem, an unconstrained search would
depend on up to 2437 + 243 + 6 > GO000 parameters and
furthermore E is ill-conditioned, because the distances of some
states to the system trajectory are similar between themselves.
However, there is no need to make a full optimization of all

perameters. Let
e (Sad5d) | Tyditald)
M Easfld) T Eaptald

(14}
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Fig & Supports (red and blue lines) and ceniroids (black) of the minimum fuzzy distance s between the ®quence of stries and the fist 100 possible sates.
The complede set of disances comprising 243 firzy sets is the engine feanxe set used in the clesification stage.

Letaar,—p Te
= =2 1
b 2 ctasa =i 1 (4
_ E:il Te
=S (16
M
By = Z[:SE - ﬁD]T(zr — ég) (17}
e=1
and lastly, let
1, = FALP (1)

with A diagonal and P orthogonal. The following discrimina-
tion funcion was used

pan() =exp (- Sz - BT PA- Pz &) (19

thus the antecedent of the rules depend only on the 243
diagonal terms of A~', that are easily found with the help
of a fuzzy Eu:enn—l:laaed genetic algorithm [10]. Observe that
this decision implicily performs a feature selection of the
data, since most of the terms of A~" will ke cancelled in the
optimization proce ss.

C. Fuzzy radviz algorithm

The visualization stage in the diagnostic tool is carried
out by means of an exension of RadViz (Radial Coordinate
visualization)) [11] to imprecise data. Radviz is a visualization
technique that maps a set of multivariate vectors into a plane.
Each point is held in place with springs that are attached
at the other end to anchors (see Figure 7). The strength of
each spring depends on the value of the cormesponding feature,
and the n[l:u'u:lg forces are in jgm']ﬂm’um. If anchors are at

)

positions | cos( 2k /p), sin(2kw/p)). the valoe (v, va,... wp)
is mapped to the point
(EP _y e eos(2kT fp) TR e mn(ﬂﬁw,f'p]) 20
Eg 1 Ve ! E* 1 Vi

Fig 7. The stifness of each spring is proportional to the value of the
activation of the winner nale, thus in equilibrivm the distance beraeen the
eprexntmtion of a point ond the andwors meames the degree of confidence
in the clasfication.

In this contribution it is proposed that an anchor is defined
for each class and each engine is repre sented by the normalized
vector of values of the activation of the rules,

( By (Ta) Bag(Te) Baa(Te) )

T (B) S () meTa pa ()
thus each engine will be mapped to a furzy set with member-

ship

ity a3 (22
TR_y feldn, ..., das) cos(2k [p)
Eg 1fl|:d:l d!ﬂ:l
py = Zhea faldo, ,dm]mn(%rrfp]}
Tt feldas- - sdaag)

In the results section, each of these firzy sets will be displayed
by the ellipse that best fits to their support.

piaeap( Ty, T2 ) = {

=

Attachments BPEL]




Monitorizacién del estado de flotas de motores usando andlisis inteligente de datos para informacion

intervalo-valorada y posibilistica

=

Fig &

il chie

Upper part, kefic Compared health of compressors in 2 feet Ellipses mark the suppont of the fiery activation of the niles. The confidence in the

classification is higher the further the engine is from the cenier of the map. Right: Health of turbines. Lower part The same map, plotted in polir coondinates.

Classifications with low confidence ane in the batiom of the graph

V. RESULTS

EHM data from 435 engines was wsed for testing the
dizgnostic tool. The expecied number of misclassifications is
|00, 0.07] for compressors and [(0L.06, 0.08] for turbines (10-
cv validation ermor). Afier a reassessment of the misclassifica-
tions, it was found that 10% of the misclassified engines were
causad by an inaccurate labeling in the data and the diagnostic
produced by the tool was comect

The graphical representation of the fleet is shown in Figure
&, upper part-left for compressors and right for turbines. Each
point is labelled with the engine identification (note that iden-
tifiers have been randomized for confidentiality reasons) and
colored according to the diagnostic made by the engineering
department. The position of an engine in the graph shows

the ouotput of the diagnostic tool. and the ellipse measures
the uncertainty in the decision. Larger ellipses are melated
to classifications with low confidence. Small changes in the
bandwidth of the kemel smoother or the threshold of the
derivative can alter the output of the tool for these engines.

Generally speaking. the diagnosis tool is able to clearly
ide ntify compressors and turbines with normal to high, high
and bad states of deterioration {black. red and purple en-
gines) and the classifications are less robust in good, good
to normal and normal compressors and turbines, albeit the
average percentage of comect classifications if the center point
of the oatput is chosen is high in both cases, about 95% for
compressors and 92% for tarbines.

In the lower part of the figure the map is drawn in polar
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coordinates. This unusual representation of the radviz map
has an important advantage for this problem. The circular
representation places “Good’ compressors nearest o "Bad’
compressors, while the polar representation has an homoge-
neous behavior: the deterioration of an engine increases from
left to right. In this respect, the polar radviz map can be used to
predict the future state of an engine. If the different diagnosis
of the same engine were plotied in the graph. the normal
evolution of an engine would be from keft to right and from
bottom to top of the graph. It is expected that the extrapolation
of this sequence of map projections may be used to predict the
deterioration rate of an engine.

VI

A graphical map of the health of engine fleets has been
proposed. The diagnosis tool searches for the presence of
characteristic combinations of slopes in diffe ent EHM-related
signals, by means of a possibilistic preprocessing of the data
and an LDA-inspired GFS that can comectly diagnose the de-
terioration level of near to 95% of engines. The preprocessing
is robust against noise in the data and the natural differences
between different types of engines. The map jointly displays
all engines within a given fleet, and can show the degree of
confidence in the diagnosis along with the robustness of the
classification, understood as the variability of the outcome of
the classifier under changes in the bandwidth of the filler and
the thresholds in the discretization of the derivative of the
signals.

In future work, the map will be used to predict the evolution
of individual engines by extrapolating the trend of different
projections of the same engine. This prediction can be applied
Aeet-wide for safety and reliability purposes, and also to reduce
maintenance costs.

CONCLUDING REMARKS
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ABSTRACT

A new method of engine health monitoring data assessment
has been proposed. The objective of this method is to
determine the level of deterioration of an engine in order to
predict the required level of workscope before it is inducted.

The method reviews cruise EHM data. Each sequence of
samples is split, first into different segments where the
monitored variables share a common behavior, defined in terms
of the joint rate of change of the variables. Each of these
segments is then labeled with a state identifier. A classifier has
then been designed such that from these sequence inputs of
state identifiers a long term engine deterioration prediction is
obtained.

EHM data is noisy and a low pass filter must be applied
before the joint rate of change of the variables can be estimated
and the mentioned segments defined. The bandwidth of this
filter directly influences the segmentation, but this parameter is
not easily determined and may change over time. Inthis paper
it is proposed not to make a trade-off but to repeat the
segmentation process at several different cut-off frequencies. A
set comprising the outcomes of this process, that are different
sequences of state identifiers and sets of possibly conflicting
diagnosis is generated. The mathematical definition of the
proposed procedure makes used of the fuzzy set theory: a soft
segmentation of the EHM data is generated, which is associated
to a single sequence of fuzzy state identifiers and an also fuzzy
set of diagnosis for each engine.

Recent genetic algorithm based methods exist, that can
classify fuzzy data. As the output of the classifier proposed is
not a precise diagnosis but a fuzzy set of diagnosis, a
visualization tool is also proposed which will allow an engineer
to simultaneously determing the most probable deterioration
state and the uncertainty of this diagnosis. The classification of

Luciano Sanchez
University of Oviedo
Gijon, Asturias, Spain

Ines Couso
University of Oviedo
Gijon, Asturias, Spain

the engine is graphically shown in a radial visualization plot
through an ellipse. The overall color of the ellipse details the
most probable level of deterioration and the location and form
of it, the uncertainty of the result.

Business knowledge has been included in the diagnosis
system. Based on the class and uncertainty values, the level of
workscope and associated maintenance costs that an engine
may require if inducted.

This paper presents a method overview, together with two
case studies. Deterioration prediction results are shown as
validation to the method. In addition, these material predictions
are also assessed in order to undestand the direct business
improvements of this methodology to the overall engine life
cycle costs,

INTRODUCTION

Engine health monitoring data in modern aircraft is a
given. The number of variables measured and the number of
data points collected over time for each of these variables has
however substantially increased in recent wears. This has
increased the complexity of assessment methods and models
substantially.

The new method proposed is developed to increase the
current EHM data assessment capabilities beyvond the safety
and relibility drivers onto predicting the level of internal
engine deterioration. This additional engine knowledge is
considered will, in turn, serve to keep engines on-wing longer,
optimize overhaul shop capacity and'or appropriately tailor
each engine workscope to the specific engine needs. The main
direct benefit of this new method will be an upfront prediction
of the level of deterioration of each individual module within
each engine. This means, that the limited overhaul facility

1 Copyright © 2014 by ASME
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capacity for each fleet, may be optimized to prioritize engines
where modules may be deteriorating faster than expected,
outside of fleet engine policies. This will in tum reduce
maintenance costs.

In addition, this understanding of the internal level of
deterioration will be also correlated to previous fleet experience
enabling an accurate estimation of the level of workscope for
each of the modules as well as a prediction in the number of
parts which will be required several weeks or even months in
advance of the actual engine induction.

This level of detailed knowledge will allow the
maintenance and overhaul shops to optimize their planning
capacity and substantially reduce their planning risk buffers.

NOMENCLATURE

« EHM - Equipment Health Monitoring, also known as
engine health monitoring, is the in-service data logged
throughout each flight

¢ Power-by-the-Hour. is a type of maintenance agreement
between an operator and an overhaul maintenance base
where by the operator pays a fee per hour flown, and the
maintenance costs are covered by the maintenance base.

*  OEM is the Original Engine Manufacturer, which in many
cases is also acting as the maintenance base.

« HP - High Pressure — is used when considering the
complete high pressure system as a whole

¢ HPC - High Pressure Compressor — is the compressor
section of the HP system

¢ HPT - High Pressure Turbine — is the turbine section of
the HP system

¢ VSV - Variable Stator Vane — is a HPC vane capable of
moving in order to provide optimum flow throughout the
engine working conditions

e TGT - turbine gas temperature — Temperature at the entry
of the HPT module

*« RBSS - Rear Bearing Section Structure — is a mayor HPT
component

I. EHM METHODS & ENGINE ARCHITECTURE

Since the 1990°s engine management methods have
changed substantially, with the introduction of Power-By-The-
Hour [1] operators outsource the service management and
refurbishment of engines back to the Original Engine
Manufacturer (OEM ). This has in turn emphasized the OEMs
need to further understand and develop EHM knowledge not
only for safety and reliability purposes but also to determine
engine deterioration, to increase the engine time on wing and
reduce maintenance costs.

EXISTING EHM MODELS

There have been multiple EHM data assessment methods
developed over time. The most common methods are based
around Gas Path Analysis (GPA), which considers the
variability of the engine parameters based on the engines’
internal damage and deterioration [2] [3] [4]. Linear and

subsequent non-inear assessments based around GPA have
helped develop filtering mechanisms to detect step changes in
the internal working conditions of the engine. Due to the
increase in the number of varizbles monitored and to improve
the time before an engine is required to be removed from
service, assessments have used several different mathematical
and logic based methods. Recent strategies have made use of
fuzzy logic and neural networks [5] [6] [7] [8].

The aim of these methods has consistently been to filter the
variables in order to identify engine trends and step changes as
early as possible, [9] [10] [11] [12]. Then, based on previous
experience, faults may be detected and classified early and
engine maintenance planned accordingly, avoiding a more
significant engine event.

Engine deterioration over time has also been assessed
through deterioration modeling and probabilistic simulation
[13]. The main objective of this type of assessments, early in an
engine programme however is to determine the optimum
engine maintenance interval and assure appropriate levels of
reliability for the fleet.

In the past these two types of assessment have been
independent, however neither actually considers long-term
engine specific in-service maintenance management.

ENGINE LAYOUT
Iin a two shaft high bypass ratio turbo fan engine, the thrust
is mainly performed by the air compressed by the fan blades
and pushed through the engine bypass. The main stations or
positions within the engine are shown in Figure 1 and explained
as follows;
e  Sttion 2: This is the engine intake conditions. The main
variables at this station are P2 and T2.
¢ Station 25: This is the entry to the HPC.

Station Fan Fain P HP Turline H LF
et Exit Comp.  Comp Inlet  Turbine Turbine
Ewie Evit Ewie Exit

Figure 1 - Typical 2-shaf high bye-pass rotio engine cross-section with
overview of siation beatons.

8]
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¢« Swmtion 3: This is the HPC exit and the entry into the
combustion system. The conditions at this point are key
for the correct functioning of the engine. The main
variables measured at this station are P30 and T30.

¢ Sttion 4: This is the combustion chamber exit and HPT
entry. The temperature at this point, TGT is one of the
main engine parameters.

¢« Swumtion 4.5, This is the HPT exit temperature is also
known as the Inter-turbine Gas Temperature

«  Stion 5: This is the LPT exit. The main variable at this
station is P50. This pressure is used in some engine
standards to define EPR, which is subsequently used to
determine the overall engine thrust. EPR. is the relation of
P30 to P20.

The LP system is the combination of the fan and the LPT.
The speed at which the LP system turns is defined by N1. The
HP system is the combination of the HPC and the HFT. The
speed at which the HP system tums is known as N2,

In addition, the amount of fuel consumed is also monitored
through fuel flow (FF).

Il. IMPROVED EHM ASSESSMENT METHOD

Engine performance once the design is fully defined may
be assessed to determine the overall engine working conditions.
Based on engineering knowledge and experience, deterioration
trends may be compiled which will help determine the
conditions to monitor once the engine is in service.

Based on the engine design and performance definitions it
is known that considering similar external engine working
conditions and constant EPR, deterioration of the HPC will
typically show as an increase of T30, TGT and FF with a
reduction of N2 and P30. Deterioration of the HPT, on the other
hand, would be associated to an increase of TGT and FF but a
reduction in P30 and T30. However, in reality, both systems
will deteriorate simultaneously over time. The effects of one of
the systems may therefore be hidden by the other as the trends,
assessed at engine level, would be combined. It is therefore
key to monitor small changes over time in order to keep
account of which of the systems is deteriorating before the
other compensates the effect.

In addition, service and development experience have also
helped to quantify these step changes as in reality these trends
may not always occur or may not be as clearly shown within
the engine as stated by the performance definitions and models.
It is known that although HPC deterioration is generally
associated to a reduction in P30, this drop does not need to be
significant, whilst the same drop in P30 associated to HPT
deterioration is known to be of a significant value, [4].

EXISTING ASSESSMENT ALGORITHMS

One of the main problems of any numerical algorithm
capable of assessing EHM data is the high level of uncertainty
in gas path measurements. In order to reduce some of the
engine to engine vanability understanding, it is common to
estimate the state of an engine based on the deltas between the

actual engine measurements and those from a baseline engine,
typically from certification or development.

However faults are not always associated to a combination
of deltas and recent works are directed towards detecting
variable trend shifts [12]. Different techniques have been used
to filter out the noise in the EHM data |7] and different
classifiers to slope change. Among them, soft computing
techniques are appropriate as they combine the flexibility of
neural networks with a human-readable expression of the
results [9] [10] [11] [12].

