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ABSTRACT: Laminated glass is a sandwich element consisting of two or more 

glass sheets, with one or more interlayers of a polymer such as polyvinyl butyral 

(PVB). The static response of sandwich elements such as laminated-glass 

beams and plates can be modeled using analytical or numerical models in 

which the glass is usually modeled as linear-elastic and the PVB as linear-

viscoelastic material, respectively. As a way to simplify the laminated-glass 

calculations, the concept of effective thickness has been recently proposed, 

which allows the calculation of laminated-glass beams as monolithic beams 

using an apparent or effective thickness. In this work, equations for the effective 

thickness of laminated-glass beams are derived from the analytical model 

proposed by Koutsawa and Daya and the results provided by this model are 

compared with the models of Bennison et al. and Galuppi and Royer-Carfagni. 

Finally, some static experimental tests were performed on several laminated-

glass beams under distributed loading in order to validate the predictions of the 

models. 
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NOMENCLATURE 

CAPITAL LETTERS 

 !,  "  Coefficients of the WLF time-temperature superposition model 

#  Young’s Modulus 

#$%  Effective stiffness 

#"(&)  Viscoelastic relaxation tensile modulus for PVB 

#'  Glassy tensile modulus 

*"(&)  Viscoelastic relaxation shear modulus for PVB 

*'  Glassy  shear modulus 

+!  Thickness of glass layer 1 in laminated glass 

+"  Thickness of polymeric layer in laminated glass 

+-  Thickness of glass layer 3 in laminated glass 

+.  Deflection-effective thickness 

+/  Stress-effective thickness 

$  Second moment of area 

0(&)  Viscoelastic bulk modulus 

01  Rotational spring stiffness (Koutsawa and Daya model) 

02  Translational spring stiffness (Koutsawa and Daya model) 

L  Length of a glass beam 

PVB  Polyvinyl butyral 



   Temperature 

 !  Reference temperature 

LOWERCASE LETTERS  

"#  Shift factor (WLF time-temperature superposition model) 

$  Width of a glass beam 

%&  Modulus coefficient in Prony’s series viscoelastic model 

'  Time 

 

 

1 INTRODUCTION 

In recent years, the use of laminated glass in buildings has increased 

considerably, mainly in facades, roofs, stairs, and windows. Laminated glass 

consists of two or more sheets of monolithic glass with one or more interlayers 

of a polymer such as polyvinyl butyral (PVB).  The thickness of the PVB layer is 

usually 0.38 mm or a multiple of this value.  The adherence of the glass and 

PVB layers is provided by subjecting the shaped laminate to high temperature 

and pressure conditions in an autoclave.  

The main advantage of laminated glass compared with monolithic glass is the 

safety provided in case of breakage, because the interlayer holds the fragments 

together by adhering to the PVB layer, reducing the injury risk. Moreover, the 

PVB interlayer considerably increases the damping, reducing the magnitude of 

the vibrations due to dynamic loadings. 



Glass mechanical behavior is usually modeled as linear-elastic material but high 

scatter is expected in the mechanical strength because of the superficial micro-

defects coming from the manufacturing process and subsequent manipulation. 

On the other hand, PVB is an amorphous thermoplastic which shows linear-

viscoelastic behavior. A fundamental characteristic of viscoelastic materials is 

that the mechanical properties are frequency (or time) and temperature 

dependent. As the tensile modulus of the PVB is far less compared with that 

corresponding to glass, significant transverse shear appears in the viscoelastic 

layer [1, 2] 

The glass mechanical properties are usually determined by static bending tests 

whereas those of the PVB are established by relaxation or creep tests in the 

time domain or its corresponding dynamic tests in the frequency domain [3, 4, 

5] 

Thus, the mechanical behavior of laminated glass is not elastic and the sections 

do not behave according to the Euler-Bernoulli Beam theory assumptions 

(plane sections remain plane) because the effect of shear strain cannot be 

neglected. This makes the structural analysis of laminated-glass elements more 

difficult. 

The first studies on the bending of simply supported laminated-glass beams 

were conducted by:  Hooper [6], who developed a mathematical model for 

bending under four-point loading; Behr et al. [7], who performed experimental 

tests on monolithic and laminated-glass beams; Edel [8], who studied the 

temperature effect on laminated glass; and Norville [9], who developed a simple 

multilayer model. 



Asik and Tezcan [10] formulated three coupled non-linear differential equations 

for analyzing laminated-glass beams, these equations being valid for beams 

with different boundary conditions. An analytical solution to the differential 

equations is presented for the case of simply supported beams but the finite-

difference method was used for the case of fixed supported beams because of 

the difficulty in finding an analytical solution. These researchers proved 

analytically that the behavior can be linear or non-linear, depending on the 

boundary conditions. Thus, in simply supported laminated-glass beams the 

behavior is linear, even for large deflections. On the other hand, beams with 

fixed ends show non-linear behavior, meaning that the effect of membrane 

stress should be considered. 

