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Abstract—The synthesis and enzyme-catalyzed desymmetrization of meso-1,2-diaryl-1,2-diaminoethanes have been investigated. A 
family of aromatic meso-1,2-diamines, containing different substitution patterns in the aromatic ring, was firstly prepared and then 
enantioselectively desymmetrized using lipases as biocatalysts. Selective alkoxycarbonylation of one of the amino groups was achieved 
using allyl carbonates, isolating the corresponding allyl monocarbamates with moderate to high enantiomeric excess at 45 ºC. Candida 
antarctica lipase types A (CAL-A) and B (CAL-B) displayed the best activities and stereopreferences, a dramatic influence being observed 
depending on the diamine structure. Non substituted and para-substituted aryldiamines led to the formation of allyl carbamates with good 
enantiomeric excess, using CAL-A for the less hindered substrates and CAL-B for those more hindered. On the other hand meta- and 
ortho-derivatives afforded low or negligible conversions and selectivities, respectively. © 2017 Elsevier Science. All rights reserved. 
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1. Introduction  

Enantioselective desymmetrizations are highly attractive tasks 

in organic synthesis, consisting in the modification of one or 

more elements of symmetry in a target molecule. Thus, starting 

from a symmetric substrate such as a meso- or a prochiral 

compound, the isolation of a single enantiomer is possible in 

theoretically 100% yield. These processes clearly differ from 

dynamic kinetic resolutions or deracemization processes, where 

racemates are used as starting materials, but also in these cases 

more than one step is required for the transformation into pure 

enantiomers.1 

The development of asymmetric enzymatic desymmetrization 

reactions has gained particular attention in recent years,2 

hydrolase-catalyzed processes using lipases or amidases being 

some of the most recent examples for this type of 

transformation.3 Particularly, and due to the importance of the 

diamine scaffolds in synthetic, medicinal and coordination 

chemistry,4 the desymmetrization of meso-diamines has recently 

attracted the attention of different research groups by means of 

non enzymatic or biocatalyzed methods. In this context, De and 

Seidel reported the first catalytic non enzymatic benzoylation of 

1,2-diaryl-1,2-ethanediamines using the combination of an 

achiral nucleophilic catalyst and a chiral anion receptor,5 while 

Berkessel and co-workers described the stereoselective 

alkoxycarbonylation of cis-1,2-diaminocyclohexane with diallyl 

carbonate and Candida antarctica lipase B (CAL-B) as 

biocatalyst in toluene.6 In both cases excellent enantiomeric 

excess and high yields were achieved. 

Based on the our experience in the field of enzyme-catalyzed 

desymmetrization of prochiral diamines,7 we wish to report our 

latest results in the desymmetrization of 1,2-diaryl-1,2-

ethanediamines using lipases as biocatalysts, where different 

variables affecting the enzyme catalytic action have been 

optimized, such as the source and amount of catalyst, 

temperature, resolving agent and the reaction time. 

2. Results and discussion 

2.1. Chemical synthesis of meso-1,2-diaryl-1,2-ethanediamines. 

The chemical synthesis of 1,2-diaryl-1,2-ethanediamines 2a-h 

was performed in moderate to high yield (40-96%), reacting the 

corresponding benzaldehydes 1a-h with a 3-fold molar excess of 

ammonium acetate (NH4OAc) at 120 ºC, followed by acidic 

hydrolysis at 170 ºC (Table 1).8 These eight diamines differ in the 

substitution pattern, bearing halogen atoms such as fluorine, 

chlorine or bromine, and also alkyl rests such as methyl, 

possessing some of them different rests in ortho, meta or para-

positions of the aromatic ring. 

2.2. Enzymatic desymmetrizatrion of meso-diamines 

Once synthesized, the enantioselective enzymatic 

desymmetrization of meso-1,2-diamines 2a-h was studied in 

several lipase-catalyzed alkoxycarbonylation reactions. For 

simplicity, the diamine 2a was selected as model substrate 

because of its commercial availability. A broad panel of enzymes 

was used in this study including Candida antarctica lipase type 

A (CAL-A), Candida antarctica lipase type B (CAL-B), Candida 

rugosa lipase (CRL), lipase from porcine pancreas (PPL), 

Pseudomonas cepacia immobilized in diatomite (PSL-IM) or in a 

ceramic support (PSL-C I), lipase AK from Pseudomonas 

fluorescens and Rhizomucor miehei lipase (RML). Standard 

conditions previously optimized for prochiral diamines7a were 

used in an initial activity test, trying to find a suitable enzyme for 

the selective modification of one of the amino groups present in 

the diamine. Thus, 1,4-dioxane as organic solvent and a total 

concentration of 100 mM for 2a were used in combination with 

one equivalent of commercially available diallyl carbonate (3a). 

Unfortunately none of the selected enzymes displayed activity at 

30 ºC (Scheme 1). 

Table 1. Chemical synthesis of meso-1,2-diamines 2a-h from 

the corresponding benzaldehydes 1a-h. 

O

H

NH2

NH2

R
R

R

1a-h 2a-h

1) NH4OAc, 120 ºC, 3 h

2) H2SO4/H2O, 170 ºC, 12 h

 

Entry Aldehyde R Diamine 2a-h (%)a 

1 1a H 71b 

2 1b 4-F 90 

5 1c 4-Cl 98 

4 1d 4-Br 40 

3 1e 4-Me 70 

6 1f 3-Me 78 

7 1g 3-Br 96 

8 1h 2-Br 60 
a Isolated yields after chromatography on silica gel. 
b Diamine 2a is commercially available but the chemical synthesis was also 

attempted from benzaldehyde (1a). 

