
The repeated measures designs containing both between-sub-
jects grouping variables and within-subjects variables, are used
routinely in many disciplines, such as medicine, psychology and
education. Although the nature of these designs is typically multi-
variate, when the assumptions of multivariate normality, homo-
geneity of the covariance matrices, and sphericity are satisfied,
such designs can be analyzed by Scheffé�s (1956) univariate
mixed model because its F tests are valid and uniformly most
powerful for detecting treatment effects when they are present.
When the sphericity assumption is not satisfied, either an adjusted
degrees of freedom (df) univariate test or multivariate model per-
spective may be used (Arnau and Balluerka, 2003; Kowalchuk,
Keselman and Algina, 2003).

If the repeated measures design is unbalanced and the covari-
ance matrices are heterogeneous, the empirical literature indicates
that both approaches cannot be recommended because of their lack
of robustness. Algina and Oshima (1995) suggest using the Im-
proved General Approximation (IGA) test developed initially by
Huynh (1978) whereas Lix and Keselman (1995) proposed a

Welch-James (WJ) type test based on the work of Johansen
(1980). Based on the power results presented by Algina and Ke-
selman (1998), the WJ test may be preferred over the IGA test,
particularly when sample sizes are large enough to obtain a robust
WJ test. On the other hand, Vallejo, Fidalgo, and Fernández (2001)
recommend using the multivariate version of the modified Brown
and Forsythe (BF, 1974) procedure. Their results indicate that the
BF procedure provides a robust test of the within-subjects main
and interaction effects, especially when the design is balanced or
when group sizes and covariance matrices are positively paired.

Another more flexible approach to the analysis of repeated
measurements, and particularly useful when sample size is the suf-
ficiently large to support asymptotic inference, is the mixed linear
model. Under this approach, implemented in commercial software
packages, including the widely used SAS® program, researchers
rather than presuming a certain type of covariance structure may
model the structure before testing for treatment effects. For exam-
ple, the best covariance structure can be selected based on
Akaike�s Information Criterion (AIC) and/or Schwarz�s Bayesian
Information Criterion (BIC) values for various potential covari-
ance structures. According to advocates of the mixed-model ap-
proach, selecting the most parsimonious covariance structure pos-
sible is very important because this may result in more accurate
and efficient inferences of the fixed-effects parameters of the mod-
el and consequently more powerful tests of the treatment effects.
Nonetheless, when sample sizes are small it is known that the in-
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ference about the parameters in the mean structure can be inade-
quate, since the conventional estimate of covariance matrix of the
regression parameters are only asymptotically valid (Wolfinger,
1996). In order to circumvent such problem Fai and Cornelius
(1996) and Kenward and Roger (1997) have developed two dif-
ferent solutions that can be applied with any fixed and random ef-
fects model and covariance structure.

Recently, Keselman, Algina, Kowalchuk, and Wolfinger
(1999) compared the multivariate WJ approach and the mixed-
model Satterthwaite F tests based on work the Fai and Cornelius
(1996), as obtained through the SAS (1996) Proc Mixed proce-
dure, with regard to their power and robustness. Their results re-
veal that the Satterthwaite optional F test provides reasonably
good protection against Type I errors when the correct structural
model was known, and was slightly more powerful than the WJ
procedure. However, Keselman et al. (1999) found that the Sat-
terthwaite F-tests based on AIC or BIC were prone to liberal rates
of Type I errors, mainly when group sizes and covariance matrices
were negatively paired. Since researchers will not know the cor-
rect covariance structure, the authors suggested that the WJ ap-
proach is a viable procedure worth to the analysis of repeated mea-
sures data. However, for testing whether the pattern of change
over time is the same across the groups, usually the most impor-
tant for the research question investigated (Mass and Snijders,
2003), the WJ test does not necessarily control the Type I error
rate; particularly when the sample sizes are not sufficiently large
and the data are sampled from multivariate non-normal distribu-
tions (Algina and Keselman, 1997). Unfortunately, it is known that
educational and behavioral research data will rarely follow a nor-
mal distribution (Micceri, 1989), and according to a recent survey
by Keselman et al. (1998), large sample sizes are the exception
rather than the norm in psychological investigations.

Accordingly, the purpose of the present study was to compare
the Type I error and power rates of the multivariate version of the
improved BF procedure and mixed-model approach for testing
within-subjects main and interaction effects in a design with one
grouping factor and one of repeated measures factor. The mixed
model uses generalized least squares estimation of mean parame-
ters and residual maximum likelihood for covariance parameters.
The BF approach uses ordinary least squares computation based
on a model in which random effects and dispersion matrix are
treated as fixed and unstructured, respectively. Our goal is to de-
termine whether both procedures provide similar results or favor
the approach mixed-model based on the correct population co-
variance structure. The results corresponding to the mixed-model
approach can be obtained with several software programs, howev-
er, we used the Kenward and Roger (1997; KR) residual df option
available though SAS (2001) Proc Mixed. Since the mixed model
approach allows the researchers to model the correct covariance
structure, may be expected that provides more powerful tests of
the fixed effects than the BF approach. Particularly, in those situ-
ations in which the covariance structure plays an important role in
the estimation; however, this observation has no yet been con-
firmed through empirical investigation.

Description of the procedures to be compared

The linear model to the statistical analysis of repeated measures
obtained from p groups of nj subjects (i,�, nj; ∑nj= n) at a com-
mon set of t occasions can be written as

yi= Xi b + ei    (1)

where yi is an t×1 vector of t measurements observed on the ith ex-
perimental unit, Xi is a known t×h design matrix; b is a h×1 vec-
tor of unknown population parameters; and ei is a t×1 vector of
random errors. For inference purposes, it is assumed that the vec-
tor associated with the ith experimental unit, have a normal distri-
bution with zero mean and dispersion matrix ∑i. For example, in
the repeated measures ANOVA mixed model, the referred suppo-
sitions imply a constant correlation between all pairs of observa-
tions on the same subject and homogeneous variances. In theory
this approach can be useful for applications involving short time
series per experimental unit, or when the response from each ex-
perimental unit is measured under multiples conditions rather than
at multiple time points. Unfortunately, the practical experience
suggests that there are many applications involving to collect mul-
tiple measurements on a subject that does not conform to the sim-
ple compound symmetry assumption.  