Ivanov [11] formulated a simple mathematical model for triplex-glass beams 

(glass+PVB+glass) where the simple bending theory is applicable for the single 

glass layers and the interaction caused by the shear of the PVB-interlayer is 

described by an additional differential equation. The analytical solutions are 

provided for simply supported glass beams under uniform transverse load, 

which are used in an optimization process for determining the thickness of the 

different layers in order to provide a lightweight structure. The author concludes 

that, for lightweight structural design, the inner glass layer of laminated glass 

under external pressure should be thinner than the external glass layer. 

On the other hand, Koutsawa and Daya [2] derived a mathematical model for 

the displacement, strain and stress fields of laminated glass beams on 

viscoelastic supports, which are modeled by two springs (rotational,   , and 

translational, !"), at each end of the beam. The model is validated for the case 



of the simply supported beam, which is a particular case of the general model, 

assigning  ! = 0 and  " = #. 

Bennison et al. [12] Calderone et al. [13] proposed the concept of effective 

thickness for simplifying calculations of laminated-glass elements, which is 

based on the analysis of composite sandwich structures originally developed by 

Wölfel [14]. This method consists of calculating the thickness of a monolithic 

beam for which the bending stiffness is equivalent to that of a laminated beam. 

Once the effective thickness is known, the displacements, stresses, and strains 

are calculated using the classical equations of the Euler-Bernoulli monolithic 

beam. 

Recently Galuppi and Royer-Carfagni have proposed new simple equations for 

the deflection- and stress-effective thicknesses of laminated-glass beams with 

different loading and boundary conditions [15], called “enhanced effective 

thickness”. Using a variational approach to the problem, and assuming as 

shape functions the elastic deflection of the monolithic beam with the same 

loading and boundary conditions, the authors deduced new simple expressions 

for the effective thickness. The predictions of this approach are compared with 

the results provided by a finite-element model and with equations of the model 

of Bennison et al. [12]. According to the authors, the enhanced effective-

thickness approach presents no additional difficulty with respect to the Bennison 

et al. formulation and, moreover, gives much better results when the beam is 

not simply supported and the load is not uniform. Later, the same authors [16] 

have extended this approach to laminated-glass plates, using the same 

assumptions as those considered for the laminated-glass beams. 



The main equations for the effective thickness derived by Galuppi and Royer-

Carfagni for laminated-glass beams [15] and plates [16] have been summarized 

in [17]. As a means of facilitating the application of the technique, the values of 

the coupling parameter  , have been tabulated for most of the cases relevant 

for the practical application.  

In this paper, the exact equations for the apparent effective bending stiffness 

and the effective thickness of laminated-glass beams, are derived from the 

mathematical model developed by Koutsawa and Daya [2] and compared with 

the predictions provided by the models of Bennison et al. [12] and Galuppi and 

Royer-Carfagni [15]. Moreover, static tests were performed on four laminated-

glass beams with different lengths and thicknesses, simply supported and with 

three supports, under distributed loading. The elastic properties of the glass and 

the viscoelastic properties of PVB were determined by static and relaxation 

tests carried out on glass and PVB specimens. Finally, the experimental results 

are compared with the predictions of Galuppi and Royer-Carfagni [15], 

Koutsawa and Daya [2], and Bennison et al. [12]. 

2 VISCOELASTIC BEHAVIOR 

Polyvinyl butyral (PVB) can be considered a linear-viscoelastic material with 

mechanical properties that are frequency (or time) and temperature dependent 

[14].  

The viscoelastic behavior can be easily understood if it is considered that these 

materials have properties common to elastic solids and viscous fluids, typically 

represented by springs and dashpots, respectively [3].  



A simple example of viscoelastic behavior is the Maxwell model given by a 

spring (elastic behavior) and a dashpot (viscous behavior) placed in series [18] 

where Young’s modulus function with time, known as the relaxation modulus, is 

given by: 

 (!) =  "#exp#($!/%)# (1) 

where  " is the glassy modulus (! = 0) and % is the relaxation time that 

represents the ratio of viscosity to stiffness of the material [18]. 

In most practical materials, i.e. PVB, a more complex behaviour that that 

represented by Eq. (1) is expected, so that improved models such as the 

generalized Maxwell model must be used to adequately define the viscoelastic 

material behaviour. Usually the terms of the Maxwell model are rearranged in a 

Prony series [19] so that the relaxation modulus,  (!), is given by the 

expression: 

 &(!) =  " '1 $*+,(1 $ exp#($!/%))
-

,.2#
3 (2) 

where ei and ti are the Prony series coefficients to be estimated for the 

viscoelastic material. Similar expressions can be directly obtained for the shear 

relaxation modulus, 4(!), that can also be calculated from the relaxation 

modulus by means of the viscoelastic correspondence principle [20, 21] using, 

e.g. the material bulk modulus, 5(!). 
 



3 ANALYTICAL MODELS 

Analytical models for triplex (glass+PVB+glass) laminated glass beams (Figure 

1), usually consider the following assumptions: 

· The mechanical behavior of glass is assumed to be linear-elastic 

whereas the PVB presents a homogeneous, isotropic, and linear-

viscolelastic behavior (time and temperature dependent). 