In order to increase the reactivity of the diamine 2a, a more 

reactive carbonate such as allyl 3-methoxyphenyl carbonate (3b) 

was considered, which has allowed the efficient kinetic resolution 

of different secondary cyclic amines.9 Using 2.5 equivalents of 

3b, the behaviour of different hydrolases was studied, finding 

after 38 h and 30 ºC, only a slight conversion (13% yield) with 

CAL-A, obtaining the monocarbamate 4a with modest 

stereoselectivity (52%). It must be mentioned that the formation 

of the dicarbamate product was not observed. This fact is in 

agreement with the data obtained from the chemical reaction 

developed for the formation of racemic carbamates 4a-h with 

allyl chloroformate in the presence of 4-(N,N-

dimethylamino)pyridine (DMAP), highlighting the difficulty in 

the modification of the amino groups of the diamines 2a-h, 

probably because a stabilization of the monocarbamate by 

hydrogen bond interactions between the unreacted amino group 

and the carbonyl rest of the carbamate functionality (for more 

details see the Experimental section). 

+
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Scheme 1. Enzymatic desymmetrization of meso-diamine 2a using different 
allyl carbonates (3a,b) in organic medium. 

Trying to increase the diamine reactivity, the carbonate was 

employed as both alkoxycarbonylating agent and solvent, 

studying first the reactivity of the commercially available diallyl 

carbonate (3a). Only CAL-A displayed significant activity 

towards the formation of the monocarbamate 4a (56% conversion 

after 62 h at 30 ºC), acting also with a good stereoselectivity 

(86% ee). On the other hand, slight activities were observed with 

CAL-B and CRL (<3% conversion), and finally with RML (5% 

conversion and 82% ee). Considering as a good starting point the 
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data obtained from the CAL-A catalyzed reaction, other 

parameters that have influence in biocatalytic processes were 

analyzed such as the temperature and the amount of enzyme. The 

experimental data are collected in Table 2. 

Table 2. Enantioselective lipase-catalyzed desymmetrization 

of diamine 2a with diallyl carbonate (100 mM) using CAL-A 

and RML at different temperatures and 250 rpm. 

NH2

NH2

+
**

NH

NH2

O

O

2a

3a

4a

Lipase

30-60 ºC

14-63 h

250 rpm  

Entry Enzymea T (ºC) t (h) c (%)b ee (%)c 

1 CAL-A (1:1) 30 63 56 86 

2 CAL-A (1:1) 45 63 91 88 

3 CAL-A (1:1) 60 14 70 78 

4 CAL-A (2:1) 45 62 >97 (82) 88 

5 RML (1:1) 30 62 5 82 

6 RML (1:1) 60 38 11 51 
a Ratio enzyme: diamine 2a in weight. 
b Conversion value into the aminocarbamate 4a calculated by 1H NMR. 
Isolated yields in brackets after purification by chromatography on silica gel. 
c Enantiomeric excess of 4a calculated by HPLC. 

An increase in the temperature to 45 ºC led to a significant 

improvement in the conversion value towards the 

monocarbamate 4a, pleasingly maintaining the selectivity of the 

process (entry 2). However higher temperatures led to a decrease 

in the enantiomeric excess of the final product (entry 3). For that 

reason the loading of biocatalyst was doubled leading to 4a as a 

unique product with 88% ee after 62 h (entry 4). On the other 

hand, RML was also used but the activity remained modest at 

both 30 and 60 ºC (entries 5 and 6). 

Next, the study was extended to a panel of meso-diamines 

(2b-h), bearing different pattern substitution in the aromatic 

rings. The best conditions obtained for the desymmetrization of 

2a were used, which means the use of CAL-A (ratio 2:1 in 

weight with respect to the diamine) and allyl carbonate as solvent 

for 100 mM concentration of the diamine at 45 ºC (Table 3). In 

all cases, the conversion values were lower than for 2a 

suggesting a strong influence of the aromatic substitution. 

Diamines with substituents in the para-position (2b-e, entries 2-

5) led selectively to the monocarbamates with moderate to high 

conversions (44-88%), finding the best results in terms of 

selectivity for the diamine 2e bearing methyl groups instead of 

halogen atoms (80% ee). However the best conversions were 

found for the halogenated substrates 2b-d, and especially for the 

less hindered fluorinated substrate 2b, which was recovered with 

88% conversion. Interestingly a significant loss of activity and 

stereospecificity was attained with substrates bearing 

substitutions in the meta-position (diamines 2f,g entries 6 and 7). 

This effect was also more dramatic for the ortho-bromo 

derivative 2h (entry 8), which seems to be not recognized by 

Candida antarctica lipase type A. 

With these results in hand, we decided to explore the 

possibilities of other lipases in the desymmetrization of the 

diamines that showed the poorest results. Initially we focused in 

the bulkier substrate 2d, recovered in racemic form after the 

CAL-A catalyzed alkoxycarbonylation reaction. 