One  of the most successful soft  computer-based
classification methods consists in a set of fuzzy logic-based
rules of the following form:

“IF TGT AND FF INCREASE THEN COMPRESSOR
HEALTH IS LOW™

These rules can be obtained through expert knowledge or
automatically through EHM data analysis. In this last case, the
set of rules is first of all parameterized and a subsequent
optimization algorithm is used to find the set of parameters for
which the prediction accuracy over the trained EHM data is
best. In the cases where the optimization is carried out with
genetic algorithms, the whole setup is known as a Genetic
Fuzzy System.

However, there are some basic improvements that can still
be made to the mentioned soft computing based algorthms:

1. The result of the diagnosis is highly dependent on the
noise removal process, as the rend of a signal is estimated
by means of the slope of the smoothed signal. 1f the de-
noising process is carried out with a low pass filter, the
diagnosis of an engine can change if a different cut-off
frequency is selected.
The different individual EHM variables should not be
assessed in isolation. In many cases a fault can be
identified because the relative slopes between specific
signals change. For instance, a small decrease in P30 may
not be relevant in itself but a combination of a decrease in
P30 and an increase in T30 is.
3. Separate individual trends that do not signal a fault may
be considered when combined over a larger time period.
For instance, a small increase in delta P30 might not be
relevant unless it is followed by an increase in FF some
cvcles later.

1

The new method proposed, (see also [14]) attempts to
bridge these gaps:

A. Mo trade-off for the filtering process is used. A set of
filters is applied and all of their results combined. The
filtered signal therefore does not comprise numerical
slopes anymore but slopes plus/minus a tolerance, or in
some cases fuzzy slopes.

B. All of the considered variables are aggregated into a
combined multivariate slope, from now on called “state
identifier” or “State-1d”. Since a rule-based classifier will
be used, the slope is discretized and a finite set of

3 Copyright © 2014 by ASME
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combinations is used. Each combination is assigned a

number, by means of a procedure that will be discussed ’_f‘r'.[-r, A)= 'E{A} +a-(r—1t)

later. The purpose of this State-1d assignment is to replace ! !

a set of samples of multiple EHM variables by a single which depends on the slope a and the bandwidth 4. The value
sequence of numbers.

of the slope is found by weighted least squares. For each time
period there is a different “a™ value, this is for each time period,
“a” is determined through minimizing the following error
equation:

C. The complete sequence, along with the associated
tolerances mentioned above may be fed to the classifier in
order to make a diagnosis. This result will detect faults
within the current methods capabilities as well as faults Yo
that manifest themselves as an ordered sequence of State- erla,e 1,4, A) = E (f_ (A)—a- (r—t)+ fE(A))  K(r. A)
Ids.

r=—Ty

The slope of a(t) needs to be discretized due to the rule-
based classifier which will be used. In this case. each slope
will be either “down”, “same” or “up” (these three alternatives
will be numbered 0, 1, 2 respectively). A fuzzy discretization
(50 called “Ruspini’s partition™) is used, Figure 2.

DETAILED DESCRIPTION OF THE PROPOSED METHOD
The trends of the EHM signals are computed by locally
fitting straight lines to the smoothed EHM data. The smoothing
is carried out with a kemnel filter, which removes the high-
frequency noise of the signal. Let » the raw EHM data and K
the kernel function, whose bandwidth A is related to the cut-off

frequency of the filter. be: There are as many discretized slopes as EHM signals,

which is 5 in this paper. Each set of 5 discretized slopes will be

e Ta . i ) assigned a number (the State-1d), which is 3 in this paper. The
fila) L ri_K(r. 4) finite number of possible overall states is the number of slope
=T possibilities to the power of the number of wvariables

the fitted straight line is therefore: considered. In this case, with three possible slopes and the five
4 Copyright © 2014 by ASME
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variables considered, there are 3° =243 different possible State-
Ids. Considering a set of slopes for a given variable as (down,
same, up, up, down) this would be numbered (0, 1, 2, 2. 0)
which  will be  converted to  the State-1d
0%3%+1%374+2%3%42# 3'40%1=51 out of the 243 possible states.

It is emphasized that, at this point in the algorithm, there are
possibly different State-ld for each bandwidth. The whole
filtering and discretization process is repeated multiple times,
for random values of 4 (Monte-Carlo simulation). The set of
values obtained with the Monte-Carlo simulation are combined
into a single fuzzy set, whose membership accounts for the
maost plausible State-1d and the uncertainty of this. following
the method described in [15]. After this combination, the EHM
data of an engine has been reduced to a chain of fuzzy numbers.
This chain is the input to the rule-based classifier that predicts
the engines’ level of deterioration.

EXAMPLE - INDIVIDUAL VARIABLE LEVEL

The method is applied here as a reduced worked example
consisting of five data points, Figure 3. The green and the blue
lines are the smoothed TGT for cut-off frequencies of 10Hz and
20Hz respectively. FF, P30, T30 and N2 are not included in the
araphic.

The discretization is performed on each of these lines, o
determine the associated variable slope for each bandwidth,
Table 1. Considering time period 1 as the baseline, the
subsequent time periods are assessed for the signal trend. Each
possible combination is assigned a non-null certainty factor. It
is highlighted that in this example so as to reduce the number of
resulting possibilities, the slopes for both bandwidths is
identical for the FF, P30, T30 and N2 variables, so as o
establish a 100% certainty of their slopes, with the exception of
FF in time period 4.

The final result is the fuzzy membership of the state, Table
2. In this example, the state at time 2 is 0 with 100% certainty.
At time 3 it might be 0 or 1 and at time 40, 2, 3, and 5, with the
same equal certainty of each result for each individual time
period. It is also remarked that in this example there are only
two bandwidths and therefore all

0

Anurwann

==l ariaie

IOHz Loast Squanes appiox.

DOHZ Lot suanes approe.

Figure 3 Example ofa single variabl consiting of § aaty points,

Time Period
2 3 4 5
B 10 slopa down | down | down | down
TGT
B 20 slopa down | sama up ug
B 10 slopa down | down | down ug
FF
B 20 slopa down | down | same ug
w10 shope down | down | down ug
P30
B 20 slopa down | down | down up
w10 shope down | down | down ug
TH
B 20 slopa down | down | down ug
B 10 shope down | down | down 7]
N2
B 20 slopa down | down | down ug
Table I — Two bandwidth discretization of variables
stat-id =10 1 1 1 1]
state-id =1 1] 1 1] 1]
stat-id=2 1] 1] 1 1]
state-id =1 1] 1 1 1
Fuzzy state state-id =4 0 [ [ [
idenifar stal-id=5 [i} [i} 1 [i}
state-id = 240 1] 1] 1] 1
staie-id = 241 1] 1] 1] 1]
staie-id = 242 1] [ [ 1

Table 2 Fuzzy membership of variables to determine ail af the Sate 1D and
freir associaked compatbility degrees ranging between 0 and |

the certainties are either 0 or 1, but a continuous range of values
between 0 and 1 are obtained in real problems thus the fuzzy
state-id at time t might have been a fuzzy set such as
002+ 1/0.4+60/1+223/0.1.

This notation means: “The state might be 0 with a confidence
degree of 0.2, or 1 with a confidence degree of 0.4, or 60 with a
confidence degree of 1, or 223 with a confidence degree of
L I

EXAMPLE - ENGINE LEVEL

The objective of this assessment is long term engine
deterioration for life cycle cost reduction.  The main life cycle
cost drivers on a two shaft engine are known to be contained
within the engine core modules. Cruise data has been used and
five variables considered in order to address both of these
premises respectively.

The chart, Figure 4 shows the original EHM data set
composed of five different variable signals of different values
and bandwidths, FF, N2, P30, T30 and TGT. Mo significant
assessments can be carried out with the data in this format.

Figure 5 shows smoothed out versions of the variables for
a single bandwidth. In this particular case, the engine is seen to

n
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sustain a slight deviation trend starting at time period 100 and
returning to its original working conditions by time period 600.
This could be considered that although there has been a slight
deviation the engine has returned to normal working conditions.

Figure 6 shows the slopes of the signals in Figure 5. This
is, the derivative of the smoothed signal is computed by fiting
a line by least squared regression to a window centered in the
estimation point. The engine is now seen to deviate from time
period 100 onwards. The engine is then seen to stabilize on a
different working condition by time period 600.

Finally, Figure 7 is a graphical representation of a table
similar to that shown in Figure 3 (lower part). The shade of
grey in Figure 7 codifies the degree of confidence in the state:
black is 0 and white is 1.

The first main characteristic of this method is that it
provides an overall view of the engine condition. Mo manual
assessment is required to combine the individual effects of each
of the different wvariables. In addition, it is a clear
representation of the engine for each time period. In this case,
it is significantly easier with regards to previous methods and
plots. Figures 4. 5, and 6 to establish that the engine sustained a
slight deviation at the beginning after its entry into service. No
significant changes occurred until time period 300 where a
significant step change in the engine working conditions
occurred.  The engine then compensated itself to return to a
stable working condition from time period 500 onwards.

This example shows that the new methodology is capable
of reproducing previous fault isolation assessments, showing
step changes in varizble combinations. However, it is also
capable of providing an overall engine condition that may
subsequently be classified.

1y .,"rm*thﬁw-“ ue'!”\m w;,
»,%WW“MW J%’"*'"

Figiwre 4 Tnitial rane set of EHM dagy
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Figure 5 Initied least square s filter application
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1. IMPROVED EHM CLASSIFICATION METHOD &
VISUALIZATION

CLASSIFICATION METHOD

The sequence of furzy states that was generated in the
preceding section is first of all segmented. Consecutive series
of the same state are merged thus the information is
compressed. However, the resulting number of segments can
still be very high and its use impractical. A feature selection
must be performed to transform a sequence of segments into a
fixed length vector of features.

In this paper, this selection consists in replacing each
segmented sequence by a vector comprising exactly 243 fuzzy
numbers. These are the minimum distances between the most
plausible state in each segment and all possible states
Following with the preceding example. suppose that the true
sequence of State-id is:

5(2)=0
5(3)=1
5(4)=5
S(5)=240

The proposed feature wvector comprises the minimum
distance between the preceding sequence and all of the possible
states 0, 1, 2, ... These distances are:

X=(0,0,1,2,1,0,1,....0,1.2)

The first component is X(0)=0 because the sequence of
states contains the element S(2)=0. The same can be said about
the second component, X(1)=0 because S(3F=1. X(2F1
because the nearest state to the State-ld #2 is the element
8(3 1, whose distance to State-1D#2 is 1. X(3 =2 because the
nearest point to State-1d #3 is S(3)=1, whose distance to 3 is 2.
In this particular case, 243 numbers are produced from a chain
of 5 elements, however in practical cases the sequences contain
thousands of elements and this procedure is actually a
compression of the data.

In any case, the true sequence of State-1d is not known. In
this particular example lower table of Figure 3, the knowledge
about this sequence is limited to:

S(2) is0

S(3) mightbe Oor 1
$(4) mightbe 0,2, 3or 5
S(5) might be 240 or 242

Consequently, the feature vector is also partially unknown:

X(0p=0
X(1ymightbe 0 or 1
X(2)mightbe 0,1 or2
X(3)mightbe 0,1 or2
X(4)mightbe 1,2 or 3

Generally speaking, each component of the vector X is a
fuzzy set, whose membership function takes into account the
degrees of confidence in the assignments of the sequence S.

This vector is fed into a fuzzy rule-based classifier with the
following structure:
e Ifxe A, then class = Good engine
» IfxeA;then class = Good to Normal engine
+  IfxeA;then class = Normal engine
¢ Ifx ¢ Az then class = Normal to high deteriorated
engine
*  [fxe Agthen class = High level of deterioration
* [fxe Agthen class = Bad overall engine condition
Notice that the preceding classifier only depends on the
antecedents of the preceding six rules. which are in turn fuzzy
sets. The membership functions of these antecedents A; are
obtained automatically from the training data with a computer
algorithm. The training data comprises sequences of EHM data
that have been diagnosed by hand after a shop visit. The
computer algorithm is a Genetic Fuzzy System; the interested
reader may find the computational details of this last algorithm
in reference [14].

VISUALLZATION METHOD

A common visualization method for high-dimensional data
is Radial Coordinate Visualization, also known as RadViz [16].
Each coordinate of the point being represented is an anchor ina
circumference, and the position of the point is determined by
the equilibrium of springs whose strength is proportional to its
component at the corresponding coordinate. A point whose
components are all the same is mapped to the center of the
circle and a point whose components are all zero but one, is
mapped to the anchor of the non-null component. Figure 8.

N

&N MH

E
Figaere 8 Radied Coording e visualizuion

In this work. it is proposed that the degrees of truth of the
fuzzy rule-based classifier are represented with RadViz. For
instance, if the classifier concludes that the EHM data
represents a “Good engine” with a degree of certainty of 0.8
and a “Good to normal engine” with a degree of certainty of
0.2, the point (0.8, 0.2, 0, 0, 0, 0) is represented. The anchors
are the representation of the points that belong to only one of
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the classes with absolute certainty, and the center of the circle
are all of the doubtful cases.

Furthermore, since the input to the fuzzy classifier is itself a
fuzzy set, the degree of truth of the cutput will also be affected
by a degree of uncertainty. For instance, the system might
conclude that the diagnosis is “Good enging” with a degree of
certainty between 0.7 and 0.9 and “Good to normal engine™
with a degree of certainty between 0.1 and 0.3, thus the interval
ofvalues ([0.7, 0.9]. [0.1,0.3], 0. 0, 0,0) should be represented.
Therefore, each engine will not be a point but a shape in the
RadViz map. The center of the shape is the most plausible
category for the engine. The size of this shape represents the
influence of the filtering parameters in the diagnosis. Large
shapes denote borderline cases where a small change in the cut-
off frequency of the filter causes a change in the diagnosis. It is
also expected that large shapes are positioned near the center of
the map, in the area that also means “low confidence in the
classification™. In Figure 9 a map is generated with actual data
that supports this last aspect.

H v

Figire 9 RadVe map, showing the deterioration classes as anchors in the
circumference.  Each elljpse represents an engine, olassiffed by color, iz
position is given by the confidence and its size s given by the uncerizinty of the
predicton

CLASSIFICATION BASELINE

The fuzzy rule-based classifier used to classify the level of
engine deterioration, is based on service experience gathered
from over 1000 engine shop visit reports. This database
correlates the engine level of deterioration, to the EHM trend
from the engines’ previous shop visit, to the time point before
induction. This is deemed to provide a solid average for each
ofthe classes.

The level of deterioration was assessed based on the core
engine modules. As previously stated. the initial aim of this
method is life cycle cost reduction, with the core modules
considered as the main key drivers.

Other service experience parameters, as hours and cycles
since last shop wisit, cost of the refurbishment and parts
replaced where also considered. This knowledge will not be
directly used for the classification; however it will provide the
service experience which will later be associated to each class.

The definition for each level of deterioration class used
was the following

¢ Good - This is considered when the module is found to be
in a good state and the number of scrap parts are deemed
to be low and not key to the state of deterioration.

¢ Good to Normal - This is considered when the module is
found to be in a good state but the number of pants
replaced suggests that the module is deteriorated.

¢ MNormal - This is considered when the module is found to
be in a typical state and the number of scrap parts is
deemed to be in line with an average module overhaul.

e Mormal to High - This is considered when the module is
found to be in a typical state but the number of scrap parts
or the type of scrap parts suggest that the level of
deterioration is higher.

¢ High - This is considered when the module is found to be
in a deteriorated state and the number of scrap parts is
high.

