

Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system

Journal:	Physiologia Plantarum
Manuscript ID:	Draft
Manuscript Type:	Regular manuscript - Biochemistry and metabolism
Date Submitted by the Author:	n/a
Complete List of Authors:	Isensee, Kirsten; University Oviedo, Biologia; UNESCO/IOC, Ocean Science Section Erez, Jonathan; The Hebrew University in Jerusalem, Earth Science Institute St, Heather; University Oviedo, Geologia
Key Words:	Carbon pool, diatom, coccolithophorid, inorganic carbon uptake, disequilibrium method

Physiologia Plantarum

1		
2 3	1	Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii
4 5 6	2	(Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the
7 8	3	seawater carbon system
9 10	4	
11 12	5	Kirsten Isensee ^{1,2*} , Jonathan Erez ³ , and Heather M. Stoll ¹
13 14 15	6	
16 17	7	1) Dept. de Geologia, Universidad Oviedo, 33006 Oviedo, Asturias, Spain
18	8	2) Now at: Intergovernmental Ocean Comission, UNESCO, 1 rue Miollis 75732 Paris cedex 15
19 20	9	France
21	10	3) Jonathan Erez, The Hebrew University of Jerusalem, The Institute of Earth Sciences,
22 23	11	Edmond Safra Campus, Givat Ram, Jerusalem 91904, Israel
23	11	Duniona Suria Campus, Grvat Ram, Srasanin 91901, Israel
25	12	
26		
27 28	13	*Corresponding author, <u>k.isensee@gmail.com</u> .
29	14	
30 31	1.5	
32	15	
33	16	
34	16	
35		
36		
37		
38 39		
40		
41		
42		
43		
44 45		
46		
47		
48		
49		
50 51		
52		
53		
54		
55 56		
56 57		
58		
59		
60		[1]

ABSTRACT

19	Accumulation of an intracellular pool of carbon (Ci pool) is one strategy by which
20	marine algae overcome the low abundance of dissolved $CO_2(CO_{2(aq)})$ in modern seawater. To
21	identify the environmental conditions under which algae accumulate an acid-labile C _i pool, we
22	applied a ¹⁴ C pulse-chase method, used originally in dinoflagellates, to two new classes of
23	algae, coccolithophorids and diatoms. This method measures the carbon accumulation inside
24	the cells without altering the medium carbon chemistry or culture cell density. We found that
25	the diatom Thalassiosira weissflogii ((Grunow) G.Fryxell & Hasle) and a calcifying strain of
26	the coccolithophorid Emiliania huxleyi ((Lohmann) W.W.Hay & H.P.Mohler) develop
27	significant acid-labile C _i pools. Ci pools are measureable in cells cultured in media with 2 to
28	30 μ mol L ⁻¹ CO _{2(aq)} , in these cultures corresponding to a medium pH of 8.6 -7.9. The absolute
29	C_i pool was greater for the larger-celled diatoms. For both algal classes the C_i pool became a
30	negligible contributor to photosynthesis once $CO_{2(aq)}$ exceeded 30 µmol L ⁻¹ . Combining the
31	14 C pulse-chase method and 14 C disequilibrium method enabled us to assess whether <i>E</i> .
32	huxleyi and T. weissflogii exhibited thresholds for foregoing accumulation of DIC or reduced
33	the reliance on bicarbonate uptake with increasing $CO_{2(aq)}$. We showed that the C _i pool
34	decreases with higher CO_2 :HCO ₃ ⁻ uptake rates.
35	
36	

Physiologia Plantarum

38 Abbreviations

 α_1 , α_2 , temperature, salinity and pH dependent first order rate constants for CO₂ and hydration; AA, added activity; C, carbon; CA, chase activity; CCF, carbon concentration factor; CCM, carbon concentration mechanism; CF, chase filter; Chla, chlorophyll a; C_i pool, intracellular pool of acid-labile carbon; CPM, counts per minute; D, dark; DBS, dextran bound sulfonamide; DIC, dissolved inorganic carbon; DPM, desintegrations per minute; eCA, extracellular carbonic anhydrase; f, fraction of DIC uptake attributable to HCO₃; iCA, intracellular carbonic anhydrase; L, light; LD, light:dark; MIMS, membrane inlet mass spectrometry; P+C, pulse chase method; PEPC, phosphoenolpyruvate carboxylase; ΔSA_{CO2} , difference between initial and equilibrium values of specific CO₂ activity; ΔSA_{HCO3} , difference between initial and equilibrium values of specific HCO₃⁻ activity; SA_{DIC}, specific activity of dissolved inorganic carbon at equilibrium; SOC, silicon oil centrifugation method; SW, seawater; t, time; TZ, time zero; V_t, total rate of DIC uptake

53	INTRODUCTION
54	In modern seawater, the ambient concentration of dissolved inorganic carbon (DIC) in
55	the form of uncharged carbon dioxide (CO_{2(aq)}) varies between 10 and 15 $\mu mol \ L^{\text{-1}}$ at a $pH \sim$
56	8.05. $CO_{2(aq)}$ is the required substrate of the enzyme RubisCO, which is responsible for the
57	major part of carbon (C) fixation in the biosphere. This ancient highly conserved protein not
58	only plays a central, but also limiting role during photosynthetic C assimilation, due to its
59	catalytic inefficiency under modern atmospheric conditions (low CO ₂ and high O ₂
60	concentrations). Because it evolved in an atmosphere with nearly 20 fold higher $CO_{2(aq)}$ levels
61	compared to the present concentration (e.g. Tortell 2000), the poor catalytic efficiency
62	hampers maximum carbohydrate production (K_M of 20-70 µmol L ⁻¹ , (Badger et al. 1998)).
63	Consequently, at present $CO_{2(aq)}$ concentrations marine algae have to enrich CO_2 actively at
64	the catalytic site of RubisCO via operating carbon concentrating mechanisms (CCMs).
65	During the last several decades, the diversity of CCMs in marine microorganisms and
66	the variable efficiencies of different RubisCO enzyme types have been elucidated by a variety
67	of methods(e.g. Badger et al. 1998, Giordano et al. 2005, Kaplan et al. 1980, Kaplan and
68	Reinhold 1999, Roberts et al. 2007). An essential component of CCMs is an active influx of
69	inorganic C across the cell membrane (Raven 1995). The active uptake of DIC across the
70	plasmalemma and the hydration of CO_2 inside the cytoplasm can result in enhanced
71	intracellular DIC concentrations compared to the DIC concentrations in the medium (Badger
72	et al. 1998), although CCMs do not necessarily result in an accumulation of inorganic C
73	inside the cell, because of direct transfers of DIC to catalytic site of RubisCO. Several recent
74	studies suggest that the most effective CCMs are those which rely on enhancement of DIC
75	(or DIC-organic complexes) in the cell while maintaining cytoplasm CO ₂ concentrations
76	which are not significantly elevated with respect to those of seawater to avoid strong leakage
77	of CO ₂ through the cell membrane (e.g. Cassar et al., 2006, Hopkinson et al., 2011). In these

[4]

Page 5 of 57

Physiologia Plantarum

models, C is transported from the cytoplasm to the chloroplast as HCO_3^- , and only within the chloroplast or pyrenoid region at the site of RubisCO, converted to CO2. Likely, an intracellular carbonic anhydrase (iCA) is important in this conversion into CO₂ (e.g. Giordano et al. 2005, Raven 2010, Trimborn et al. 2009). Alternatively, in some marine diatoms, C may be transported from the cytoplasm to the site of photosynthesis as a C_4 compound (Morel et al. 2002, Reinfelder et al. 2000, Roberts et al. 2007). In addition, some algae species exhibit high extracellular carbonic anhydrase (eCA) activities, which catalyzes the equilibrium replenishment from seawater of $CO_{2(aq)}$ or bicarbonate (HCO₃-) and minimizes depletion of CO₂ in the cell's boundary layer (Aizawa and Miyachi 1986, Berman-Frank et al. 1994, Spalding et al. 1983, Trimborn et al. 2008). Yet, the operation of CCMs comes at some energetic cost to the organism. The formation and maintenance of CCMs requires light energy as well as nutrients to make the key proteins for these reactions. These costs of the different types of CCMs may play a role in competitive interactions among taxa in the modern ocean in their biogeography and seasonal succession (Tortell 2000). Due to the high impact of CCMs on the energetic metabolism and physiology of the cells, it is of particular interest to examine experimentally, if CCMs are reduced at higher concentrations of $CO_{2(aq)}$, whether two species belonging to different algal classes reduce the size of C_i pools at similar thresholds of $CO_{2(aq)}$ and how this influences algae growth. C acquisition strategies of algae may be characterized by assessing the degree of accumulation of intracellular C, the proportion of each species of C (HCO₃⁻ or CO₂) used for photosynthesis, and the fluxes of each substrate into and out of the cell. Other characterizations include expression of key enzymes involved in CCMs, such as iCA and eCA or phosphoenolpyruvate carboxylase (PEPC). In this study, we concentrate on the existence and significance of intracellular C

accumulation, considering total accumulation in the cell and considering the full acid-labile C_i

[5]

103	pool which subsequently contributes to photosynthesis. We employ a ¹⁴ C pulse-chase method
104	which indirectly determines the C _i pools contributing to photosynthesis, and compare the size
105	of the C_i pool at varying pH values and $CO_{2(aq)}$ of two different microalgae species, a
106	coccolithophorid and a diatom. This pulse-chase method was first described by ter Kuile and
107	Erez (1987, 1988) for measuring the C _i pools of benthic foraminifera, and was later used to
108	characterize the C _i pool of dinoflagellates (Berman-Frank and Erez 1996) and brown
109	macroalgae (Johnston 1991). The pulse-chase method distinguishes the cellular content of
110	acid-labile forms of C, which include free CO_2 , HCO_3^- and CO_3^{-2} as well as C that may be
111	bound or complexed to organic molecules. The fraction of this acid-labile C which is
112	subsequently incorporated into acid-stable forms via photosynthesis, is defined as the
113	intracellular C (C _i) pool. In this work, we extend the use of the pulse-chase method to two
114	new algal classes, describing its first successful application to coccolithophorids and diatoms.
115	This approach allows us to detect and estimate the size of the C _i pool in cultures at natural cell
116	densities and in an identical water or media chemistry to which cells have been acclimated.
117	Because no specialized equipment beyond that used for standard photosynthetic ¹⁴ C uptake
118	measurements (incubation of labeled medium, filtration system and scintillation counter) is
119	required, the method might be especially suited for assaying the C _i pool of cells at an array of
120	conditions or in shipboard measurement programs. Complementary experiments, using the
121	¹⁴ C disequilibrium method (Elzenga et al. 2000, Espie and Colman 1986, Rost et al. 2007),
122	were used to describe the relationship between active HCO ₃ ⁻ uptake and the existence and size
123	of the C _i pool.
124	We investigate Ci pools in two algal classes, one a calcifying strain of the

125 coccolithophorid *Emiliania huxleyi* ((Lohmann) W.W.Hay & H.P.Mohler), and the marine

126 diatom Thalassiosira weissflogii ((Grunow) G.Fryxell & Hasle). E. huxleyi is well known as a

127 cosmopolitan unicellular calcifying alga which is widely distributed with blooms known to

Page 7 of 57

Physiologia Plantarum

produce a large quantity of organic matter and calcite before sinking to the bottom of the sea. Therefore, E. huxleyi plays an important role in the global C cycle, and enhances the biological pump by transporting C from the sea surface to the sediment (Buitenhuis et al. 2001). Previous investigations demonstrated that blooms of E. huxlevi serve as a sink for atmospheric CO₂ (Buitenhuis et al. 1996, Buitenhuis et al. 2001). T. weissflogii is a coastal nontoxic ubiquitous centric diatom. Evidence has recently emerged of a C₄-like mechanism for photosynthesis operating as a biochemical CCM in some strains of T. weissflogii (Granum et al. 2005, Johnston et al. 2001, Morel et al. 2002, Reinfelder et al. 2000, Reinfelder et al. 2004), underscoring the diversity of CCMs used within marine microorganisms.