Approach of the general linear mixed effects model 

The mixed-effects model for repeated measures data extends
the general linear model to cases where standard assumptions of
independence and homogeneity are not required and where pre-
dictor variables are both continuous and categorical. This model,
described by Laird and Ware (1982) to characterize the common
structure of repeated measures, growth curve, or serial measure-
ments data, can by written as

yi= Xi b + Zi ui + ei    (2)

where yi= (yi1,�, yiti
)�, Xi= (X�i1,�, X�iti

)� b is a h×1 vector of un-
known population parameters, ui is a k×1 vector of unknown sub-
ject-specific random effects, Zi= (Z�i1,�, Z�iti

)� and ei is a ti×1 vec-
tor of unknown parameters whose elements don�t need to be inde-
pendent neither homogeneous. Equation (2) defines the general
linear mixed model, since Xi, Zi and Ri can be quite general.
Specifically, the mixed model for repeated measures allows that
the subjects can have different number of observations and that the
time intervals can be unique for each subject. It also permits to
modeling between-subjects and within-subjects variation, for
complete as well as for incomplete data.

The distributional assumptions for model (2) are that ui and ei

are independent random vectors distributed as ui ~ N (0,G) and ei

~ N (0,Ri), respectively. Here G is a positive definite k×k matrix of
unknown covariance parameters for the between-subjects random
effects, and  Ri is a ti×ti positive definite covariance matrix for the
within-subject errors. These assumptions imply that the observa-
tions vectors y1,�, yn are independent N (Xi, ß, Vi(q)), where
Vi(θ)= Zi GZ�i+Ri. The covariance matrix Vi(q) is assumed to be
a function of a vector of q unknown variance-covariance parame-
ters. If G is diagonal, each Zi consists of only ones and zeros, and
Ri= σ2Ii, then the general linear mixed model reduces to the ANO-
VA mixed model. Also the usual general linear model is obtained
setting Zi= 0 and Ri= σ2Ii. The combined model for all of the da-
ta may be obtained by stacking the vectors yi, ui, ei, and the matri-
ces Xi respectively, and letting Z= diag (Z1,� Zn), G

~
= diag (G,�,

G), and R= diag (R1,� Rn).
When all covariance parameters are known, the standard esti-

mators for ß and u can be obtained solving the so-called mixed
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model equations presented by Henderson (1975). Specifically, the
solutions can be written as

(3)

and the variance-covariance matrices of the corresponding estima-
tors are

(4)

where the minus sign indicates that a generalized inverse is re-
quired if X doesn�t have full rank and P= V(q)-1 � V(q)-1X[X�V-

1(q)X]�X�V(q)-1. The vector q contains the unique elements of  G
~

and the parameters in R. 
Equation (4) provides the machinery for testing hypotheses

about fixed (ß) and random (u) effects. For example, to test the
null hypothesis H0: Lß= 0, where L is an estimable contrast ma-
trix, we can derive an approximate F statistic dividing the Wald
test by the numerator df and approximating the denominator df.
Under H0, the test statistic

(5)

follows approximately an F-distribution with ν1 numerator and ν2

denominator df. The numerator df for the approximating F distri-
bution are the rank of L, but the denominator df needs to be esti-
mated from the data. 

Unfortunately, the matrices G and R hardly ever are known.
Consequently, an estimate V(q^) of V(q) must be used in the com-
putation of the equations (3)-(5). Although the literature referred to
the estimation of variance components for a general linear mixed
model is extensive (see Harville 1977 for an excellent review), in
practice, a variant of maximum likelihood estimation known as
residual maximum likelihood (REML) estimation is often used to
estimate V(q) (Zimmerman and Núñez-Antón, 2001). Once the
dispersion matrix has been selected and its parameters convenient-
ly estimated through the REML approach, we estimate ß as in (3),
but with V(q) replaced by the solution V(q^) and testing the hy-
potheses about the fixed effects by using approximate F- statistics. 

When an estimate V(q^) of V(q) is used in the computation of ß
the resulting estimator is often called as estimated generalized
least squares (EGLS) estimator and we shall denote it as ß^. The
EGLS estimator of ß is unbiased and fully efficient if the true vari-
ance of ß^ , V(ß^), correctly specified the asymptotic dispersion ma-
trix; that is, if V(ß^)= [X�V-1(q)X]�. However, if V(ß^)≠ V(ß^) the
EGLS estimator of ß is still unbiased, but no fully efficient, and
the estimated asymptotic covariance matrix of ß^ , [X�V-1(q)X]�, is
not valid estimate of V(ß^) (Littell, 2002). In practice, this suppos-
es that the likelihood-based inference should be interpreted with
care when the sample size is not sufficiently large, since [X�V-1(q^)X]�

is not always a good estimated of true V(ß^). Kenward and Roger
(1997) provide an adjusted estimator of the covariance matrix of
ß that has reduced bias for small sample inference when the
asymptotic covariance matrix underestimates V(ß^). The method

provides an adjusted dispersion matrix of the fixed effects, with
appropriate scaling of Wald statistics and associated denominator
degrees of freedom for the approximating F distribution obtained
via a Satterthwaite-type approximation (Verbeke and Molen-
berghs, 2000). This methodology, implemented as option into
computation of standard errors and test statistics in the Mixed pro-
cedure of SAS, will be used in this study. Another way to deal with
the underestimation of standard errors is through the sandwich
variance estimator for V(ß^) suggest by Liang and Zeger (1986).

Multivariate Brown-Forsythe (BF) test modified

To test the hypothesis of equality of p means when the popula-
tion variances are unequal, Brown and Forsythe (1974) proposed
the statistic

(6)

where σ̂2
j
= y�j[I�X(X�X)-1X�]yj and cj= (1�nj/n). They suggested

that F*, be approximated by the distribution F (p�1, ν), where

(7)

is determined using Satterthwaite�s (1941) method.
However, Rubin (1983) and Mehrotra (1997) have shown that

the approximation proposed by BF for the null distribution of their
test statistic is inadequate, and they suggest Box�s (1954) method
to approximate the distribution of F* with the distribution F (ν1,
v2), where

(8)

v2= v of (7) and rj= nj/n.
Vallejo and Escudero (2000) and Vallejo et al. (2001) extended

the BF statistic to the doubly multivariate setting replacing means
by corresponding mean vectors and replacing variances by corre-
sponding dispersion matrices. Applying their approach, the statis-
tics used to test the hypothesis concerning to the within-subjects
interaction are functions of the eigenvalues of HE*-1, where H

(9)

and

(10)

and B^ is the ordinary least squares solution to the normal equa-
tions, for C�= [1p-1:�1] and A�= [It-1:�1]. This form of E* ensures
that the expected values of H and the expected value of ∑

p

j=1
cjA�∑jA

are equal when the null hypothesis is true, since mean vectors are
being compared across groups. 
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Using results in Nel and van der Merwe (1986), the distribution of
∑

p

j=1
cjA�∑jA can be approximated as a sum of Wishart distributions

(11)

with df

(12)

The df are estimated substituting ∑j for ∑^ j within summation on
the right-hand side.