· The plane sections initially normal to the mid-surface in each glass ply 

remain plane and normal to the mid-surface during the bending. 

However, this property is not fulfilled for the entire beam. 

· The transverse normal stress sz is small compared to the axial normal 

stress s . 

· The three layers have the same transversal displacement !("). 

· No slip occurs at the interfaces between the glass and the PVB plies. 

· The PVB-interlayer only transfers shear and has negligible compression 

in the transverse direction, i.e. #$
% & 0. 

3.1 The model of Koutsawa and Daya (KOU) 

A model for laminated glass beams with two glass plies and a PVB interlayer on 

viscoelastic supports, which are modeled by two springs (rotational, '* and 

translational '+) on each end of the beam, was proposed by Koutsawa and 

Data [2]. 

The beam is subjected to distributed load , and to concentrated load - at the 

mid-point, and the origin of coordinate " is taken at the mid-point of the beam 

(Figure 1). The deflection of the beam under these loadings is given by: 

 



 ( ) = (! + "#$)%&( )"# + %#( )24"# (3) 

with 

%&( ) = '* cosh(" ) + ',sinh-(" ) (4) 

 

%#( ) = ./!0 , + 4"#!'# * . 12(/$0 . "#!'&) # + 24"#('3 + '5) (5) 

Where 

" = 67#89:;# <;>#? + @& + @*@&@* A (6) 

 

0 = 7#89;>:?;#  (7) 

and 

? = ?& + ?* = 9(;&* +;**)12   

$ = ;#7#89;>  

! = .B @& + @*@&@*:;>C  

;> = ;& + ;*2 + ;#  

@& = 9;& 
 



 ! = "#!  

 

The six constants of integration $ , !", !#, !$, !% and !& are determined using 

the boundary conditions  and are listed in Appendix. 

Using the shear parameter ' and the geometric parameter (, defined by Mead

 
and Markus [22], DiTaranto [23] and Rao [24], i.e.: 

( = )*"
+ , - -#

- . -#/ (8) 

 

' = 0"123"
45)"

,- . -#
- -# / (9) 

the following alternative expressions are formulated for 6 and78: 

6 = 9
3:';< . >? (10) 

 

8 = 4'(
)*3" (11) 

As regards the normal forces, it is fulfilled that @ = A@# [2], @  being given by: 

@ ;B? = AC8B"
96" . ! . !"B . !# cosh;6B? . !$sinh7;6B? (12) 

The stresses at the top and the bottom of glass plies are given as the 

summation of the contribution of normal forces and bending moments, i. e.:  



 !"#$(%) = &!(%)'*! + ,*!2 -..(%) (13) 

 !/#"(%) = &!(%)'*! 0 ,*!2 -..(%) (14) 

 !"#$(%) = &!(%)'*! + ,*!2 -..(%) (15) 

 /!0#"(%) = &!(%)'*! 1 ,*!2 -..(%) (16) 

 

3.1.1 Effective Thickness. Beam simply supported: distributed load. 

These boundary and loading conditions are a particular case of the general 

model taking 34 = 5, 36 = 17 and 8 = 5. 

The deflection at the mid-point of a laminated glass beam under distributed load

 
can be derived from Eq. (3) taking  % = 5, i.e.:

 

-(5) = 9:;< >(? 1 ;@A) B
cosh CD;2 E 1

F@GHIJ (17) 

 

As the goal is to determine the effective or equivalent monolithic bending 

stiffness (,K)L, the following equation (equal bending deflection at the mid-span 

for both the monolithic and the laminated-glass beams) must be fulfilled, i.e.:

 

M9DNGHI(,K)OL = 9:;< >(? 1 ;
@A)

cosh CD;2 E 1
F@GHIJ (18) 

From which: 



( !)"# = 5$%&'
384* +(, - &./)cosh 0$&2 1 -

6.3847
 

(19) 

 

Eq. (19) is the exact solution for the effective stiffness of a simply supported 

beam under distributed loading. Due to the fact that the shear modulus  !(") is 

time (or frequency) and temperature dependent, also is the effective stiffness. 

An effective thickness for deflection can be derived identifying the bending 

stiffness of a monolithic and a laminated-glass beam, i.e.: 

# $%&'*12 = (#+)',  (20) 

from which: 

%&' = - 60./345879$# :(; < 3!>)cosh ?.32 @ < A!587BC  

(21) 

 

This effective thickness is also time and temperature dependent. 

It is important to remark that the effective thickness given by Eq. (21) 

corresponds to the deflection in the mid-span, in this case the maximum 

deflection. However, the effective thickness for any point of coordinate DE in the 

beam can also be inferred taken F(DE) in Eq. (3). 