Biotransformations with CRL, PPL, RML and CAL-B (entries 9-

12) were carried out, observing lower conversions in comparison 

with CAL-A, but a great improvement in the stereospecificity 

with RML (entry 11), and mainly with CAL-B (entry 12), leading 

in the latest to the allyl monocarbamate 4d in a remarkable 91% 

ee. 

 

Table 3. Enantioselctive desymmetrization of meso-diamines 2a-h using different lipases (ratio 2:1 in weight with respect to the 

diamine) and diallyl carbonate (100 mM of diamine) at 45 ºC and 250 rpm. 

NH2

NH2

+
**

O

O

O

NH

NH2

O

O

2a-h 3a 4a-h

Lipase

45 ºC

62-86 h

250 rpm

R

R
R

R

 

Entry Diamine R Enzyme t (h) c (%)a ee (%)b 

1 2a H CAL-A 62 >97 (82) 88 

2 2b 4-F CAL-A 62 88 (70) 70 

3 2c 4-Cl CAL-A 62 58 (42) 8 

4 2d 4-Br CAL-A 62 56 (38) <3 

5 2e 4-Me CAL-A 62 44 (34) 80 

6 2f 3-Me CAL-A 62 29 (16) 18 

7 2g 3-Br CAL-A 86 34 (31) 14 

8 2h 2-Br CAL-A 62 <3 n.d. 

9 2d 4-Br CRL 62 6 <3 

10 2d 4-Br PPL 62 3 <3 

11 2d 4-Br RML 62 5 50 

12 2d 4-Br CAL-B 62 18 (14) 91 

13 2c 4-Cl CAL-B 62 17 (15) 88 
a Conversion into the aminocarbamate 4a-h calculated by 1H NMR of the reaction crude. Isolated yields in brackets after 
purification on silica gel chromatography. 
b Enantiomeric excesses of monocarbamates 4a-h calculated by HPLC (n.d.: not determined). 
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Once we found with CAL-B these improvements in terms 
of activity and stereoselectivity, we decided to use this enzyme 
for the desymmetrization of diamines 2b,c,e-h. However 
under the same reaction conditions only the para-chloro 
diamine 2c was converted into the corresponding 
monocarbamate with 17% conversion and 88% ee (entry 13).  

2.3. Absolute configuration determinations 

Different attempts were made to obtain suitable crystals for 

X-ray diffraction analysis in order to assign the absolute 

configuration of the stereogenic centres for the so-obtained 

optically active aminocarbamates. With that purpose, the 

monocarbamate 4d was selected as a possible candidate 

because of the presence of heavy bromine atoms in its 

structure, which could unequivocally allow us to determine the 

stereopreference of the enzyme. Once that crystalline 

structures were collected after a recristallyzation purification 

in acetonitrile, X-ray diffraction analyses were performed 

observing an (1S,2R)-configuration as shown in Figure 1.10 

Additional circular dichroism experiments were performed for 

those aminocarbamates isolated in good to high enantiomeric 

excess.11 Thus para-halogenated derivatives 4c,d resulting of 

enzymatic desymmetrization processes mediated by CAL-B, 

and also allyl carbamates 4a,b,e obtained in CAL-A catalyzed 

reactions were considered. Based in the net positive intensity 

obtained for all of them as well as on the similarity of the 

electronic systems of these molecules, the formation of 

(1S,2R)-4a-g aminocarbamates is here described by 

chemoenzymatic methods taking also into account the 

unequivocally (1S,2R)-configuration assigned for 4d using X-

ray crystallographic studies. 

 

NH

BrBr

O
O

C1

C2
H2N

 

Figure 1. X-Ray structure of monoaminocarbamate (1S,2R)-4d obtained 

by enantioselective enzymatic desymmetrizatron of meso-1,2-diamine 2d 

using diallyl carbonate (3a) as solvent and alkoxycarbonylating agent and 

CAL-B as biocatalyst. 

3. Conclusions 

In conclusion, a simple chemoenzymatic methodology has 

been developed for the asymmetric synthesis of a series of 

allyl monocarbamates derived from 1,2-diaryl-1,2-

ethanediamines , and bearing different pattern substitutions in 

the aromatic rings. The crucial step based on the 

desymmetrization of the meso-diamines has been exhaustively 

analyzed, finding in all cases the monofunctionalization of the 

diamines. Moderate to good levels of selectivity were found 

for the para-substituted derivatives using either CAL-A (for 

methyl or fluorine substitutions) or CAL-B (for chlorine or 

bromine), attaining the best activity values for the non 

substituted diamine, which completely reacted towards the 

formation of the allyl (1S,2R)-aminocarbamate. On the other 

hand meta-substituted diamines led to low conversions and 

selectivities, while the studied ortho-substituted diamine 

seems to be not recognized by the enzyme. 

4. Experimental section 

Chemical reagents were purchased from different commercial 

sources (Sigma-Aldrich, Acros and Fluka) and used without 

further purification. Solvents were distilled over an adequate 

desiccant under nitrogen. Candida antarctica lipase type B 

(CAL-B, 7300 PLU/g) immobilized by adsorption in Lewatit 

E and Rhizomuccor miehei lipase (RML, <15% in weight) 

were kindly donated by Novozymes. Pseudomonas cepacia 

lipase immobilized over ceramic particles (PSL-C-I, 1638 

U/g) was purchased from Sigma-Aldrich, while the one 

immobilized on diatomite (PSL IM, 943 U/g) was given from 

Amano Europe Pharmaceutical Company. Candida antarctica 

lipase type A (CAL-A, 12 U/mg) was purchased from 

Codexis. Candida rugosa lipase (CRL, 965 U/mg), porcine 

pancreas lipase (PPL, 308 U/mg) and AK lipase from 

Pseudomonas fluorescens (AK, 22100 U/g) were purchased 

from Sigma. 