Having computed the matrices E* and H any of the usual mul-
tivariate criteria can be used for testing the primary hypothesis of
interest (see Timm, 2002, pp. 102-103). In our investigation this
hypothesis was tested using the F-test approximation to Wilk�s Λ
given by Rao (1951) as

(13)

where s*= [(l2 ν*2
h
�4) / (l2+v*2

h
�5)1/2, ν*1= lν*h, and ν*2= [ν*e � (l�ν*h +

1) / 2]s* � (lν*h � 2) / 2, with l equal to the dimension of E* and ν*h

equal to

(14)

where W= [(tr A�∑
^

j A)2 + tr (A�∑
^

j A)2] � 2rj[(tr A�∑
^

j A)2 + tr
(A�∑

^
j A)2]. The hypothesis interaction is rejected at nominal α if F

> F(1�α);ν*
1,ν*

2, where  F(1�α);ν*
1,ν*

2
is the 100(1�α) th percentile of the

F-distribution with ν*
1 and ν*

2 df. 

The modification of numerator df was determined by solving
simultaneously the equations E(H)= ∑

p�1

j=1
λjνj and V(H)= ∑

p�1

j=1
2λ2

jνj, af-
ter assuming that the distribution of H, under inequality of covari-
ance matrices, is a sum of Wishart variables. Specifically, we as-
sume that (a) random effect has the same expected value as that of
the effect under consideration, when the null hypothesis is true, (b)
the distribution of H is a weighted sum of Wishart variables, (c)
each Wishart distribution in the sum has one degree of freedom,
and (d) the weights are the same as the weights in the sum of chi-
squares variables of the numerator of ANOVA F-test when the
variances are heterogeneous. For more details the readers are re-
ferred to the work of Khatri (1980).

The statistics used to test the repeated measures main effect av-
eraged over groups hypothesis, can be expressed in terms of the
matrices H

~
and E

~
, where

(15)

and

(16)

To test this hypothesis, the A matrix defined to test the interac-
tion effect is used and the C� matrix is a  1 × p vector of ones. In
(15), B

~
= [(n/p2) ∑

p

j=1
nj]1/2B

^
.

Extending the results reported by Nel and van der Merwe
(1986), the distribution of ∑

p

j=1
nj

-1 A�∑jA can be approximated as a
sum of Wishart distributions

(17)

with df

(18)

Next, the hypothesis of no occasions main effect can also be re-
jected approximately if

(19)

where s= [(l2ν2
h� 4) / (l2 + ν2

h� 5)]1/2, ν1= l νh, and ν*
2= [ν*

e � (l � νh

+ 1) / 2] s � (l νh � 2) / 2.  

Monte Carlo Study

In order to determine the viability of the mixed model test with
KR solution and the modified BF test for controlling the rate of
Type I errors, a Monte Carlo investigation was conducted utilizing
a design that had one between-subjects factor (p= 4) and one with-
in-subjects factor (t= 4). Five variables were manipulated: (a) to-
tal sample size, (b) degree of group size inequality, (c) nature of
the pairing of the covariance matrices and group sizes, (d) type of
covariance matrices, and (e) distributional shape of the data. 

The behaviour of the test statistics was investigated with two
total sample size conditions: n= 30 and n= 45. These sample sizes
were selected because they are typical of what is encountered in
practice, particularly in areas such as animal psychology, applied
behaviour analysis, and clinical psychology. Within each of these
sample size conditions, both a moderate and severe degree of
group size inequality were investigated, as indexed by a coeffi-
cient of sample size variation (∆). For n= 30, the group sizes were:
8, 10, 12 (∆= .16) and 6, 10, 14 (∆= .33). Whereas for n= 45, the
group sizes were: 12, 15, 18 (∆= .16) and 9, 15, 21 (∆= .33), where

and n� is the average group size.

The third variable investigated in this study was pairing con-
dition. Null, positive and negative pairing of group sizes and co-
variance matrices were investigated. A null pairing refers to the
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case in which the design is balanced, that is, the size of the element
values of the covariance matrices were not related with the group
sizes because all groups had equal size. A positive pairing refers
to the case in which the largest nj was associated with the covari-
ance matrix containing the largest element values; a negative pair-
ing refers to the case in which the largest nj was associated with
the covariance matrix containing the smallest element values. In

all conditions

The fourth variable investigated was the pattern of covariance struc-
ture. In the present work, the three following homogeneous and hetero-
geneous first-order autoregressive (AR) models were manipulated:

The homogeneous first-order autoregressive [AR(1)] model speci-
fy equal response variances and the correlation decreases as the dis-
tance between the time points increases. This model requires only two
parameters to be estimated because the variances along the main diag-
onal are constant and the covariances decline exponentially. The first-
order autoregressive [ARHM(1) and ARHS(1)] models are considered
heterogeneous structures because the response variances increase over
time and the covariances decline exponentially (see Núñez-Antón and
Zimmerman 2001 for additional details). Both structures require five
parameters to be estimated, but the degree of heterogeneity the
ARHS(1) is substantially greater than the ARHM(1). The three struc-
tures had a similar departure from sphericity pattern (ε≅ .75) and also
a similar correlation pattern (p�≅ .73).