EXPERIMENTAL METHODS

Setup of the experiment

Monospecific cultures of T. weissflogii (CCMP 1010) and E. huxleyi (RCC 1216) were maintained as dilute batch cultures in sterile filtered seawater in 1L acid washed and autoclaved Schott glass bottles. The growth medium was enriched with major nutrients (phosphorus, nitrogen, and silicon), trace metals and vitamins according to the K/5 recipe with or without silicon (Keller et al. 1987). Experiments were carried out under a light:dark (LD) cycle of 16:8 at a constant temperature of 18 °C under saturated light growth conditions (150 μ mol·m⁻²·s⁻¹ photon flux). A homogeneous distribution of the cells was sustained by placing the cultures on a system providing continuous gentle rotation. The carbonate system was regulated by modifying the pH via additions of 0.5 mol L^{-1} freshly prepared NaOH or HCl solutions to attain medium at three pH ranges, 8.5, 7.9 and 7.4. The changes in extracellular $CO_{2(aq)}$ mediated by the addition of acid or alkali do not aim to simulate the exact changes in the ocean C system expected during the next centuries, which will entail both increased DIC as well as lower pH. Nevertheless, for experiments like those in the current study, the type of pH manipulation we describe has been shown to produce comparable results as experiments bubbling cultures with air of variable CO_2 concentrations (Hoppe et al. 2011, Schulz et al. 2009). The pH was checked during the course of the experiments to verify that increases of the pH did not exceed 0.2 pH units. Cells were acclimated to experimental conditions for 6-8 generations, which is in accordance with previous experiment investigating the impact of changes in the carbonate system on physiological parameters (e.g. Trimborn et al. 2008, 2009, Burkhardt et al. 2001).

[8]

Physiologia Plantarum

2
3
4 5
5
6
7
0
8
9
10
11
12
13
14
15
10
10
17
18
19
20
21
22
23
20
25
26
27
28
29
30
31
31 32 33 34 35 36
3Z 20
33
34
35
35 36 37 38 39
37
38
30
40
40
41
42
43
44
45
46
47
48
49
50
51 52
52
53
54
55
53 54 55 56
50
57
58
59
60

162	Cell counts and cell volume calculations
163	Live cell counts were made using a Fuchs-Rosenthal haemacytometer with 0.2 mm
164	and 1/16 mm ² ruling. Two subsamples were counted for each experiment during the pulse and
165	chase incubation (further explanation in the following paragraphs). The cell concentrations
166	estimated for <i>E. huxleyi</i> were up to 40-fold higher than those for <i>T. weissflogii</i> (Table 3). The
167	incubations with ¹⁴ C were initiated with cell densities in the range of 3,600 and 36,000
168	cells·mL ⁻¹ for <i>T. weissflogii</i> and between 70,000 and 163,000 cells·mL ⁻¹ for <i>E. huxleyi</i> , as
169	given in Table 3.
170	The cell size and volume were measured using a "Nikon eclipse T_i " inverted light
171	microscope. The shape, the volume, and surface calculations differ for both algae. T.
172	weissflogii has cylindrical and E. huxleyi spherical cells (Hillebrand et al. 1999). 100
173	individual cells were measured for each experiment (Table 3).
174	Chla measurements
175	Samples of 100 ml were filtered through Whatman GF/F filters (pore size 0.8 µm) and
176	stored for not longer than 2 weeks at -20°C until further processing. Following Parsons et al.
177	(1984) total chlorophyll a (chl a) concentration were estimated by extraction for 24 h in 90 %
178	acetone for fluorometric determination (Turner Designs fluorometer) (excitation 450 nm,
179	emission 670 nm). The concentrations were calculated after correction for phaeopigments
180	(Holm-Hansen et al. 1965, UNESCO 1994).
181	Carbonate system
182	The pH measurements were obtained with a pH meter (Crison GLP-21), using a
183	combined glass/ reference electrode type SE 100. The electrode was calibrated with technical
184	buffers (DIN 19267) at pH 4.01, 7.00 and 9.21 and readings are precise to 0.01 units. Shortly
185	before starting the experiment the pH of a subsample of the original culture (100 mL of 1 L)
186	was measured. During the incubation the pH value was checked frequently (every 30 min at

1 2 3 4	
2 3 4 5 6 7 8 9	
10 11 12 13 14	
13 16 17 18 19 20	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4 25 26 27 28 29 30	
26 27 28 29 30	
 30 31 32 33 34 35 36 37 38 	
39 40	
41 42 43 44 45	
46 47 48 49 50	
51 52 53 54 55	
56 57 58 59 60	

187	least). Only minimal changes occurred within the pulse and chase incubation period (Table 3).
188	Therefore the starting values were used for further calculations. Alkalinity samples were taken
189	from the filtrate (25 mm GF/F Whatman, approximate pore size 0.8 μ m), stored and poisoned
190	with 0.5 mL of an HgCl ₂ solution (35 g L^{-1}) in 150 mL borosilicate flasks at 4 °C. Total
191	alkalinity (TA) was calculated according to Langmuir after quadruplicate potentiometric
192	titration using a Crison TitroMatic 1S (Bradshaw et al. 1981, Brewer et al. 1986). The
193	complete carbonate system was determined from temperature, salinity (36 PSU), pH, TA,
194	phosphate and silicate concentrations (original medium concentrations were applied) using
195	the program CO2sys (Lewis and Wallace 1998). Equilibrium constants of Mehrbach et al.
196	(1973) refitted by Dickson and Millero (1987) were chosen.
197	The manipulation of the carbonate system parameters and the use of different initial
198	seawater media due to experiments conducted over the time period of one year led to a range
199	of TA between 1,420 and 3,643 µmol kg SW ⁻¹ for <i>T. weissflogii</i> and between 937 and 2,773
200	µmol kg SW ⁻¹ for <i>E. huxleyi</i> (Table 3). The seawater was sampled at different times during
201	the year in the Bay of Biscay close to the Spanish coast. Variable circulation regimes and
202	phytoplankton growth (e.g. Llope et al. 2007) result in temporal variation of surface water C
203	chemistry. The reduction of the pH by one unit resulted in a more than 10-fold increase in
204	CO _{2(aq)} concentration (Table 3).
205	^{14}C pulse-chase incubation – measurements of the C_i pool
206	The set-up of the experiments followed that described by Berman-Frank and Erez
207	(1996). A rough scheme, presented in Fig. 1 explains the major principles. In general,
208	triplicate culture experiments were done for each setting and species (in total 18 experiments).
209	250 mL of the cultured populations were spiked with $NaH^{14}CO_3$ (~ 1.7 to 6.4 x 10 ⁴ Bq per 5
210	mL of cell suspension). The acid-stable photosynthetic uptake of ¹⁴ C was followed by
211	filtering 5 mL aliquots on 25 mm GF/F Whatman filters, washed thoroughly 5 times with K/5

Page 11 of 57

Physiologia Plantarum

1 2 3	
3 4 5 6 7	
7 8 9 10	
11 12 13 14	
8 9 10 11 12 13 14 15 16 17 18	
19 20 21	
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	
26 27 28 29	
30 31 32	
33 34 35 36	
37 38 39 40	
41 42 43 44	
45 46 47	
48 49 50 51	
52 53 54 55	
56 57 58 59	
60	

212	medium (Keller et al. 1987). Three filters were sampled at each time point during the pulse
213	period. Subsequently, the filters were acidified over concentrated HCl fumes to eliminate
214	residual inorganic ¹⁴ C as well as unfixed (not incorporated) inorganic ¹⁴ C inside the cell.
215	Following this, 5 mL scintillation cocktail (Packard, Ultima Gold AB, using the solvent di-
216	isopropylnaphthalene (DIPN),) was added to the vials and the ¹⁴ C was measured by standard
217	liquid scintillation procedures on a Wallac 1409 Liquid Scintillation Counter. To evaluate the
218	potential for retention of ¹⁴ C on the surface of cells but which was neither fixed nor part of
219	intracellular C _i pool, individual blanks (time zero – TZ) were performed as follows: after
220	adding the ¹⁴ C spike to a small subsample of the original culture 4 times 5 ml were filtered
221	immediately. The obtained value reflects the residual inorganic ¹⁴ C, which was not removed
222	by acidification. The obtained average value was subtracted from all samples (Table 1).
223	To record the C _i pool, the remaining culture from the pulse incubation was
224	concentrated and washed with non-labeled medium (~150 mL) on a 47 mm 3 μ m
225	polycarbonate filter (Millipore), using gentle vacuum. Washing with non-labeled medium
226	assured the removal of cell surface-attached ¹⁴ C tracer and remaining pulse medium. The
227	washing procedure took less than 5 min and the cells were kept in suspension and were never
228	allowed to dry over the filter in order to minimize any negative impacts by the washing
229	procedure on physiological parameters. Finally, the cells were resuspended in ~150 mL of
230	nonradioactive K/5 medium; silicate was added for the experiments with T. weissflogii, and
231	reincubated at the same conditions as before. Cell counts conducted during the chase period
232	confirmed that the washing routine did not damage cells, because cells counts remained the
233	same within counting error as during the pulse period. Sampling, during this chase period,
234	was conducted as described for the pulse period. The ¹⁴ C levels in the medium were measured
235	during the chase incubation to test for washing efficiency. For that propose, the medium was
236	passed through a 0.2 μ m Nuclepore filter and the filtrate was used to assay that the ¹⁴ C levels
237	were negligible during the chase (chase activity – CA), confirming that no further cellular $[11]$

[11]

1 2 3 4	
4 5 6 7	
8 9 10	
11 12 13 14 15	
16 17	
18 19 20 21	
21 22 23 24 25	
24 25 26 27 28 29	
29 30 31 32	
33 34 35 36 37 38	
36 37 38 39	
40 41 42 43	
44 45 46	
47 48 49 50	
51 52 53	
54 55 56 57	
58 59 60	

238	uptake of ¹⁴ C labeled DIC could occur during the chase incubation (Table 1) In addition, for
239	12 of the 18 experiments, the CA was measured 5 times during the chase. These
240	measurements revealed no increase of CA in the media during the chase, indicating no
241	detectable leakage of labeled compounds from the cells. To further confirm that no cells were
242	lost during the washing procedure, we determined the remaining labeled material on the
243	washing filter (chase filter – CF). Consistent with data from cell counts, the proportion of the
244	activity measured from the CF confirmed an insignificant decrease/loss of cells during the
245	washing procedure (Table 1). Finally, in filters without cells we verified negligible retention
246	of ¹⁴ C label on filters following washing.
247	In parallel, dark incubations were done for four experiments. These were used to
248	ensure that the measured ¹⁴ C incorporation during the main pulse chase incubations arose
249	from the light dependent photosynthetic uptake. Therefore, a 60 ml subsample of the original
250	culture was spiked and kept in the dark. The samplings proceeded after 5, 30 and 60 min of
251	incubation. The results showed a dark incorporation of less than 3 % compared to the light
252	incorporation (Table 2).
253	The acid-stable incorporated ¹⁴ C was used to calculate the photosynthetic C uptake per
254	cell. The amounts of DIC, added activity (AA), blank values as well as the particular cell
255	concentrations were included to estimate the cell-specific photosynthetic C uptake rate
256	according to the following formula:
257	DIC uptake rate [pmol DIC cell ⁻¹] = $\frac{\text{measured activity } \left[\text{CPM ml}^{-1} \text{ h}^{-1}\right] - \text{TZ} \left[\text{CPM ml}^{-1} \text{ h}^{-1}\right]}{\text{cell concentrat ion } \left[\text{ml}^{-1}\right]} \times \frac{\text{DIC} \left[\text{pmol ml}^{-1}\right]}{\text{AA} \left[\text{CPM ml}^{-1} \text{ h}^{-1}\right]}$
258	The efficiency of the AA and the analyzed samples was equal and constant. Hence
259	there was no need to apply quench correction or to include the efficiency in the equation.

260 An increase of ¹⁴C activity during the chase period inside the acid stable fraction was 261 measured for the pH settings ~ 8.5 and ~ 7.9 in the cultures of *E. huxleyi* and *T. weissflogii*.

[12]

Page 13 of 57

Physiologia Plantarum

This increase was interpreted to represent acid stable photosynthetic organic matter that was
transferred from the acid-labile C_i pool.

Due to the negligible ¹⁴C activity in the incubation medium during the chase (Table 1) the increase of ¹⁴C activity in the acid-stable photosynthetic organic matter during the chase must originate from the originally acid-labile intracellular C_i pool. Thus, the C_i pool size per cell is calculated from the difference in photosynthetically fixed acid stable C between the last measurement of the pulse and the maximum value during the chase incubation. This calculation reflects only a minimum estimate of the C_i pool because the sampling was not continuous and therefore the maximum peak during the chase might have been missed. Though our tests suggest only a minor loss of label from cells, the washing procedure may have also caused some leakage of ¹⁴C from the cells, and some ¹⁴C may be lost due to respiration and secretion of dissolved organic C. In converting the absolute C_i pool to an estimated concentration in the cell, we use cell numbers and the total cellular volume. While the $CO_{2(a0)}$ accumulation in eukaryotic algae is considered to be restricted to the chloroplast or even the pyrenoid (Badger et al. 1998), the total degree of intracellular DIC enrichment is calculated as if the full cell volume (e.g. cytoplasm) hosted the C_i pool. In part, this convention is adopted because the volume of the entire cell is much more tightly constrained than the volume of intracellular compartments(Badger and Lorimer 1976, Kaplan et al. 1980). This approach of not accounting for the possible localization of C_i in specific cellular compartments might result underestimating the relative enhancement at the site of RubisCO compared to concentration in the incubation medium.