Flash chromatography was performed using silica gel 60 

(230-240 mesh). Melting points were taken on samples in 

open capillary tubes and are uncorrected. IR spectra were 

recorded using KBr pellets. 1H, 13C NMR, and DEPT were 

obtained using Brüker AV-300 (1H, 300.13 MHz,13C, 75.5 

MHz) and a Bruker DPX-300 spectrometers (1H, 300.13 MHz, 
13C, 75.5 MHz). The chemical shifts are given in delta values 

(, ppm) and the coupling constants (J) in Hertz (Hz). ESI+ 

experiments were carried out using a liquid chromatograph 

mass detector to record mass spectra (MS). High resolution 

mass experiments (HRMS) were measured by ESI+ and carried 

out with a Bruker Micro TofQ. 

High performance liquid chromatography (HPLC) analyses 

were carried out in a Hewlett Packard 1100 chromatograph 

using the following chiral columns Chiralpak IC (25  4.6 mm 

D.I.) or Chiralcel OJ-H, (25  4.6 mm D.I.). Mixtures of 

hexane/2-propropanol were employed as mobile phases (see 

later further details for each individual compound). A UV 

detector at 210 y 215 nm was used for the detection of the 

diamines and aminocarbamates. 

4.1. General procedure for the chemical synthesis of diamines 
2a-h. 

This is an adapted protocol of a previous research carried 

out by different authors.8 A suspension of a previously 

distilled benzaldehyde 1a-h (50 mmol) and ammonium acetate 

(150 mmol) was heated at 120 ºC, and stirred for 3 h. After 

this time, the reaction was cooled to room temperature, and the 

gummy residue was washed with hexane. The resulting crude 

was basified with an aqueous NaOH 4 N solution (pH>10) and 

extracted with Et2O (4 x 20 mL). The organic phases were 

combined, dried and filtered, and the solvent was evaporated 

under reduced pressure. Without further purification, the 

resulting intermediate was suspended in an aqueous 50% 

H2SO4 solution (40 mL), and the mixture heated overnight at 

170 ºC. Then the reaction was cooled down in an ice-bath with 

stirring, and H2O (20 mL) was slowly added. The resulting 

solution was warmed till room temperature and extracted with 

Et2O (4 x 60 mL). The aqueous phase was then neutralized 

with a concentrated aqueous ammonia solution, and then 

extracted with Et2O (4 x 60 mL). The organic phases were 

combined, dried and filtered, and the solvent was evaporated 
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under reduced pressure, obtaining the corresponding meso-

diamines 2a-h as white, yellow or brown solids (40-98% 

isolated yield, Table 1). 

meso-1,2-diphenyl-ethanediamine (2a): White solid (1.86 

g, 70% isolated yield). Rf (60% MeOH/EtOAc): 0.45; Mp: 

122-124 ºC; IR (KBr): max/cm-1 3347, 3028, 1590, 756 and 

695; H (300.13 MHz, CDCl3, Me4Si): 1.44 (brs, 4H,), 4.04 (s, 

2H), 7.31-7.42 (m, 10H); C (75.5 MHz, CDCl3, Me4Si): 63.1 

(2CH), 127.9 (6CH), 128.8 (4CH), 143.2 (2C); MS (ESI+, 

m/z): 213.1 [(M+H)+, 100%]; HRMS (ESI+, m/z) calcd for 

C14H17N2 (M+H)+: 213.1386 found: 213.1381. 

meso-1,2-bis(4-fluorophenyl)-1,2-ethanediamine (2b): 

Brown solid (2.79 g, 90% isolated yield). Rf (60% 

MeOH/EtOAc): 0.41; Mp: 80-82 ºC; IR (KBr): max/cm-1 

3219, 2914, 1602, 1219, 971, 750, and 837; H (300.13 MHz, 

CDCl3, Me4Si): 1.60 (brs, 4H), 4.22 (s, 2H), 7.20-7.30 (m, 

4H), 7.50-760 (m, 4H); C (75.5 MHz, CDCl3, Me4Si): 62.5 

(2CH), 115.6 (d, 2JCF = 21.1 Hz, 4CH), 129.4 (d, 3JCF = 7.7 

Hz, 4CH), 138.7 (d, 4JCF = 3.1 Hz, 2C), 162.6 (d, 1JCF = 245.7 

Hz, 2C); MS (ESI+, m/z): 249.1 [(M+H)+, 100%]; HRMS 

(ESI+, m/z) calcd for C14H15F2N2 (M+H)+: 249.1198 found: 

249.1174. 

meso-1,2-bis(4-clorophenyl)-1,2-ethanediamine (2c): 

Yellow solid (3.43 g, 98% isolated yield). Rf (60% 

MeOH/EtOAc): 0.47; Mp: 126-128 ºC; IR (KBr): max/cm-1 

3380, 2950, 1202, 1600, 980, and 820; H (300.13 MHz, 

CDCl3, Me4Si): 1.53 (brs, 4H), 4.00 (s, 2H), 7.27-7.34 (m, 

8H); C (75.5 MHz, CDCl3, Me4Si): 62.0 (2CH), 128.5 (4CH), 

128.9 (4CH), 133.4 (2C), 140.9 (2C); MS (ESI+, m/z): 281.0 

[(M+H)+, 100%]; HRMS (ESI+, m/z) calcd for C14H15Cl2N2 

(M+H)+: 281.0607 found: 281.0592 (35Cl,35Cl), 283.0563 

(35Cl,37Cl). 