The fifth variable investigated was the distributional shape of the
response variable. This factor had two levels: Multivariate normal
and multivariate non-normal. Using the Proc IML program from
SAS (SAS Institute, 2001), data were simulated to conform to each
of the conditions investigated. With respect to the former condition,
for each level of the between-subjects factor, we generated vectors of
pseudo-random normal variates using the RANNOR function in
SAS. The multivariate observations were obtained by the method via
triangular decomposition (see Fernández and Vallejo, 2002). The
non-normal data were generated using the multivariate extension of
the Fleishman (1978) power method developed by Vale and Maurel-
li (1983). The skewed distribution was a chi-squared standardized
distribution with skewness (γ1) and kurtosis (γ2) values 1.63 and 4,
respectively. This particular type of non-normal distribution was se-
lected since the empirical literature indicates that tests of significance
of the repeated measures effects might not perform optimally when
covariance matrices are heterogeneous and data are sampled from
skewed moderately distributions in unbalanced designs (Algina and
Keselman, 1997). Programming used in this study to generate non-
normal data had been scrutinized and verified for accuracy, and can
be obtained free of charge written in the GAUSS (Aptech Systems,
1996) language from Nevitt and Hancock (1999). A SAS/IML pro-
gram also is available from the first author�s. The program only re-
quires entering the desired population skewness and kurtosis to de-
rive the Fleishman power transformation constants, the sample size,
and the population covariance matrices for the data.   

The second phase of our study compared the power of the
mixed model approach with KR solution and the BF test to detect
the within-subjects main and interaction effects under conditions

where both procedures reasonably controlled their rates of Type I
error. Six factors were manipulated in this second phase of the in-
vestigation. Total sample size, relationship between group sizes
and dispersion matrices, degree of group size inequality, type of
covariance matrices, and shape of underlying distribution were the
same as those used in the Type I error phase. The sixth factor in-
vestigated, was the permutation of the mean vector. Based on the
work of Algina and Keselman (1998), the following six permuta-
tions were included in each of the three groups of the design: (-µ,
µ, 0, 0), (0, -µ, µ, 0), (0, 0, -µ, µ), (0, -µ, 0, µ), (-µ, 0, 0, µ), and (-
µ, 0, µ, 0). When interest lay in estimating power to detect the
main effect, each group was assigned the nonzero mean vector.
When interest lay in estimating power to detect the interaction ef-
fect, only the first group had a nonzero mean vector; while the re-
maining groups were assigned the null vector; moreover, in this
case two levels of dispersion inequality were used:

and . For each sample size one value of µ was se-

lected to give a .80 power value for Scheffé�s univariate mixed model.
We employed the SAS functions FINV and FNONCT to find the non-
centrality parameters (λ) such that Prob[F(ν1,ν2,λ)>F.05(ν1,ν2,0)]= 0.80
for the within-subjects main and interaction effects. There is no reason
to believe that the results differ essentially for other nominal powers.

Lastly, we developed a SAS macro program to carry out the
calculations corresponding to the BF test and the KR test in con-
junction with Proc Mixed. This operation allows comparing the
performance of the techniques in connection with each one of the
manipulated variables. Empirical Type I error rates were collected
by dividing the number of times each statistic exceeded its critical
value when the mean vector was the null vector by the number of
made executions. Empirical power rates were collected by divid-
ing the number of times each statistic exceeded its critical value
when the mean vector was the non-null vector by the number of
made executions. One thousand replications of each condition
were performed using a .05 significance level. 

Results

In order to help identify conditions when the tests are robust
and when they are not, we set a criterion that the empirical alpha
level would have to deviate from the nominal by more than two
standard errors (SE). The SE was calculated using
[α(1�α)/1000]1/2, where α is the nominal level of significance and
1000 is the number of replications. According to this criterion, in
order for a test to be considered robust, its empirical rate of Type
I error (α^) must be contained in the interval (.036 ≤ α^ ≤ .064) for
the 5% level of significance. Correspondingly, a test was consid-
ered to be non-robust if, for a particular condition, it�s Type I er-
ror was not contained in this interval. In the tables values which
differ significantly (±2 SE) from the nominal level are in bold face
type. Tests with empirical estimates that are significantly lower
that the nominal alpha level are referred to as conservative, while
those whose rates are significantly higher are referred to as liber-
al. In connection with the method of identifying a non-robust pro-
cedure, it should be pointed out that several standards have been
used by researchers to identity nonrobust procedures (see, Bradley,
1978; Mehta and Srinivasan, 1970). Therefore, it should be noted
that with other standards different interpretations of the results are
possible. To evaluate power, the two procedures were compared to
each other under alternative hypothesis when both procedures re-
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sulted in comparable Type I error control. Pavur and Nath (1978)
recommend estimating powers using empirical critical values and
nominal critical values.  

Type I Error Rates for Tests of the Occasions Main Effect

Normally Distributed Data. Table 1 contains the empirical
rates of Type I error for the main effect when data were obtained
from a multivariate normal distribution.

As seen from Table 1, the Type I error rate was well controlled
with both procedures. In particular, the Proc Mixed with KR solu-
tion was able to control the Type I error rates across all of the in-
vestigated conditions, except for the negative pairing condition
when n= 30 and ∆= .33. Similar results were obtained with the BF
procedure. At any case, there was a for tendency, the KR solution
and the BF procedure to be slightly conservative, which tended to
decline as the sample sizes increased. The pattern of covariance ma-
trices had little effect on the results associated with both procedures.

Nonormally Distributed Data. Table 1 also contains the empir-
ical rates of Type I error for the main effect when data were sam-
pled from a multivariate non-normal distribution. As seen from
Table 1, the KR rates were contained within the ±2 SE bounds of
α when heterogeneous covariance matrices were paired with equal
groups sizes or when the pairing pattern was positive. The results
obtained for the negative pairing conditions, however, were slight-
ly conservative, especially when ∆= .33. Similarly, the BF test al-
so was prone to deflated rates of Type I error for negative pairings.
Nevertheless, the conservative tendency of the two tests tends to
decline as the sample sizes increases and the magnitude of ∆ de-
creases. The comparison of Type I error rates indicates that the
Proc Mixed with KR solution maintained α^ at the nominal level in
22 out of 30 possible conditions, whereas for the BF test the num-
ber of statistically significant deviations from the nominal alpha
level was three.