¢« Bad- The definition of bad was reserved to identify those

engines where substantial internal deterioration has
occurred.  These engines are typically associated to a
service event and have not been used in the deterioration
assessment. These engines may however be of interest to
identify long term deterioration events that are not
currently identified through EHM.

The “Bad™ class is reserved for the HPC module. as it is in
this module that long term deterioration leading to high levels
of deterioration may be identified. Service experience shows
that “Bad” levels of deterioration in the HPT are typically
associated to internal component deterioration where EHM data
is not associated to any variable trend change.

The evolution of a urbine nozzle guide vane through these
different levels of deterioration is shown in Figure 10. Other
components in other locations and modules will deteriorate in
their individual ways due to their own operating conditions.
However the general deterioration, from new., to acceptable - A,
to repairable - B, to scrap — C to directly affecting the engine
working condition - [, may be extrapolated to any other
COMponent.

The main components assessed within the HPC module
have been blades and vanes. as well as the remaining liner.
Normal compressor deterioration was considered to be that in
which half of the blades and vanes where replaced and where a
certain level of drum liner was released.

In addition, consideration on the state of the compressor
case and the rejection of bearings was also taken. However this
was done on a one to one basis dependent on the relation to the
other damage seen and the actual time on wing achieved by the
specific engine.
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c

Figure 10 Shows the general deterioration over time of a turbine nozzle guide vane. Clockwise it can be seen how the vane is still deemed © be in a serviceable
condition (A), it evolves to a repairable condition (B), however it is then deemed © be scrap (C) and witmately it is considered to direcdy affect the engine working

conditon (D).

The main components assessed within the HPT module
have been the blades and nozzle guide vanes as well as the
combustion chamber.  Normal turbine deterioration was
considered to be that in which half of the HPT stage 1 NGVs
were replaced and less than a quarter of the HPT stage 2 blades
and NGVs were replaced. No consideration was given to the
state of the HPT stage 1 blades as on the engine fleet assessed;
they are replaced at each overhaul.

In addition, other components as the combustion chamber
heatshields or the fuel spray nozzles were also considered on an
individual basis to judge the overall state of the module.

The database was subsequently structured in order to
identify all possible combinations of internal engine
deterioration. This is, the engines were classified by their
combinations of HPC and HPT module level of deterioration.
This subsequently enables a module level assessment within the
neural network rules.

This is, the average cost prediction for a “normal™ HPC
module, doesn’t consider all “normal” HPC modules. The
assessment only considers those “normal” HPC modules
associated to a similar turbine level of deterioration. This is a
secondary additional improvement to current predictive
methods used as it limits the variability of the prediction. The

levels of confidence and uncertainty are not specifically used at
this time for these predictions.

The associated EHM data for each of the engines was
transformed through the filtering method described. The
visualization method was applied to each of the engine level
combinations, to identify outliers within each class. Module
level of deterioration plots were also carried out. Due to the
subjective assessment of the shop visit reports, several module
levels of deterioration were revised.

The resulting database therefore combines engine level
EHM data transformed profiles, with module level
classifications. The neural network rules enable the
classification of modules of inservice engines to specific levels
of module deterioration.

IV.CASESTUDY

The transformation method and classification was carried
out on several in-service engines as a means of method
validation. The assessment of two of these engines is outlined
here as a validation overview.
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H

=
Engine 1 - Turbine

Engine 2 - Turbine

H

Figure N HPC and HPT modide plots for Engine land 2. Each module is represented by a color coded ellipse dependent on itz clossificotion.  The gze and actual
position of the ellipse are given by fe confidance and wncerainty of the prediction in the hortontal and vertical axis, respectively. The compresor dassifica bion is
based on 6 dasses whereas the Turbine on § due o the " Bad" dass only being relevant 1o fhe compressor. Turbine "Bad" events are not typically identfiable through
EHMmethods. The actual positions of the clases are not relevant i the axs. The aves are ondy relevant i the prediction ellipse posiion and see

METHOD PREDICTION vs. FINDINGS

The EHM data transformation and classification results for
Engine 1, Figure 11 show that the engine was in a good overall
condition, with the compressor showing a “good to normal”™
level of deterioration with high confidence and with a small
level of uncertainty. This is shown by the small green ellipse,
close to the class.

The turbine module is associated to a “good” level of
deterioration, grey in color. The confidence in the prediction is
high based on the thin ellipse. The length of the ellipse
suggests a high level of uncertainty. This is also confirmed by
the location of the ellipse, suggesting higher levels of
deterioration towards *“good to normal™ and even “normal”.

Engine 1 was removed from the aircraft on the 16 Jun
2010 and inducted as part of a planned shop visit on the 57 Jul
2010 in order to replace the HPT stage 1 blades. Mo other in
service issues were reported.

The compressor module was visually inspected and a
borescope inspection carried out which determined that the
module was in a good overall state and that the strip of the
module at this shop visit would not be required.

The turbine module was stripped. The module was in a
good overall condition, with a full set of HPT stage 1 vanes
being replaced as well as, two-thirds of HPT stage 2 vanes. and
all of the HPT stage 2 blades and RBSS air pipes. In addition,
the RBSS and the turbine case were repaired.

The EHM method plots for Engine 2, Figure 11 show that
the engine was in an average overall condition, with the
compressor showing a “normal™ level of deterioration with an
average confidence and an average level of uncertainty. This is
shown by the blue ellipse, in acentered position. The thickness
of the ellipse shows a higher level of uncertainty. The length
represents the normal level of confidence in the prediction.

The wrbine module is deemed to also sustain a “normal”
level of deterioration. The centered position and length of the
ellipse suggests a low confidence in the result. The uncertainty
is however very low.

Engine 2 was removed on the 22% Aug 2006 and inducted
on the 97 Oct 2006. No service issues were reported.

The compressor module was fully stripped and deemed to
be in an average overall condition, with a high number of new
blades, vanes and VSVs being replaced. All of the compressor
cases were repaired. The module was deemed to be in a good
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overall condition, however due to the number of parts replaced,
it is considered to be representative of a normal compressor
level of deterior ation.

The turbine module was stripped and deemed to be in a
good overall condition. A high number of repairs were
however carried out, which include the combustion chamber,
the RBSS and turbine case, and all of the HPT stage 2 blades
and vanes.

The EHM based prediction and engine maintenance
findings in both cases align, validating the methodology. The
overall prediction is in line with the findings, and the levels of
uncertainty in each case are seen to suggest the repair
requirements within each module.

V. COSTIPART REPLACEMENT PREDICTIONS

As detailed, the engine maintenance findings of over 1000
engines were established. In this assessment, part replacements
and costs were also identified. Through the classification
method the level of deterioration of a module is determined,
and averages may be identified from this database, associated
to each predicted level of deterioration.

The specific module level of deterioration predictions for
these two engines have also been carried out and compared
against the actual part replacements. The charts in Figures 12
and 13 show the scrap rate prediction for each part in the
horizontal axis. The actual component rejection is shown as a
percentage deviation to the prediction. This way the prediction
accuracy may be confirmed.

"

Blages  Vanes VEVE NGV-1  Blades-2  NGV-2
B - o L) . -

% Deialion from prediction

HPC HPT

-

Figure 12 Engine |Sorap makerial devistions from reality to the prediction
(Shom as e chart baseline)

The HPC from Engine 1 was not stripped. A visual and
borescope inspection determined that the module was in good
overall service condition. This is in line with the prediction;
however no material comparison is possible.

The material scrap rates on the main turbine components
reviewed, Figure 12 shows a +/-10% accuracy in the prediction
of the HPT stg 1 and 2 NGVs and HPT stg 2 blades. The
accuracy on other components not represented in the charts as
the RBSS pipes and the combustion chamber and heatshields
were also contained within this prediction tolerance.

The HPC from Engine 2, Figure 13, also shows good levels
of accuracy between the predictions and the actual inspection
findings. A +/-10% accuracy is achieved for the HPC blades
and vanes. The VSV rejection rate is seen to be greater than the
prediction; this however was due to policy requirements and
not due to actual material deterioration.

The turbine predictions are once again within the +-10%
accuracy for the HPT stg 1 and 2 NGVs and the HPT stg 2
blades. The low HPT stz 2 NGV prediction has been
subsequently confirmed to be due to a longer repair lead time,
for which the parts were replaced.

it Vanag WENE MGV Blades2  NGV-2

% Dealion lom pradiclion

HPC HPT

Figure 13 Engine 2 Serap makerial deviations from reallly b the prediction
(honem ax the chart baseling)

VI. CONCLUSION

The method here outlined is deemed to be an improvement
to the current EHM assessment standard use of fuzzy logic and
neural networks, [12].  This method breaks away from the
individual variable specific assessments carried out to date, to
establish an overall engine methodology.

The current methods used to date assess step changes
within individual variables. The complexity of some of these
variable associations and the increased size of the required
knowledge databases have allowed for fuzzy logic and neural
network based assessments.

The limitations identified however are that these methods
do not consider the approximation error when smoothing out
the volatile variable inputs and the difficulty on the correlation
of long term or small rend changes.

This new methodology has addressed both of these issues.
The introduction of a bandwidth related error has reduced the
approximation data loss. The use of probabilities together with
the combined engine level assessment, allow a more detailed
engine overview.

In addition, due to the improved method of correlating
engine maintenance knowledge, the assessment is capable of
predicting not only engine level deterioration, but also the
module specific levels.

The method validation together with the two examples here
reviewed, show that this method is capable of detecting engine
faults in line with current standard methods. In addition, the
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method is also capable of predicting an overall engine and
module specific level of deterioration.

Based on the business examples, it can be seen that this
prediction conveys an immediate improvement for maintenance
shop planning. Owerhaul facilities may now plan months in
advance of an engines’ maintenance based on the actual level of
deterioration of the specific engine and not on average fleet
maintenance policies.  As such, workscope creep may be
avoided, and engine specific tailored workscopes may be
generated, reducing the life cycle maintenance costs.

The use of flest-wide assessments, as in Figure 9, would
detect engines with high levels of deterioration which may now
be identified. This deviates from the current understanding
where high life is correlated to high deterioration. This is
deemed will improve fleet reliability as deteriorated engines
independent of their time on-wing may be addressed.

However, the additional improvements gained through the
maintenance cost and material predictions are thought to be of
greater OEM and life cycle cost benefit.  The improved
prediction in the required material would directly reduce parts
stock. In addition, part requirements may be sent months in
advance, reducing the overall engine maintenance turmaround
time. This is a direct underlving, engine specific and fleet-wide
improvement to the business.

The use of EHM for these long-term, life cycle cost
purposes is bevond its current practice. This assessment and its
validation are considered to be a significant step towards
improved maintenance predictions and improved overall fleet
life cycle cost and reliability.

VIL FUTURE ADDITIONAL IMPROVEMENTS

There are several areas that may be assessed to establish
further improvements to the current predictions. Increasing the
number of variables considered and / or increasing the number
of Ruspini states may increase the predictions to other modules
or allow for more detailed assessments.

The level of detail and understanding for each of the levels
of deterioration may also be improved. Increasing the number
of components, and establishing not only the level of material
replacement but also of material repaired, would directly
improve the maintenance cost predictions.

The classification may be subdivided further, even to the
point of considering every single engine within the database as
an individual class item.  This would allow a one to one
prediction of material, repair and cost. However, even
subclasses within the five or six here established would directly
improve the predictions made.

There are several classification methods available which
provide different results dependent on their application. It is
considered that the application of other fuzzy rule classification
methods may provide a more accurate prediction.

The use of this method can also be used to assess fleet
issues. The method measures the similarity between an engine
and a certain database. The database may be modified to not
only assess maintenance, but actual in-service issues. Fleet
containment could then be limited only to affected engines as

detected through EHM and not to the complete fleet or
conservative subfleets. as is the case today.

The read-across to other engine types. will also require
further development. It is considered that an initial step to read
across this method to other engines with a similar geometry
will highlight several areas where additional improvements will
be required.
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17.4 Sequential pattern mining applied to aeroengine diagnosis with uncertain
Engine Health Monitoring data
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Ahbstract

Numerical algorithms that can assess Engine Health Monitoring (EHM) data
in acroengines are influenced by the high level of uncertainty inherent to gas
path measurements and engine-to-engine variability. Among them, fuzzy
rule-based techniques have been successfully used due to their robustness
towards noisy signals and also becaunse of their capability to learn a human-
readable set of rules from data. These techniques are useful for detecting the
presence of certain types of abnormal events or engine deterioration, where
a combination of the EHM signals only appear when these occur. However,
there are also other types of engine events or deteriorations that manifest
themselves as an ordered sequence of otherwise normal combinations of the
EHM signals. These comhbinations are not relevant if taken in isolation. The
current existing techniques cannot assess these. In this paper it is proposed
to use sequence mining techniques in order to obtain fuzzy rules from uncer-
tain EHM data that can identify these situations where an engine event or
deterioration is determined as a sequence of otherwise normal combinations
of the EHM signals. The results are subsequently tested on a representative
sample of acroengine data.
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1 1. Introduction

2 The main use of engine data is to control and manage the engine. This
1 is, to monitor the engine parameters in order to avoid running the engine
s+ under undesired conditions. The built-in system knowledge within the engine
s and aircraft is configured to trigger alerts to highlight the need for pilot
s or maintenance action or shut the engine down if a significant condition
7 would be encountered. In addition, the engine data is also monitored for
¢ its development over time, this is what is understood as Equipment Health
s Monitoring (EHM). The variables measured and the number of data points
1w taken over time for each of these has evolved substantially in recent vears,
u making it necessary to have specific types of analysis software available to
1z assess and monitor the flving fleet.