meso-1,2-bis(4-bromophenyl)-1,2-ethanediamine (2d): 

Yellow solid (1.84 g, 40% isolated yield). Rf (60% 

MeOH/EtOAc): 0.64; Mp: 122-124 ºC; IR (KBr): max/cm-1 

3076, 2955, 1607, 1268, and 852; H (300.13 MHz, CDCl3, 

Me4Si): 1.42 (brs, 4H), 3.98 (s, 2H), 7.21 (d, 3JHH= 8.2 Hz, 

4H), 7.47 (d, 3JHH = 8.2 Hz, 4H); C (75.5 MHz, CDCl3, 

Me4Si): 62.4 (2CH), 121.9 (2C), 129.7 (4CH), 131.9 (4CH), 

141.9 (2C); MS (ESI+, m/z): 370.9 [(M+H)+, 100%]; HRMS 

(ESI+, m/z) calcd for C14H15Br2N2 (M+H)+: 368.9597 found: 

368.9570 (79Br,79Br), 370.9571 (79Br,81Br), 372.9562 

(81Br,81Br). 

meso-1,2-bis(4-methylphenyl)-1,2-ethanediamine (2e): 

White solid (2.11 g, 70% isolated yield). Rf (60% 

MeOH/EtOAc): 0.47; Mp: 76-78 ºC; IR (KBr): max/cm-1 

3370, 2920, 1606, 1266, 1020, 890, 735; H (300.13 MHz, 

CDCl3, Me4Si): 2.01 (brs, 4H), 2.76 (s, 6H), 4.38 (s, 2H), 7.57 

(d, 3JHH = 7.9 Hz, 4H), 7.69 (d, 3JHH = 7.9 Hz, 4H); C (75.5 

MHz, CDCl3, Me4Si): 21.4 (2CH3), 62.0 (2CH), 127.8 (4CH), 

129.4 (4CH), 137.5 (2C), 140.3 (2C); MS (ESI+, m/z): 241.1 

[(M+H)+, 100%]; HRMS (ESI+, m/z) calcd for C16H21N2 

(M+H)+: 241.1699 found: 241.1687. 

meso-1,2-bis(3-methylphenyl)-1,2-ethanediamine (2f): 

White solid (2.34 g, 78% isolated yield). Rf (60% 

MeOH/EtOAc): 0.46; Mp: 135-137ºC; IR (KBr): max/cm-1 

3052, 2855, 1603, 1265, 957, 789, and 740; H (300.13 MHz, 

CDCl3, Me4Si): 1.37 (brs, 4H), 2.39 (s, 6H), 3.98 (s, 2H), 7.10-

7.15 (m, 2H), 7.26-7.28 (m, 6H); C (75.5 MHz, CDCl3, 

Me4Si): 20.5 (2CH3), 62.0 (2CH), 123.8 (2CH), 127.4-127.5 

(6CH), 137.2 (2C), 142.0 (C); MS (ESI+, m/z): 241.1 [(M+H)+, 

100%]; HRMS (ESI+, m/z) calcd for C16H21N2 (M+H)+: 

241.1699 found: 241.1687. 

meso-1,2-bis(3-bromophenyl)-1,2-ethanediamine (2g): 

White solid (4.42 g, 96% isolated yield,). Rf (60% 

MeOH/EtOAc): 0.64; Mp: 176-178ºC; IR (KBr): max/cm-1 

3055, 2986, 1600, 1265, 894, 790, and 740; H (300.13 MHz, 

CDCl3, Me4Si): 1.49 (brs, 4H), 3.99 (s, 2H), 7.23-7.28 (m, 

4H), 7.44-7.46 (m, 2H), 7.55-7.57 (m, 2H); C (75.5 MHz, 

CDCl3, Me4Si): 62.6 (2CH), 123.0 (2C), 126.7 (2CH), 130.3-

130.9 (4CH), 131.2 (2CH), 145.3 (2C); MS (ESI+, m/z): 370.9 

[(M+H)+, 100%]; HRMS (ESI+, m/z) calcd for C14H15Br2N2 

(M+H)+: 368.9597 found: 368.9572 (79Br,79Br), 370.9575 

(79Br,81Br), 372.9566 (81Br,81Br). 

meso-1,2-bis(2-bromophenyl)-1,2-ethanediamine (2h): 

White solid (2.76 g, 60% isolated yield). Rf (60% 

MeOH/EtOAc): 0.65; Mp: 148-150ºC; IR (KBr): max/cm-

13055, 2985, 1265 and 740; H (300.13 MHz, CDCl3, Me4Si): 

1.59 (brs, 4H), 4.72 (s, 2H), 7.09-7.16 (m, 2H), 7.28-7.44 (m, 

4H), 7.49-7.55 (m, 2H); C (75.5 MHz, CDCl3, Me4Si): 59.5 

(2CH), 125.1 (2C), 127.6 (2CH), 128.4 (2CH), 128.8 (2CH), 

132.7 (2CH), 141.6 (2C); MS (ESI+, m/z): 370.9 [(M+H)+, 

100%] HRMS (ESI+, m/z) calcd for C14H15Br2N2 (M+H)+: 

368.9597 found: 368.9564 (79Br,79Br), 370.9566  (79Br,81Br), 

372.9559  (81Br,81Br). 