Contrary to what happened when data were sampled from a mul-
tivariate normal distribution, the pattern of covariance matrices had
a superior effect on the robustness of both procedures. When the da-
ta were obtained under the ARHS(1) covariance structure, Type I er-
ror rates increased for both procedures. However, when the data
were obtained under the AR(1) and ARHM(1) covariance structures,
Type I error rates decreased for the both procedures. For example,
the value of α^ averaged across all sample sizes and five values of ∆
were .036 and .038 under condition ARHM(1), respectively, for the
Proc Mixed with KR solution and the BF procedure, whereas under
condition ARHS(1) they were .042 and .048, respectively.

Type I Error Rates for Tests of the Groups by Occasions Interac-
tion Effect

Normally distributed data. Table 2 contains Type I error rates
for the test of the interaction effects when data were sampled from
a multivariate normal distribution.

An inspection of the results in Table 2 indicates that, the BF
statistic was able to control the Type I error rate across all of the
investigated conditions. Again, the procedure had a tendency to be
conservative when the pairing pattern was negative. Also, the de-
gree of conservativeness decreased with increases in the total sam-
ple size and with decreases in the magnitude of ∆. On the other
hand, the Proc Mixed with KR solution Type I error rates was sim-
ilar to those reported for the main effects hypothesis. However, for
null, positive and negative pairing, error rates were generally low-
er than those obtained for the within-subjects main effect. In this
case, the degree of conservativeness of the procedure also de-
creased as the sample sizes increased. Thus, when n= 30 the value
of α^ averaged across covariance matrices and values of ∆ was
.038, whereas for n= 45 the average valor was .042. Finally, pat-
tern of covariance matrices had little effect on the results associat-
ed with both procedures.
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Table 1
Empirical Rates of Type I Error for the Trials Main Effect

Negative Pairing Null Pairing Positive Pairing    

∆= .33 ∆= .16 ∆= .00 ∆= .16 ∆= .33

CovS N KR BF KR BF KR BF KR BF KR BF

Normal Data

AR(1) 30 .040 .036 .041 .048 .042 .045 .042 .047 .048 .049
ARHM 30 .035 .036 .042 .042 .044 .047 .039 .046 .040 .043  
ARHS 30 .039 .034 .044 .044 .045 .050 .038 .048 .048 .047  
AR(1) 45 .049 .046 .042 .044 .051 .043 .049 .048 .042 .049  
ARHM 45 .054 .042 .043 .045 .046 .051 .038 .049 .041 .050
ARHS 45 .043 .042 .042 .043 .053 .046 .041 .050 .045 .048

Nonnormal Data

AR(1) 30 .025 .026 .031 .036 .037 .038 .036 .040 .040 .045
ARHM 30 .029 .027 .033 .035 .042 .042 .033 .044 .041 .043  
ARHS 30 .066 .036 .043 .042 .046 .052 .042 .049 .046 .048  
AR(1) 45 .034 .037 .039 .040 .036 .043 .037 .046 .039 .043  
ARHM 45 .033 .038 .038 .042 .042 .045 .040 .052 .040 .048
ARHS 45 .043 .047 .043 .048 .044 .051 .038 .051 .045 .050          

Note: KR= Kenward-Roger df approximation; BF= Brown-Forsythe test; CovS= Population covariance structure; AR(1)= First-order autoregressive; ARHM= First-order autoregressive with
moderate heterogeneity; ARHS= First-order autoregressive with severe heterogeneity; ∆= Coefficient of sample size variation; Bold values differs significantly (±2 SE) from the nominal alp-
ha level.



Nonnormally distributed data. Table 2 also contains the empir-
ical rates of Type I error for the interaction effect when data were
sampled from a multivariate non-normal distribution. The Proc
Mixed with KR solution and the BF procedure did not provide a
robust test across all investigated conditions. Specifically, the KR
rates were always conservative, especially when covariance matri-
ces and group sizes were negatively paired. On the other hand, the
BF test had the fewest number of significant deviations from the
nominal alpha level, even though its rates were conservative in
more than half of the examined conditions. In this case, the em-
pirical Type I error rate averaged across all of the investigated con-
ditions was α^= .035, with the degree of conservativeness decreas-
ing with increases in the total sample size.

A careful examination of the Table 2 also reveals that, contrary
to what happened when data were sampled from a multivariate no-
normal distribution for the main effects test, pattern of covariance
matrices had little effect on the robustness of both procedures. 

Power Rates for Tests of the Occasions Main Effect

Normally distributed data. We are assuming that power com-
parisons between tests procedures are only of concern when test
statistics provide reasonable Type I error protection. Power rates
estimates, averaged across sample sizes for the main effect, are re-
ported in Table 3. 

The results presented in Table 3 indicate that the Proc Mixed
with KR solution was uniformly more powerful than the BF pro-
cedure. In fact, an examination of Table 3 reveals that KR solution
has the highest power for 81 of the 90 conditions investigated. The
discrepancies between the BF test and the KR solution tends to in-
crease when covariance matrices and group sizes were negatively
paired, and to decrease when they were positively paired. When
the pairing pattern was positive, the power advantage never ex-
ceeded 2 percentage point on average. However, when the pairing

pattern was negative the mean power value for the KR solution ex-
ceeded the BF power by more than 9 percentage points. In this
case, the largest power difference between the procedures was
.095, which occurred for the (0, -µ, µ, 0) and ARHM(1) covari-
ance structure case. 

The results also show that the pattern of power of the Proc
Mixed with KR solution and the BF test tended to increase slight-
ly as the type of covariance structure changed from ARHS(1) to
ARHM(1) and then to the AR(1) condition, especially, for the (0,
-µ, µ, 0), (0, 0, -µ, µ), and (0, -µ, 0, µ) permutations. Further-
more, the power estimates for both the KR and BF tests were
strongly affected by the pairing conditions and the effect of per-
mutation of the mean vector. In the former case, the power rates
tended to increase when covariance matrices and group sizes
were positively paired, and decreased when they were negative-
ly paired. In the later case, greater power occurred for the (0, -µ,
µ, 0) permutation, and the less power occurred for the (-µ, 0, 0,
µ) permutation.

Nonnormally distributed data. Table 4 contains the empirical
power rates averaged across sample sizes for the main effect when
data were obtained from a non-normal distribution.