With respect to the stresses, the maximum normal force in each glass ply is 

achieved at the mid-point of the beam, the top ply being in compression and the 

bottom ply in tensile. With regard to the bending moment, the maximum is also 



achieved at the mid-point of the beam. Under the assumption that the vertical 

load is downwards, the stress on the top of the ply 1 is given by [2]: 

 !"#$(0) = %!(0)&'! * +'!2 ,--(0) (22) 

where: 

%!(0) = ./213 4 2
13 cosh 5 !2 " +  #!# $ 84!# % (23) 

and 

&''(0) = *,!- .(/ + !#1) !#
cosh 3 !2 " + 256784%999 (24) 

The effective thickness for stresses can be derived by identifying the bending 

stress of a monolithic and a laminated-glass beam, i.e.:  

* #8:;<>#? = @6(0):;6 $ A;62 &BB(0) (25) 

From Eq. (25), it is derived that: 

;6<> =

CDD
DDDD
DDDD
DDDD
DDE 8:

? #
F
GG
GH

,2!#I 2!# cosh 3 !2 " +  #!# $ 84!# J
:;6 +

+A;62 ,!- (/ + !#1) !#
cosh 3 !2 " + 256784K

LL
LM9
9

N
 

(26) 

which is the effective thickness in bending for calculating stresses in ply 1. The 

effective thickness for ply 3 can be determined by following the same procedure 

and is given by: 



 !"# =

$%%
%%%%
%%%%
%%%%
%%& 8'

6()
*
++
+,

-2.) / 2.) cosh 0(.2 1 3
().) 4 85.) 7

' ! 3
39 !2 -.: ;< 3 .)>? .)cosh 0(.2 1 3

2@ 384!"
""#$
$

%
 

(27) 

 

3.1.2. Effective thickness. Beam simply supported. Concentrated loading. 

If the same procedure as that of the distributed loading is followed, taking &' $= $0, &( = +) and *$ = $0, it is derived that the effective stiffness is given 

by:  

,-./12 = -.5679:48 ;
<,> + 5?7/@954 A tanh B95C DC E A 9:5:48 F (28) 

whereas the effective thickness for deflection is expressed as:  

GHI = J K.5679:
4 <,> + 5?7/@954 A tanh B95C DC E A 9:5:48 FL  

(29) 

 

The effective thickness for stresses is given by: 

G MI =
N
OOO
OOO
OOO
OOO
P 4K

Q9
R
ST

94-.5?7 A 9C-.5:7 tanh B95C DKG +
+-G C ,> + 5?7/ U9C-.5:7 tanh B95C D + >U94-.5?7!"

#
$

%  

(30) 



for ply 1,  whereas the effective thickness for ply 3  is: 

 !"# =

$%
%%%%
%%%%
%%%
& 4'

6(
)
*+

(4,-./0 1 (2,-.!0 tanh 3(.2 5' ! 7
7, !2 89 7 ./0: ;(2,-.!0 tanh 3(.2 5 7 9;(4,-./0<

>?
@

A
 

(31) 

 

3.1.3 Double-clamped beam. 

A perfect clamped configuration is difficult to achieve in glass elements. In 

practical applications, fiber gaskets on both sides of the glass or similar devices 

are used to prevent the breakage of the glass. This means that the response of 

a laminated-glass beam in practice will vary between two limits:  the simply 

supported and the double-clamped boundary configurations. 

In the model of Koutsawa and Daya [2], the double-clamped configuration is a 

particular case of the general model taking  ! = +" and  # = +". They 

assume the following boundary conditions for each extremity in the double-

clamped configuration:  $ = 0, % = 0 and %& = 0. 

Following the same procedure as in the simply supported case, the effective 

stiffness for a doubled-clamped beam under distributed loading is expressed as: 

'()
* =

,-.

384

1

/2 + /5
6 + 79:
79

 (32) 

Whereas the expression for the concentrated load is given by: 

'(;
* =

<-5

1>?

1

/2 + /5
6 + 79:
79

 (33) 

The coefficients /5and /2 are listed in Appendix. 



Eqs. (32) and (33) are used to derive the effective thickness for bending 

deflection, which is expressed as: 

 !" = #12$% &'()*384+,)*-. / -0,5 / )*67
9

 (34) 

for distributed loading and  

 !: = #12$% ;'0)*1<2+,)*-. / -0,5 / )*67
9

 (35) 

for concentrated loading. 

With respect to the stress-effective thickness, this can be derived using the 

same procedure as in the simply supported case but no simple expressions can 

be formulated. The maximum stresses occur at the extremities of the beam and 

the stress-effective thicknesses at these points are determined from the 

equations: 

&'*12% >?"*@
= A B'2C% > D $ >2 EFF G'2H (36) 

 

&'*12% 0?"*@
= DA B'2C% 0 / $ 02 EFF G'2H (37) 

for the distributed load and from 

;'8% >?:* = A B'2C% > D $ >2 EFF G'2H (38) 

 



 !8
 !"#$% =

&' ()2*
 !"

+ ,!"
2 -.. /)20 (39) 

for the concentrated loading. 