4.2. General procedure for the chemical synthesis of racemic 
aminocarbamates 4a-h. 

To a solution of the corresponding meso-diamine 2a-h 

(0.47 mmol) in dry CH2Cl2 (4.72 mL, 0.1 M), first DMAP 

(63.5, 0.52 mmol) and next allyl chloroformate (55 L, 0.52 

mmol) were added under nitrogen atmosphere. The solution 

was magnetically stirred at room temperature till complete 

consumption of the starting material (24 h, TLC analysis 60% 

MeOH/EtOAc). Then the solvent was distilled under 
reduced pressure, and the resulting crude purified by 
chromatography on silica gel (30-70% EtOAc/hexane), 
yielding the corresponding racemic monocarbamte 4a-h as 
a white solid (29-75% isolated yield). 

(±)-N-(2-amino-1,2-diphenylethyl) allyl carbamate (4a): 

White solid (109 mg, 75% isolated yield). Rf (70% 

EtOAc/hexane): 0.40; Mp: 115-117 ºC; IR (KBr): max/cm-1 

2936, 2269, 1694, 1604, 1572, 1446, 1266, 1159, 1090, 1026, 

917 and 760; H (300.13 MHz, MeOD, Me4Si): 4.31 (d, 3JHH= 

8.7 Hz, 1H), 4.41-4.69 (m, 2H), 5.02 (brs, 1H), 5.13-5.31 (m, 

2H), 5.82-6.01 (m, 1H), 7.38-7.65 (m, 10H); C (75.5 MHz, 

MeOD, Me4Si): 61.2 (CH), 62.7 (CH), 66.2 (CH), 117.2 

(CH2), 128.6 (2CH), 128.7 (2CH), 128.8 (2CH), 129.3 (2CH), 

129.6 (2CH), 134.2 (CH), 141.5 (C), 143.1 (C), 157.6 (C): MS 

(ESI+, m/z): 297.1 [(M+H)+, 100%]; HRMS (ESI+, m/z) calcd 

for C18H21N2O2 (M+H)+: 297.1598 found: 297.1584. 
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(±)-N-2-amino-1,2-bis(4-fluorophenyl)ethyl allyl 

carbamate (4b): White solid (86 mg, 55% isolated yield,). Rf 

(70% EtOAc/hexane): 0.42; Mp: 123-125 ºC; IR (KBr): 

max/cm-1 2936, 2269, 1695, 1603, 1573, 1513, 1268, 1230, 

1158, 923 and 841; H (300.13 MHz, MeOD, Me4Si): 4.28 (d, 
3JHH= 8.6 Hz, 1H), 4.44-4.61 (m, 2H), 4.98 (d, 3JHH= 8.6 Hz, 

1H), 5.19-5.33 (m, 2H), 5.88-6.07 (m, 1H), 7.15-7.38 (m, 4H), 

7.49-7.64 (m, 4H); C (75.5 MHz, MeOD, Me4Si): 60.8 (CH), 

62.4 (CH), 66.6 (CH2), 116.1-116.7 [ d, 2JCF= 22 Hz, 2CH)+(d, 
2JCF= 22 Hz, 2CH)], 117.5 (CH2), 130.7-131.0 [(d, 3JCF= 8 Hz, 

2CH)+(d, 3JCF= 8 Hz, 2CH)], 134.5 (CH), 137.8 (C), 139.5 

(C), 157.9 (C) 163.9-164.0 [(d, 1JCF= 245 Hz, C)+(d, 1JCF= 245 

Hz, C)]; MS (ESI+, m/z): 333.1 [(M+H)+, 100%]; HRMS 

(ESI+, m/z) calcd for C18H19F2N2O2 (M+H)+: 333.1409; found: 

333.1381.  

(±)-N-2-amino-1,2-bis(4-chlorophenyl)ethyl allyl 

carbamate (4c): White solid (92 mg, 54% isolated yield). Rf 

(70% EtOAc/hexane): 0.52; Mp: 123-125 ºC; IR (KBr): 

max/cm-1 2900, 1694, 1536, 1491, 1410, 1250, 1090, 1012, 

927 and 832; H (300.13 MHz, CDCl3, Me4Si): 4.30 (d, 3JHH= 

8.6 Hz, 1H), 4.47-4.63 (m, 2H), 4.97 (d, 3JHH= 8.6 Hz, 1H), 

5.22-5.34 (m, 2H), 5.87-6.03 (m, 1H), 7.44-7.59 (m, 8H); C 

(75.5 MHz, CDCl3, Me4Si): 60.7 (CH), 62.3 (CH), 66.6 (CH2), 

117.6 (CH2), 129.7-129.9 (4CH), 130.6-130.7 (4CH), 134.5-

134.8 (2C+CH), 140.4 (C), 142.3 (C) 157.9 (C); MS (ESI+, 

m/z): 365.0 [(M+H)+, 100%]; HRMS (ESI+, m/z) calcd for 

C18H19Cl2N2O2 (M+H)+: 365.0818 found: 365.0812 (35Cl,35Cl), 

367.0782 (35Cl,37Cl).  