The results presented in Table 4 indicate that the pattern of
power differences between both tests was similar to those report-
ed in Table 3. That is, the KR solution was, in general, more pow-
erful that the BF test. In this case, the KR solution had the highest
power for 76 of the 90 conditions investigated. The effect of non-
normality on power differences was small. Thus, for the ARHS(1)
condition, the average KR and BF power rates (averaging over the
six permutations) were .665 and .644, respectively for the normal
distribution and .686 and .666 for the non-normal distribution, re-
spectively. For the negative pairing conditions, power rates asso-
ciated with the skewed distribution were generally larger than ob-
tained for the normal data counterparts. On the other hand, for pos-
itive pairing conditions, the empirical power values associated
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Table 2
Empirical Rates of Type I Error for the Interaction Effect

Negative Pairing Null Pairing Positive Pairing    

∆= .33 ∆= .16 ∆= .00 ∆= .16 ∆= .33

CovS N KR BF KR BF KR BF KR BF KR BF

Normal Data

AR(1) 30 .034 .037 .035 .044 .043 .042 .042 .047 .036 .045
ARHM 30 .033 .036 .037 .043 .043 .044 .041 .044 .038 .044  
ARHS 30 .037 .042 .033 .040 .040 .043 .037 .046 .042 .045  
AR(1) 45 .049 .043 .039 .047 .042 .046 .041 .047 .039 .047  
ARHM 45 .048 .041 .045 .045 .041 .044 .039 .048 .040 .046
ARHS 45 .038 .045 .040 .047 .039 .046 .041 .047 .039 .050

Nonnormal Data

AR(1) 30 .012 .022 .027 .027 .016 .031 .012 .032 .020 .035
ARHM 30 .018 .021 .020 .029 .020 .030 .021 .034 .026 .034
ARHS 30 .023 .025 .023 .032 .022 .033 .022 .034 .033 .035
AR(1) 45 .022 .031 .022 .038 .028 .044 .026 .038 .028 .042  
ARHM 45 .019 .030 .029 .035 .026 .036 .030 .040 .035 .044
ARHS 45 .034 .037 .032 .041 .027 .042 .031 .041 .027 .043          

Note. KR= Kenward-Roger df approximation; BF= Brown-Forsythe test; CovS= Population covariance structure; AR(1)= First-order autoregressive; ARHM= First-order autoregressive with
moderate heterogeneity; ARHS= First-order autoregressive with severe heterogeneity; ∆= Coefficient of sample size variation; Bold values differs significantly (±2 SE) from the nominal alp-
ha level.



with the skewed distribution were not always larger than those ob-
tained when data were obtained from the normal distribution. Fur-
thermore, as was true for the main effect test and normally dis-
tributed data, pattern of covariance matrices had a small effect on
the results associated with both procedures. However, the power

of both tests was seriously affected by the effect of permutations
of the mean vector and the patterns of pairings. In particular, pow-
er values for the KR solution and the BF test were greatest for the
(0, -µ, µ, 0) permutation and for positive pairings and lowest for
the (-µ, 0, 0, µ) permutation and for negative pairings.
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Table 4
Power Rates Averaged across Sample Sizes for the Trials Effects (Nonnormal Data)

Negative Pairing Null Pairing Positive Pairing    

∆= .33 ∆= .16 ∆= .00 ∆= .16 ∆= .33

CovS Permutation KR BF KR BF KR BF KR BF KR BF

AR(1) -µ, µ, 0, 0 .711 .670 .779 .769 .838 .831 .871 .870 .924 .914
AR(1) 0,-µ, µ, 0 .767 .726 .821 .820 .867 .870 .902 .908 .944 .941  
AR(1) 0, 0,-µ, µ .715 .660 .770 .752 .802 .803 .844 .841 .885 .886
AR(1) 0,-µ, 0, µ .489 .465 .577 .548 .613 .593 .662 .655 .716 .688  
AR(1) -µ, 0, 0, µ .433 .399 .496 .484 .551 .537 .571 .580 .640 .633
AR(1) -µ, 0, µ, 0 .480 .432 .577 .529 .634 .618 .636 .655 .741 .709
ARHM -µ, µ, 0, 0 .727 .670 .824 .780 .860 .851 .899 .895 .932 .923
ARHM 0,-µ, µ, 0 .775 .706 .832 .800 .869 .859 .893 .892 .926 .928
ARHM 0, 0,-µ, µ .686 .620 .748 .717 .798 .778 .841 .825 .866 .859  
ARHM 0,-µ, 0, µ .473 .455 .578 .535 .597 .582 .639 .634 .677 .670  
ARHM -µ, 0, 0, µ .356 .330 .486 .417 .478 .481 .537 .534 .596 .589
ARHM -µ, 0, µ, 0 .496 .473 .588 .580 .644 .657 .707 .708 .731 .765
ARHS -µ, µ, 0, 0 .758 .707 .819 .815 .888 .881 .926 .920 .954 .946
ARHS 0,-µ, µ, 0 .761 .704 .824 .800 .854 .849 .899 .895 .917 .924
ARHS 0, 0,-µ, µ 633 .589 .695 .663 .752 .724 .755 .745 .825 .809  
ARHS 0,-µ, 0, µ .479 .437 .532 .512 .580 .571 .620 .609 .665 .664  
ARHS -µ, 0, 0, µ .356 .306 .422 .395 .473 .468 .530 .518 .590 .582
ARHS -µ, 0, µ, 0 .467 .428 .545 .537 .606 .634 .687 .668 .766 .706          

Note. KR= Kenward-Roger df approximation; BF= Brown-Forsythe test; CovS= Population covariance structure; AR(1)= First-order autoregressive; ARHM= First-order autoregressive with
moderate heterogeneity; ARHS= First-order autoregressive with severe heterogeneity; ∆= Coefficient of sample size variation; Bold values they denote conditions in those who the BF test was
more powerful.