 

3.2 The model of Galuppi and Royer-Carfagni (GAL). 

Recently, Galuppi and Royer-Cafagni [15], based upon a variational approach, 

have proposed a formulation for the effective thickness in laminated-glass 

beams, called Enhanced Effective Thickness method, which can be applied to a 

very wide range of boundary and loading conditions. Galuppi and Royer-

Carfagni [15] have considered the deflection of the beam as: 

-134 = &5134
,67  (40) 

 

where 5134 is a shape function that takes the form of the elastic deflection of a 

monolithic beam with constant cross-section under the same loading and 

boundary conditions; 67 is a parameter representing the moment of the inertia of 

the laminated-glass beam given by: 

9
67 =

:;
6<>< +

9 & :;
6? + 6" 

(41) 

 

The non-dimensional weight parameter :;, which tunes the response from the 

layered limit (:; = @) to the monolithic limit (:; = 9) is expressed as: 



 ! =
1

1 +
"# + "$
%!"&'&

(#($
(# + ($

)*
 

(42) 

where  

,! =
G-*b

E*H-
 (43) 

 

"&'& = "# + "$ +
./#/$

/# + /$
/0

- (44) 

The parameter ) depends on the boundary and loading conditions and is given 

by: 

2 =
3 [455678]-97
:;-

<:;-

3 [45678]-97
:;-

<:;-

 (45) 

The values for the most practical cases are tabulated in [17] and some of them 

reproduced in Table 1. 

Then, the effective stiffness is given by: 

>"? =
>

 !
"&'&

+
1 @  !
"# + "$

 
(46) 

Following the same procedure as in the previous section, the deflection 

effective thickness %& is derived from Eq. 9 and turns out to be: 

%&' = ( 1
 !)%#$ + %$$ + 12"*, + -1 .  !/)%#$ + %$$,

0  
(47) 

where 



 ! = "#"$"# + "$ "% (48) 

 

On the other hand, the stress-effective thicknesses are given by: 

"#& = ' 12()"!*"#$ + "$$ + 12 ! + "#",-$  
(49) 

 

"$& = ' 12()"!#"#$ + "$$ + 12 ! + "$",-$  
(50) 

where 

"!# = .#.# + .$ "% (51) 

 

"!* = .$.# + .$ "% (52) 

 

 

3.3 The model of Benisson et al. (BEN) 

Benisson [12] was the first to propose an effective thickness, based on a 

previous work of Wölfel [14], for the calculation of laminated-glass elements. 

Wölfel [14] proposed a model for a sandwich structure composed of three 

layers, the external ones with considerable axial stiffness but negligible bending 

stiffness, while the intermediate layer can bear shear stress only with zero axial 



and flexural strength. Bennison et al. [12] and Calderone et al. [13] have 

developed Wölfel’s approach specifically for the case of laminated glass. This 

model assumes for the laminated-glass beam a deflection curve similar in type 

to the elastic curve of simply supported beam under uniformly distributed load 

and, consequently, turns out to be accurate when the case reflects these 

hypotheses. The validity of the method is limited because its simplifying 

assumptions are valid for statically determined composite beams, for which the 

bending stiffness of the composite plies is negligible. According to Bennison et 

al. [12] and Calderone et al. [13], the effective stiffness is given by the equation: 

( !)" =  !(1 + #Y) (53) 

where 

# =
1

1 + $
 (54) 

and 

$ = %
 &'&*&,

-*
"(&' + &,).

*
/ (55) 

 

% being a coefficient dependent on the boundary and loading conditions. 

Calderone et al. [13] and Bennison et al. [12] suggested to use % = 906 for any 

type of loading and boundary condition. However, Wölfel [14] proposed the 

% = 906 when the load is uniformly distributed; β = 12 for a concentrated force at 

midspan; % = 2*  for a sinusoidal load [14]. 

The effective thickness can be derived from Eq. (53) for the bending deflection, 

which is expressed as: 



 ! = "12#(1 + $%)&'
 (56) 

or alternatively: 

 ! = " *, +  ,, + 12$ -. * , * +  ,'
 (57) 

Expressions similar to the one presented by Calderone et al. [13] (Eq. (56)) can 

be derived from Eqs. (28) and (33) expanding the hyperbolic cosine in Taylor 

series, i.e.: 

cosh /032 4 = 1 + 0.3.8 + 0535687 +9 (58) 

Considering two terms in Eq. (36), the effective stiffness becomes: 

(:#); = :# <1 + %1 + > + >.?(1 + %) @ >A (59) 

which is similar to the equation proposed by Calderone et al. [13]. 

With respect to the effective thickness for estimating stresses, it is given by: 

 !" = #  !$%
 ! + 2&  ' % ! +  %( (60) 

For ply 1 and by 

 %" = #  %$%
 % + 2&  ' % ! +  %( (61) 

for ply 3. 