(±)-N-2-amino-1,2-bis(4-bromophenyl)ethyl allyl 

carbamate (4d): White solid (125 mg, 59% isolated yield). Rf 

(70% EtOAc/hexane): 0.41; Mp: 124-126 ºC; IR (KBr): 

max/cm-12940, 2269, 1707, 1645, 1545, 1451, 1254, 1160, 

1026, 1000, 932, 831 and 795; H (300.13 MHz, MeOD, 

Me4Si): 4.29 (d, 3JHH= 8.6 Hz, 1H), 4.46-4.66 (m, 2H), 4.95 (d, 
3JHH= 8.6 Hz, 1H), 5.19-5.36 (m, 2H), 5.85-6.05 (m, 1H), 

7.35-7.56 (m, 4H), 7.59-7.77 (m, 4H); C (75.5 MHz, MeOD, 

Me4Si): 60.8 (CH), 62.4 (CH), 66.6 (CH2), 117.6 (CH2), 

122.6-122.9 (2C), 130.0-131.0 (4CH), 132.7-132.9 (4CH), 

134.5 (CH), 140.9 (C), 142.7 (C), 157.9 (C); MS (ESI+, m/z): 

454.9 [(M+H)+, 100%]; HRMS (ESI+, m/z) calcd for 

C18H19Br2N2O2 (M+H)+: 452.9822 found: 452.9822 

(79Br,79Br), 454.9808 (79Br,81Br), 456.9787 (81Br,81Br). 

(±)-N-2-amino-1,2-bis(4-methylphenyl)ethyl allyl 

carbamate (4e): White solid (44 mg, 29% isolated yield). Rf 

(70% EtOAc/hexane): 0.43; Mp: 116-118 ºC; IR (KBr): 

max/cm-1 2800, 2150, 1702, 1542, 1490, 1252, 1153, 1090, 

920, 816, and 737; H (300.13 MHz, MeOD, Me4Si): 2.52 (s, 

6H), 4.24 (d, 3JHH= 8.7 Hz, 1H), 4.47-4.57 (m, 2H), 4.94 (d, 
3JHH= 8.7 Hz, 1H), 5.18-5.32 (m, 2H), 5.84-6.03 (m, 1H), 

7.27-7.41 (m, 8H); C (75.5 MHz, MeOD, Me4Si): 21.5 

(2CH3), 61.2 (CH), 62.8 (CH), 66.5 (CH2), 117.4 (CH2), 

128.9-129.0 (4CH), 130.2-130.5 (4CH), 134.6 (CH), 138.5-

138.9 (2C), 140.3 (C), 141.7 (C), 157.9 (C); MS (ESI+, m/z): 

325.1 [(M+H)+, 100%]; HRMS (ESI+, m/z) calcd for 

C20H25N2O2 (M+H)+: 325.1911 found: 325.1910. 

(±)-N-2-amino-1,2-bis(3-methylphenyl)ethyl allyl 

carbamate (4f): White solid (70 mg, 46% isolated yield). Rf 

(70% EtOAc/hexane): 0.53; Mp: 97-99 ºC; IR (KBr): max/cm-1 

2924, 2490, 1697, 1536, 1495, 1451, 1251, 1042, 995, 922 and 

785; H (300.13 MHz, MeOD, Me4Si): 2.52 (s, 6H), 4.23 (d, 
3JHH= 8.8 Hz, 1H), 4.42-4.61 (m, 2H), 4.94 (d, 3JHH= 8.8 Hz, 

1H), 5.16-5.32 (m, 2H), 5.83-6.00 (m, 1H), 7.21-7.47 (m, 8H); 

C (75.5 MHz, MeOD, Me4Si); 21.8 (2CH3), 61.4 (CH), 63.0 

(CH), 66.5 (CH2), 117.4 (CH2), 126.1 (2CH), 129.5-129.8 

(6CH), 134.6 (CH), 139.2 (C), 139.6 (C) 141.8 (C), 143.3 (C) 

157.9 (C); MS (ESI+, m/z): 325.1 [(M+H)+, 100%]; HRMS 

(ESI+, m/z) calcd for C20H25N2O2 (M+H)+: 325.1911 found: 

325.1908.  

(±)-N-2-amino-1,2-bis(3-bromophenyl)ethyl allyl 

carbamate (4g): White solid (64 mg, 30% isolated yield). Rf 

(70% EtOAc/hexane): 0.57; Mp: 188-191 ºC; IR (KBr): 

max/cm-1 3047, 2487, 1682, 1604, 1554, 1454, 1251, 996, , 

923 and 788; H (300.13 MHz, MeOD, Me4Si): 4.26 (d, 3JHH= 

8.8 Hz, 1H), 4.44-4.64 (m, 2H), 4.93 (d, 3JHH= 8.8 Hz, 1H), 

5.19-5.37 (m, 2H), 5.86-6.05 (m, 1H), 7.37-7.85 (m, 8H); C 

(75.5 MHz, MeOD, Me4Si): 60.9 (CH), 62.5 (CH), 66.7 (CH2), 

117.7 (CH2), 123.6-123.8 (2C), 127.7-127.9 (2CH), 131.4-

132.2 (6CH), 134.4 (CH), 142.3 (C), 146.1 (C), 157.8 (C); MS 

(ESI+, m/z): 454.9 [(M+H)+, 100%]; HRMS (ESI+, m/z) calcd 

for C18H19Br2N2O2 (M+H)+: 452.9822 found: 452.9818 

(79Br,79Br), 454.9805 (79Br,81Br), 456.9782 (81Br,81Br). 