Table 3
Power Rates Averaged across Sample Sizes for the Trials Effects (Normal Data)

Negative Pairing Null Pairing Positive Pairing    

∆= .33 ∆= .16 ∆= .00 ∆= .16 ∆= .33

CovS Permutation KR BF KR BF KR BF KR BF KR BF

AR(1) -µ, µ, 0, 0 .665 .605 .778 .727 .805 .800 .867 .855 .903 .897
AR(1) 0,-µ, µ, 0 .749 .674 .821 .803 .872 .865 .917 .907 .935 .945
AR(1) 0, 0,-µ, µ .674 .600 .757 .726 .801 .798 .869 .855 .925 .897  
AR(1) 0,-µ, 0, µ .478 .384 .550 .489 .695 .579 .652 .628 .728 .693  
AR(1) -µ, 0, 0,µ .393 .334 .472 .430 .492 .494 .550 .545 .614 .605
AR(1) -µ, 0, µ, 0 .457 .370 .595 .481 .565 .558 .669 .618 .710 .671
ARHM -µ, µ, 0, 0 .686 .611 .803 .739 .839 .806 .883 .868 .922 .903
ARHM 0,-µ, µ, 0 .742 .647 .824 .774 .870 .851 .901 .890 .946 .927  
ARHM 0, 0,-µ, µ .634 .566 .735 .688 .801 .760 .847 .823 .878 .870  
ARHM 0,-µ, 0, µ .403 .375 .549 .473 .550 .541 .632 .607 .665 .654  
ARHM -µ, 0, 0, µ .389 .318 .471 .409 .502 .483 .549 .552 .596 .604
ARHM -µ, 0, µ, 0 .457 .425 .604 .537 .641 .613 .695 .669 .702 .733
ARHS -µ, µ, 0, 0 .695 .651 .764 .773 .850 .845 .869 .889 .942 .924
ARHS 0,-µ, µ, 0 .710 .647 .785 .777 .861 .847 .900 .896 .932 .928  
ARHS 0, 0,-µ, µ .560 .502 .627 .624 .690 .709 .776 .761 .829 .813  
ARHS 0,-µ, 0, µ .402 .364 .481 .467 .556 .541 .599 .588 .662 .653  
ARHS -µ, 0, 0, µ .389 .328 .431 .409 .481 .475 .539 .534 .587 .588
ARHS -µ, 0, µ, 0 .472 .403 .534 .509 .603 .585 .674 .640 .719 .673          

Note. KR= Kenward-Roger df approximation; BF= Brown-Forsythe test; CovS= Population covariance structure; AR(1)= First-order autoregressive; ARHM= First-order autoregressive with
moderate heterogeneity; ARHS= First-order autoregressive with severe heterogeneity; ∆= Coefficient of sample size variation; Bold values they denote conditions in those who the BF test was
more powerful.



Power Rates for Tests of the Groups by Occasions Interaction Effect

Adequate power comparisons can only be made between proce-
dures giving comparable Type I error, and the Proc Mixed with KR
solution had an excessively conservative behavior when data were
sampled from a multivariate non-normal distribution. Thus, it is
important to be clear that the following comments only pertain to
the interaction effects when data were sampled from a multivariate
normal distribution. Power estimates, averaged across total sample
size, are presented in Table 5 for five patterns of pairings, two re-
lationships between the degree of group size inequality and disper-
sion matrices, and six permutations of the mean vector. In this case,
all estimates correspond to the first-order autoregressive structure.
Based on the power results obtained for the occasions main effect,
there is no reason to believe that the results would differ dramati-
cally for the ARHM(1) and ARHS(1) covariance structures. 

The averaged power rates presented in Table 5 for the tests of
interaction when the group with the mean vector non-null had the 

smallest variance were qualitatively similar to those

for the tests of the main effect. That is, the Proc Mixed with KR
solution was always more powerful than the BF procedure. Under
this condition, the mean power value for the KR solution exceed-

ed the BF power by more than 22 percentage points. Specifically,
the empirical power rates averaged across all of the investigated
conditions were .812 and .661, respectively for the mixed model

and BF approaches. When the results also indicated

that the Proc Mixed with KR solution was more powerful than the
BF procedure in most cases. In fact, an examination of Table 5 re-
veals that the KR solution has the highest power for 28 of the 30 con-
ditions showed; in addition, when the BF test was more powerful the
power advantage never exceeded 1 percentage point on average.
Nevertheless, both the large power and the large differences between
the Proc Mixed with KR solution and the BF tests occur mainly when

and are much larger for some permutations than for others.

Discussion and recommendations

The purpose of this investigation was to compare the perfor-
mance of the modified BF approach presented by Vallejo et al.
(2001) with the performance of the SAS (2001) Proc Mixed pro-
cedure based on Kenward and Roger�s (1997) approximation
when testing within-subjects main and interaction effects in un-
balanced repeated measures designs. Specifically, we examined

(∑1 =
1
3
∑2 )
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Table 5
Power Rates Averaged across Sample Sizes for the Interaction Effect (Normal Data)

Dispersion Inequality Dispersion Inequality

1/3 1 5/3 5/3 1 1/3

CovS Permutation Pairing ∆ KR BF KR BF 

AR(1) -m, m, 0, 0 Null 0.00 0.944 0.830 0.720 0.709
AR(1) -m, m, 0, 0 + 0.16 0.961 0.852 0.815 0.755
AR(1) -m, m, 0, 0 � 0.16 0.912 0.723 0.711 0.652
AR(1) -m, m, 0, 0 + 0.33 0.970 0.896 0.839 0.778
AR(1) -m, m, 0, 0 � 0.33 0.868 0.604 0.756 0.524
AR(1) 0,-m, m, 0 Null 0.00 0.959 0.861 0.743 0.748
AR(1) 0,-m, m, 0 + 0.16 0.974 0.869 0.818 0.820
AR(1) 0,-m, m, 0 � 0.16 0.933 0.766 0.740 0.686
AR(1) 0,-m, m, 0 + 0.33 0.982 0.923 0.865 0.817
AR(1) 0,-m, m, 0 � 0.33 0.895 0.640 0.729 0.573
AR(1) 0, 0,-m, m Null 0.00 0.912 0.806 0.678 0.650
AR(1) 0, 0,-m, m + 0.16 0.934 0.868 0.785 0.692
AR(1) 0, 0,-m, m � 0.16 0.879 0.667 0.638 0.588
AR(1) 0, 0,-m, m + 0.33 0.952 0.879 0.798 0.729
AR(1) 0, 0,-m, m � 0.33 0.827 0.545 0.643 0.481
AR(1) 0,-m, 0, m Null 0.00 0.709 0.579 0.472 0.434
AR(1) 0,-m, 0, m + 0.16 0.767 0.607 0.563 0.466
AR(1) 0,-m, 0, m � 0.16 0.672 0.446 0.465 0.380
AR(1) 0,-m, 0, m + 0.33 0.811 0.658 0.586 0.500
AR(1) 0,-m, 0, m � 0.33 0.604 0.359 0.426 0.304
AR(1) -m, 0, 0, m Null 0.00 0.636 0.520 0.402 0.379
AR(1) -m, 0, 0, m + 0.16 0.694 0.568 0.493 0.407
AR(1) -m, 0, 0, m � 0.16 0.596 0.381 0.401 0.326
AR(1) -m, 0, 0, m + 0.33 0.742 0.693 0.502 0.428
AR(1) -m, 0, 0, m � 0.33 0.543 0.315 0.367 0.274
AR(1) -m, 0 ,m, 0 Null 0.00 0.781 0.645 0.546 0.491
AR(1) -m, 0, m, 0 + 0.16 0.825 0.699 0.633 0.542
AR(1) -m, 0, m, 0 � 0.16 0.720 0.480 0.558 0.441
AR(1) -m, 0, m, 0 + 0.33 0.861 0.743 0.634 0.559
AR(1) -m, 0, m, 0 � 0.33 0.672 0.416 0.486 0.347    