4 CASE STUDIES 

In this section, the accuracy provided by the models of Koutsawa and Daya 

(KOU), Galuppi and Royer-Carfagni (GAL) and Bennison et al. (BEN) are 

investigated. Laminated-glass beams with the following geometrical data have 

been considered in the simulations:   ! = 6 mm,   " = 4 mm,  # = 0.38 mm, $ = 0.1 m. The mechanical properties of glass and PVB described in section 5 

were used in the simulations.  

The effective thickness for bending deflection of a simply supported laminated 

glass beam under distributed loading and length % = 1 m, were estimated with 

the KOU, GAL and BEN models. Figure 2 shows that all the models provide the 

same effective thickness, with the discrepancies being less than 0.5%. Figure 3 

presents the effective thickness for a shorter beam with % = 0.2 m. The errors 

are of the same order as those calculated for a longer beam (Figure 2). 

In Figures 2 to 3, the borderlines (monolithic limit and the layered limit) of the 

effective thicknesses are indicated [15]. The maximum effective thickness 

coincides with the monolithic limit and occurs over the short term, whereas the 

minimum effective thickness occurs over the long term but do not always reach 

the layered limit. In Figure 3, corresponding to a short beam, it can be seen that 

the effective thickness has reached the layered limit but it is not the case for the 

long beam (Figure 2). For any set of thicknesses  !,  # and  ", it is inferred 

from Eq. (55) that the product &# ' %# (and not only &#) determines the minimum 

effective thickness. Therefore, the minimum effective thickness never reaches 

the layered limit for a long beam. 



With respect to the stress-effective thickness of a simply supported beam under 

distributed loading, all the models provide similar results, with the differences of 

less than 0.5%. 

Very good agreement has also been found for the deflection-effective thickness 

of a simply supported beam under concentrated loading, being the differences 

less than 0.5%. With respect to the stress-effective thickness, the GAL and BEN 

models provide similar results being the error  less than 2% (Figures 4 and 5). 

The discrepancies between the KOU model and the BEN and GAL models are 

close to 7% for  ! and 2.5% for  "#(see Figures 4 and 5). 

Figure 6 shows the effective thickness for a double-clamped laminated-glass 

beam under distributed loading. Significant discrepancies were encountered 

between the models. The GAL and BEN models offer similar results over the 

short term (differences of less than 2%) but the differences increase with time, 

the maximum discrepancy being approximately 15%. The GAL and KOU 

models provide similar results over the long term but the maximum differences 

(c. 12%) occur over the short term.   

 

5 EXPERIMENTAL TESTS 

5.1 Material characterization 

In this work, the glass mechanical properties were determined from static 

bending tests, from which a Young’s modulus  ! = 72000 MPa was estimated.  

On the other hand, the experimental static characterization of PVB was made in 

a DMA RSA3 by subjecting PVB specimens with a thickness of 0.38 mm to 10 

min of tensile relaxation tests. The PVB was tested at different temperatures 

from "15#$ to 50#$ in order to apply the Time-Temperature-Superposition 



Principle (TTS) [3], for the construction of the PVB master curve. The TTS shift 

factors, aT, were determined using the William, Landel and Ferry (WLF) model 

[4], i.e.: 

log( !) = "#$
(% " %&)

#' + (% " %&)
 (62) 

where the coefficients #$ = 12.60 and #2 = 74.46 were estimated for a 

reference temperature, %& = 20*#, fitting all the experimental curves at different 

temperatures to Eq. (62). Once the experimental PVB relaxation master curve 

was established, the modulus was fitted with Eq. (2). The obtained Prony series 

coefficients are presented in Table 2. The Young’s relaxation modulus, ,(-), 

together with the calculated shear relaxation modulus, /'(-) (assuming a 

constant bulk modulus of 2 GPa [5]) are presented in Figure 7.  

5.2 Static bending tests. 

Several experimental static tests were carried out on four laminated-glass 

beams under uniform distributed loading. Seven concentrated loads were used 

to reproduce this loading condition and the deflection at the mid-span was 

measured using a laser sensor. 

5.2.1 Simply supported beams. 

A simply supported beam with the following geometrical data: 3$ = 5 mm, 

38 = 5 mm, 3' = 0.59 mm, : = 1 m and ; = 0.1 m was tested for around 24 h 

under constant distributed loading < = 1>.7 N/m at temperature % = 17.?*#. A 

strain gauge was attached at the top of the glass ply of the beam to measure 

the strain at mid-span. 



Figure 8 presents the experimental deflection together with the predictions by 

the GAL model, the error being less than 10%. Only the predictions with the 

GAL model are shown in the figures as the differences between the models are 

very small for this boundary condition. 

 

The experimental stress at the mid-point of the beam (top ply), together with the 

analytical predictions, are presented in Figure 9. It can be observed that the 

analytical model predicts the stress with an error of less than 8%. 

 

The same test was repeated at  = 17.4 ! in a laminated-glass beam 1 m long 

and 0.1 m wide but with a non-symmetric layer configuration: "# = 4 mm, 

"$ = 0.38 mm and "% = 8 mm. The loading was & = 38.25 N/m. Figure 10 

shows that the analytical models predict the deflection of the beam with 

accuracy better than 9%. 