1 2 3	285	We
4 5	286	which is su
6 7 8	287	distinguisł
8 9 10	288	acid-labile
11 12	289	available f
13 14 15	290	¹⁴ C
16 17 18	291	The
19 20	292	several art
21 22	293	the slow ir
23 24	294	DIC specie
25 26 27	295	¹⁴ CO ₂ repr
27 28 29	296	the total D
30 31	297	initially th
32 33	298	exponentia
34 35	299	which base
36 37 38	300	species rel
39 40	301	in a linear
41 42	302	Elzenga et
43 44 45 46 47	303	DF + V
48 49 50	304	Vt
51 52 53	305	and α_2 are
53 54 55	306	HCO ₃ ⁻ hyc
56 57	307	conditions
58 59 60	308	ΔSA_{CO2} ar

We infer an operationally-defined C_i pool, which is the acid-labile C within the cell which is subsequently available as a substrate for photosynthesis. The approach does not distinguish the form in which the C is stored within the cell, which could be as DIC or as an acid-labile organic complex. However, in whatever form the C is present, it is subsequently available for conversion to CO_2 , the only substrate used by RubisCO during photosynthesis.

¹⁴C disequilibrium method

The theory and methodology of this technique has been described extensively in several articles (e.g. Elzenga et al. 2000, Martin and Tortell 2006). The method is based on the slow interconversion between HCO_3^- and CO_2 , which allows differential labeling of the DIC species with ¹⁴C over several minutes. In the Hepes buffered DIC spike solution (pH 7.0) ¹⁴CO₂ represents 20% of the total C_i pool. On the other hand, CO₂ accounts for only 0.4 % of the total DIC in the Bicine buffered medium (pH 8.5) of the cell suspension. Therefore initially the specific activity (dpm mol⁻¹) of CO₂ in the spike solution is high and it decays exponentially to an equilibrium value over the duration of the assay. Phytoplankton species which base their growth on CO₂ exclusively reflect these changes unaltered. In contrast, species relying predominantly on HCO₃⁻ show a near constant ¹⁴C incorporation rate, resulting in a linear plot. The uptake curves are best modeled according to models calculated by Elzenga et al. (2000) and Rost et al. (2007).

03
$$DPM_{t} = V_{t}(1-f)(\alpha_{1}t + (\Delta SA_{CO2} / SA_{DIC})(1-e^{-\alpha_{1}t})) / \alpha_{1}$$
$$+ V_{t}(f)(\alpha_{2}t + (\Delta SA_{HCO3} / SA_{DIC})(1-e^{-\alpha_{2}t})) / \alpha_{2}$$

V_t is the total rate of DIC uptake; *f* is the fraction of uptake attributable to HCO₃-; α_1 and α_2 are the temperature-, salinity-, and pH dependent first order rate constants for CO₂ and HCO₃⁻ hydration and dehydration (Espie and Colman 1986). Under the experimental conditions (18°C, salinity 36, pH 8.5) α_1 and α_2 are 0.0383 and 0.0456 s⁻¹, respectively. ΔSA_{CO2} and ΔSA_{HCO3} are the differences between the initial and equilibrium values of the

[14]

Page 15 of 57

Physiologia Plantarum

1 2 3 4	
3 4 5 6 7 8	
9 10 11 12 13	
14 15 16 17 18	
19 20 21 22	
$ 8 \\ 9 \\ $	
31	
32 33 34 35 36 37 38	
37 38 39 40 41	
42 43 44 45	
46 47 48 49 50	
51 52 53 54 55	
56 57 58 59	
60	

309	specific activity of CO_2 and HCO_3^- , and SA_{DIC} is the specific activity of all inorganic C
310	species at equilibrium. The values of $\Delta SA_{CO2}/SA_{DIC}$ and $\Delta SA_{HCO3}/SA_{DIC}$ are set by the
311	difference in pH between the ¹⁴ C spike and seawater buffer. The values used during our
312	experiments were 49 and -0.19 for $\Delta SA_{CO2}/SA_{DIC}$ and $\Delta SA_{HCO3}/SA_{DIC}$, respectively.
313	The ¹⁴ C disequilibrium method largely followed the experimental protocol described by Rost
314	et al. (2007, 2006). First of all the culture was concentrated (roughly 20 fold, determined by
315	measuring the chla content of the original culture and concentrated suspension, data not
316	shown). During this process the original medium was exchanged with a BICINE buffered
317	medium (BICINE 20 mmol L ⁻¹ , pH 8.5). A 4 mL aliquot was directly transferred into a glass
318	cuvette placed on a stirrer to maintain uniform distribution of the cells. Light and temperature
319	were kept constant using an additional light source ($150 \cdot \mu mol \cdot m^{-2} \cdot s^{-1}$ photon flux) and
320	connecting a water chiller to the glass cuvette. After a pre-incubation of about 10 min a 10
321	μ Ci ¹⁴ C spike of pH 7.0 (HEPES 50 mmol L ⁻¹) was injected. Afterwards, subsamples of 200
322	μ L were withdrawn at short time intervals and dispensed into 2.0 mL of HCl (6 mmol·L ⁻¹) to
323	stop C incorporation. The residual ¹⁴ C was removed by putting the subsamples for 8h on a
324	shaker. Subsequently, 10 mL of the scintillation cocktail (Packard, Ultima Gold AB) was
325	added and ¹⁴ C was measured, using standard liquid scintillation procedures. Blanks, spike
326	added to cell free buffers, were subtracted from all samples. To examine the CO_2 : HCO_3^-
327	ratios taking into account the impact of eCA, the ¹⁴ C disequilibrium method was run in two
328	ways; one control run and one run where we added the membrane-impermeable inhibitor
329	dextran-bound sulfonamide (DBS, Synthelec AB). The inhibitor was added to a final
330	concentration of 50 μ mol L ⁻¹ at least 10 min prior to the experiments. DBS is known to
331	inhibit eCA effectively. This was proven by Moroney et al. (1985) using bovine carbonic
332	anhydrase in a potentiometric assay. This inhibitor exhibits similar activities to AZ (Elzenga
333	et al. 2000).

[15]

2
3
1
5
6
7
~
8
9
10
44
11
12
13
4.4
14
15
16
17
17
18
19
20
20
21
22
23
20
24
25
26
20
27
28
29
20
30
31
32
02
20
33
33 34
33 34 35
33 34 35
33 34 35 36
33 34 35 36 37
33 34 35 36 37 38
33 34 35 36 37 38
2 3 4 5 6 7 8 9 10 1 12 3 14 5 6 7 8 9 10 1 12 3 14 5 6 7 8 9 10 1 12 3 14 5 6 7 8 9 21 22 3 4 5 6 7 8 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
40
40
40 41
40 41 42
40 41 42 43
40 41 42 43 44
40 41 42 43 44
40 41 42 43 44 45
40 41 42 43 44 45 46
40 41 42 43 44 45
40 41 42 43 44 45 46 47
40 41 42 43 44 45 46 47 48
40 41 42 43 44 45 46 47 48 49
40 41 42 43 44 45 46 47 48

1

334

335

336	Table 3 summarizes the carbonate system chemistry for the experiments. The
337	experiments were conducted in February 2011 and December 2011, therefore different
338	seawater was used during the incubations, and this caused some variations in the carbonate
339	system. In all cases, the three pH levels clearly induced different $\rm CO_{2(aq)}$ concentrations : pH \sim
340	8.5: 1 to 9 $\mu mol~kg~SW^{\text{-1}};~pH \sim 7.9$: 16 to 32 $\mu mol~kg~SW^{\text{-1}};~pH \sim 7.4$: 34 to 85 $\mu mol~kg~SW^{\text{-1}}$
341	(Table 3).

In general, cell concentrations of *T. weissflogii* and *E. huxleyi* differed among the species and the single experiments (Table 3). Experiments of *E. huxleyi* typically contained 10 times higher cell concentrations than those of *T. weissflogii*. The cell volume of *T. weissflogii* varied between 960 μ m³ and 2098 μ m³ (Table 3). Significant correlations between cell volume and the applied pH settings could not be retrieved. The cell volume of *E. huxleyi* varied between 17.6 and 37.7 μ m³ (Table 3), with larger cells at lower pH values.

348 Pulse chase method

349 Because the pulse chase method was previously employed in only one other 350 phytoplankton species (Berman-Frank and Erez 1996), we conducted several tests to examine 351 the viability of this approach (Table 1). TZ samples acting as blanks were low, always less than 1 ‰ of the AA and never more than 5 % of the maximum uptake during the pulse period. 352 353 Also the CA was small compared to the AA (< 1%) and no increase of the CA was detected 354 during the chase. This and the negligible loss of cells (e.g. retained on the CF), demonstrated 355 an effective washing without adverse effects on the cell population. In addition, we measured 356 the dark C fixation (Table 2). Dark fixation rates in the acid stable particulate organic matter of T. weissflogii and E. huxleyi never exceeded 2.5 % of the light fixation. These values 357

Physiologia Plantarum

confirm that photosynthetic fixation by RubisCO is the main mechanism for C incorporationinto cellular material, with negligible surface absorption of label.

The pH affected the gross ¹⁴C incorporation rates, measured during the pulse period of *E. huxleyi* (Fig. 2, Table 3), with highest uptake rates at the pH level of ~ 7.9. We found reduced rates at higher and lower pH values, indicating better growth conditions at the intermediate pH. No clear trend in ¹⁴C incorporation rate with pH is evident in the diatom *T. weissflogii*, due to the high variability in incorporation rates in different replicate experiments. The fixation rates per cell are several orders of magnitude higher for *T. weissflogii* than for *E. huxleyi*, likely due to the much larger cell size and C demand of *T. weissflogii*.

During the chase period, the fixed ¹⁴C per cell continued to increase for both species in all but the lowest pH condition \sim 7.4 (Fig. 3, 4). This implies a transfer of ¹⁴C from the acid labile reservoir to the acid stable matter inside the cell. The increase had to arise from an acid-labile C₁ pool, labeled with ¹⁴C during the pulse, because no further ¹⁴C supply occurred from the medium during the chase incubation. The degree of increase in fixed ¹⁴C per cell, relative to the total uptake of ¹⁴C during the pulse, defined the fraction of fixation supported by the C_i pool, which varied according to the extracellular pH/ $CO_{2(aq)}$ concentration (Table 3, Fig. 5). T. weissflogii showed a significant pool at high $(0.5 - 2.1 \text{ nmol} \cdot \text{cell}^{-1})$ and intermediate $(0.5 - 2.1 \text{ nmol} \cdot \text{cell}^{-1})$ 1.4 nmol·cell⁻¹) pH values (low and intermediate $CO_{2(aq)}$ levels (Fig. 5a, b)), and a negligible C_i pool at low pH or high $CO_{2(aq)}$. Beyond that, a positive correlation between the DIC concentration in the extracellular medium and the size of C_i pool of T. weissflogii was detected (Fig. 5c). E. huxleyi showed a significant C_i pool at high and intermediate pH levels, respectively low or intermediate $CO_{2(aq)}$ concentrations, too (Table 3). However, in E. huxleyi, there is no significant correlation between the extracellular DIC concentrations and the pool size (Fig. 5f). Only at the lowest $CO_{2(aq)}$ or highest pH of 8.5 (Figure 5d) did the E. huxleyi exhibit higher C pool size for high C_i media compared to lowest C_i. This trend is also

[17]

383	evident at both intermediate and high pH levels, for T. weissflogii. Overall, the cell-specific
384	absolute C _i pool size of <i>T. weissflogii</i> was up to 230 fold higher than the one for <i>E. huxleyi</i>
385	(Table 3, Fig. 5), consistent with the differences of total photosynthetic rate per cell and cell
386	volume mentioned earlier. In contrast to previous investigations, the enhancement of
387	intracellular acid-labile C pool vs. extracellular DIC was calculated based on culture media
388	with natural seawater DIC concentrations in the culture medium rather than synthetic low DIC
389	media. The enhancement for <i>T. weissflogii</i> varied at pH ~ 8.5 between 2.5 and 14.3, at pH ~
390	7.9 between 1.1 and 4.4 and almost no enhancement was detected at pH \sim 7.4. <i>E. huxleyi</i>
391	showed also three distinct levels of C _i accumulation inside the cell. We calculated following
392	ratios: pH ~ 8.5 1.1 to 2.1 fold elevation, pH ~ 7.9 0.2 to 0.5-fold elevation, at pH ~ 7.4 no
393	accumulation.

