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Introduction

In [2], we showed how to “paste” a simple heart to an arbitrary associative
system over a field, so that it imbeds is a strongly prime (indeed primitive) system
with nonzero simple primitive heart. This was aimed at building counterexamples
linked to some problems with Jordan systems [1]. Recently, in [3], the results obtained
in [2] were improved in two senses: on the one hand, associative systems over more
general rings of scalars were considered, and, on the other hand, analogues for systems
with involution were also obtained.

In this paper we will prove similar results for Lie algebras, so showing that the
class of strongly prime Lie algebras with simple nondegenerate heart is wide enough
to contain full information on the whole class of Lie algebras, at least when we work
with sufficiently regular modules.

We will base our results on those for associative algebras, using Herstein’s the-
orems [6, 7] on the transfer of regularity between associative algebras and the Lie
algebras built out of them, together with Poincare-Birkhoff-Witt Theorem [9, Cor.
17.3 B; 10, Cor. 1 on page 160].

1 Corresponding author.
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The paper is divided into three sections, plus an Introduction in which basic
results and terminology will be recalled. The first section is devoted to study cen-
tralizers and absolute zero divisors of subsets of endomorphisms acting densely on
vector spaces. This sets appear naturally in the constructions of [2] and [3] for asso-
ciative algebras. The results of Section 1 will be applied to give in the next section
a modified version of the main construction of [2] for associative algebras over fields,
specifically prepared to deal comfortably with nondegeneracy when applying it to
Lie algebras. From that we will obtain a Lie analogue of the main theorem of [3] for
Lie algebras over fields. In the final third section, we will obtain our main theorems,
which match the associative analogues of [3]: we will find a necessary condition on
the underlying module of a Lie algebra L to find a prime Lie algebra where L imbeds
and see that the condition is also sufficient. Indeed, it guaranties that L imbeds in
a strongly prime Lie algebra with simple nondegenerate heart, spanned as a direct
sum by the isomorphic image of L and the heart.

0. Preliminaries

0.1 We will deal with associative and Lie algebras over an arbitrary ring of
scalars Φ. The reader is referred to [8, 9, 10] for basic facts and notions not explicitly
mentioned in this section.

0.2 A Lie algebra L is said to be prime, if there are no nonzero orthogonal ideals
of L: if I,K are nonzero ideals of L, then [I,K] 6= 0. An element a ∈ L is said to be
an absolute zero divisor of L if (ada)2 = 0, i.e., [a, [a, L]] = 0. A Lie algebra L will
be said nondegenerate if it does not have nonzero absolute zero divisors, and will be
said strongly prime if it is prime and nondegenerate.

0.3 Given an associative or Lie algebra M , the heart Heart(M) of M is the
intersection of all nonzero ideals of M . It can be readily seen that, when R is a
semiprime associative algebra, Heart(R) is the unique simple ideal of R when it is
nonzero.

0.4 An associative algebra R gives rise to a Lie algebra R(−) by antisymmetriza-
tion: over the same Φ-module, the Lie product is given by [x, y] = xy − yx.

0.5 Let R be an associative algebra over Φ without 2-torsion. If R is semiprime,
then R(−)/Z(R) is nondegenerate [5, 4.2].

0.6 (i) Let M be a Φ-module. The annihilator of M in Φ, AnnΦ(M) := {λ ∈
Φ | λM = 0}, is the kernel of the natural ring homomorphism of Φ in EndZ(M). Let
Φ̄ denote the quotient Φ/ AnnΦ(M). Notice that Φ̄ is isomorphic to the image of Φ
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in EndZ(M) and M becomes a Φ̄-module. Moreover, if M is an associative or Lie
algebra over Φ, then it is also an associative or Lie algebra, respectively, over Φ̄.

(ii) Conversely, if we take any proper ideal I of Φ, any Φ/I-module, or associative
or Lie algebra over Φ/I can be viewed as a Φ-module, or associative or Lie algebra
over Φ, respectively, in the obvious manner.

0.7 For a vector space V over a division ring F , EndF (V )0 will denote the ideal
of EndF (V ) consisting of the endomorphisms of V with finite rank. It is well known
that EndF (V )0 is a simple associative ring, which is left primitive since it acts densely
on V on the left.