Note. KR= Kenward-Roger df approximation; BF= Brown-Forsythe test; CovS= Population covariance structure; AR(1)= First-order autoregressive; ∆= Coefficient of sample size variation;
Bold values they denote conditions in those who the BF test was more powerful.



the robustness and power of these procedures when the between-
subjects covariance matrices were heterogeneous and the simulat-
ed data were obtained from the multivariate normal or multivari-
ate non-normal distributions.

The results indicate that when the normality and homogeneity
assumptions are jointly violated, both the Proc Mixed with KR so-
lution and the BF procedure exhibited good control of Type I error
rates across all of the investigated conditions for the within-sub-
jects main effect. Furthermore, it should be pointed out that a sim-
ilar pattern of results was obtained with both procedures. Specifi-
cally, for negative pairings of covariance matrices a very unequal
group sizes, the behaviour of both procedures was slightly conser-
vative. Under this condition, however, the KR solution was more
powerful than the BF test, and its advantage was sometimes appre-
ciable. On the other hand, when the design was balanced or the
pairing pattern of group sizes and covariance matrices was positive,
the empirical power values were very similar between both ap-
proaches. Moreover, there were some conditions in which the BF
test was more powerful than the KR solution. Consequently, when
the design is balanced or the pairing pattern of group sizes and co-
variance matrices is positive, these results suggest that there will be
no appreciable loss in power if the Proc Mixed with KR solution or
the BF test is used. However, users can easily implement via SAS. 

With regard to the test of the interaction effect, our results in-
dicate that the KR solution can in most cases effectively control
the rate of Type I errors when group variance-covariance matrices
are heterogeneous and the data are obtained from a multivariate
normal distribution. The procedure tends to be slightly conserva-
tive when the data are non-normal in form, especially, for negative
pairings covariance matrices a sample sizes and substantial values
of coefficient of sample size variation. On the other hand, the BF
test also provided good Type I error control when the multivariate
normality assumption is satisfied. However, the approach tends to
be conservative when the data are sampled from a skewed distrib-
ution and the total sample was small. Fortunately, consistent with
the findings of Lix, Algina, and Keselman (2003) and Vallejo et al.
(2001), the conservative tendency of the both tests tends to decline
as the sample sizes increases and the magnitude of ∆ decreases. In
connection with the power, it is interesting to note that in some
cases there were differences between both procedures in favour of
the KR solution. In particular when the group with the nonzero
mean vector was associated with the smallest variance and covari-
ance matrices were negatively paired with group sizes. 

In summary, the results of this investigation shows that the two
procedures examined were able to control the rate of Type I errors
in most of the investigated conditions, but the Proc Mixed with KR
solution was generally more powerful than the BF test. Neverthe-
less, the power advantages were small for null and positive pairings
conditions. Furthermore, the reader should be note that the KR so-
lution was utilized in a situation in which the correct covariance
structures are known in advance. That is, in the simulations, the

Proc Mixed with KR solution was implemented such that the form
of the true covariance structure matched exactly that used the
mixed-model analysis. In practice, applied researchers determine
the appropriate covariance structure of their data through some of
the criteria implemented in commercial software packages (p.e.,
AIC). However, such selection is one the main difficulty in para-
metric analysis of longitudinal data (Galecki, 1994; Keselman, Al-
gina, Kowalchuk and Wolfinger, 1998). Moreover, Keselman et al.
(1999) using the mixed-model Satterthwaite F test computed by
SAS (1996) Proc Mixed program, found that the Akaike criterion
was prone to elevated rates of Type I error for negative pairings.
Thus, our BF results may be most promising for applied researchers
who would not know the true covariance structure at their data.

Although the generality of our results is limited by the range of
conditions and parameter sets employed in the simulations, there-
fore other conditions or other parameter sets could give different
results. In our opinion, when all subjects have complete response
vectors a general recommendation can be made. The applied re-
searchers should be comfortable using the modified BF test to an-
alyze longitudinal data hypotheses when the assumptions of the
general linear model are violated, since they need neither to mod-
el their data nor to rely on methods that typically selected an in-
correct covariance structure. It should be pointed out, however,
that the BF method can be inefficient in those situations in which
the covariance structure plays an important role in the estimation,
just the situations where the Proc Mixed with KR solution has far
greater power. However, the need to estimate the covariance struc-
ture makes the mixed model approach less attractive with an un-
structured matrix or when the sample sizes are small. 

As a final note, three lines of additional research can be of in-
terest. First, it is very important to investigate whether the modi-
fied BF procedure offers robust and powerful tests when covari-
ance matrices vary across groups, but are not multiples of one an-
other. Second, additional research manipulating other types of the
parametric covariance structures and other types of non-normal
distributions, both symmetric and asymmetric distributions with
light tail and heavy tail, might also be investigated. For example,
it would be desirable to know the operating characteristics of the
KR method if, say, TYPE= TOEP or TYPE= UN is used in the
Proc Mixed code and the covariance structure is selected based on
an AIC or BIC criterion. Finally, would be useful to extend the BF
approach to more complicated kinds of measures repeated designs,
including situations in which some subjects have incomplete re-
sponse vectors over time.
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