In both species, the cellular Chla was reduced at the lowest pH, at which CO_{2 ag} was highest (Fig. 6). As soon as a C_i pool in T. weissflogii cells was measured, the Chla content increased (Fig. 6b). Nonetheless the Chla content of E. huxlevi seemed to be related differently to the C_i pool. Maximum C_i pool values coincided with intermediate Chla values, and no linear relationship between Chla concentrations and the C₁ pool, was detected in this species (Fig. 6e). Normalizing the Chla content per cell to the cell volume does not significantly modify trends for either T. weissflogii or E. huxlevi (Fig. 6c, f).

¹⁴C disequilibrium method

In addition, we applied the ¹⁴C disequilibrium method to reveal one part of the CCMs, active HCO₃ uptake vs. passive or active CO₂ uptake used for photosynthesis. E. huxleyi showed decreasing HCO_3^- uptake at high CO_2 levels (low pH values) (Fig. 7c, d, e, 8). The acid-stable C_i uptake was dominated by HCO_3^- (60 %) at a pH of 8.11, while at a pH of 7.49 when no pool was detected, the photosynthetic C demand was mainly satisfied by CO_2 (61.2 % CO₂, 38.8 % HCO₃⁻). Investigations using the ¹⁴C disequilibrium method on *T. weissflogii*

Physiologia Plantarum

indicated similar proportion of HCO_3^- and CO_2 incorporation at a pH of ~7.5 and 7.9. In both conditions, the C_i uptake was dominated by CO_2 (60 %) while HCO_3^- contributed 40 % of C to photosynthesis (Fig. 7a, b, 8). In both the diatom and coccolithophorid, HCO_3^- uptake, though not dominant, was still a significant source of C fixed by photosynthesis at the lowest pH, respectively highest $CO_{2(aq)}$ levels, even though no intracellular C enrichment could be measured (Table 3, Fig. 5).

415	DISCUSSION
416	Application of the pulse-chase method
417	The evaluation of CCMs and related changes of the intracellular C system of different
418	phytoplankton species provide important information concerning species competition and
419	success. Therefore, several approaches and methods were invented to detect and analyze the
420	C _i pool during the past 30 years (e.g. Badger et al. 1980, Badger et al. 1985, ter Kuile and
421	Erez 1987). To date, none have been extensively applied to evaluate response of CCMs over a
422	range of naturally occurring C conditions. Our results, using the pulse chase method, give C_i
423	accumulations which are comparable to those obtained by the silicone oil centrifugation
424	method (SOC) or to measurements of mass spectrometry analysis (MIMS) (Table 4) (Badger
425	et al. 1980, Badger et al. 1985, Kaplan et al. 1980).
426	The pulse chase method provides several advantages compared to SOC or MIMS.
427	Unlike SOC or MIMS, the pulse chase method is employed at ambient DIC concentrations.
428	We used extracellular DIC concentrations similar to the natural DIC concentrations in the
429	ocean (approximately 2000 µmol L ⁻¹ ,(e.g. Takahashi et al. 2002)), contrasting to most
430	previous studies of C concentration factors inside the cell obtained with SOC or MIMS,
431	conducted at much lower DIC concentrations of 100 to 1000 μ mol L ⁻¹ in the incubation
432	medium (Table 4). For SOC and MIMS analysis generally, the cells have to be transferred to
433	DIC depleted medium (e.g. Badger et al. 1980, Badger et al. 1985, Rost et al. 2007). Such
434	large changes were reported to reduce the intracellular pH about 0.7 (\sim 7 to 6.3) within 35 to
435	40 min (Nimer et al. 1994). Recent investigations also shown that large increments of HCO ₃ ⁻
436	(concentrations up to 20 mmol L^{-1}), result in lowering the intracellular pH of <i>E. huxleyi</i> within
437	seconds (Suffrian et al. 2011). This causes changes of pH within the cell and alters the C
438	speciation in the cytosol. Therefore, it is possible that even short time incubations at DIC
439	depleted conditions affect the size and the measurements of C _i pools of unicellular algae, due

[20]

Physiologia Plantarum

to enhanced or reduced diffusion of CO₂ between cell compartments or the cell and the
surrounding medium.

The pulse chase method investigates C_i pools at the original culture cell density. We used the same cell concentrations as achieved at the end of the acclimation to the particular pH setting. In contrast, cell concentrations used for SOC and MIMS have to be strongly increased to obtain measurable signals even during short incubations (e.g. Dong et al. 1993, Nimer et al. 1994, Nimer et al. 1992, Tortell et al. 2000, Woodger et al. 2003). The short incubation time, 10 s for the SOC and 10 min for the MIMS analysis, again is caused by the DIC depleted medium used therein. Longer incubation would hamper photosynthesis and alter the analysis at these strongly modified conditions, whereas the pulse chase incubations proceeded at DIC replete conditions and the incubation period last at least for 2 hours. Prolonging the incubation time increased the sensitivity and even lower cell concentrations still showed sufficient radioactive signals, when using the pulse chase method. In situ studies reported similar cell densities to those presented here for *E. huxlevi* (Berge 1962), while *in* situ concentrations for T. weissflogii are probably somewhat lower than the ones used here. Furthermore, the pulse chase method uses infrastructure which is already standard for routine measurements of primary production via ¹⁴C uptake, and therefore might be an optimal choice during seagoing field campaigns. Certainly, it is also required to discuss the drawbacks of the pulse chase method. It provides a smaller array of data than MIMS or SOC analysis, where e.g. it is possible to measure the photosynthetic oxygen evolution or half saturation constants of photosynthetic DIC uptake (e.g. Badger et al. 1985, Nimer et al. 1992, Spijkerman 2011). Beyond that, the C_i pool detection with SOC or MIMS can quantify changes inside the pool in less than 2 min., shown for Synechococcus sp or Anabaena variabilis (Kaplan et al. 1980, Miller et al. 1988),

464 whereas, the pulse-chase C_i pool method can only be applied to species or phytoplankton

[21]

465	samples with relatively long pool turnover times (e.g. of order 10 minutes or longer). This
466	stems from the non-continuous measurements via the filtration procedure (roughly every
467	5 min), and the conservative assumption that a one point measurement is not sufficient,
468	resulting in a typical 10 minute interval for calculating the C _i pool during the chase.
469	Therefore, this method is suitable for eukaryotic phytoplankton or large prokaryotic ones. The
470	detection limit depends on the DIC incorporation rate but higher DIC incorporation rates are
471	usually associated with faster intracellular C _i turnover rates. Turnover times are expected to
472	be inversely proportional to cell surface area:volume, and therefore may be very fast for
473	small cyanobacteria but much longer for the coccolithophorids or diatoms in this study whose
474	surface area:volume ratios (Table 3) are nearly an order of magnitude larger than those
475	reported for cyanobacteria (Popp et al., 1998). The absence of detectable ¹⁴ C label in the
476	chase media in our coccolithophorid and diatom experiments is also consistent with a slow
477	turnover of the C _i pool.

In all cases, the pulse chase evaluations reflect a minimum estimate for the C_i pool. First of all because measurements were made every 5 min, and the maximum peak of ${}^{14}C$ incorporation during the chase period might have occurred in between sampling. In addition, though of minor importance, some ¹⁴C may be lost due to leakage of any labeled CO₂, as well as respiration and secretion of dissolved organic C. The estimate of the CCF is also likely to reflect a minimum estimate in all methods, because the C_i pool probably is restricted to one compartment of the cell, the chloroplast or pyrenoid, rather than the entire cell volume, as described in detail in the subsequent section.

Evaluating calculated CCF

487 The CCF is an indicator of the average enrichment of C in the cell because it considers 488 the entire cell volume as hosting the C_i pool. In reality the C_i pool may be hosted in a much 489 smaller volume at the site of RubisCO and therefore provide a much greater actual enrichment [22]

Physiologia Plantarum

490	of CO_2 to RubisCO. Traditionally, the CCF has been calculated by using the ratio of C_i pool
491	vs. extracellular DIC concentration (Badger et al. 1985, Kaplan et al. 1980, Spijkerman 2011).
492	Because our natural seawater DIC concentrations were higher than many previous
493	experiments, our CCFs are at the lower end or below those obtained in previous studies
494	(Table 4), even though the absolute acid-labile C _i pool concentrations are much higher. <i>E</i> .
495	huxleyi, for example, shows CCFs less than 1 at a pH of 7.9, nonetheless a C _i pool exists (Fig.
496	3). We propose, that the calculated intracellular acid-labile C concentrations up to 928 µmol
497	L ⁻¹ , though lower than the extracellular DIC concentration, cannot be maintained by passive C
498	uptake, via $CO_{2(aq)}$ diffusion only. Published estimates on the CCF for the diatom <i>T</i> .
499	weissflogii are lacking, although other diatoms, e.g. Phaeodactylum tricornutum are also
500	known to increase intracellular DIC concentrations at low $CO_{2(aq)}$ concentrations (Badger et
501	al. 1998, Colman and Rotatore 1995).
502	Cipool

We showed a pH or $CO_{2(aq)}$ dependent C_i pool for *T. weissflogii* and *E. huxleyi*, with higher intracellular DIC concentrations at high pH levels corresponding to low CO_{2(aq)} concentrations (Figure 5 a, b, d, e). The presence of a C_i pool in E. huxleyi and T. weissflogii at high pH or low $CO_{2(aq)}$ indicates that CCMs are active in both species, consistent with a broad array of CCM measurements (e.g. Burkhardt et al. 2001, Rost et al. 2003) CCMs evolved in relation to inorganic C limitation of photosynthesis (e.g. Giordano et al. 2005). Nevertheless, a C_i pool alone does not encourage photosynthesis: an additional mechanism (e.g. iCA, thylakoid CA) that converts the stored C at a rate sufficient to saturate the demand of RubisCO is required (e.g. Raven 1997). Besides the positive correlation between pH and the size of the C_i pool, and the negative correlation between CO_{2(aq)} concentration and the size of the C_i pool for both species, we also found a significant relation between extracellular DIC concentrations and the C_i pool for T. weissflogii (Fig. 5c) at intermediate and highest pH

[23]

conditions. This suggests the potential for bicarbonate regulation of the CCM in diatoms and merits further investigation. One mechanism might be that higher DIC facilitates greater HCO_3^- uptake which is especially significant if *T. weissflogii* employs a C₄ mechanism as part of its CCM (McGinn and Morel 2008, Reinfelder 2011, Reinfelder et al. 2000). In *E. huxleyi*, there is no clear evidence for a strong correlation between extracellular DIC concentration and the size of the pool (Fig. 5f).

The C_i pool concentrations (Table 4) are higher than the range of previous values identified for *E. huxleyi* and many other marine phytoplankton species, using the SOC or MIMS approach, probably caused by our higher DIC concentrations in the culture medium (Table 3, 4). This observation suggests that higher DIC values increase the absolute C_i pool. In addition, it might be possible that in contrast to the SOC and MIMS experiments, the longer incubation period with ¹⁴C in the pulse-chase approach permitted some fraction of cellular DIC uptake to be bound to organic compounds within the cell rather than remaining as free CO₂, HCO₃⁻⁷, or CO₃⁻². Because any intracellular C eventually reconverted to CO₂ for photosynthesis is detected by the pulse-chase approach, the pulse-chase method may detect this broader array of acid-labile C_i components. In contrast, SOC and MIMS measurements may detect only the free CO_2 , HCO_3^- , or CO_3^{-2} .

532 Due to totally different media compositions between MIMS and SOC and the pulse 533 chase method, the results of *E. huxleyi* cannot be directly compared with previous results 534 summarized in Badger et al. (1998). Comparing our measurements of the enrichment inside 535 the cell for *E. huxleyi* and *T. weissflogii*, it is obvious that the diatom exhibits greater 536 elevation than the coccolithophorid (Table 3, 4). We assume that more effective CCMs result 537 in higher intracellular DIC concentrations in diatoms.