With respect to the stress of the bottom glass ply at the mid-point, the 

differences between the experimental results and the predictions are less than 

11% (see Figure 11). 

For the effect of the thickness of the PVB layer to be considered, another test 

with the same boundary and loading configurations (& = 38.25 N/m) was 

performed in a beam with ' = 1 m, "# = 4 mm, "$ = 0.76 mm and "% = 8(mm 

at) = 18.3 !. The results for the deflection, presented in Figure 12, shows very 

good agreement between the experimental results and the analytical prediction, 

the error being less than 2%. 

5.2.2 Beam with three supports. 



Finally, a laminated glass beam with the following data:  ! = 4 mm,  " = 4 mm,   

 # = 0.38 mm, $ = %1.40 m and & = 0.1 m was tested in three supports at 

' = 17.8(). The deflection and the strain were measured at the mid-point of 

one of the spams. The GAL model reproduces the experimental deflection with 

an error of less than 9%, and the stress with an error of less than 20% (see 

Figures 13 and 14, respectively). 

Figure 14 reveals that the maximum stress at the top glass ply is reached at 

around 5 * 10+ s and then diminishes, showing a trend different form the 

analytical prediction. This effect can also be seen in Figures 10 and 11. The 

temperature in the lab was not constant during the tests (slightly colder at night 

that at noon), and therefore the beam became slightly stiffer at lower 

temperatures, diminishing both the deflection and the stress. 

6 CONCLUSIONS 

In the last years, several analytical models have been proposed for the static 

analysis of laminated-glass beams. Koutsawa and Daya [2] proposed a model 

for laminated-glass beams supported by a viscoelastic material at the ends of 

the beam. This boundary condition is modeling by a translational spring ,- and 

a rotational spring ,/. The simply supported beam is a particular case of this 

model where it is assumed that ,- = 2 and ,/ = 0. On the other hand, the 

double-clamped configuration can be represented taking ,- = 2 and ,/ = 2. 

In most of the practical applications the laminated-glass elements are not 

entirely clamped. For example, windshields are usually fixed to the automobile 

frame with a viscoelastic material. In other applications such as balustrades, 

fiber gaskets are regularly used. The simply supported and the double clamped 



cases can be considered as the two borderlines of the real support condition. 

The main strength of the KOU model is that any boundary condition can be 

modeled using appropriate stiffness for the springs    and !". 

Bennison et al. [12] proposed the calculation of laminated-glass beams using 

the effective-thickness concept. This technique consists of calculating a 

thickness of a monolithic beam with equivalent bending properties to a 

laminated-glass beam. This methodology is very useful for engineers because 

the calculation of glass beams are significantly simplified, since the elastic 

bending formulas that employ this effective thickness can be used.  The 

effective thickness is time and temperature dependent because the polymeric 

layer is also time and temperature dependent. The approach by Bennison et al. 

[12], based on the previous work of Wölfel [14], derives from assuming a 

deflection shape for the beam deformation similar to the elastic deflection of a 

simply supported beam under a uniformly distributed load [15]. 

Galuppi and Royer-Carfagni [15], using a variational approach, have recently 

proposed an alternative formulation for the effective thickness called the 

enhanced effective-thickness method, which can be applied to most loading and 

boundary conditions. In Galuppi and Royer-Carfagni [16] the methodology 

proposed in [15] has been extended to the two-dimensional case (laminated-

glass plates), giving similar formulas to those corresponding to the one-

dimensional case (beams). The main strength of the GAL model is that it can be 

applied to many loading and boundary conditions. All the equations and 

parameters needed for a quick calculation of laminated-glass beams using the 

effective-thickness concept are summarized by Galuppi et al. [17]. Compared 

with the Bennison approach [12], the equations are similar, they are easy to use 



and, moreover, the Galuppi and Royer-Carfagni model [15] can be applied 

accurately to many more applications. 

By simulations, as study was made of the accuracy achieved with the models of 

Koutsawa and Daya (KOU), Galuppi and Royer-Carfagni (GAL), and Calderone 

et al. (BEN). All the models provide similar results (errors of less than 1%) for 

the deflection- and stress-effective thickness of a simply supported beam under 

distributed loading. With respect to the simply supported beam under 

concentrated loading, the error was less than 2% for the deflection-effective 

thickness. Regarding the stress-effective thickness, the discrepancies between 

the GAL and BEN models are less than 2%, whereas the differences between 

the GAL and KOU model were close to 6%. 

The maximum effective thickness coincides with the monolithic limit and occurs 

over the short term, whereas the minimum effective thickness occurs over the 

long term. The minimum effective thickness reaches the layered limit only for 

short beams because it depends on the product  !" # $! (and not only on  !). 

Therefore, the minimum effective thickness never reaches the layered limit for a 

long beam. 