13 Engine or equipment health monitoring is carried out on everv engine as
1 more data points are obtained. The assessment of this data not only reviews
5 the individual working conditions but also the trend over time to identify
1 rapid levels of deterioration. This work is typically carried out by the OEM
v or the operator service engineers or even outsourced to specialist EHM con-
e sulting companies. The assessment carried out is normally a comparison of
1w the engine data against those parameters identified to be characteristic of
2 known engine conditions or against design limits [45]. However understand-
2 ing the design limits for a new engine or predicting the engine parameter
2z deterioration levels over time is complex and several methods have been de-
n veloped.

u 1.1. EHM assessment eristing models

2 There have been multiple methods of EHM data assessment developed
% over time. The most common methods are based around Gas Path Anal-
o ysis (GPA), which considers the variability of the engine parameters based
= on the engines’ internal damage and deterioration [22]. Linear and subse-
x quent non-linear assessments based around GPA have helped develop filter-
x ing mechanisms to detect step changes in the internal working conditions of
1 the engine. Due to the increase in the number of variables monitored and
2 to improve the time before an engine is required to be removed from ser-
1 vice from the point a trend shift is identified, assessments have used fuzzy
u logic and neural networks developing pattern recognition methods [43]. The
x aim of these methods has consistently been to filter the variables in order to
% identify engine trends and step changes as early as possible. Then, based on
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w previous experience, faults may be detected early and engine maintenance
u  planed accordingly, thus aveiding a more significant engine event. Engine
» development over time has also been assessed through deterioration mod-
w elling and probabilistic simulation, [33]. The main objective of this type
u of assessments, early in an engine programme however is to determine the
« optimum engine maintenance interval and assure appropriate levels of reli-
a1 ability for the fleet. In the past these two types of assessment have been
wu completely independent the first concentrating on engine specifie safety and
u reliability and the second on fleet management, however neither actually con-
« siders long-term engine specific maintenance management. The introduction
ur of maintenance contracts as Power-By-The-Hour where the engine mainte-
# nance management is the responsibility of the OEMs, has emphasized the
w need for the early diagnosis of engine specific deterioration. This is, fur-
s ther development in the assessment of EHM data has been highlighted so
st that small trends and shifts in the variables are identified, even when the
s2 wvalues are within the appropriate reliability levels of the specific parameter.
51 This way, the level of engine deterioration at the time of engine maintenance
se may be determined and prioritization of fleet maintenance may be performed
s ahead of time based not on average fleet experience but on each engines’ own
s specific level of deterioration.

st 1.2. Uncertainty in EHM data

58 One of the main problems of any numerical algorithm that can assess
s EHM data is the high level of uncertainty in gas path measurements. In
s order to reduce some of the variability between the different engines, it is
& common to estimate the state of an engine from the deltas between an en-
& gine's measurements and those from a good engine. However faults are not
@ always associated to a combination of deltas and recent works are directed
e towards detecting trend shifts in these variables [45]. Different techniques
& have been used to filter out the noise in the EHM data [41] and different
& classifiers are available that can process the filtered signals and map faults
& to slope changes. Among them, soft computing techniques are appropriate
e for this task because they combine the flexibility of neural networks with a
& human-readable expression of the results. One of the most successful soft
n computing-based classification method consists in stablishing a set of fuzzy
7 logic-based rules of the following form:

72 IF TUREINE TEMFERATURE AND FUEL FLOW INCREAZE

Attachments [A]3




Monitorizacién del estado de flotas de motores usando andlisis inteligente de datos para informacion
intervalo-valorada y posibilistica

7 THEN COMPRESSOR HEALTH IS LOW

7 These rules can be obtained through expert knowledge, or automatically
s obtained directly from the EHM data. However, there are some basic im-
7 provements that can still be made to the mentioned soft computing based
m algorithms. In particular, the different EHM wvariables should not always be
7 assessed in isolation. There are faults that mayv be identified because the rel-
m  ative slopes between certain signals change. For instance, a small decrease in
s compressor pressure might not be relevant but a combination of a decrease in
st the compression ratio and an increase in compressor temperature is. In ad-
@ dition, combinations of trends that do not signal a fault when independently
2 observed may be used if considered jointly. For instance, a small increase in
@ compressor pressure might not be relevant unless it is followed by an increase
s in fuel flow some Hights later.

" In this paper a new method is proposed that attempts to bridge these

s gaps:
5 1. All of the considered variables are aggregated into a combined mul-
0 tivariate slope, from now on called “state identifier” or “state-id” A
o rule-based classifier will be used, thus the slope is discretized and a
9 finite set of combinations is used. Each combination is assigned a num-
a2 ber. The purpose of this assignment is to replace a set of samples from
@ multiple EHM variables by a single sequence of numbers.

a4 2. The whole sequence is processed in order to make a diagnostic, thus
o5 faults can be detected that manifest themselves as an ordered sequence
I of state-ids. In other words, the preceding sequence is mined to obtain
97 rules with the following form:

a8 IF COMPRESS0OR PRESSURE DECREASES FIRST

£ AND TURBINE TEMPERATURE AND FUEL FLOW INCREASE LATER

100 THEN COMPRESSOR HEALTH IS LOW

w 1.5 Sequence mining

102 The mentioned processing transforms records of EHM data, sampled in
w a certain time lapse and for a given aercengine, into a single sequence of
w symbols (State-Ids). This is a convenient conversion becaunse there are many
o different algorithms which already exist that can be applied to data expressed
o in this format.

-

"

-
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107 Sequence mining algorithms comprise a wide family of methods that ef-
e ficiently process and help understand long sequences composed of a limited
w  alphabet of items. For example, in computational biclogy, DNA or protein
1o sequences can be decomposed into structural units, and detecting a partic-
e ular symbol in a sequence is not as relevant as finding an ordered list of
12 symbols associated to a marker. In particular, sequential pattern mining
12 was introduced by Agrawal and Srikant [3], and was intended to discover
s frequent subsequences of patterns in a sequence of records, as happens with
s EHM data.

116 The current available catalog of methods is substantial. As a result of
1 this, after the diagnosis problem is introduced in Section 2, different sequence-
1e mining methods are reviewed in Section 3 and their suitability for the diag-
1#a mnosis problem will be discussed. The proposed method is introduced and
0 a descriptive example is given in Section 4. Section 5 contains a muneri-
2 cal analysis of the proposed algorithm against other alternatives. Section 6
2 concludes the work and discusses future research in the field.

i 2. EHM-hased diagnosis of acroengines

121 A typical two shaft high bypass ratio turbo fan is depicted in Figure 1.
2 In this type of engine, the thrust is performed by the air compressed by the
w2 fan blades and pushed through the engine bypass. The air pushed through
wr the core of the engine is solely used to turn the fan. This is, the air is
2 compressed by the high pressure compressor (HPC) so that the optimum
1 conditions are reached within the combustion chamber to subsequently turn
1 the high pressure turbine (HPT) to maintain the high pressure (HP) system
m and subsequently turn the low pressure turbine (LPT) which moves the fan
12 and produces the engine thrust.

m The main stations depicted in Figure 1 follow the most commonly used
1 numbering convention. Although single digits are used to define the main
1 stations, double digits are used to define interim positions. The first digit
13 defines the main station whilst the second, defines an interim position. There-
1 fore, for example station 2 may also be known as Station 20 or Station 3 may
1 also be defined as Station 30. Depending on the context these may be used
1 indifferently and therefore at Station 2 the P2/T2 probe is used to measure
w0 these variables whilst the temperatures and pressures at station 3 are known

w1 as P30 and T30,
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Figure 1: Typical two shaft high bypase ratio turbo fan.

12 e Station 0: This used to determine the ambient or external conditions.
1 These are generally measured by the aircraft.

e e Station 2: Due to the design of the engine intake the temperature and

145 pressure at station 2 are different to those of station 0 and are more
15 representative of the actual engine intake conditions which will be nsed
147 as reference by the controls system. The main variables at this station
149 are P2 and T2.
149 e Station 14: This is used to determine the actual efficiency of the fan,
1% as it solely sees the section of air compressed by the fan which runs
151 through the engine bypass. No significant measurement are taken at
15 this positlon, as the engine thrust may be calculated based on the
152 engine design from the Engine Pressure Ration (EPR) or the N1 speed
158 (speed of the LP system) defined below.
155 e Station 25: This is the entry to the HPC. Depending on the engine de-
15 sign a booster or an Intermediate Pressure Compressor ([PC) may also
1w be associated to the low pressure (LP) system. Station 25 is therefore
158 defined as the entry to the HPC and not the exit of the fan.

6
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150 e Station 3: This is the HPC exit and the entry into the combustion

160 system. The conditions at this point are key for the correct functioning
161 of the engine. The main variables measured at this station are P30 and
162 T30.

161 e Station 4: This is the combustion chamber exit and HPT entry. The
164 temperature at this point is one of the main engine parameters. T4,
165 may also be known as Turbine Gas Temperature (TGT) or Internal
166 Turbine Temperature (ITT)

167 e Station 5: This is the LPT exit. The main variable at this station is
168 Pa0. This pressure is used to define EPR, which i1s subsequently nsed
160 to determine the overall engine thrust. EPR is the relation of P30 to
170 P?D.

@ The LP system is the combination of the fan and the LPT. The speed at which
2 the LP system turns is defined as N1. The HP system is the combination of
m the HPC and the HPT. The speed at which the HP svstem turns is known
m as N2. In addition, the amount of fuel consumed is also monitored through

s fuel flow (FF).

wm 2.1, Engine deterioration

1 One of the main types of engine faults or causes of deterioration is me-
s chanical. Mechanical faults are mainly identified through overall engine de-
e terioration and the assessment of EHM data. Independently of the system or
w component that has deteriorated there are several stages or levels of deterio-
w  ration where the effect on cost and severity for continuous operation varies.
1 This is, any component or syvstem will deteriorate over time solely due to its
= use, however if subject to an inspection it could be identified to still be good
1 for further operation without maintenance.

185 Further operation will deteriorate any component or system to a point
s at which if inspected it will require the component or system to be repaired.
wr Ultimately the level of deterioration of a component or system will reach a
1 point where it will no longer be repairable. This condition in many cases
o is still safe for continuous operation as it does not result in a hazardous
o operation. In many cases operational and maintenance costs will increase as
w  the component or system is deteriorated and parts need to be replaced at
e the maintenance shop visit.
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191 In some cases, the syvstem may deteriorate even further. In these cases
1w further engine running may be deemed as unreliable or material may even be
s released. In these cases high operational disruption and high maintenance
ws costs are incurred as not only must the initial component be replaced but
wr all of the secondary damage must also be repaired or replaced. In addition,
e the maintenance of the aircraft and of the engine need to be accommodated
we outside of the planned schedule. However the main issue in these situations
a0 is customer dissatisfaction and company reputation.

a 2.1.1. Objectives of this study

m The objective of engine EHM data assessment is to identifv the specific
w1 levels of deterioration for any given engine at any given time. This in turn
a0 is deemed will also improve engine or fleet reliability as enable additional
a5 operational benefits.

206 The EHM subset of parameters considered in this study consist of the
wr following six variables:

208 1. FF: Fuel flow

. N2: Speed of the high pressure system

210 . P30: High pressure compression exit pressure

. T30: High pressure compressor exit temperature

1

. TGT: Turbine Gas Temperature

12

=T 2 S T R

113

. EPR: Engine Pressure Ratio

214 Engine performance once the design is fully defined may be assessed to
25 determine the overall working conditions. Based on engineering knowledge
25 and experience, deterioration trends may be compiled which will help de-
27 termine the conditions to monitor once the engine is in service. Therefore,
215 based on the engine design and performance definitions it is known that de-
21 terioration of the HPC will show as an increase of T30, TGT and FF with a
20 reduction of N2 and P30. Deterioration of the HPT on the other hand would
2 be associated to an increase of TGT and FF but a reduction in P30 and T30.
o) However in reality both systems will deteriorate simultancously over time.
221 The effects of one of the systems may therefore be hidden by the other as the
2 trends would be combined. It is therefore kev to monitor small changes over
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=5 time in order to keep account of which of the systems is deteriorating before
=6 the other compensates the effect. To this end, in the following sections a
2 methodology is proposed where EHM data is transformed into a sequence of
=z values that can be analysed through sequence mining techniques.

2 3. Mining sequences of uncertain EHM data

220 A sequence database stores records that are sequences of ordered events.
23 In the following, sequences will be records with the following format:

om [Transaction ID, (Ordered Sequence of Events)].

22 In turn, each event in a sequence has one or more items. The purpose of the
21 sequence mining algorithm in this paper is to detect certain subsequences of
2 events, with the rule-base structure mentioned in the introduction.

2% For instance, the subsequence { (TGT=UP P30=DOWN) (TGT=SAME T30=UP)
ar (P20=UP)} means that three events are searched for in Engine #1. In the
2w first event, the turbine temperature TGT increases and at the same time
2w the compressor pressure, P30 decreases. In the second event, TGT does not
20 change and the compressor temperature T30 increases. In the third event,
2 P30 increases. The following transaction matches this sequence:

242 [Ei, ((TGT=UP P30=DOWN T30=UP) (TGT=UP P30=DOWN T30=UP}
243 (TGT=SAME P30=SAME T30=UP) (TGT=SAME P30=UP T30=UF)}]

2 Ohserve that additional events are allowed independently of the searched
25 ones. On the contrary, the following transaction does not match the sequence
25 in this example, because these events are disordered:

7 [Es, ((TGT-UP P30=DOWN T30=UP) (TGT=SAME P30=UP T20=UP)

248 (TGT=SAME P30=SAME T30'UP)>:|

249 More formally, let the sequential database be D), and the set of items be
s I ={iy,ia,...,ix}. The purpose of the sequential pattern mining problem is

= to find all frequent sequences S in I} comprising items in [, where “frequent”
s means that the support of the sequence, i.e., the fraction of transactions in
s [) that match the sequence, is higher or equal than a given threshold.

254 The first sequential pattern-mining algorithm was the algorithm Aprior-
= 1All [3], adapted from the Apriori algorithm [1, 2]. Many other different al-
= gorithms exist, like AprioriSome [3], GSP (Generalized Sequential Patterns)

9
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Figure 2: A hierarchical taxonomy of significant sequential pattern-mining algorithms.

[42] or SPADE (Sequential Pattern Discovery using Equivalence classes) [50],
which are based on the Apriori property [2], i.e. “All nonempty subsets of a
frequent itemset must also be frequent”. According to [29], (see also Figure
2) there are three different families of sequential pattern-mining algorithms:

1. Apriori-based
2. Pattern-growth, e.g. FreeSpan [20], PrefixSpan [34] or SPARSE [4]
3. Early-pruning, e.g. HVSM [40] or LAPIN [48].

There also exist hyvbrid algorithms. For instance, PLWAP [28] is a hybrid
between pattern-growth and early-pruning.

10
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266 There are studies that favour the algorithm PrefixSpan, which is pattern-
% grow based (see reference [29]) over the mentioned families in terms of exe-
%8 cution time, memory consumption and nmumber of frequent sequences found.
%0 PrefixSpan demands less computational resources than Apriori, in both time
zo and memory, and it is also faster than other pure or hybrid pattern-grow
o techniques, like WAP-mine or PLWAP [35], albeit less memory efficient. In
a2 the same reference [35] PrefixSpan was shown to improve FreeSpan. Apart
zn from this, early-pruning techniques are perhaps the second more efficient
aa algorithms (LAPIN_Suffix [47]).

75 Because of these reasons, the PrefixSpan algorithm is argnably the best
a6 algorithm to mine the sequences of EHM data. However, this algorithm
orr cannot be directly applied to the problem at hand; some modifications must
ais previously be performed in order to manage uncertain data. The reasons why
as PrefixSpan needs to be modified are reviewed in the following subsections,
=0 and the proposed changes will be introduced in the next section.

m 3.1 Mining uncertain sequential patterns

282 As mentioned, there is a high level of uncertainty in the gas path mea-
s surements that the mining process has to consider. It may be, for instance,
21 that the data is so noisy that a clear decision cannot be made between a pair
2 of conflicting asserts like “TGT=UP” and “TGT=SAME." In this case, a fuzzy
=6 discretisation of numerical data may be performed [8, 15, 21], thus it may be
= said that, for instance, “truth(TGT=UP)=0.7" and “truth(TGT=SAME)=0.3."

288 There are different algorithms that can mine fuzzy sequential patterns
= from quantitative data. In [21] the algorithm AprioriAll is extended to the
=0 fuzzy case. In [15], three different approaches (SpeedvFuzzy, MiniFuzzy and
= TotallyFuzzy) based in the PSP algorithm [32] are considered. In [7] Fuzzy
=2 Time Interval (FTI)-Apriori is studied. The approach in [16] can also manage
= incomplete data. In [11] the efficiency of different algorithms is compared
s and it is concluded that PrefixSpan should be the basis of future extensions
= [49, 36, 18], including Fuzzy Time Interval versions, like FTI-PrefixSpan [7].

me  J.1.1. Emerging pattern mining with uncertain data

201 In the problem at hand. the search of frequent sequences is intended
= to identify significant differences between groups, i.e. ordered sequences of
= state-ids that appear only when a certain degree of deterioration occurs.
s To the best of our knowledge, the combination of sequence and emerging
i pattern mining has not been studied before, however such a combination

11
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w2 is a straightforward extension of other studies where association rules were
s extended to classification, as discussed in this section.