538 Previous investigations showed that diatoms evolved later than coccolithophorids and 539 therefore might be adapted to lower atmospheric CO₂ levels (Tortell 2000). It was supposed

[24]

Page 25 of 57

Physiologia Plantarum

540	that diatoms develop higher RubisCO specificity factors than coccolithophorids and therefore
541	might not need a great C _i pool (Tortell 2000). Nonetheless, our data for the diatom T.
542	weissflogii indicate that the CCMs employed by diatoms may also require C _i pools.
543	We identified an important threshold of 30 μ mol·L ⁻¹ CO _{2(aq)} for the establishment of a
544	detectable C _i pool in both <i>E. huxleyi</i> and <i>T. weissflogii</i> . The threshold for <i>Peridinium</i>
545	gatunense was 15 μ mol L ⁻¹ (Berman-Frank and Erez 1996). To date, thresholds for C _i pool
546	development have not been widely investigated. Our new data are among very few reported
547	estimates of threshold for C _i pool of phytoplankton species.
548	CO_2 vs. HCO_3^- uptake
549	Information available on the proportion of CO_2 or HCO_3^- used for photosynthesis has
550	been provided by the ¹⁴ C disequilibrium method and MIMS. These techniques have been used
551	to assess changes in substrate as a function of environmental conditions both in cultures and
552	natural populations. The intercomparison of both methods shows consistent results (Rost et al.
553	2007). More recently both methods have also been in oceanographic field studies,
554	demonstrating that HCO ₃ ⁻ is the major source of DIC to satisfy the demand of photosynthesis
555	(Martin and Tortell 2006, Tortell et al. 2006).
556	E. huxleyi is known to exhibit large strain-specific physiological responses (e.g. Hoppe
557	et al. 2011, Langer et al. 2009). The strain of E. huxleyi used in our experiments appears to
558	satisfy about 50 % of the photosynthetic DIC demand by HCO3 ⁻ when grown under present
559	atmospheric conditions (Morel et al. 2002, Rost et al. 2007). Some other strains exhibit a
560	lower proportion of HCO ₃ ⁻ to satisfy the photosynthetic DIC demand at present day CO ₂
561	concentrations (Fig. 8; data from Rost et al (2003)). Nevertheless, different E. huxleyi strains
562	showed similar trends of increased reliance on CO ₂ for photosynthesis as CO ₂ availability
563	increased. Focusing on our ¹⁴ C disequilibrium results, we observed even though no acid-labile

[25]

 C_i pool was detected for *E. huxleyi* at a pH of 7.49, nearly 40 % of the photosynthetic DIC demand was covered by HCO₃⁻. That indicates that active transport of HCO₃⁻ still supplies photosynthesis without appreciable intracellular accumulation. Such a mechanism has been described previously by Raven (1997), who suggested that autotrophic cells rely on an acidified thylakoid lumen and a high thylakoid CA activity, and suggested that this CA is a dominant element of the CCM in this pH range.

T. weissflogii is known to satisfy the photosynthetic DIC demand with approximately 70 % in the form of HCO_3^- at present $CO_{2(aq)}$ concentrations (Burkhardt et al. 2001, Morel et al. 2002) (Fig. 6). The DIC acquisition of *T. weissflogii* follows the HCO_3^- user model, in detail explained by Trimborn et al. (2008). Again, HCO_3^- is not the dominant source at lowest pH 7.49, but high proportions of HCO_3^- incorporation relative to total photosynthetic DIC incorporation imply an active transport of HCO_3^- , supplying photosynthesis without appreciable intracellular accumulation.

577 Photosynthetic DIC incorporation rates – Chla content

Much effort has been invested in characterizing the response of algal growth rate to increasing CO_{2(aq)}, to assess whether reduced reliance on CCMs permits reallocation of resources to enhance growth. The DIC incorporation rates measured during the pulse (120 min) may not be representative of average steady state growth rates integrated over several days (Hurd et al. 2009). The enormous difference of 1000 in magnitude for the DIC incorporation rates for *T. weissflogii* and *E. huxleyi* (Table 3), might be due to a reduced light level during the pulse chase experiments, compared to the light levels needed for optimal growth of E. huxleyi (Oguz and Merico 2006). Other possibilities are higher leakage of DIC by T. weissflogii or release of fixed DIC as DOC, this phenomenon of wasting high energy-demanding products was also reported for diazotrophic cyanobacteria with respect to N_2 fixation and DON (Ohlendieck et al. 2000, Wannicke et al. 2009). However, during our brief

[26]

Page 27 of 57

Physiologia Plantarum

589	incubation T. weissflogii and E. huxleyi both exhibited highest DIC incorporation rates at a pH
590	of ~7.9 (Fig.2). This emphasizes that both species are well adapted to the present state $CO_{2(aq)}$,
591	concentrations or rather what is expected for the end of this century. Lower and higher pH
592	values resulted in clearly reduced DIC incorporation rates. Previous studies examined growth
593	for <i>E. huxleyi</i> in the pH range of 7.7 and 8.6, a range in which some strains exhibit decreasing
594	growth at pH below 7.8, others including the strain used here exhibit constant growth, and
595	some show increasing autotrophic growth (Feng et al. 2008, Hoppe et al. 2011, Iglesias-
596	Rodriguez et al. 2008, Langer et al. 2009, Riebesell et al. 2000). It is possible that suboptimal
597	growth conditions, caused by the more extreme acidic conditions at the pH of 7.45, negatively
598	affected the DIC incorporation rate. Photosynthesis of T. weissflogii was previously shown to
599	be positively influenced by enhanced CO_2 concentrations (Burkhardt et al. 2001). We found
600	the proposed stimulation just between the highest and medium pH level. In accordance to
601	those findings, <i>E. huxleyi</i> and <i>T. weissflogii</i> had the highest Chla cell contents at a pH of ~7.9
602	(Fig. 6). Furthermore, it has to be kept in mind that the amount of RubisCO per Chla might be
603	influenced by different $CO_{2(aq)}$ concentrations (Yokota and Canvin 1985). Increasing the
604	chlorophyll content of the cell has been described as one potential adaptation to stress
605	(Geider, 1987, Riemann et al., 1989). Even though no linear relationship between the Chla
606	content and $CO_{2(aq)}$ concentrations was detected, the RubisCO content and therefore also the
607	efficiency might also have varied. Suboptimal growth conditions at the pH level of ~7.4 were
608	indicated by clearly reduced Chla contents (Fig. 6).
60.0	

Conclusions

610 The pulse-chase C_i pool detection method, extended here to coccolithophorids and 611 diatoms, provides an effective and routine method for characterizing the acid-labile C pool 612 that is applicable to all the main classes of marine eukaryotic plankton. Our results confirm 613 that both a diatom and a calcifying coccolithophorid build significant intracellular C_i pools

over the lower range of CO₂ investigated here (~ 2 to 30 μ mol·L⁻¹ CO_{2(aq)}, respectively pH 8.6 - 7.91). These CO₂ values encompass the range found in most modern surface seawaters, for example from cold upwelling areas to warm subtropical gyres (Borges et al. 2005, Laws et al. 1997, Takahashi et al. 2002). Therefore a great benefit of the application of the ¹⁴C-pulse chase method is its feasibility at natural seawater DIC concentrations, so that results may be compared with natural populations.

For both algal classes, the C_i pool becomes a negligible contributor to photosynthesis once $CO_{2(aq)}$ exceeds 30 µmol·L⁻¹. Thus, in the range of surface waters conditions predicted for the year 2100 (Houghton et al. 2001) especially in the most CO_2 -rich areas of the ocean, this aspect of CCMs may be of reduced importance.

Diatoms and coccolithophorids are both key taxa to the effective operation of the biological C pump and the ratio of the export production of these groups sets the deep ocean alkalinity and ocean/atmosphere CO_2 partitioning (Laws et al. 1997, Laws et al. 2002). If our method can be used to assess whether the main exported species of coccolithophorids and diatoms will have different or similar thresholds for foregoing significant acid-labile intracellular C accumulation for photosynthesis , we could better predict the response of marine biogeochemical cycling to anthropogenic C cycle changes.

Physiologia Plantarum

1 2 3		
3 4		
5 6	633	ACKNOWLEDGEMENTS AND AUTHOR CONTRIBUTINOS
7	634	We thank Björn Rost and Scarlett Trimborn for introducing us to the ${}^{14}C$
10	635	disequilibrium method. The work was funded by the European Union under ERC240222-
11 12 13	636	PACE (to HMS). K.I. and J.E. conducted experiments, K.I. and H.M.S. wrote the paper with
14 15	637	input from J.E.
18	638	
19 20 21	639	
22 23		
24		
25 26		
27 28		
29		
30 31		
32		
33 34		
35		
36 37		
38 39		
40		
41 42		
43		
44 45		
46		
47 48		
49		
50 51		
52 53		
54		
55 56		
57		
58 59		
60		[29]

2	
3	
4	
5	
3 4 5 6 7	
7	
8	
9	
8 9 10	
11	
12	
13	
13 14	
15	
15 16 17	
10	
17	
18	
19	
20	
21	
23	
24	
25	
26	
27	
28	
23 24 25 26 27 28 29	
20	
20	
31	
32	
33	
34	
35	
36	
29 30 31 32 33 34 35 36 37 38	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51 52	
52	
53	
54	
55	
56	
57	
58	
59	
53	

641 642

640

- Aizawa K, Miyachi S (1986) Carbonic anhydrase and CO₂ concentrating mechanisms in
 microalgae and cyanobacteria. FEMS Microbiol Lett 39: 215-233
- Badger MR, Andrews TJ, Canvin DT, Lorimer GH (1980) Interactions of hydrogen peroxide
 with ribulose bisphosphate carboxylase oxygenase. J Biol Chem 255: 7870-7875
- Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price GD
 (1998) The diversity and coevolution of RubisCO, plastids, pyrenoids, and
 chloroplast-based CO₂-concentrating mechanisms in algae. Can J Bot 76: 1052-1071
- Badger MR, Bassett M, Comins HN (1985) A Model for HCO₃ accumulation and
 photosynthesis in the cyanobacterium *Synechococcus* sp: Theoretical predictions and
 experimental observations. Plant Physiol 77: 465
- Badger MR, Lorimer GH (1976) Activation of ribulose 1,5 bisphosphate oxygenase. The role
 of Mg²⁺, CO₂, and pH. Arch Biochem Biophys 175: 723-729
- 655 Berge G (1962) Discoloration of the sea due to *Coccolithus huxleyi* 'bloom'. Sarsia 6: 27-40
- Berman-Frank I, Erez J (1996) Inorganic carbon pools in the bloom-forming dinoflagellate
 Peridinium gatunense. Limnology and Oceanography 41: 1780-1789
- Berman-Frank I, Zohary T, Erez J, Dubinsky Z (1994) CO₂ availability, carbonic anhydrase,
 and the annual dinoflagellate bloom in Lake Kinneret. Limnol Oceanogr 39: 18221834
- Borges AV, Delille B, Frankignoulle M (2005) Budgeting sinks and sources of CO₂ in the
 coastal ocean: Diversity of ecosystems counts. Geophys Res Lett 32: L14601,
 doi:10.1029/2005GL023053
- Bradshaw AL, Brewer PG, Shafer DK, Williams RT (1981) Measurements of total carbon
 dioxide and alkalinity by potentiometric titration in the GEOSECS program. Earth and
 Planet Sc Lett 55: 99-115

Physiologia Plantarum

667	Brewer PG, Bradshaw AL, Williams RT (1986) Measurements of total carbon dioxide and
668	alkalinity in the North Atlantic Ocean in 1981. In: Trabalka JR, Reichle DE (eds) The
669	changing carbon cycle: A global analysis, Springer, New York, pp 348-370
670	Buitenhuis E, Van Bleijswijk J, Bakker D, Veldhuis M (1996) Trends in inorganic and
671	organic carbon in a bloom of Emiliania huxleyi in the North Sea. Marin Ecol Progr Ser
672	143: 271-282
673	Buitenhuis ET, van der Wal P, de Baar HJW (2001) Blooms of Emiliana huxleyi are sinks of
674	atmospheric carbon dioxide: A field and mesocosm study derived simulation. Global
675	Biogeochem Cycles 15: 577-587
676	Burkhardt S, Amoroso G, Riebesell U, Sültemeyer D (2001) CO ₂ and HCO ₃ ⁻ uptake in marine
677	diatoms acclimated to different CO ₂ concentrations. Limnol Oceanogr 46: 1378-1391
678	Cassar, N., Laws, E.A., & Popp, B.N. (2006), Carbon isotopic fractionation by the marine
679	diatom Phaeodactylum tricornutum under nutrient- and light-limited growth
680	conditions. Geochimica et Cosmochimica Acta 70, 5323-5335
681	Colman B, Rotatore C (1995) Photosynthetic inorganic carbon uptake and accumulation in
682	two marine diatoms. Plant, Cell Environ 18: 919-924
683	Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the
684	dissociation of carbonic acid in seawater media. Deep Sea Res Part A 34: 1733-1743
685	Dong LF, Nimer NA, Okus E, Merrett MJ (1993) Dissolved inorganic carbon utilization in
686	relation to calcite production in Emiliania huxleyi (Lohmann) Kamptner. New Phytol
687	123: 679-684
688	Elzenga JTM, Prins HBA, Stefels J (2000) The role of extracellular carbonic anhydrase
689	activity in inorganic carbon utilization of Phaeocystis globosa (Prymnesiophyceae): A
690	comparison with other marine algae using the isotopic disequilibrium technique.
691	Limnol Oceanogr 45: 372-380