On the other hand, several experimental static tests were conducted on four 

laminated-glass beams under distributed loading in simply supported beams 

and with three supports, in order to validate the predictions of the analytical 

models. The analytical models predict the experimental deflection and the 

experimental stresses at the mid-point of the simply supported beams with an 

error less than 10%. Similar discrepancies exist for the deflection of the beam 

with three supports but a large error (≈ 20%) has been encountered for the 

stress predictions. However, it can be observed in Figures 8 to 14 that the 



predictions are not always on the safe side. On the other hand, very good 

agreement was found between the experimental results and the analytical 

predictions for the beam with PVB thickness   = 0.76 mm. 
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FIGURE CAPTIONS 

Figure 1. Laminated-glass beam. 

Figure 2. Simply supported beam under distributed loading.  ! = 6 mm,   " = 4 

mm,  # = 0.38 mm, $ = 0.1 m,  % = &1 m. a) Deflection-effective thickness with 

the KOU, GAL and BEN models. b) Mean square error. 

Figure 3.  Simply supported beam under distributed loading.  ! = 6 mm,  

 " = 4 mm,  # = 0.38 mm, $ = 0.1 m,  % =1 m. a) Stress-effective thickness  ! 

with the KOU, GAL and BEN models. b) Mean square error.  

 

Figure 4.  Simply supported beam under concentrated loading.  ! = 6 mm,   

 " = 4 mm,  # = 0.38 mm, $ = 0.1 m, % =1 m. a) Stress-effective thickness  ! 

with the KOU, GAL and BEN models. b) Mean square error.  

 

Figure 5.

 

Simply supported beam under concentrated loading.  ! = 6 mm,   

 " = 4 mm,  # = 0.38 mm, $ = 0.1 m, L= 1m. a) Stress-effective thickness  " 

with the KOU, GAL and BEN models. b) Mean square error.  

 

Figure 6. Double-clamped  laminated-glass beam under distributed loading. 

 ! = 6 mm,   " = 4 mm,  # = 0.38 mm, $ = 0.1 m,  % =1 m. a) Deflection-

effective thickness with the KOU, GAL, and BEN models. b) Mean square error.

 

Figure 7. Tensile and shear relaxation moduli of PVB at ' = 20(). 

Figure 8. Deflection of a simply supported beam under distributed loading. 

 
 ! = 3 mm,  " = 3 mm,  # = 0.38 mm, % = 1 m,  $ = 0.1 m,&* = 19.7 N/m and 

' = 17.5(). 



Figure 9. Maximum stress at the mid-point of the top glass ply. Simply 

supported beam under distributed loading.  ! = 3 mm,  " = 3 mm,  # = 0.38 

mm, $ = 1 m,  % = 0.1 m,&' = 19.7 N/m and ( = 17.5)*. 

Figure 10. Deflection of a simply supported beam under distributed loading. 

 
 ! = 4 mm,  " = 8 mm,  # = 0.38 mm, $ = 1 m,  % = 0.1 m,&' = 38.25 N/m and 

( = 17.4)*.

 

Figure 11. Maximum stress at the mid-point of the bottom glas ply. Simply 

supported beam under distributed loading.  ! = 4 mm,  " = 8 mm,  # = 0.38 

mm, $ = 1 m,  % = 0.1 m,&' = 38.25 N/m and ( = 17.54)*. 

Figure 12 Deflection of a simply supported beam under distributed loading. 

 
 ! = 4 mm,  " = 8 mm,  # = 0.76 mm, $ = 1 m,  % = 0.1 m,&' = 38.25 N/m and 

( = 18.3)*.

 

Figure 13. Deflection of a beam with three supports under distributed loading. 

 
 ! = 4 mm,  " = 4 mm,  # = 0.38 mm, $ = 1.4 m,  % = 0.1 m,&' = 94.22 N/m 

and ( = 17.8)*. 

Figure 14. Maximun stress at the mid-point of the top glass ply. Beam with three 

supports under distributed loading.  ! = 4 mm,  " = 4 mm,  # = 0.38 mm, 

$ = 1.4 m,  % = 0.1 m,&' = 94.22 N/m and ( = 17.8)*. 

 

TABLE CAPTIONS 

Table 1. Coupling parameter + for laminated-glass beams. 

Table 2. Prony series coefficients for PVB. 



 

Boundary conditions Loading  

Simply supported Distributed  

Simply supported 
Concentrated 

mid-point 
 

Double clamped Distributed  

Three supports Distributed  

Clamped-simply Distributed  
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 [s]  

2.36600000000000E-07 2.342151953E-01 

2.26430000000000E-06 2.137793134E-01 

2.16668000000000E-05 1.745500419E-01 

2.07327300000000E-04 1.195345045E-01 

1.98389580000000E-03 1.362133454E-01 

1.89837195000000E-02 6.840656310E-02 

1.81653498300000E-01 4.143944180E-02 

1.73822593210000E+00 7.251952800E-03 

1.66329270788000E+01 2.825459600E-03 

1.59158978189400E+02 2.712854000E-04 

1.52297789909670E+03 4.293523000E-04 

1.45732380763177E+04 9.804730000E-05 

1.39449999999999E+05 5.274937000E-04 
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