304 Emerging Patterns (EPs) are itemsets whose support significantly changes
s from one class to another. EPs have been successfully used to build robust
ws  classifiers. The first of these algorithms was CAEP (Classification by Aggre-
wr gating Emerging Patterns) [0, 10, 14, 17]. CAEP partitions the training set
e in a one-versus-all manner, defining the target EPs as specific patterns of a
s given class. Test instances are classified by finding all target EPs contained
s in the instance, then aggregating the conditional probabilities of the EPs
s appearing in each possible ontput class. EP-based classifiers have been used
sz in a wide range of applications, such as predicting diseases [23], failure detec-
22 tion [27], and discovering knowledge in gene expression data [3, 13, 26]. Also
2s based on CAEP, Li et al. proposed a JEP-classifier which is stricter in their
25 definition of target EPs [24]. Other algorithms exist, like STEP-classifier [14]
s or DeEPs [25] that can improve the computational cost and the accuracy of
ur CAEP.

218 CAEP and PrefixSpan will be combined in this paper. The PrefixSpan
2 algorithm will be used to mine frequent sequences of State-Id that appear
z0 with a probability that depends on the degree of deterioration of the engine.
= In a second stage, a classifier will be built that diagnoses the engine by
e searching for EPs in the test pattern, and then finding the class for which
= these EPs are more likely to appear. Since the presence of a given EP in a
= sequence of State-Ids is subject to a degree of uncertainty, some extensions
25 must be made to both PrefixSpan and CAEP. These will be detailed in the
ms  following section. The definitions of the concepts involved in this extension
zr  are given in the remainder of this Section.

= 3.1.2. Notation and definitions

Ee The meaning of the symbols that will be used in the following section is
s described here. ID is a dataset with m attributes and n classes, where C} es
m the i-th class (1 <i < n) and D, are the instances of the i-th class.

m ¢ Support of an itemset X, supportp(X): The quotient between the

m number of instances that contain or are compatible to X, countp(X),
1 and the number of instances in D, denoted by | D).
countp(Xx
support ,(X) = SHEpE) (1)
12
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EE e Growth rate of an itemset X from D, to D, (s,i=1,...,n and
136 s i}:

supporty . (X)
—_—
supportnr__’ (X)

GRp,, g, (X) = (2)

EEY If both supports are zero then GRp,, D, (X)=0.1If supportp,, (X)#
Ee 0 and supportp, (X) = 0 then GRp,, . (X) = occ.
1 Lastly, the following abbreviated notation is used when appropriate:

GRp (X) = GR:

Do, D, |

X), (3)
40 where D is the set of instances of classes different than ;.

i

8 o Emerging pattern (EP): Given a threshold p > 1, ifGRDc‘_,DCI_ (X) =

42 p then an EP is obtained from D, to De,.

3 e JEP: Jumping Emerging Pattern: If GRp,, p, (X) = oo, the
4 itemset X is called a Jumping EP from Dg, to Dg,.

45 e Growth rate improvement: The Growth rate improvement of an
45 EP e, Rateimp(e), is defined as follows:

Rateimp(e) = ming-.{GR(e) — GR(e/]} (4)
ur e Agpregate score: Given a test instance (#i,.) and a set E; of EPs of
g the class C;, the aggregate score of i, for C; is:

| SCOTE(tpe s .
normScore(tins, Ci) = ascScorec) (5)
19 where
GRp,, (¢)
score|tins, Ci) = —— G ' . supportp,_ () A
I: : [l T GR’DC\- (E] + 1 Dc‘[: ) ( ]
50 and baseScore((;) is the median of the scores of the training instances
51 of class C; [14].
13
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= 4. Proposed method

: Summarizing the preceding sections, an algorithm is needed that can
e extract EPs from a sequence of values comprising linguistic labels and their
s memberships. For example, a rise in turbine temperature, that was denoted
s TGT=UP in Section 3, could be expressed now as

35? TGT = {UP/0.8,SAME/0.2},

:s ie. TGT is UP with 0.8 confidence and SAME with 0.2 confidence. Following
1 with the same example, the subsequence ((TGT=UP P30=DOWN) (TGT=SAME
w0 T30=UP) (P30=UP)} matches the following list of uncertain perceptions of
s the EHM signals with confidence 0.8:

%  ((TGT={UP/0.8,3AME/0.2} P30=DOWN T30=UP) (TGT=UP P30=DOWN
% T30=UP) (TGT=SAME P30=SAME T30=UP) (TGT=SAME P30=UP T30=UP))

s Partial matches are combined with a t-norm operator, like the product or the
s minimum. For instance, the degree of matching of the mentioned subsequence
s with the list

7 ((TET={UP/0.8,SAME/0.2} P30=DOWN T30=UP) (TGT=UP P30=DOWN

%8 T30=UP) (TGT=SAME P30=SAME T30=UP) (TGT=SAME

- P30={UP/0.4,SAME=0.6} T30=UP))

m is 0.8 A 0.4 = 0.4 (if the minimum is used).

m The PrefixSpan algorithm will be used to extract frequent sequential pat-

a2 terns, some of which are the desired EPs. A pseudocode of this algorithm is
s included in Figure 3 for the convenience of the reader. As previously deter-
s mined, PrefixSpan cannot be directly applied to the acroengine diagnostic
as problem being studied; some adjustments are needed to cope with the gas
i path measurement uncertainty. These will be explained in the next subsec-
ar tiomn.

e 4.1. Revised definitions
m The following definitions are needed in the extension of the PrefixSpan
= algorithm to uncertain EHM data:

e 1. Linguistic Item: A linguistic item is the pair [z;,1;], where z; is an
2 item and [; is a linguistic label. There are m different items (also called
11 “features” in Section 3.1.2), thus i = 1...,m. Each item can take n;
8 different linguistic values I;, 7 = 1...,n;. For example [TGT,UP],
Ee" written as TGT=UP, is considered a linguistic item.

14
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Algorithml (PrefixSpan)
Input: A sequence database !, and the minimum support threshold #
Output: The complete set of sequential patterns
Method: Call PrefixSpan({),0, D)
Subroutine: PrefixSpan(a,le,D|,)
Parametera:

o a sequential pattern

le: the length of a

D), : The a-projected database, if « is different than {); otherwise,
the sequence database I
Method:

1. Scan D|, once, find the set of frequent items b such that

(a) b can be assembled to the last element of a to form a sequential
pattern; or

(b) {b) can be appended to & to form a sequential pattern.

2. For each freguent item b, append it te o to form a sequential
pattern o', and output a';

3. For each o, construct the o-projected database D|,, and call
PrefixSpan (a',le+1,D.,)

Figure 3: Pseudocode of the PrefixSpan algorithm
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25 2. Fuzzy Transaction: Suppose that the value of the item z; is uncer-
257 tain, and the degree of truth of the assert z; = [; for a given linguistic
3 label I; is the fuzzy membership py; (z;). The available knowledge about
250 the value of z; is therefore given by a fuzzy subset of the set of labels
10 {L,... 1}, that is o
Xi=) my(z)/l; (7)
J
1 The notation )
X = (/s 2)s - Lo, (22)) ®)
Eo is more convenient in this context. For instance:
TGT = {UP/0.8,SAME/0.1,D0WN/0.1}. (9)
o Observe also that the set TGT = {UP/1} will be abbreviated as TGT=UP.
04 Let the sequence (X} X2 ... X7} describe the temporal evolution of the
205 value of the i-th item x;. A fuzzy transaction E} is a record, composed
6 by three parts:
207 (a) The identification of the acroengine

(b) A sequence comprising the fuzzy sets describing the knowledge
from the values taken by each item at different time lapses, i.e.

o=k (X X8). (KT KDL (10)
08 (c) The diagnosis of the acroengine after the shop visit, or “class” of
e the engine.
400 For example, the following record is a valid fuzzy transaction,
- [1, {(TGT={UP/0.8,SAME/0.2} P30=DOWN T30=UP) (TGT=UP
40z P30=SAME T30=UP) (TGT=SAME P30=SAME T30=UP) (TGT=SAME
a1 P30={U'Pf0 .4 ,SAME/O. 5} T20=UP) } , EXPECTED COMPRESSOR LIFE
404 = 1000 CYCLES]
ans with three items x; = TGT, xy = P30, 2, = T30, T = 4 time lapses,
405 and three linguistic labels “UP”, “SAME” and “DOWN?” for each of
anr the items, thus m; =3, 1 < < 3.

16
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3. Compatibility between a Linguistic Item and a Fuzzy Trans-
action: The compatibility between a Lingnistic Item [z, [;] and a
fuzzy transaction Ej is defined as follows:

T
compatibility (Ey, [z;, 1)) = \/ m, («}). (11)
t=1
a8 For instance, the compatibility between the Linguistic Item TGT=UP
a9 and the preceding fuzzy transaction is
(08V1VOVO)=1 (12)

a0 4. Linguistic Multivariate Item: A Linguistic Multivariate I[tem (LMI)
an is a tuple of linguistic items, for instance (TGT=UP P320=DOWN).

5. Compatibility between a Linguistic Multivariate Item and a
Fuzzy Transaction: The compatibility between a LMI and a fuzzy
transaction Fj is defined as follows:

T
compatibility( £, LMI) = V f\ firs (xh) (13)
t=1(i,j):[z;,l;] LML
a2 where the syvmbol A denote a t-norm combination. The compatibility
a1 between (TGT=UP P30=D0OWN) and the preceding fuzzy transaction is
(08AT)V(1AD)VOVO) = 0.8 (14)
a1 6. Support of a Linguistic Multivariate Item: Let S be a set of fuzzy
415 transactions S = {Ey, Es, ..., E, . }.
416 The support of a Linguistic Multivariate Item LMI in the set S is
ar defined as follows:
1 2=
supportg(LMI) = — 3 compatibility( By, LMI) (15)
M8 k=1
a18 For instance, given the set ) of fuzzy transactions that follows:
17
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426

428

430

431

432

4331

434

435

436

4ar

438

433

[1, ((TGT={UP/0.8,SAME/0.2} P30=DOWN T30=UP) (TGT=UP
P30=SAME T30=UP) (TGT=SAME P30=SAME T30=UP) (TGT=SAME
P30={UP/0.4,SAME/0.6} T30=UP)), 1000]

[2, ((TGT=DOWN P30=DOWN T30=UP) (TGT=UP P30=DOWN T30=UP)
(TGT=SAME P30=SAME T30=UP) (TGT=SAME P30=DOWN T30=UP)},
3000]

the support of (TGT=UP P30=D0OWN) in [) is

0.8+1

support ,((TGT=UP P30=DOWN)) = 5

0.9 (16)

. Linguistic Multivariate Itemset: A Linguistic Multivariate Ttem-

set is a set of LMIs, for instance {(TGT=UP P30=DOWN), (TGT=SAME
P20=DOWN) }.

. Compatibility between a Linguistic Multivariate Ttemset and

a transaction: The compatibility between a Linguistic Multivariate
Itemset and a transaction is the t-norm composition of the compatibil-
ities between each of the elements of the itemset and the transaction,
l.e.

P
compatibility(Ey, {LMI,, ... ,LMIp}) = A compatibility( £y, LMI)
k=1
(17)
For instance, the compatibility between the first transaction of the pre-

ceding set and the itemset { (TGT=UP P30=DOWN) (TGT=SAME P30=DOWN)}
s

08A02=02 (18)

. Support of a Linguistic Multivariate Itemset: The support of

a Linguistic Multivariate Itemset is the average of the compatibilities
between the itemset and the set of transactions, i.e.
supportg({LMIy, ..., LMIp}) =
nsg
L Z compatibility( By, {LMIL, ..., LMIp}) (19)

s =1

18
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40 For instance, the support of the itemset { (TGT=UP P30=DOWN), (TGT=SAME
aan P30=DOWN) } in the set of transactions defined before is

1

3 (08A024+1) =060 (20)
w10, Linguistic Sequential Patterns: A Linguistic Sequential Pat-
a2 tern (LSP) is an ordered sequence of the elements of a Linguistic
a4 Multivariate Itemset, for instance ((TGT=UP P20=DOWN) (TGT=SAME
s P20=DOWND}.

11. Compatibility between a Linguistic Sequential Pattern and a
transaction: Let “tail” denote the last item in a sequence, and “head”
be the subsequence formed by all items but the last. The recursive
definition of the compatibility function is

compatibility( Ey, LSP) =
max { min (compatibility (tail(E,), tail(LSP)),
compatibility(head (), head (LSP)))
compatibility(head (B ), LSP) }

5 and the base cases are two:
asr (a) The compatibility of a LSP with an empty transaction is zero,
compatibility (), LSP) = 0 (21)

(b) compatibility(tail( E.), tail(LSP)) is the degree of truth that the
last LMI of the LSP matches the last element of the fuzzy trans-
action F.. Formally,

tail(E),) = (‘?,I];c: sees j{ch): with *?Ei; = {fﬂ'#n{xi]‘. s Jn.-f#t,.,.(xij}

compatibility(tail( £} ), tail(LSP)) = A i, (Iz;‘}
{3,7):[zs.0; ) tail(LSP)

(22)
s For instance, the compatibility between the LSP ((TGT=UP P30=DOWN)
a9 (TGT=SAME P30=8AME)) and the sequence
19
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- ((TGT={UP/0.8,SAME/0.2} P30=DOWN) (TGT=UP P30=SAME)
“ (TGT=SAME P30=SAME) (TGT=SAME P30={UP/0.4,SAME/0.6}))
452 15

max{0.6 A 0.8,0.8} =0.8. (23)
451 The compatibility between a LSP with a transaction is lower or equal
15 than the compatibility between the itemset comprising the elements of
155 the sequence and the same transaction. In this particular case, the com-
45 patibility of the itemset { (TGT=UP P30=DOWN) (TGT=SAME P30=SAME)}
ast is also 0.8 A 1 = 0.8. Nometheless, observe also that the compatibility
ast between a different LSP comprising these same items but in a different
a5 order, {(TGT=SAME P30=SAME) (TGT=UP P30=DOWN)} is 0.

o 12. Support of a LSP: The support of a LSP is the average of the
161 compatibilities between the LSP and the set of transactions, i.e.

supportg( (LML, ..., LMIp)) =

ng
S Z compatibility( By, (LML, ... . LMIp)) (24)
M3 j=1

w13, Emerging pattern: One of the main differences between the proposed

452 extension and the original CAEP algorithm lies in the definition of EP.
a5t It is suggested that EPs are not associated to a single class but to
465 a set of classes; in Section 5.2 the relevance of this decision will he
166 statistically assessed.
a6 In this paper, a Linguistic Sequential Pattern LSP is an EP if one of
a68 the following conditions apply:
450 (a) There are not EPs that are subsets of LSP. The set of classes of
ann the EP comprises the classes of all transactions compatible with
at LSP.
a2 (b) There exist at least an EP e that is a subset of LSP whose growth
an rate improvement (see Eq. 4) for some of its possible classes is
ana greater than 0. In this case, the class of the EP is the class C; for
ats which Rateimpg,(e) is higher.