This paper is aimed at studying Lie analogues of the following two results for
associative algebras.

0.8 If R is an associative system over Φ, and there exists a prime associative
system R̃ over Φ such that R is isomorphic to a subsystem S of R̃, then Φ̄ is an
integral domain acting without torsion on R [3, 2.1].

0.9 Let R be an associative algebra over a ring of scalars Φ such that Φ̄ is an
integral domain acting without torsion on R. There exists an associative algebra R̃

over Φ such that:

(i) R is isomorphic to a subalgebra S of R̃,

(ii) R̃ is a left primitive algebra, hence it is prime,

(iii) Heart(R̃) is simple and left primitive,

(iv) R̃ = S ⊕Heart(R̃), hence R̃/Heart(R̃) ∼= R [3, 2.2].

1. Lie Algebras Built out of Dense Sets of Endomorphisms

In this section we will deal with vector spaces over a division ring. Though for
later use in the paper working with vector spaces over fields would be enough, the
generalization does not involve much extra work and the results we obtain might be
applied to Lie algebras built out of primitive rings, without restrictions.

1.1 If V is a left vector space over a division ring F , a subset S ⊆ EndF (V )
is said to be dense on V (or to act densely on V ) if, for any n ∈ N and any
v1, . . . , vn, w1, . . . , wn ∈ V such that v1, . . . , vn are linearly independent, there ex-
ists f ∈ S such that f(vi) = wi for all i = 1, . . . , n.

The next result will give us full information on the endomorphisms of a vector
space commuting with a subset acting densely on the vector space. It is the starting
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point to find information on elements acting as absolute zero divisors on these dense
sets.

1.2 Proposition. If V is a left vector space over a division ring F , and S is
a subset of EndF (V ) acting densely on V , then an element of EndF (V ) commuting
with all the elements of S is necessarily a scalar multiple of the identity by a central
element of F , i.e.,

CEndF (V )(S) = Z(F ) · IdV .

As a consequence, if, in addition, S is a subring of EndF (V ) or a Lie subring of
EndF (V )(−), then Z(S) = S ∩ Z(F ) · IdV .

Proof: For any f ∈ CEndF (V )(S), and any 0 6= v ∈ V , v and f(v) are linearly
dependent over F . Otherwise, by density, we can find g ∈ S such that g(v) = 0 and
g(f(v)) = v. Thus, v = g(f(v)) = f(g(v)) = f(0) = 0 since f and g commute, which
is a contradiction. We have shown that, given f ∈ CEndF (V )(S), for any 0 6= v ∈ V

there exists λv ∈ F (obviously unique for each 0 6= v ∈ V ) such that f(v) = λvv.

Moreover, for any 0 6= v ∈ V , λv ∈ Z(F ). Indeed, by density, for any 0 6= v ∈ V ,
and any α ∈ F , there exists h ∈ S such that h(v) = αv, hence αλvv = αf(v) = f(αv)
(by F -linearity of f) = f(h(v)) = h(f(v)) = h(λvv) = λvh(v) (by F -linearity of h)
= λvαv, which implies that αλv = λvα, for any α ∈ F , as desired.

The fact that λv ∈ Z(F ) implies that, for any 0 6= v ∈ V , and for any 0 6= α ∈ F ,
λαv = λv: λαvαv = f(αv) = αf(v) (by F -linearity of f) = αλvv = λvαv (since
λv ∈ Z(F )) implies λαvα = λvα, hence λαv = λv. Also the equality

λvv + λww = f(v) + f(w) = f(v + w) = λv+w(v + w)

applied to any pair or linearly independent elements v, w ∈ V shows that the scalars
λv are all the same, i.e., f = λIdV , for some λ ∈ Z(F ).

1.3 Proposition. If V is a left vector space over a division ring F without
2-torsion, and S is a subset of EndF (V ) acting densely on V , then an element f of
EndF (V ) such that [f, [f, g]] = 0, for all g ∈ S is necessarily a scalar multiple of the
identity by a central element of F , i.e.,

{f ∈ EndF (V ) | [f, [f, S]] = 0} = Z(F ) · IdV .

Proof: Let f ∈ EndF (V ) satisfy [f, [f, S]] = 0.