(±)-N-2-amino-1,2-bis(2-bromophenyl)ethyl allyl 

carbamate (4h): Yellow oil (129 mg, 61% isolated yield). Rf 

(70% EtOAc/hexane): 0.56; Mp: 122-124 ºC; IR (KBr): 

max/cm-1 3005, 1703, 1504, 1468, 1454, 1241, 1023, 994, 931 

and 737; H (300.13 MHz, MeOD, Me4Si): 4.54-4.69 (m, 2H), 

4.96 (d, 3JHH= 6.4 Hz, 1H), 5.23-5.43 (m, 2H), 5.80 (d, 3JHH= 

6.4 Hz, 1H), 5.92-6.11 (m, 1H), 7.29-7.74 (m, 8H); C (75.5 

MHz, MeOD, Me4Si): 59.3 (CH), 59.5 (CH), 66.8 (CH2), 

117.9 (CH2), 126.2-126.4 (2C), 129.0-129.1 (2CH), 130.0-

130.6 (4CH), 134.1-134.2 (2CH), 134.5 (CH) 139.9 (C), 141.8 

(C), 157.9 (C); MS (ESI+, m/z): 454.9 [(M+H)+, 100%]; 

HRMS (ESI+, m/z) calcd for C18H19Br2N2O2 (M+H)+: 

452.9822 found: 452.9815 (79Br,79Br), 454.9801 (79Br,81Br), 

456.9780 (81Br,81Br). 

4.3. General procedure for the biocatalyzed desymmetrization 
of diamines 2a-h using lipases and diallyl carbonate. 

A suspension of the corresponding diamine 2a-h (0.2 

mmol) and enzyme (ratio 2:1 of CAL-A or CAL-B respect to 

the diamine) in diallyl carbonate (3a, 2 mL) was shaken at 250 

rpm for 62-86 h under nitrogen atmosphere. After this time, 

the reaction was filtered and the enzyme washed with MeOH 

(3 x 5 mL). The solvent was distilled under reduced pressure, 

and the resulting crude purified by chromatography on silica 

gel (30-70% EtOAc/hexane), yielding the corresponding 

optically active aminocarbamate 4a-h. For further details see 

Tables 2 and 3. 

4.4. Analytical conditions and optical rotation values for 
optically active aminocarbamates 4a-h. 

(1S,2R)-4a: D
20 = +1.0 (c 0.5, EtOH) with 88% ee; 

Column Chiralcel OJ-H; Eluent (90% Hexane/2-propanol); 

Flow (0.8 mL/min); Retention times: 12.6 and 14.6 min (12.6 
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min for the major enantiomer in the enzymatic process); 

Diamine 2a: 9.9 min. 

(1S,2R)-4b: D
20 = +1.8 (c 0.5, EtOH) with 70% ee; 

Column Chiralpak IC; Eluent (80% Hexane/2-propanol); Flow 

(0.8 mL/min); Retention times: 6.7 and 7.6 min (7.6 min for 

the major enantiomer in the enzymatic process); Diamine 2b: 

8.7 min. 

(1S,2R)-4c: D
20 = +1.0 (c 0.5, EtOH) with 88% ee; 

Column Chiralcel OJ-H; Eluent (95% Hexane/2-propanol); 

Flow (0.8 mL/min); Retention times: 32.2 and 38.9 min (32.2 

min for the major enantiomer in the enzymatic process); 

Diamine 2c: 26.7 min. 

(1S,2R)-4d: D
20 = -2.9 (c 0.5, EtOH) with 91% ee; 

Column Chiralpak IC; Eluent (90% Hexane/2-propanol); Flow 

(0.8 mL/min); Retention times: 12.9 and 13.6 min (12.9 min 

for the major enantiomer in the enzymatic process); Diamine 

2d: 18.2 min. 

(1S,2R)-4e: D
20 = +7.6 (c 0.5, EtOH) with 80% ee; 

Column Chiralpak IC; Eluent (90% Hexane/2-propanol); Flow 

(0.8 mL/min); Retention times: 23.1 and 33.4 min (33.4 min 

for the major enantiomer in the enzymatic process); Diamine 

2e: 26.2 min. 

(1S,2R)-4f: D
20 = +3.8 (c 0.5, EtOH) with 18% ee; 

Column Chiralpak IC; Eluent (70% Hexane/2-propanol); Flow 

(0.8 mL/min); Retention times: 7.2 and 10.8 min (10.8 min for 

the major enantiomer in the enzymatic process); Diamine 2g: 

8.6 min. 

(1S,2R)-4g: D
20 = +1.2 (c 0.5, EtOH) with 14% ee; 

Column Chiralcel OJ-H; Eluent (90% Hexane/2-propanol); 

Flow (0.8 mL/min); Retention times: 16.5 and 20.6 min (20.6 

min for the major enantiomer in the enzymatic process); 

Diamine 2g: 14.0 min. 

4h: Column Chiralpak IC; Eluent (90% Hexane/2-

propanol); Flow (0.8 mL/min); Retention times: 12.4 and 13.8 

min; Diamine 2h: 19.8 min. 
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