692	Espie GS, Colman B (1986) Inorganic carbon uptake during photosynthesis: I. A theoretical
693	analysis using the isotopic disequilibrium technique. Plant Physiol 80: 863-869
694	Feng Y, Warner ME, Zhang Y, Sun J, Fu FX, Rose JM, Hutchins DA (2008) Interactive
695	effects of increased pCO_2 , temperature and irradiance on the marine coccolithophore
696	Emiliania huxleyi (Prymnesiophyceae). Eur J Phycol 43: 87-98
697	Geider, R.J., (1987). Light and temperature dependence of the carbon to chlorophyll a ratio in
698	microalgae and cyanobacteria: Implications for physiology and growth of
699	phytoplankton. New Phytol.106, 1 – 34.
700	Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae:
701	mechanisms, environmental modulation, and evolution, Annu Rev Plant Biol 55: 99-
702	131.
703	Granum E, Raven JA, Leegood RC (2005) How do marine diatoms fix 10 billion tonnes of
704	inorganic carbon per year? Can J Bot 83: 898-908
705	Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume
706	calculation for pelagic and benthic microalgae. J Phycol 35: 403-424
707	Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JDH (1965) Fluorometric
708	determination of chlorophyll. J Cons Cons Int Explor Mer 39: 3-15.
709	Hoppe CJM, Langer G, Rost B (2011) Emiliania huxleyi shows identical responses to
710	elevated pCO_2 in TA and DIC manipulations. J Exp Mar Biol Ecol 406: 54-62
711	Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson
712	CA (2001) IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of
713	Working Group I to the Third Assessment Report of the Intergovernmental Panel on
714	Climate Change, Cambridge University Press, pp 1-881
	[32]

Physiologia Plantarum

3	715	Hurd CL, Hepburn CD, Currie KI, Raven JA, Hunter KA (2009) Testing the effects of ocean
4 5 6	716	acidification on algal metabolism: Considerations for experimental designs. J Phycol
7 8	717	45: 1236-1251
9 10	718	Iglesias-Rodriguez M, Halloran PR, Rickaby REM, Hall IR, Colmenero-Hidalgo E, Gittins
11 12	719	JR, Green DRH, Tyrrell T, Gibbs SJ, Von Dassow P, Rehm E, Armbrust E,
13 14 15	720	Boessenkool KP (2008) Phytoplankton calcification in a high-CO2 world. Science
16 17	721	320: 336-340
18 19	722	Johnston AM (1991) The acquisition of inorganic carbon by marine macroalgae. Can J Bot
20 21	723	69: 1123-1132
22 23	724	Johnston AM, Raven JA, Beardall J, Leegood RC (2001) Carbon fixation: Photosynthesis in a
24 25 26	725	marine diatom. Nature 412: 40-41
27 28	726	Kaplan A, Badger MR, Berry JA (1980) Photosynthesis and the intracellular inorganic carbon
29 30	727	pool in the bluegreen alga Anabaena variabilis: Response to external CO ₂
31 32	728	concentration. Planta 149: 219-226
33 34 35	729	Kaplan A, Reinhold L (1999) CO ₂ concentrating mechanisms in photosynthetic
36 37	730	microorganisms. Annu Rev Plant Biol 50: 539-570
38 39	731	Keller MD, Selvin RC, Claus W, Guillard RRL (1987) Media for the culture of oceanic
40 41	732	ultraphytoplankton. J Phycol 23: 633-638
42 43	733	Langer G, Nehrke G, Probert I, Ly J, Ziveri P (2009) Strain-specific responses of Emiliania
44 45 46	734	huxleyi to changing seawater carbonate chemistry. Biogeosciences 6: 2637-2646
47 48	735	Laws EA, Bidigare RR, Popp BN (1997) Effect of growth rate and CO ₂ concentration on
49 50	736	carbon isotopic fractionation by the marine diatom Phaeodactylum tricornutum.
51 52	737	Limnol Oceanogr 42: 1552-1560
53 54 55	738	Laws EA, Popp BN, Cassar N, Tanimoto J (2002) ¹³ C discrimination patterns in oceanic
55 56 57	739	phytoplankton: Likely influence of CO ₂ concentrating mechanisms, and implications
58 59	740	for palaeoreconstructions. Funct Plant Biol 29: 323-333
60		[33]

741	Lewis E, Wallace D (1998) Program developed for CO2 system calculations, ORNL/CDIAC-
742	105, Carbon Dioxide Info. Anal. Cent., Oak Ridge Natl. Lab., US Dep. Of Energy,
743	Oak Ridge, Tenn.
744	Llope M, Anadón R, Sostres JÀ, Viesca L (2007) Nutrients dynamics in the southern Bay of
745	Biscay (1993-2003): Winter supply, stoichiometry, long-term trends, and their effects
746	on the phytoplankton community. J Geophys Res C: Oceans 112: C07029,
747	doi:10.1029/2006JC003573
748	Martin CL, Tortell PD (2006) Bicarbonate transport and extracellular carbonic anhydrase
749	activity in Bering Sea phytoplankton assemblages: Results from isotope
750	disequilibrium experiments. Limnol Oceanogr 51: 2111-2121
751	McGinn PJ, Morel FMM (2008) Expression and regulation of carbonic anhydrases in the
752	marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages
753	from Great Bay, New Jersey. Physiol Plant 133: 78-91
754	Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent
755	dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol
756	Oceangr 18: 897-907.
757	Miller AG, Espie GS, Canvin DT (1988) Active transport of CO ₂ by the cyanobacterium
758	Synechococcus UTEX 625: measurement by mass spectrometry. Plant Biol 86: 677-
759	683
760	Morel FMM, Cox EH, Kraepiel AML, Lane TW, Milligan AJ, Schaperdoth I, Reinfelder JR,
761	Tortell PD (2002) Acquisition of inorganic carbon by the marine diatom Thalassiosira
762	weissflogii. Funct Plant Biol 29: 301-308
763	Moroney JV, Husic HD, Tolbert NE (1985) Effect of carbonic anhydrase inhibitors on
764	inorganic carbon accumulation by Chlamydomonas reinhardtii. Plant Physiol 79: 177-
765	183
	[34]

Physiologia Plantarum

3
4
5
6
5 6 7
8
9
10
11
12
13
14
15
16
9 10 11 12 13 14 15 16 17 18 19
18
19
20
20 21
22
23
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
-0
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Nimer NA, Brownlee C, Merrett MJ (1994) Carbon dioxide availability, intracellular pH and
growth rate of the coccolithophore *Emiliania huxleyi*. Mar Ecol Progr Ser 109: 257262

- Nimer NA, Dixon GK, Merrett MJ (1992) Utilization of inorganic carbon by the
 coccolithophorid *Emiliania huxleyi* (Lohmann) Kamptner. New Phytol 120: 153-158
- Oguz T, Merico A (2006) Factors controlling the summer *Emiliania huxleyi* bloom in the
 Black Sea: A modeling study. J Mar Syst 59: 173-188
- Ohlendieck U, Stuhr A, Siegmund H (2000) Nitrogen fixation by diazotrophic cyanobacteria
 in the Baltic Sea and transfer of the newly fixed nitrogen to picoplankton organisms. J
 Mar Syst 25: 213-219
 - Popp, B. , Laws, E., Bidigare, R., Dore, J., Hansen, K., Wakeham, S. (1998) Effect of
 phytoplankton cell geometry on carbon isotopic fractionation. *Geochimica y Cosmochimica Acta* 62, 69-77
 - Raven JA (1995) Costs and benefits of low intracellular osmolarity in cells of freshwater
 algae. Funct Ecol 9: 701-707
- Raven JA (1997) CO₂-concentrating mechanisms: A direct role for thylakoid lumen
 acidification? Plant Cell Environ 20: 147-154
 - Raven JA (2010) Inorganic carbon acquisition by eukaryotic algae: four current questions.
 Photosynth Res 106: 123-134
 - Reinfelder JR (2011) Carbon concentrating mechanisms in eukaryotic marine phytoplankton.
 Annu Rev Mar Science 3: 291-315
 - Reinfelder JR, Kraepiel AML, Morel FMM (2000) Unicellular C4 photosynthesis in a marine
 diatom. Nature 407: 996-999
 - Reinfelder JR, Milligan AJ, Morel FMM (2004) The role of the C4 pathway in carbon
 accumulation and fixation in a marine diatom. Plant Physiol 135: 2106-2111
 - [35]

791	Riebesell U, Revill AT, Holdsworth DG, Volkman JK (2000) The effects of varying CO ₂
792	concentration on lipid composition and carbon isotope fractionation in Emiliania
793	huxleyi. Geochim Cosmochim Acta 64: 4179-4192
794	Riemann, B., Simonsen, P. and Stensgaard, L. (1989) The carbon and chlorophyll content of
795	phytoplankton from various nutrient regimes. J. Plankton Res. 11, 1037–1045.
796	Roberts K, Granum E, Leegood RC, Raven JA (2007) Carbon acquisition by diatoms.
797	Photosynth Res 93: 79-88
798	Rost B, Kranz SA, Richter KU, Tortell PD (2007) Isotope disequilibrium and mass
799	spectrometric studies of inorganic carbon acquisition by phytoplankton. Limnol
800	Oceanogr: Methods 5: 328-337
801	Rost B, Riebesell U, Burkhardt S, Sültemeyer D (2003) Carbon acquisition of bloom-forming
802	marine phytoplankton. Limnol Oceanogr 48: 55-67
803	Rost B, Riebesell U, Sültemeyer D (2006) Carbon acquisition of marine phytoplankton:
804	Effect of photoperiod length. Limnol Oceanogr 51: 12-20
805	Spalding MH, Spreitzer RJ, Ogren WL (1983) Genetic and physiological analysis of the CO ₂ -
806	concentrating system of Chlamydomonas reinhardii. Planta 159: 261-266
807	Spijkerman E (2011) The expression of a carbon concentrating mechanism in
808	Chlamydomonas acidophila under variable phosphorus, iron, and CO ₂ concentrations.
809	Photosynth Research 109: 1-11
810	Suffrian K, Schulz KG, Gutowska MA, Riebesell U, Bleich M (2011) Cellular pH
811	measurements in Emiliania huxleyi reveal pronounced membrane proton permeability.
812	New Phytol 190: 595-608
813	Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N,
814	Wanninkhof R, Feely RA, Sabine C (2002) Global sea-air CO2 flux based on
815	climatological surface ocean pCO_2 , and seasonal biological and temperature effects.
816	Deep Sea Res Part II 49: 1601-1622

[36]

Physiologia Plantarum

2 3	817	ter Kuile B, Erez J (1987) Uptake of inorganic carbon and internal carbon cycling in
4 5 6	818	symbiont-bearing benthonic foraminifera. Mar Biol 94: 499-509
7 8	819	ter Kuile B, Erez J (1988) The size and function of the internal inorganic carbon pool of the
9 10	820	foraminifer Amphistegina lobifera. Mar Biol 99: 481-487
11 12	821	Tortell PD (2000) Evolutionary and ecological perspectives on carbon acquisition in
13 14	822	phytoplankton. Limnol Oceanogr 45: 744-750
15 16 17	823	Tortell PD, Martin CL, Corkum ME (2006) Inorganic carbon uptake and intracellular
17 18 19	824	assimilation by subarctic Pacific phytoplankton assemblages. Limnol Oceanogr 51:
20 21	825	2102-2110
22 23	826	Tortell PD, Rau GH, Morel FMM (2000) Inorganic carbon acquisition in coastal Pacific
24 25	827	phytoplankton communities. Limnol Oceanogr 45: 1485-1500
26 27 28	828	Trimborn S, Lundholm N, Thoms S, Richter KU, Krock B, Hansen PJ, Rost B (2008)
29 30	829	Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: The effect of
31 32	830	pH-induced changes in seawater carbonate chemistry. Physiol Plant 133: 92-105
33 34	831	Trimborn S, Wolf-Gladrow D, Richter KU, Rost B (2009) The effect of pCO_2 on carbon
35 36	832	acquisition and intracellular assimilation in four marine diatoms. J Exper Mar Biol
37 38 39	833	Ecol 376: 26-36
40 41	834	UNESCO (1994) Protocols for the Joint Global Ocean Flux Study (JGOFS) core
42 43	835	measurements, IOC/SCOR manual and guides. UNESCO Publ 29: 128-134
44 45	836	Wannicke N, Koch BP, Voss M (2009) Release of fixed N ₂ and C as dissolved compounds by
46 47	837	Trichodesmium erythreum and Nodularia spumigena under the influence of high light
48 49	838	and high nutrient (P). Aquat Microb Ecol 57: 175-189
50 51 52	839	Woodger FJ, Badger MR, Price GD (2003) Inorganic carbon limitation induces transcripts
53 54	840	encoding components of the CO ₂ -concentrating mechanism in <i>Synechococcus</i> sp.
55 56		
57 58	841	PCC7942 through a redox-independent pathway. Plant Physiol 133: 2069-2080
59 60	842	[37]