We claim that, for any 0 6= v ∈ V , v and f(v) are linearly dependent over F ,
so that there exists a unique λv ∈ F such that f(v) = λvv. Otherwise, we have two
possibilities:
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1) v, f(v), f(f(v)) are linearly independent, which implies, by density of S, that there
is g ∈ S such that g(v) = 0, g(f(v)) = v, and g(f(f(v))) = 0. Now the fact that
0 = [f, [f, g]] = ffg+gff−2fgf acting on v yields 0 = ffg(v)+gff(v)−2fgf(v) =
−2f(v), hence f(v) = 0 due to the absence of 2-torsion, which is a contradiction.

2) v, f(v) are linearly independent but f(f(v)) lies in W := F 〈v, f(v)〉, the vector
subspace of V spanned by v and f(v). Then W is f -invariant, and we can consider f̃ ∈
EndF (W ) obtained by restricting f to W . By density of S, any element of EndF (W )
can be obtained by restricting to W a suitable element of S, hence [f̃ , [f̃ , EndF (W )]] =
0, i.e., f̃ is an absolute zero divisor of EndF (W )(−). By (0.5) applied to the Z-
algebra EndF (W ) (it is simple, hence prime, hence semiprime), f̃ ∈ Z(EndF (W )) =
Z(F )·IdW (the last equality follows from (1.2) applied to the whole EndF (W ), which
acts densely on W ). Thus f(v) = f̃(v) is a scalar multiple of v, which contradicts
our assumption.

Moreover, for any 0 6= v ∈ V , λv ∈ Z(F ). Indeed, by density, for any 0 6=
v ∈ V , and any α ∈ F , there exists h ∈ S such that h(v) = αv. Thus, using F -
linearity of f and h, the equality [f, [f, h]](v) = (ffh + hff − 2fhf)(v) = 0 reads
(αλ2

v + λ2
vα− 2λvαλv)v = 0, hence 0 = αλ2

v + λ2
vα− 2λvαλv = [λv, [λv, α]], and λv is

an absolute zero divisor of F (−). By (0.5) applied to the ring F (it is a division ring,
hence it is semiprime), λv ∈ Z(F ).

Now the arguments of the last paragraph of the proof of (1.2) apply here verbatim
to show that f = λIdV , for some λ ∈ Z(F ).

1.4 Lemma. If V is a left vector space of infinite dimension over a division
ring F , and S is a subset of EndF (V ) acting densely on V , then the set [S, S] :=
{[f, g] | f, g ∈ S} acts densely of V too.

Proof: Let v1, . . . , vn, w1, . . . , wn ∈ V , n ∈ N, such that v1, . . . , vn are linearly
independent. We will show that there exist f, g ∈ S such that

[f, g](vi) = f(g(vi))− g(f(vi)) = wi, for any i ∈ {1, . . . , n} (1)

Since V is infinite-dimensional, we can find u1, . . . , un ∈ V such that v1, . . . , vn,

u1, . . . , un are linearly independent. By density of S on V , there exist f, g ∈ S such
that f(vi) = 0, for any i ∈ {1, . . . , n}, and f(ui) = wi, for any i ∈ {1, . . . , n}, and
g(vi) = ui, for any i ∈ {1, . . . , n}. Clearly, f and g satisfy (1).

1.5 Corollary. If V is a left vector space of infinite dimension over a division
ring F without 2-torsion, and R = EndF (V )0, then {f ∈ EndF (V ) | [f, [f, [R, R]]] =
0} = Z(F ) · IdV . As a consequence, CEndF (V )([R,R]) = Z(F ) · IdV , and Z(R) = 0.

Proof: By (0.7) and (1.4), [R, R] acts densely on V . We just need to use (1.3)
applied to [R, R], together with the clear fact that R ∩ Z(F ) · IdV = 0.
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2. Growing Hearts in Lie Algebras over Fields

2.1 Let L be a Lie algebra and L1 be a subalgebra of L containing an ideal I

of L. If CL(I) = 0, then I hits any nonzero ideal of L1: if K is an ideal of L1 and
K ∩ I = 0, then [K, I] ⊆ K ∩ I = 0, and K ⊆ CL(I) = 0. If, in addition, I is simple,
then I is contained in every nonzero ideal of L1 (if K is a nonzero ideal of L1, then
0 6= K ∩ I is an ideal of I, hence I = K ∩ I ⊆ K using the simplicity of I), i.e.,
I = Heart(L1).