20
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a6 There is a second difference with respect to the original definition of
art EP: the support of the EP is computed with respect to all transactions
a8 compatible with the set of classes associated with it, as defined before.

s 14, Agpregate score: Given a test transaction Fy and a set S of EPs,

150 the aggregate score of Ey, for the class C} is
score( Ey, Ci) = ¥ .cg truth(e, ) (25)
s where the truth value of the EP ¢ in the class C; is computed as follows:
sz e If e does not have subsets that are also EPs
GRp, (¢)
truth(e, Cy) = W - support ., (€) - supportp(e),
(26)
e [f there is a subset ¢/ C e that is also an EP,
truth( C.]—M to (€) tp(e)) | —
ruth(e, C;) = R () 1 supportyy,, (€) - supportp(e
GRo, (¢) ) Wl
(W . supportgci{e ) - supportp(e’) .
(27)
s and GR was defined in Eq. 2.

wa 4.2 Fuzzy prefirspan with uncertain data

135 The Fuzzy PrefixSpan algorithm is designed to process a dataset made
s up of fuzzy transactions. For instance, assuming that there are only two
ssr EHM wvariables, TGT and FF; the following is a valid element of a fuzzy
ws transaction:

(TGT = {UP/0.8,SAME/0.2} FF = {SAME/0.1,DOWN/0.9}).  (28)

w  However, EHM signals are numbers and not linguistic labels; membership
s values must be obtained by passing EHM values through a conversion in-
w terface. In this interface, each linguistic label is associated to a possibility
sz distribution, which is defined in turn by means of a fuzzy set (see Figure 4).

21
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1 DOWN CAME up

-3 0 3

Figure 4: Fuzzy memberships defining the compatibilities between the linguistic labels
“DOWNT", “SAME" and “UP” and the possible numerical values of the variable TGT.

91 If the value of the EHM wvariable is the number @, and L is a linguis-
s tic label (e “SAME", “UP”, or “DOWN") the degree of truth of the as-
ws  sert “xp 18 L7 is understood as the value in @y of a possibility distribution
ws Ip(zo) = pri(zo). Observe that this possibilistic setup is also valid for un-
sr  certain measurements of the EHM signals; the degree of truth of the assert
wm “zoEteis L7 is Mp(wo £ €) = SUPreppy e gyig #L(Z). As a corollary of this
s kind of representation of the uncertainty, missing values have membership 1
s to all labels.

sa The pseudocode in Figure 5 describes the proposed implementation of
sz the PrefixSpan algorithm for generating rules in the EHM-based diagnostic
s problem.

s 4.3. Descriptive erample

506 An example is partially worked to describe the application of PrefixSpan
s to uncertain EHM data. Seven aeroengines are considered, with ten cyeles
sor each. Two EHM signals, TGT and FF are assessed. In order to reduce the
s explanation, the following letters are assigned to LSPs of size 1:

([TGT,DOWN] [FF,DOWN] }=a ([TGT,DOWN] [FF,SAME]}=b {[TGT,DOWN] [FF,UP] })=c
509 ([TGT,SAME] [FF,DOWN] )=d  ([TGT,DOWN] [FF,SAME])=e ([TGT,DOWN] [FF,UP])=f

o ([TGT,uP] [FF,DOWN] )=g ([TGT,UP] [FF,DOWN] }=h ([TGT,UP] [FF,UP])=1i

511 A fuzzy value a/0.8,5/0.2 means that (TGT=DOWN and FF=DOWN)
sz with confidence 0.8 and (TGT=DOWN and FF=SAME) with confidence
sz 0.2, These memberships could result, for instance, if TGT= 3, FF= 1 and

22
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Algorithm2 (Fuzzy-Support-PrefixSpan)
Input: A sequence database D, and the minimum support threshold &
Output: The complete set of fuery sequential patterns and the set
rules extracted from these patterns
Method: Call Fuzzy-Support-PrefixSpan({},0,D}
Subroutine: Fuzzy-Support-PrefixSpan(a,le,D|,)
Parametera:
a: is a Linguistic Sequential Pattern
le: the length of o
D|, : The a-projected database, if « is different than {);
otherwise, the sequence database D
Method:
1. Scan D|, once, find the set of frequent items b such that
(a) The support of b is higher than # (Eq. 24) and
(b) b can be aszsembled to the last element of o to form a
sequential pattern; or
(c) {b) can be appended to @ to form a sequential pattern.
2. If o' is an EP
- compute the truth values of the EP for each class (Eq. 26).
3. For each o,
- construct fuzzy o -projected database T,
- call Fuzzy-Support-PrefixSpan(o’,let+1,T,.)

Figure 5: Pseudocode of the proposed adaptation of the PrefixSpan algorithm to uncertain
data
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s prerpows(3) = 0.9, pprpown(1) = 0.8 and pppsame(l) = 0.2 (the t-norm
sis “minimum” was assumed). Lastly, the example dataset is:

Chycle

D 1 2 3 4 5 6 7 8 8 10 HPC Health

1 af05b/0s e f e f e i 1 1 h COOD

2 a b ad i i i i g g BAD

3 b c d d d i i f e d GOOD

4 e f e f i 1 i h g h BAD

5 © c d d d d e £ i d BAD

[} a b a ¢ a b ¢ ¢ ¢ ¢ GOOD

7 d d d d a b a ¢ ¢ b GOOD

516 For ease of the method example, the only uncertain item is the first sample

st from the first engine. The stages of the proposed algorithm are:

518 1. The supports of all LSP of size 1 are computed. The associated values
519 are:

1-LSP  Support

3.5/7
4.5/7
4/7
47
47
47
2/7
27
5/T

DR em M Dm O

520 Suppose that the minimum support threshold is # = 0.4. In this case,
521 g and h are not the starting element of any frequent sequence because
) their support is too low.

521 2. All of the LSPs a, b, c. d, e, f and i are EPs because they do not have

521 subsets and their support is greater than the threshold. The fuzzy rule
525 obtained from the first one is computed as follows:
GRBAD{R} — SupportBAD(a} _ 1.!'{3 —0.53 {29]

supportyor pan(a)  2.5/4

526
t, 2.5/4 .
GReoon(a) = —PPoMeoon(@) _ 25/1_ o0 gy
supportyar coon(a) 1/3 '
24
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truth{a, GOOD) = % - supportgaop(a) - support(a)
- % 0,625 - 0.5 = 0.203 (31)
truth(a, BAD) = % - supportyp(a) - support(a)
0.53 .

= 55 033305 = 0.058 (32)

527 The fuzzy rule extracted from the EP a is:

528 if TGT is DOWN and FF is DOWN then HPC-health =

520 (GOOD,BAD) with confidences (0.203,0.058)

530 3. The database is projected for each of these LSPs a, b, ¢, d. e, f and i.

53 The first of these projections is:
Cycle
1D 1 2 3 4 5 6 7 8 9 10 HPC Health
1 b5 e f e f e 1 1 1 h GOOD
2 b a d i i i i g g BAD
it B a ¢ a b ¢ ¢ ¢ ¢ GOOD
7 b a ¢ ¢ b GOOD

512 4. The algorithm is called again to find those LSPs of size 2 whose first
51 element is a; the supports of these sequences are:

1-LSP  Support

a 3/4

] 3/4

c 2/4

d 1/4

e 1/4

f 1/4

i 2/4

b 054
s thus the sequences (aa), {ab), (ac) and {ai} are considered. Each of
53 these sequences is evaluated to check whether they are EPs. For in-
5% stance, support({ab)) = 0.5 > 0.4, thus it is a frequent sequence. {ab)

25
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537 has the subsets {a) and (b) and both are EPs. However the GR of {ab)

E3p 15

Cooon(h) = e ~ 1

5 which is lower than the GR of the EP a; therefore, {ab) is not an EP
510 and a rule beginning with

541 if TGT is DOWN and FF is DOWN and later

542 TGT is DOWN and FF is SAME then ...

541 will not be produced.

s 5, Numerical results and discussion

545 Some diagnosis methods have been recently proposed that are based on
s the detection of certain signatures, that are combinations of EHM values
s known to be associated to a specific event [31]. The distances between each
s of these signatures and a sequence of EHM wvalues measured on an engine
s constitutes a feature vector that can be fed to a classifier in order to predict
sso the deterioration level of an engine.

55 Many engines can be diagnosed in this way, however some defects will
ss2 not be detected by a classifier operating under these principles, because the
ss2 deterioration signatures are not vet known. This particular problem has
sse been solved by using an all-inclusive catalog of signatures, in combination
s with a sample of engines where all of the sought defects are present. Feature
sss selection techniques are applied for finding the most relevant signatures, or
st alternatively a classifier that implicitly performs a feature selection is used
ssa [30].

550 This second solution may be further developed, as not all defects are asso-
sso ciated to a single signature. It may be the case that sometimes, shortly after
st the HPC is deteriorated, the turbine also deteriorates and the combination of
sz both effects masks the trend changes in EHM signals. In this case, not only
ss2 the presence of certain combinations of signals but also the temporal order
ssa in which they appear is relevant. Furthermore, the EHM combinations that
ses are searched for, might appear in different defects or in planes without ac-
s tual specific faults. This is the main hypothesis considered within this work
ser which will be statistically assessed in this section: it is claimed that there are
s certain tvpes of engine deterioration that manifest themselves as an ordered
s sequence of events that may individually also appear within normal engines.
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s 5.1, Erperimental design

51 The level of deterioration of an engine is determined through the inspec-
sz tions carried out at the engine maintenance checks. The cyeles at which
s certain events or findings occur are not known, as such it is not easy to map
s deterioration levels to sequences of events: a training sample made up of en-
st gines with the kind of faults that the proposed method can find is therefore
s not possible.

577 As a consequence of this, engines without a detectable signature were
s selected, with the aim that some may contain the desired fault tvpe. The
s experimental design in this section is therefore guided to compare the results
s of a state-of-the-art signature-based classifier against the proposed approach.
sae It will be shown that there is a statistically significant difference favouring
sz the combination of fuzzy PrefixSpan with the extended CAEP algorithm in
sz a heterogeneous sample comprising engines with different levels of deteriora-
saa tion. This result will be used to assess those types of deterioration which are
s not detectable though existing EHM signatures as well as stablish that the
s proposed algorithm can successfully diagnose most of these cases.

sa7 A total of 43 aercengines were selected. The knowledge about the level
s of deterioration from the HPC of these engines was used to define three
sw  categories: low, normal and high levels of deterioration. It is remarked that
so  in previous works the deterioration level was solely defined in terms of the
s expected life of the component at the time of inspection. In this paper the
s history of the engine has been taken into account in the labelling of the
sn examples. A deterioration rate r has been defined as

6000 — r - actual cycles = expected cycles (34)

s where “actual cycles” is the number of cycles flown since the last shop visit,
s and “expected cycles” is the expected remaining life of the engine that is
s6  estimated on its release after the previous inspection. Rates between 0 and
sar (.75 are labelled as “low deterioration rate”, between 0.75 and 1.25 are normal
sae and higher than 1.25 are abnormal deterioration rates.

so 5.2, Compared results

600 The procedure described in [30] has been applied first to the sample of
e 43 engines as previously described. Random forests were used for the clas-
ez sification task [6]. Two different sets of EHM signals have been used. The
ez dataset “EHMS5” is composed by the five signals TGT, FF, P30, T30 and
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Dataset Average

EHM2 0.56
EHMS5 0.60

Table 1: Average accuracy (10-cv) for the datasets EHM2 and EHM3 using a signature-
based random forest classifier

Support  Average accuracy  Rules  Patterns

0.2 [0.325,0.325] 37T 1823
0.3 [0.275,0.275] 21 196
0.4 [0.575,0.6] 12 16
0.5 [0.658.0.725] 5 12

Table 2: Average accuracy (10-cv) for the dataset EHM2 using PrefixSpan + CAEP

s N2, with two linguistic labels by variable. The dataset “EHM2" comprises
es  two signals formed by compressing the five preceding values (see reference
e [31]). Three linguistic labels are used for discretising the compressed signals.
ar 10-cv validation is used in all comparisons. Notice that the proposed method
ee  allows that EPs are assigned multiple labels and the output of the classifier
s can be consireded as a set of alternatives, for example “either low or normal
s deterioration”. As a consequence of this, the expected test errors are not
st numbers but intervals.

612 In tables 1. 2, 3, 4 and 5 the accuracies of the different approaches being
611 compared are shown. The statistical relevance of the differences is graph-
s ically shown in Figure 6. Six boxplots are used to establish the statistical

Support  Average accuracy  Rules  Patterns

0.075  [0.491,0.491] 21 40
0.1 [0.416,0.416] 10 15
0.15 [0.3,0.325] 1 5

Table 3: Average accuracy (10-cv) for the dataset EHMS5 using PrefixSpan + CAEP
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Support  Average accuracy  Rules  Patterns

0.2 [0.591,0.501] 37 1.823
0.3 [0.8.0.5] 21 196
0.4 [0.775,0.8] 12 16
0.5 [0.775.0.825] 5 12

Table 4: Average accuracy (10-cv) for the dataset EHM2 using PrefixSpan + ECAEP

Support  Average accuracy  Rules  Patterns

0.075 [0.716,0.716] 21 10
0.1 [0.75,0.75] 10 15
0.15 [0.508,0.558] 1 5

Table 5: Average accuracy (10-cv) for the dataset EHMS3 using PrefixSpan + ECAEP

s relevance of the differences between signature-based approaches, Fuzzy Pre-
es fxSpan+CAEP and Fuzzy PrefixSpan+Extended CAEP (ECAEP).

617 Table 1 shows that approximately half of the engines in the training set
s are not properly diagnosed by a signature-based classifier. The results of
s applving Fuzzy PrefixSpan in combination with the original definition of EP
e (see Section 3.1.2) improves these results for EHM2, however sequence mining
e does not seem to benefit EHM5. Observe that a high support threshold was
&2 possible for EHM2 thus the munber of frequent patterns and rules is small
&2 and the generalization capability of the rule base is high. The support of the
e frequent sequences for the best accuracy in EHMS3 is too low (some rules are
e supported by only three transactions) and therefore the classifier has a poor
e test error.