843 844	FIGURE LEGENDS:
845	Fig. 1. Idealized model for detecting the C _i pool during a pulse-chase experiment. The
846	solid black line represents the ¹⁴ C uptake during the pulse, the dotted line represents increased
847	$^{14}\mathrm{C}$ in the algae during the chase period. This $^{14}\mathrm{C}$ is transferred from the C_{i} pool into the
848	particulate organic matter and serves as an estimate of the C _i pool. The dashed line indicates
849	the loss of ¹⁴ C within the particulate organic matter due to respiration.
850 851	Fig. 2. DIC incorporation rates measured during the pulse incubation (n=3). $a - T$. <i>weissflogii</i> . $b - E$. <i>huxleyi</i> .
852	Fig. 3. Pulse-chase experiments illustrating acid-labile C _i pools at 3 different pH
853	settings of <i>T. weissflogii</i> . Cells were spiked with ¹⁴ C and the kinetics of acid-stable
854	photosynthetic products were followed for 120 min (pulse) after which the cells were
855	resuspended in label-free medium under identical experimental conditions (chase). Each
856	datapoint reflects 3 single measurements. a – Culture preincubated at a pH of 8.5 b – Culture
857	preincubated at a pH of 7.9. c – Culture preincubated at a pH of 7.4. The different symbols
858	represent the repetitions of the experiment.
859	Fig. 4. Pulse-chase experiments illustrating acid-labile C _i pools at 3 different pH
860	settings of <i>E. huxleyi</i> . Cells were spiked with ¹⁴ C and the kinetics of acid-stable
861	photosynthetic products were followed for 120 min (pulse) after which the cells were
862	resuspended in label-free medium under identical experimental conditions (chase). Each
863	datapoint reflects 3 single measurements. a – Culture preincubated at a pH of 8.5 b – Culture
864	preincubated at a pH of 7.9. c – Culture preincubated at a pH of 7.4. The different symbols
865	represent the repetitions of the experiment.
866	Fig. 5. C _i pool size variation related to differences in the carbon system (n=3). $a - T$.
867	weissflogii C _i pool vs. pH. b – T. weissflogii C _i pool vs. $CO_{2(aq)}$. c– T. weissflogii C _i pool vs.

[38]

Physiologia Plantarum

2
3
3 4 5 6 7
-
5
6
7
<u>s</u>
0
9
10
8 9 10 11 12 13 14 15 16 17 18
12
12
13
14
15
16
17
17
18
19
20
21
19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40
22
23
24
25
20
26
27
28
20
29
30
31
32
22
33
34
35
36
27
31
38
39
40
41
42
43
44
45
46
47
48
49
+3
50
51
52
53
54
55
56
57
58
59
60

BIC. d – *E. huxleyi* C_i pool vs. pH. e – *E. huxleyi* C_i pool vs. CO_{2(aq)}. f– *E. huxleyi* C_i pool vs.
DIC.

Fig. 6. a – *T. weissflogii* Chl*a* vs. pH. b – *T. weissflogii* C_i pool vs. Chl*a*. c – *T. weissflogii* Chl*a*:cell volume vs. pH. d – *E. huxleyi* Chl*a* vs. pH. e – *E. huxleyi* C_i pool vs.
Chla. c – *E. huxleyi* Chla:cell volume vs. pH. (n=3).

Fig. 7. Results from ¹⁴C disequilibrium assays for *E. huxleyi* and *T. weissflogii* at different pH levels. a - *T. weissflogii* at pH 7.49. b - *T. weissflogii* at pH 7.90. c - *E. huxleyi* at pH 7.49, (d) *E. huxleyi* at pH 7.82. e - *E. huxleyi* at pH 8.11, Solid lines and filled circles represent samples without any inhibition, dashed lines and empty circles represent DBS inhibition (50 μ mol L⁻¹) during the sampling Values of *f* denote the proportion of HCO₃⁻ to DIC fixation in non-treated (control) and DBS treated cells. Values and standard deviations are based on triplicate measurements.

Fig. 8. Ratio of gross CO_2 : HCO₃⁻ uptake in *T. weissflogii* and *E. huxleyi* with respect to different *p*CO₂ values. Data of shaded bars were obtained during this study, remaining data were published by Burkhardt et al. (2001) for *T. weissflogii* and by Rost et al (2003) for *E. huxleyi*. Values and standard deviations are based on triplicate measurements. The dashed line indicates the value when CO₂ and HCO₃⁻ are taken up in equal proportions.

Physiologia Plantarum

Table 1. ¹⁴C experimental data of the added activity of ¹⁴C during the pulse incubation (AA), measured blanks = time zero values (TZ), TZ relative to AA, average (n=5) or single measurements of chase added activity of ¹⁴C (CA) measured during the chase, CA relative to AA, measured ¹⁴C activity on the filter after washing (CF), equivalent culture volume of CF with respect to the maximum measurement during the pulse incubation.

<u>Caracian</u>		AA	TZ	TZ : AA	CA	CA :AA	CF	CF equivalent V
Species	pН	[CPM mL ⁻¹]	[CPM mL ⁻¹]	[‰]	$[CPM mL^{-1}]$	[‰]	[CPM]	[mL]
T. weissflogii	8.35	479,930	9.00	0.02	3029	6.20	4,218	2.4
	8.62	156,460	7.00	0.05	221 ± 11	1.36	1,065	1
	8.56	60,543	5.00	0.09	454 ± 25	8.10	1,404	5.7
	7.94	772,222	109.00	0.10	326	0.42	7,596	0.6
	7.99	127,393	8.00	0.10	731 ± 48	5.70	560	0.4
	7.94	64,700	4.00	0.10	295 ± 23	4.70	392	1.3
	7.47	297,610	7.00	0.02	488	1.64	1,756	1.5
	7.47	74,433	4.00	0.05	347 ± 10	4.79	264	3.4
	7.47	73,025	3.00	0.04	348 ± 19	4.71	602	2.5

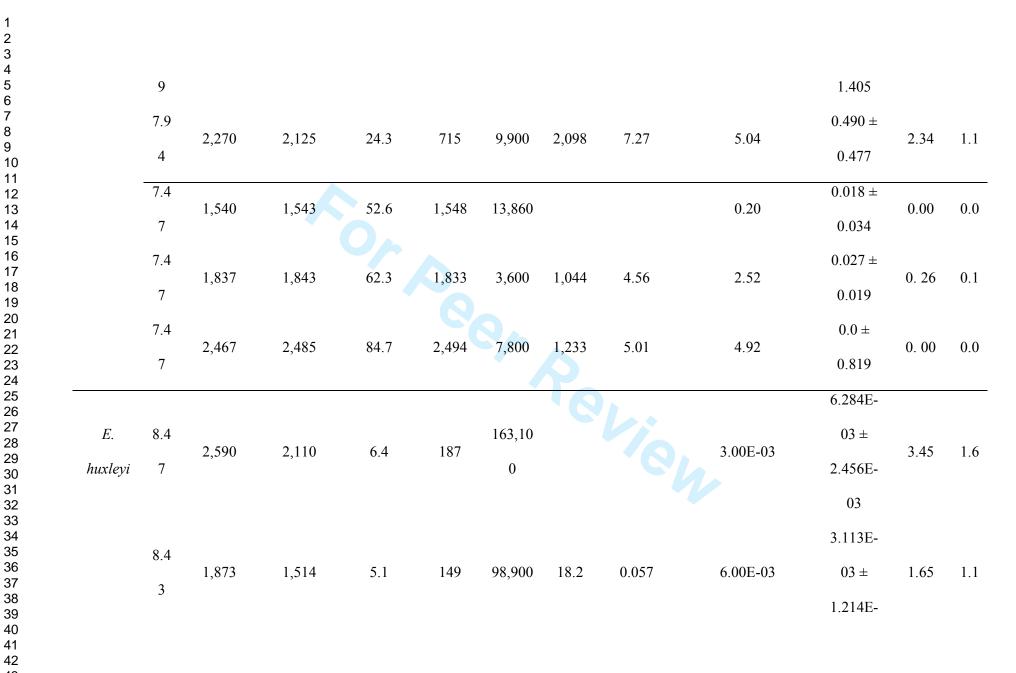
Page	42	of	57
------	----	----	----

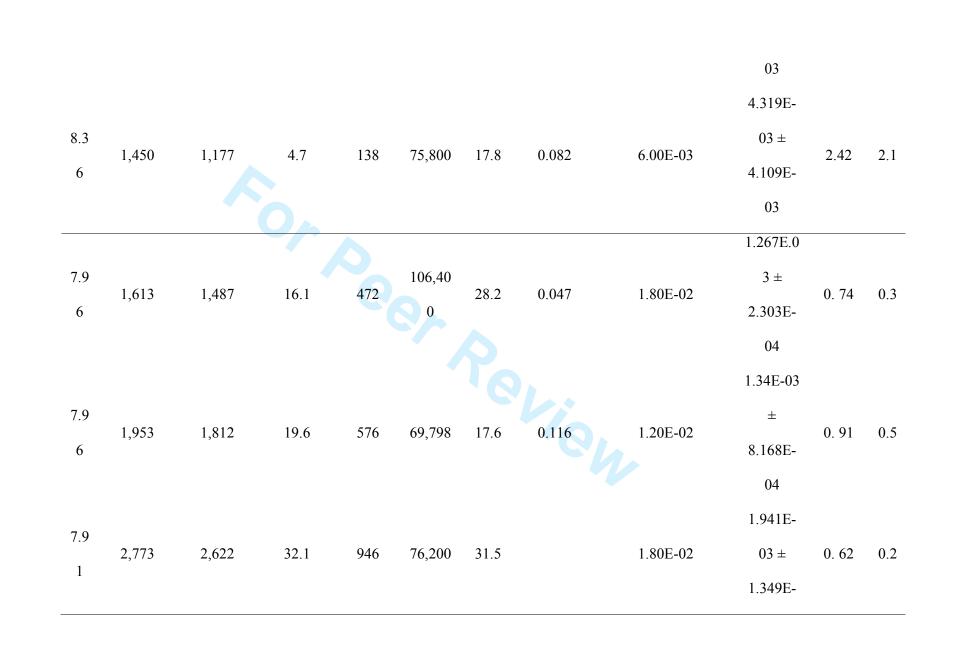
	7.47	65,800	5.00	0.08	530 ± 20	8.75	221	16.0
	7.44	61,468	3.00	0.06	353 ± 21	5.18	214	14.0
	7.45	261,355	18.00	0.07	345	1.32	2,112	4.6
	7.91	56,168	3.32	0.06	333 ± 23	6.28	518	10.7
	7.96	76,295	4.00	0.05	237 ± 35	3.13	313	4.7
	7.96	70,715	4.00	0.06	245 ± 15	3.42	921	7.4
	8.36	70,770	3.00	0.04	587 ± 26	8.67	600	11.8
	8.43	54,300	3.00	0.06	460 ± 15	8.55	293	6.1
E. huxleyi	8.47	210,965	13.00	0.06	304	1.44	1,721	2.2

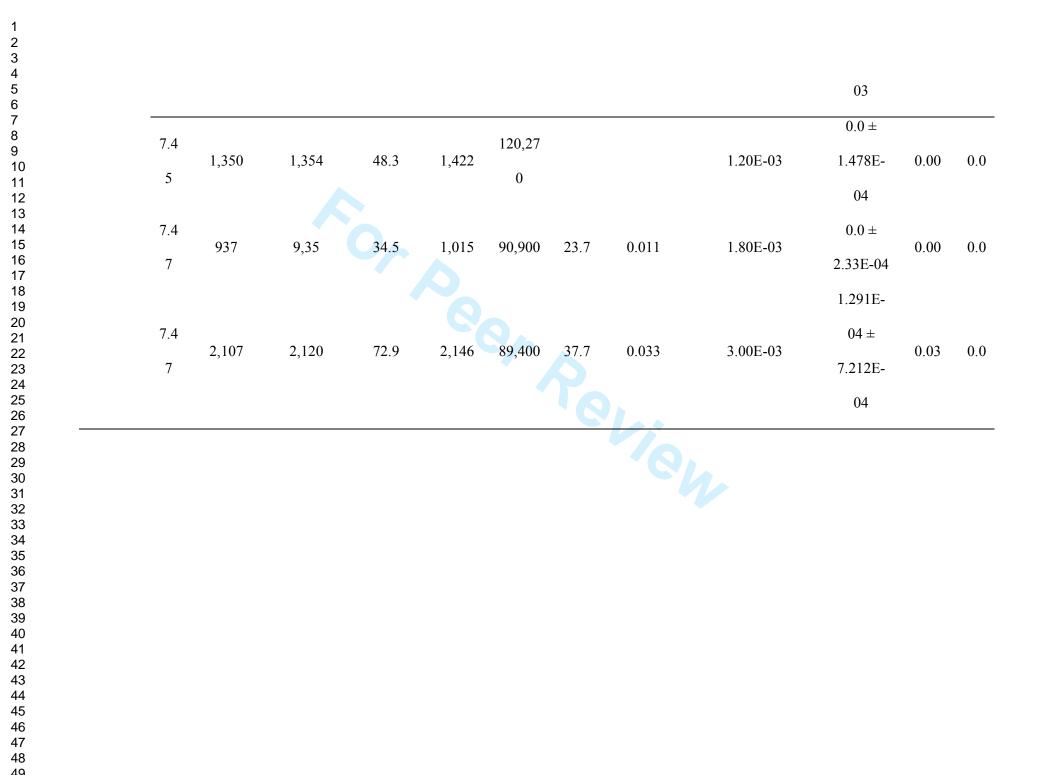
Page 43 of 57

Physiologia Plantarum

Species	pН	L	D	D:L C _i
		C _i incorpo	oration rate	incorporation [%
		T. weissflogii []	$pmol C_i h^{-1} cell^{-1}$]	
		<i>E. huxleyi</i> [pn	nol $C_i h^{-1} cell^{-1}$]	
T. weissflogii	8.35	1.76	0.03	1.44
	7.47	2.52	0.06	2.42
E. huxleyi	8.47	0.003	0.00003	1.00
	7.97	0.018	0.000009	0.5


Physiologia Plantarum


Table 3. Measured pH values of the media, cell concentrations, cell volumes, Chla concentrations, C_i uptake rates, average C_i pools (n=3), internal C_i concentrations, ratio of internal to external C_i concentrations.


Species	рН	TA [µmol kg SW ⁻¹]	C _{i ext} [µmol kg SW ⁻¹]	CO _{2(aq)} [µmol kg SW ⁻¹]	pCO ₂ [µatm]	cells [cells ml ⁻¹]	V_{cell} $[\mu m^3]$	Chl <i>a</i> [pg cell ⁻¹]	C _i uptake rate [pmol DIC h ⁻¹ cell ⁻¹]	C _i pool [pmol cell ⁻¹]	C _{i int} [mmol L ⁻¹]	C _i int:
T. weissflog	8.3 5	2,613	2,219	9.2	269	21,258			1.76	0.522 ± 0.268	5.44	ext 2.5
ii	8.6 2	1,420	1,019	2.0	60	16,750	960	7.58	4.34	1.399 ± 1.027	14.56	14. 3
	8.5 6	3643	2,919	6.8	201	8,111	1,229	7.06	6.40	2.133 ± 0.745	17.36	7.6
	7.9 4	2,550	2,394	27.3	804	35,970			4.95	0.891 ± 0.190	7.40	3.1
	7.9	2,880	2,687	27.3	804	14,600	1,203	8.49	9.25	$1.419 \pm$	11.79	4.4

Page 45 of 57	7
---------------	---

8

Physiologia Plantarum

Table 4. Intracellular DIC concentrations, obtained with different methods, of different species and the corresponding external DIC concentration, respectively $CO_{2(aq)}$ concentration, as well as the ratio of surface area (SA) and volume (V)of the single cells (SOC – silicon oil centrifugation method; MIMS – mass spectrometry analysis; P+C – pulse chase method).

Species	Source	Method	C _{i int} [mmol	C _{i ext} [mmol	C _{i int} : C _{i ext}	SA:V
			L ⁻¹]	L^{-1}]		
E. huxleyii	Nimer et al. 1994	SOC	0.1-0.32	0.1-1	1-15	
	Nimer et al. 1992	SOC	0.05-0.35	0.1-1	1-15	
	Dong et al. 1993	SOC	0.015-0.04	0.01-0.1	1-15	
	This study	P+C	0.6-3.5	1.1-2.5	0.2-2.1	1.8
T. weissflogii	This study	P+C	2.4-17.4	1-2.6	1.1-14.3	0.5
Phaeodactylum tricornutum	Burns and Beardall 1987	MIMS	0.99	0.15	5-6	2.6
	Dixon and Merrett 1988	MIMS	0.5-1.8	0.1-0.5	5-6	

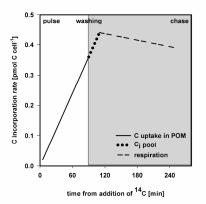


Fig. 1. Idealized model for detecting the Ci pool during a pulse-chase experiment. The solid black line represents the 14C uptake during the pulse, the dotted line represents increased 14C in the algae during the chase period. This 14C is transferred from the Ci pool into the particulate organic matter and serves as an estimate of the Ci pool. The dashed line indicates the loss of 14C within the particulate organic matter due to respiration.

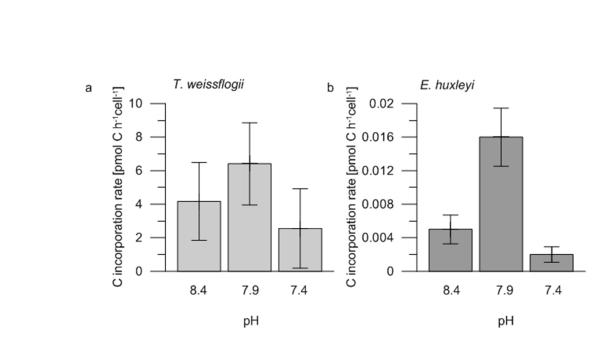


Fig. 2. Ci incorporation rates measured during the pulse incubation (n=3). a – T. weissflogii. b – E. huxleyi. 169x85mm (96 x 96 DPI)

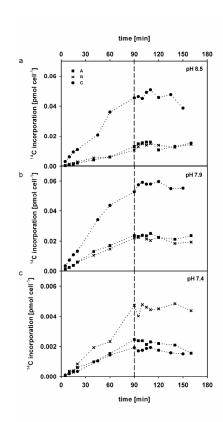


Fig. 3. Pulse-chase experiments illustrating internal Ci pools at 3 different pH settings of T. weissflogii. Cells were spiked with 14C and the kinetics of acid-stable photosynthetic products were followed for 120 min (pulse) after which the cells were resuspended in label-free medium under identical experimental conditions (chase). Each datapoint reflects the average of 3 filters measured for 14C activity from the same culture. Different symbols are from replicate culture incubations under similar pH conditions A, B, C. a – Culture preincubated at a pH of 7.9. c – Culture preincorporated at a pH of 7.4.

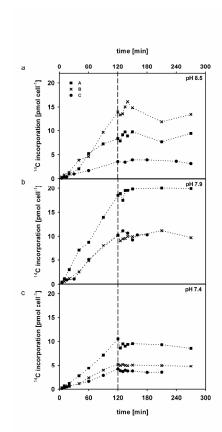


Fig. 4. Pulse-chase experiments illustrating internal Ci pools at 3 different pH settings of E. huxleyi. Cells were spiked with 14C and the kinetics of acid-stable photosynthetic products were followed for 120 min (pulse) after which the cells were resuspended in label-free medium under identical experimental conditions (chase). Each datapoint reflects the average of 3 filters measured for 14C activity from the same culture. Different symbols are from replicate culture incubations under similar pH conditions A, B, C.a – Culture preincubated at a pH of 8.5 b – Culture preincubated at a pH of 7.9. c – Culture preincorporated at a pH of 7.4.

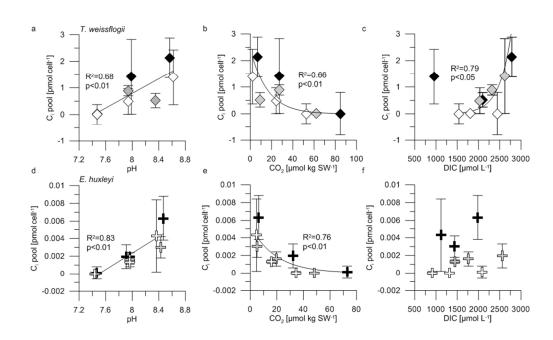


Fig. 5. Ci pool size variation related to differences in the carbon system (n=3). White symbols – lowest DIC values (a, d), lowest pH levels (c, f); grey symbols – intermediate Ci values (a, d), intermediate pH levels (c, f); black symbols – high Ci values (a, d), high pH levels (c, f). a – T. weissflogii Ci pool vs. pH. b – T. weissflogii Ci pool vs. CO2(aq). c– T. weissflogii Ci pool vs. DIC. d – E. huxleyi Ci pool vs. pH. e – E. huxleyi Ci pool vs. DIC. 268x161mm (96 x 96 DPI)

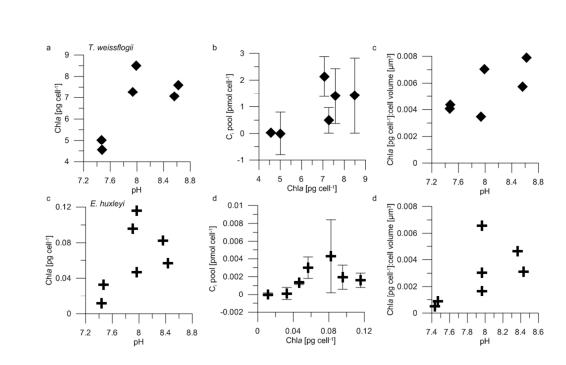
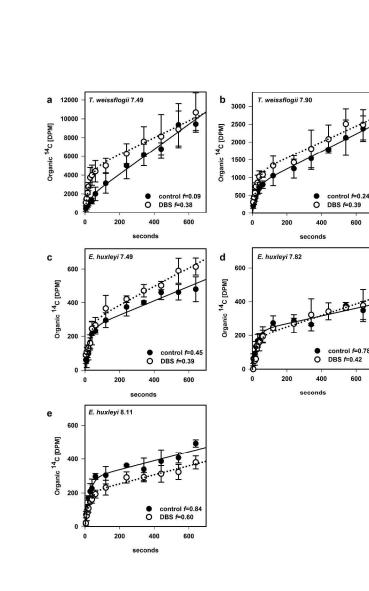
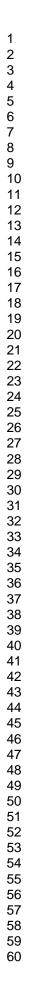
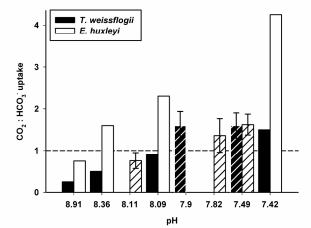





Fig. 6. a – T. weissflogii Chla vs. pH. b – T. weissflogii Ci pool vs. Chla. c – T. weissflogii Chla:cell volume vs. pH. d – E. huxleyi Chla vs. pH. e – E. huxleyi Ci pool vs. Chla. c – E. huxleyi Chla:cell volume vs. pH. (n=3). 266x161mm (96 x 96 DPI)

Results from 14C disequilibirum assays for E. huxleyi and T. weissflogii at different pH levels. a - T. weissflogii at pH 7.49. b - T. weissflogii at pH 7.90. c - E. huxleyi at pH 7.49, (d) E. huxleyi at pH 7.82. e - E. huxleyi at pH 8.11, Solid lines and filled circles represent samples without any inhibition, dashed lines and empty circles represent DBS inhibition (50 µmol L-1) during the sampling Values of f denote the proportion of HCO3- to C fixation in non treated (control) and DBS treated cells. Values and standard deviations are based on triplicate measurements.

Ratio of gross CO2 : HCO3- uptake in T. weissflogii and E. huxleyi with respect to different pCO2 values. Data of shaded bars were obtained during this study, remaining data were published by Burkhardt et al. (2001) for T. weissflogii and by Rost et al (2003) for E. huxleyi. Values and standard deviations are based on triplicate measurements. The dashed line indicates the value when CO2 and HCO3- are taken up in equal proportions.