&1 A noticeable improvement can be seen with the extended definition of
e EP proposed in this paper. The test error for the dataset EHM2 improves
s further and the results for EHM5 (75% of hits in test) is significantly better
e than that of the signature-based classifier (60%). Observe that the difference
e between the results for EHM5 and EHM2 with random forests is small, how-
ez ever the sequence mining algorithms are significantly different. The proposed
s algorithm is deemed to be more efficient if the sequences comprise an alpha-
s bet of symbols whose size is small in relation with the number of instances.
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Figure 6: Boxplote showing, for the datasete EHM2 and EHMS3, the statiztical relevance
of the differences between signature-based (labelled EHM2-SIGN and EHMS5-SIGN) |
PrefixSpan+CAEP (EHM2-CAEP and EHM5 CAEP) and PrefixSpan+Extended CAEP
(EHM2-ECAEF, EHM5-ECAEFP). ECAEP is the most accurate solution. This algorithm
iz seneitive to the number of different symbaols in the sequence, being more efficient when

thie number is low (EHM2-ECAEP)

e A reduced alphabet is obtained if few linguistic labels are used for each EHM
e wvariable, but this results in a high loss of information. The compression of
e the signals before they are discretized is therefore considered as the preferred
e strategy.

en 6. Concluding remarks

e This work shows the potential to diagnose the level of deterioration or
a1 the oceurance of a significant event on aercengines through the use of EHM
¢z data applying sequence mining techniques. Generally speaking, most of the
a3 engines can be diagnosed with existing techniques, but there are certain types
es of defects that do not manifest themselves as a change in the slope of the
ws BHM data but as an ordered sequence of events that are not discriminant if
ws separately examined.

a4 The PrefixSpan algorithm, adapted for uncertain data, has been used
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e to mine sequences composed of linguistic items, which in turn are fuzzy
so  discretizations of EHM variables. Some of the frequent sequential patterns
eo found by this algorithm were identified as Emerging Patterns, which are
et in turn stablished as fuzzy rules. An extension of the characterization of
ez an EP is proposed that noticeably improves the generalization capabilities
@1 of the classifier for this particular problem. The results have been tested
es  with a representative sample of planes. It was determined that the results of
s previous diagnostic methods can be improved by including the new algorithm
s in the catalog of diagnosing techniques.

e In future works the prognosis problem will also be addressed. This future
e assessment will attempt to estimate the remaining useful life of an engine,
e through a prediction of the deterioration rate of an the engine. Extrapolat-
so  ing these rates will allow to dynamically reschedule the maintenance checks
st of engines with higher or lower than normal deterioration rates, anticipat-
ez ing certain events or findings and thus reducing the number or degree of
s unforeseen engine maintenances.
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17.5 Aeroengine prognosis through Genetic Distal Learning applied to
uncertain Engine Health Monitoring data

Aeroengine prognosis through Genetic Distal Learning applied to
uncertain Engine Health Monitoring data
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Abstract—Genetic Furzy Systems have been successfully
applied to assess Engine Health Monitoring (EHM) data from
aercengines, not only due to their robustness towards noisy
gas path measurements and engine-to-engine variability, but
also because of their capability to produce human-readable
expressions. These technigques can detect the presence of certain
types of abnormal events or specific engine conditions, where
a combimation of the EHM signals only appears when these
occur. However, an engine that repeatedly operates under
unfavourable conditions will also have a reduced life. Smooth
deteriorations do no manifest themse lves as combinations of the
EHM signals, the current existing technigues can therefore not
assess these, In this paper it is proposed to use distal learning to
build a model that indirectly identifies the deterioration rate of
an aeroengine. It will be shown that the integral of the modelled
rate is a prognostic indicator of the remaining life of the engine
to a selected end condition. The results are subsequently tested
on a representative sample of aeroengine data.

Keywords: Engine Health Monitoring: Genetic Fuzzy
Systems; Distal Learning

I INTRODUCTION

Equipment Health Monitoring (EHM) is the assessment
of engine instrumentation data over time in order to detect
substantial anomalies or incipient events. The application of
prognostics within an EHM management system are intended
to estimate the remaining life of an engine. anticipating
certain events or findings and therefore reducing the number
or degree of engine refurbishments [6]. The assessment of
EHM data not only reviews the individual working conditions
but also the trend over time in order to identify rapid levels
of deterioration. Often, a comparison is made of the engine
data against those parameters identified to be characteristic
of known engine conditions or against design limits [15].
However understanding the design limits for a new engine
or predicting the engine parameter deterioration levels over
time is complex and several methods have been developed.

A. EHM assessment existing models

The most common EHM assessment methods are based
around Gas Path Analysis (GPA). The gas path components
are all air-washed parts within the engine gas path. the
compressors, the combustor and the turbines (see Figure 1).
The gas path components are susceptible to distinct different
issues, such as worn seals. excessive tip clearances, burning,
cracking or missing parts or sections of parts. etc. (see
Figure 2). The purpose of GPA is to detect changes in the
internal working conditions of the engine as early as possible
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Fig. 1. Typical two shaft high bypass mtio turbo fan.

through the observation of EHM parameters [15]. Standard
assessment methods which review the engine development
over time include deterioration modelling and probabilistic
simulation [9]. Recently, assessments have made use of fuzzy
logic and neural networks to develop new pattern recognition
methods to identify engine trends and step changes [S][7]18].

The main objective of this type of assessments is to de-
termine the optimum engine maintenance interval and assure
appropriate levels of reliability for the fleet. The introduction
of maintenance contracts as Power-By-The-Hour where the
management of the engine maintenance is the responsibility
of the OEMs, has emphasized the need for the early diagnosis
of engine specific deterioration. This is, further development
in the assessment of EHM data has been highlighted so that
small shifis and trends in the variables are identified. even
when the values are still within the appropriate reliability
levels of the specific parameter. This way, the level of engine
deterioration at the time of the engine maintenance may be
determined in advance and the prioritization within the fleet
performed ahead of time based not just on average fleet
experience but on also on each engines” own specific level
of deterioration.

B. Uncertainty in EHM data

Flight conditions as well as the internal condition of each
individual engine influence gas path measurements. In order
to reduce some of the variability between engines, EHM data
is typically not expressed in absolute values. The managed

Attachments

290




intervalo-valorada y posibilistica

Monitorizacién del estado de flotas de motores usando andlisis inteligente de datos para informacion

Fig. 2
Clockwise it can be seen how the vane is still deemed to be in a serviceable
condition (A), it evolves to a repairable condition (B), however it is then
deemed to be scrap (C) and ultimately it 15 considered to directly affect the
engine working condition (D).

General deterioration over time of a turbine nozzke guide vane

EHM data from an engine is estimated from the deltas
between the engine’s own measurements and those from a
known, baseline engine. In addition, different techniques are
available. which have been used to filter out the noise in the
EHM data [14].

Engine events or significant engine conditions are not
always associated to a combination of deltas. Recent works
are directed towards detecting trend shifts in the variables
[15]. Among them, some diagnostic methods are based on
the detection of signatures that are combinations of slope
changes in the EHM deltas known to be associated to specific
events or conditions [8]. The distances between each of these
signatures and a sequence of EHM values measured on an
engine constitutes a feature vector that can be fed to a clas-
sifier in order to predict the deterioration level of an engine.
However. it was found that some defects cannot be detected
by a classifier operating under these principles, especially
in the cases where the deterioration signatures are not yet
known. This was resolved by using an all-inclusive catalogue
of signatures, in combination with a sample of engines where
all of the sought defects were present. Feature selection
techniques were subsequently applied in order to identify the
most relevant signatures. or alternatively a classifier could
also be applied to implicitly perform the required feature
selection [7]. In particular, the classifier in this last reference
is a Fuzzy Rule-Based System (FRBS) whose Knowledge
Base (KB) comprises rules of the following form:

IF TURBINE TEMPEBATURE DECREASE
AND FUEL FLOW INCREASE THEN
COMPRESSOR HEALTH IS LOW

These techniques constitute an effective diagnosis system,
able to detect the presence of abnormal events or significant
engine conditions. However, the prediction of an engine’s
remaining life to a known condition (the prognosis problem
previously mentioned) is a wider problem. An engine that re-
peatedly operates under unfavourable conditions has smooth
levels of deterioration over time which inherently shorten

the engine’s life. Smooth deterioration trends do no manifest
themselves as combinations of EHM signals, as a result the
current existing techniques cannot be used to identify these
deterioration trends.

In this paper a solution to this problem is presented which
is based on a deterioration rate () model of a component
as a function of the EHM variables. It is proposed that «(t)
is defined as the solution to the following integral equation:

#
Remaining cycles(t) = Initial life —f rit)dr (1)
0

For example, if the HPC has a constant deterioration rate
r(t) = 2, and the initial life is of 5000 cycles, then the
engine should undergo maintenance in 2500 cycles because
Remaining cycles(2500) = 0. Deterioration rates lower than
1 are also considered, for those engines which are flying in
above-average conditions. The cyclic or hourly remaing life
calculation is dependent on the actual data available.

C. Distal learning of FRBS

Modelling the prognostic indicator through the integral
of the instantaneous deterioration rate of an engine enables
the identification of not only sudden events but also of
smooth levels of deterioration, as previously mentioned. The
simplest version of the estimator for the remaining cycles
is obtained by assuming that the last known deterioration
speed is constant throughout the remaining future cycles
and solving Eg. 1 to determine the value T for which
Remaining cycles(Ty) = 0. This and other estimators are
discussed in Section I11-D.

An FRBS is used to link EHM data to deterioration
rates. Leaming the KB of an FRBS requires a training
dataset with samples of the input and output variables. In
this problem, this set would typically consist of a sample of
engine measurements which would link the EHM variables to
the specific known deterioration rates. However, deterioration
rate is not an observable parameter and as such this sample
dataset cannot be compiled. The KB must therefore be
indirectly learnt from the available information, this is

1y The sequence of EHM variables considered are those
measured in the time lapse between two shop visits.

2) The remaining life is based on the condition of each
component at the end of the sequence, which is deter-
mined through the inspections carried out at the engine
shop visit.

3) An estimation of the release life of each component at
the beginning of the sequence can be made after the
first shop visit

This indirect learning task can be deemed to be a type
of supervised learning problems known as “Distal Learning”
[4]. In this kind of problems (see Figure 3), target values
are available for the distal variables (the “outcomes™) but
not for the proximal variables (the “actions”). In the engine
prognosis problem, the target values are the life expectations.
The proximal variables are the deterioration rates, which
are related to the distal variables through an ageing model
of the engine. The ageing model has memory, thus the
outcome depends on the history of the actions, i.e. the age
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INTEMTION LEARNER | ACTION ENVIRONMENT QUTCOME
DETERIORATION FEMAINING
EHM DATA FRES RATE AGEMG MODEL CYCLES
MEASURED
REMAINING
CYCLES

Fig. 3. Owverview of the distal supervised keaming problem. Target
values are available for the distal vanables (the “outcomes™) but not for
the proximal vanables (the “actions™) [4]. The target values are the life
expectations measured at the shop visit. The proximal varisbles are the
defenomtion rates that are relaied to the distal vanables through an ageing
model The ageing model has memory thus the outcome depends on the
history of the actions.

of the engine depends on the sequence of deterioration rates.
The learmner, which in this case is the FRBS, previously
mentioned, is adjusted so that the output of the ageing model
at the end of an EHM data sequence maltches the measured
level of deterioration of the engine.

The proposed rule leaming process is based on a Pilts
Genetic Furzy System [2] where the fitness function is
modified in order to include the ageing model. Distal learning
has not been associated with Genetic Fuzzy Systems before,
as far as we know, and as such additional details about
the implementation of this specific combination are given
in Section IIL

The proposed KB comprises rules that map combinations
of slope changes in EHM deltas and delerioration rates, in
the following form:

IF TURBINE
AND FUEL
DETERIORATION

TEMPERATURE DECREASE
FLOW INCREASE THEN
RATE OF THE HPC IS5 LOW.

The main purpose the learnt FRBS is estimating the remain-
ing cycles of the engine in combination with the ageing
model mentioned. In this respect, the FRBS is a by-product
of the learning task. However, in this particular application
the FRBS is in itself a model of the instantaneous deteriora-
tion rate as a function of the EHM signals, which can in ad-
dition be used to gain an insight of the relationship between
the values of the EHM variables and the engine’s operating
conditions. This will be discussed further in Section IV.

In short, this paper is structured as follows: the diagnosis
problem is introduced in Section II. The proposed method
is defined in Section III. Section IV contains a numerical
analysis of the proposed algorithm against other alternatives.
Section V concludes the work and discusses possible future
research in the field.

II. EHM-BASED DIAGNOSIS OF AEROENGINES

A typical two shaft high bypass ratio turbo fan is depicted
in Figure 1. In this type of engine, the thrust is performed by

the air compressed by the fan blades and pushed through the
engine bypass. The air pushed through the core of the engine
is solely used to turn the fan. This is, the air is compressed
by the high pressure compressor (HPC) so that the optimum
conditions are reached within the combustion chamber to
subsequently turn the high pressure turbine (HPT) to main-
tain the high pressure (HP) system and subsequently tum the
low pressure turbine (LPT) which turns the fan and produces
the engine thrust.

A. Stations in a turbofan

The main stations depicted in Figure | follow the most
commenly used numbering convention. Although single dig-
its are used to define the main stations, double digits are used
to define interim positions. The first digit defines the main
station whilst the second. defines an interim position.

e Station 2: Due to the design of the engine intake the
temperatures and pressure at station 2 are different
to those of station 0 and are more representative of
the actual engine intake conditions which will be
used as reference by the controls system. The main
variables at this station are P2 and T2.

*  Station 25: This is the entry to the HPC. Depending
on the engine design a booster or an Intermediate
Pressure Compressor (IPC) may also be associated
to the low pressure (LP) system. As such station 25
is therefore defined as the entry to the HPC and not
the exit of the fan.

+  Station 3: This is the HPC exit and the entry into the
combustion system. The conditions at this point are
key for the correct functioning of the engine. The
main variables measured at this station are P30 and
T30.

&  Station 4: This is the combustion chamber exit and
HPT entry. The temperature at this point is one of the
main engine parameters. T4, may also be known as
Turbine Gas Temperature (TGT) or Internal Turbine
Temperature (ITT)

e Station 5 This is the LPT exit. The main variable
at this station is P50. This pressure is used to define
EFR, which is subsequently used to determine the
overall engine thrust. EPR is the relation of P50 to
P20.

The LP system is the combination of the fan and the LPT.
The speed at which the LP system turns is defined as NI.
The HP system is the combination of the HPC and the HPT.
The speed at which the HP system turns is known as N2.
In addition. the amount of fuel consumed is also monitored
through fuel flow (FF).

B. Engine deterioration

One of the main types of engine events or causes of
deterioration is mechanical. Mechanical faults may be identi-
fied through overall engine deterioration and the assessment
of EHM data. Independently of the system or component
that is being assessed there are several stages or levels
of deterioration throughout which the effect and associated
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costs and risk of continuous operation varies (recall the
example in Figure 2). This is, any component or system
will deteriorate over time solely due to its use, however
if subject to an early inspection it could be identified to
be good for further operation withoul maintenance. Further
operation will deteriorate any component or system to a
point at which if inspected would require the component or
system to be repaired. Ultimately the level of deterioration
of a component or system will reach a point where it will
no longer be repairable. This unknown condition prior to
the shop visil is in many cases is still safe for continuous
operation. In many cases operational and maintenance costs
will increase as the component or system is deteriorated and
additional parts need to be replaced at the maintenance shop
visit. In some cases, the system may deteriorate even further
reaching an engine condition which could be deemed to be
unreliable. In some cases material could also be released. In
these cases high eperational disruption and high maintenance
costs would incurred as not only would the initial component
be replaced but all of the secondary damaged components
would also need to be repaired or replaced. In addition, the
removal and maintenance of the engine would also need to be
accommodated outside of their planned schedule. However
the main issue in these situations is customer dissatisfaction

and company reputation.

The main sections of any engine prone lo significant
events and deterioration are the high pressure compressor
and turbine. This is where the air is compressed to the
exact pressures required so that the fuel combustion can
be optimized for improved efficiency and reduced pollution,
with the turbine generating the work to keep the system
running. As a consequence of this, these two engine systems
or modules are the areas where the main maintenance costs
are incurred. High Pressure Compressor or HPC deterioration
is mainly driven by increased tip clearances, which in turn
reduce the working line of the system, or by actual material
release of a blade or a vane. Increased tip clearances may
be induced by liner loss or by reduced blade height, either
way increased clearances are a sign of delerioration [3].
High Pressure Turbine and Combustor deterioration may
be due to the actual combustor been deteriorated, the fuel
burn not been appropriate or actual blade or vane damage.
Combustor deterioration is mainly time driven and is not
typically identified through EHM methods due to its slow
rate of deterioration. Turbine blade deterioration is mainly
driven by reduced cooling or actual aerofoil cracking [11]
which is either seen as an efficiency improved turbine or not
actually visible through EHM signatures.

As a result, deterioration of HPC and HPT modules is
expected to influence EHM data. A prognostic indicator
of HPC and HPT remaining life through an EHM data
assessment is therefore proposed in this paper. The main
purpose of this indicator proposed is to determine the number
of remaining flight cycles for the compressor and turbine
modules respectively up to an agreed module condition
which optimizes both engine time on-wing and maintenance
costs.. The EHM subset of parameters considered in this
study consists of the following five variables:

1) FE: Fuel flow
2) N2: Speed of the high pressure sysiem

3) P30: High pressure compressor exit pressure
4) T30: High pressure compressor exit temperature
5) TGT: Turbine gas temperature

I11.

An algorithm which is used to leamn the expression of a
prognostic indicator using Genetic Fuzzy Systems (GFSs) is
proposed in this section. The training data consists of histor-
ical EHM data from sampled engines from the same fleet but
from different operators and regions ie. from different flight
conditions.

PROPOSED METHOD

The method proposal is exposed four parts, detailing

¢ the procedures for cleaning, discretizing and trans-
forming the uncertain input data into a sequence of
fuzzy numbers

» the structure of the FRBS that is learnt

o the fitness function that the Genetic Algorithm (GA)
is required to optimize including the definition of the
ageing model

o the definition of the prognostic indicator in terms of
the learnt FRBS.

An overview schematic of the process is shown in Figure 4.

A. Cleaning, discretizing and transforming input data

EHM data is very noisy and is not expressed in absolute
values. The state of an engine is estimated from the deltas
between an engine’s own measurements and those from a
known baseline engine, as previously discussed. It will be
assumed that the delerioration rate depends on the speed of
change of the EHM signals, as such the deterioration rate
model will in turn be fed with the derivative of these signals.

Estimating the derivative of a noisy signal requires the use
of low-pass filiers that remove the high frequency content.
In particular, it is proposed that the derivatives of the EHM
signals are approximated by locally fitting straight lines to the
smoothed EHM data. The smoothing will in turn be carried
out with a kemnel filter. For instance, let the temperature of
the turbine TGT be the signal considered for this assessment.
The smoothed value of this signal is given by the convolution
of TGT with a Gaussian kemel function K. whose bandwidth
A is related to the cut-off frequency of the filter:

o
TGT(t) = Y TGT(t+7)-K(r,A).

T=—T0

(2)

Estimating the derivative of TGT is carried through the slope
of a line locally fitted to TGT. This line can be determined
by weighted least squares. Given the values of time t and
bandwidth A, the slope a and the y-intercept b of the best-fit
ling are at the minimum of the following function:

™
err(a,b) = 3 TGT(t+7) — (ar +b))* - K(7,A). (3)
T=—T0

The sequence of slopes a(l) is therefore an estimate of
the derivative dTGT/dt in this particular example, or the
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Fig. 4. Block diagram of the proposed method for estimating the remaining cycles of an acroengine with EHM data

derivative of an arbitrary health. In this paper five derivatives
are considered through this means: dTGT/dt, dFF/dt, dP30/dt,
dT30/dt, and dN2/dt. In the following, the values of these five
derivatives will be referred to as the state of the engine.

Since a rule-based model is to be used, the state must
be discretized and a finite set of combinations defined. Fach
numerical value of a derivative will therefore be replaced by
a label. The linguistic labels defined will be either “DOWN™,
“SAME” or “UP”. A soft discretization is performed: if
the state is =g, and L is a linguistic label, the degree of
truth of the assert “xg is L” is understood as a possibility
My i{zp) = pp(xo). Observe that this possibilistic setup is
also valid for the uncertain EHM signal measurements; the
degree of truth of the assert “zg + e is L7 is I (zp +€) =
SUp_croo ooy Hnlx). For instance, the following is a valid
discrele value of TGT:

TGT = {UP/0.8, SAME/0. 3} )

As a corollary of this kind of uncertainty representation,
missing values have membership 1 to all labels.

Each set of 5 linguistic labels will be assigned a number.
This number will be called the “State-1d”. In this case. with
three possible slopes and considering the five variables above,
there are 243 different possible State-Ids (three to the power
of five). A base-3 numbering scheme is used, where the
digits down=0, same=1, up=2 are respectively assigned to
each label. For instance, the set of labels (down. same, up.
up, down) would be assigned in base-3 the number 01220,
whose corresponding State-Id is 51 in base 10.

Observe that each combination of EHM variables is not
assigned a precise State-1d but a fuzzy subset of all the
possible Ids as a result of the soft discretization. In tum,
this subset is also dependent upon the selected bandwidth.
In this respect, it was decided not to choose an arbitrary value
for the bandwidth but to sweep a range of bandwidths and
combine their corresponding fuzzy State-Ids into a discrete
sequence that is to be subsequently fed to the deterioration
rale model.

The numerical procedure for sweeping the range of band-
widths is based on a Monte-Carlo simulation with multiple
repetitions of the whole fillering and discretization process,
for different values of A. The set of values obtained are
combined into a single fuzzy set, whose membership defines
a possibility distribution over the set of State-Ids, following
the procedure defined in [8]. After this, the EHM data of an
engine is reduced to a chain of fuzzy numbers

Stateld(t) = (u1(t), u2(t), ..., p2as(t)) (5

This chain is the input to the rule-based model used to predict
the specific HPC and HPT deterioration rate.

B. Structure of the FRBS modelling the deterioration rate

Two different FRBESs have to be learnt, to model the HPC
and HPT respectively. Each of them has five inputs, dTGT/dt,
dFF/dt, dP30vdt, dT30vdt, and dN2/dt. As discussed before,
each input is discretized into the linguistic labels “down”,
“same”™ and ‘up™. Mamdani-type rules are used, for instance:

IF dIGT/dt=SAME AND dFF/dt=UF AND dF30/dt=UP
AND dI30/dt=DOWN AND dNZ/dt=UP THEN
DETERICRATION BATE OF THE HPC IS LOW

WITH CONFIDEMCE FACIOR 0.8

which is the same as

IF STATE-ID=12202;3 THEN
DETERICRATION RATE OF THE HPC IS LOW
WITH CONFIDENCE FACIOR 0.8

Observe that neither fuzzyfication nor defuzzification inter-
faces are needed in the proposed system. The degree of
truth of the k-th antecedent is the m:rnbcrg}]ip value pex(t)
in the input chain of fuzzy numbers Stateld(t) previously
described.

The ouwtput of each FRBES is not a number but an interval
F(t) = [r(t),r*(t)] because the input is not crisp. Given
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that the fuzzy State-1d was given a possibilistic interpretation,
this output interval ranges the possible outputs of the FRBS
when the degrees of truth of the rules in the KB are
the probability distributions dominated by the possibility
distribution of State-Ids,

2453
T(t) = {Zp&. cwk - Ry
k=1
243

dom=10<p ‘_:Pk[t}} )
k=1

(&)

where Fp and wg are the modal point of the linguistic
label in the k-th consequent and the weight of the rule
whose antececent refers to the k-th State-Id, respectively.
This interval of values is passed on to the ageing model
in order to compute the fitness function.

C. Ageing model and fitness function

The most simple form of the ageing model consists in
integrating the deterioration rate over time. The number of
remaining cycles is

Remaining Cycles(f) = Initial Life — Estimated Age(t) (%)
Given that 7(¢) < [0, c), the following holds:

fo to
f r(r)dr < Estimated Age(t) < f rHr)dr  (9)
0 0

In practical cases, the ageing model must also take into
account engine events (which may cause a sudden change
to the estimated age) or even an on-wing maintenance
operation. The discrete form of the ageing model is therefore

Remaining Cycles(k) = Initial Life + (10)
k
- Z{maim.enanoe['r) —events(t)) (1
=0
_
— o2 (@) () (12)
“ =0
_
:EZ{T+(T}—T_(T}] (13)
=0

Therefore, given a sample of N aeroengines whose
expecled life was f; when inspected after ¢; cycles, the fitness
of the FRBS may be evaluated by means of an interval-valued
function, as follows:

N
fit = { |t; = fi| - t; € Remaining C}'c]es[ci)} (14)

i=1

With respect to the encoding mechanism in the GA, and
given that each of the KBs is made up by a maximum of
243 rules, all parameters can be jointly encoded in the same
genotype (Pitts-style GFS) with a reasonable computational
efficiency. However, it is remarked that a nonstandard GA is
required in order to optimize Eq. 14 and determine the pa-
rameters which define the KB. This is because the proposed
fitness function is not numerical but interval-valued. The

algorithm proposed in [12], [13] was used. Lastly, observe
that it was decided not to tune the membership functions of
the labels “UP”, “SAME” and “DOWN" but to weight the
fuzzy rules instead.

D. Definition of the prognostic indicator

The prognosis indicator is intended to estimate the
remaining life of an engine, through a prediction of its
deterioration rate. Extrapolating these rates is deemed will
allow to dynamically re-schedule the maintenance checks
of engines with higher and lower than normal deterioration
rates, anticipating certain events or costly findings thus
reducing the number or degree of unforeseen engine shop
visits.

For an extrapolated rate #(7) for = > ¢, it is proposed
that the prediction at time ¢ of the useful life T(¢) of an
engine is the solution to the following integral equation:

i T
Initial lire—f r{T)dT—j Frydr=0 (15
o i

In this work a O-th order prognosis indicator Tp(#) was
used. This considers a constant rate of deterioration rate
F(7) = rp for T > t, thus

Initial Tife — fi ri7)dr

o

Ta(t) =t (16)
Different strategies can be used for assigning a value to ry:
the last known rate r(t), the average deterioration ry = 1/t
fD"r{f)dt or the unity value, to name a few. Higher order
prognosis models can be defined by using time series models
to extrapolate r(t) or the EHM variables, however it was
found that the accuracy of the higher order models does not
significantly improve the 0-th order model with extrapolated
unity deterioration rate.

IV. NUMERICAL RESULTS AND DISCUSSION

The level of deterioration of an engine is determined
through the inspections carried out at the engine shop visit.
The cycles at which certain events or findings occur are
not all known, thus a training sample made up of only of
engines with smooth levels of deterioration is not possible.
As a consequence of this, a training dataset comprising
43 engines without a detectable signature was compiled.
The experimental design in this section is therefore guided
to compare the results of a state-of-the-art signature-based
regression model against the proposed approach. It will be
shown that the regression model is not better in this sample
than a purely periodical maintenance schedule, but there is
a statistically significant difference favouring Genetic Distal
Learning. This result will be used to assess those types of
deterioration which are not detectable though existing EHM
signatures as well as establish that the proposed algorithm
can successfully diagnose most levels of deteriorations.

A. Compared results

The procedure described in [7], except for the clas-
sification stage. has been applied first to the sample of
43 engines as previously described. The aforementioned
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classification stage was replaced by a regression module that
approximates the expected life of either the HPC or the HPT.
The input variables are the same feature vector used in the
removed classification stage. Random forests were used for
the regression task [1]. It is also highlighted that the results
from the analysis of the dispersion of the classification which
was studied in this last reference, have not been carried to the
regression model defined, and only make use of the centroids
of the mentioned feature vector.

As a reference of the quality of the prognosis models, a
naive model has also been considered where the deterioration
rate was determined to be constant and equal to 1. In other
words, the expected life of the is considered as
the difference between the initial life of the module and
the number of cycles the engine has flown. It is remarked
that this is the standard procedure based on average service
experience typically used to schedule maintenance checks.

Lastly, the Genetic Distal Learning of a FRBS was
combined with a 0-th order prognosis indicator and a unity
extrapolated deterioration rate. A 10-cv validation was used
in all comparisons. The compared results are shown in Table
L. Observe that Distal Learning is the best alternative for both
HPC and HPT, however the accuracy gain of the method with
respect to the standard scheduling is better for compressors
(20% on average) than for turbines (4%).

Method HPC  HPT

Distal 1330 151
Signature 1426 1558
Standard 1651 1579

TABLE L AVERAGE ACCURACY (10-cv) For HPC AND HPT UsivG
A DisTAL LEARNING, A SIGNATURE-BEASED RAanDomM FOREST
REGRESSION MODEL AND THE STANDARD PROCEDURE

The relevance of the differences between the methods
are illustrated in Figures 5, 6 and 7. Figure 5 shows three
boxplots with the dispersion of the 10-cv test results with
the absolute differences between the HPC predicted life and
the measured values for Distal, Signature-based and Standard
techniques in HPC. The same boxplots are shown for the
HPT in Figure 6.

The p-values of the paired differences between the stan-
dard method and the proposed algorithm are negligible for
both HPC and HPT, although the percent gain is much higher
for compressors, as mentioned. A boxplot with these paired
differences is shown in Figure 7. This figure serves also as
a justification of the p-value found in the statistical tests
about the difference of the mean accuracy of both algorithms;
observe that all differences are lower or equal than zero,
meaning that Distal Learning improved the standard sched-
uled maintenance for all folds in the validation test.

In addition, in Figure & the unfiltered EHM signals are
shown, along with their filtered derivatives for a particular
bandwidth, as well as the the outputs of the deterioration
rate models and the outputs of the prognostic indicators. The
green curves in the two plots in the lower part of the figure
are the outputs of the deterioration rate model. Observe that
the combination of EHM signals around sample 1500 show
a particularly harsh set of conditions for the compressor, and
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Fig. 5. Dispersion of the 10-cv test msults with the absolote differences
between the predicted life and the measured values for Distal, Signature-
based and Standard techniques in HPC
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Fig. 6. Dispersion of the 10-cv test msults with the absolote differences
between the predicted life and the measured values for Distal, Signature-
based and Standard techniques in HPT

that generally speaking the fast deteriorations of compressor
and turbine alternate in time. The red curves are the integral
of the deterioration, assuming that the initial life of HPC
and HPT was 5000 cycles. The circles at the end of the red
curves are the measured life of these elements as observed
at the shop visit. The difference between the height of these
circles and the red curves are the centerpoint of the fitness
function defined in the preceding section.

V. CONCLUDING REMARKS

This work shows potential to predict the remaining life
of an engine through the use of EHM data applying Genetic
Distal Learning techniques. Generally speaking, most of the
engines can be diagnosed with existing techniques, but there
are certain types of defects that do not manifest themselves
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Fig. 7. Boxplot of the paired differences between Standard and Distal

algorithms, showing that the algorithm improved the standand
maintenance schedule for all folds in the validation,

Fig. 8 From upper to lower EHM signals, slopes of the filtered EHM
signals for a given bandwidth, HPC and HPT deterioration rates and
prognostic indicators. Green curves in the last two plots are the deteriorarion
rates, red curves are the expected life of the components.

as a change in the slope of the EHM data but as a smooth
deterioration that cannot be detected.

The supervised learning with a distal teacher paradigm,
adapted for uncertain data and genetic algorithms, has been
used to learn FRBS from sequences composed of furzy
discretizations of the different EHM variables. These FRBS
are used to predict the deterioration rate of HPC or HPT
in an aeroengine. An ageing model that integrates these
instantaneous deteriorations is devised which produces an
online estimation of the remaining life of the engine. As

a by-product of the learning process, the FRBS shows the
combinations of EHM values that are associated with an
increased level of deterioration for HPC or HPT and therefore
detects the cycles where the deterforation was higher. The
opposite is also true for those cases where reduced level of
deterioration are incurred. The results have been tested with
a representative sample of planes. It was determined that
the results of previous prognostic methods can be improved
by including the new algorithm in the existing available
catalogue of assessment techniques.
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