In order to be able to obtain our main theorem for Lie algebras, we need a
modified version of [2, 2.3] for algebras, in which the simple Lie ideal associated to
the associative heart has zero centralizer and there is no nonzero element acting on
it as an absolute zero divisor.

2.2 Theorem. Let R be an associative algebra over a field F of characteristic
different from 2. There exists an associative algebra R̃ over F such that:

(i) R is isomorphic to a subalgebra S of R̃,

(ii) R̃ is a left primitive algebra, hence it is prime,

(iii) Heart(R̃) is simple and left primitive,

(iv) R̃ = S ⊕Heart(R̃), hence R̃/ Heart(R̃) ∼= R.

(v) CR̃([Heart(R̃), Heart(R̃)]) = 0

(vi) If a ∈ R̃ satisfies [a, [a, [Heart(R̃), Heart(R̃)]]] = 0 then a = 0.

Proof: We just need to modify the construction given in the proof of [2, 2.3],
so that the additional conditions (v) and (vi) hold:

Let V = Σi∈NVi, where Vi = R̂, for all i ∈ N, and τi : R̂ −→ V , i ∈ N, be the
canonical injections. Let Ψ : R −→ EndF (V ) be the map given by Ψ(a) · τi = τi · La

(La is the left multiplication by a in R̂) if i is odd, and Ψ(a) · τi = 0 if i is even. It is
easy to see that Ψ is an F -algebra monomorphism, so that S := Ψ(R) is a subalgebra
of EndF (V ) isomorphic to R. Moreover,

S ∩ EndF (V )0 = 0. (1)

since, given any 0 6= x ∈ R, τi(x) = Ψ(x)(τi(1)) for any odd i, which implies Ψ(x) 6∈
EndF (V )0.

Take R̃ = S + EndF (V )0, which by (1) is a direct sum (of a subalgebra and an
ideal of EndF (V ) (0.7)), hence it is a subalgebra of EndF (V ). Moreover, EndF (V )0
is an ideal of R̃. Since EndF (V )0 acts densely on the left on V , so does R̃, hence R̃

is left primitive and, in particular, it is prime. Now EndF (V )0 is a simple ideal of
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the prime associative algebra R̃, so that Heart(R̃) = EndF (V )0, which is simple and
left primitive. This shows (i–iv).

Notice that
R̃ ∩ F · IdV = 0. (2)

Indeed, given x ∈ R, and f ∈ EndF (V )0, we claim that Ψ(x) + f is not surjective.
Otherwise V = Im(Ψ(x)+f) ⊆ Im(Ψ(x))+Im f implies V = Im(Ψ(x))+Im f , hence
Im(Ψ(x)) has finite codimension in V (V/ Im(Ψ(x)) ∼= Im f/(Im(Ψ(x))∩Im f) is finite
dimensional), which is a contradiction since

∑
even i τi(R̂) is an infinite-dimensional

subspace of V intersecting trivially Im(Ψ(x)). Since λIdV is even bijective for any
λ ∈ F \ {0}, (2) is clear.

Now

CR̃([Heart(R̃),Heart(R̃)]) = CR̃([EndF (V )0,EndF (V )0])

= CEndF (V )([EndF (V )0,EndF (V )0]) ∩ R̃

= F · IdV ∩ R̃ (by (1.5)) = 0

by (2), which shows (v).

Finally, (vi) follows from (1.5) and (2).

We will use (2.2) to obtain an analogue of (0.9) for Lie algebras over a field of
characteristic not two.

2.3 Proposition. Let L be an Lie algebra over a field F of characteristic not
two. There exists a Lie algebra L̃ over F such that:

(i) L is isomorphic to a subalgebra M of L̃,

(ii) L̃ is strongly prime,

(iii) Heart(L̃) is simple and nondegenerate,

(iv) L̃ = M ⊕Heart(L̃), hence L̃/ Heart(L̃) ∼= L.

(v) CL̃(Heart(L̃)) = 0 and there is not any 0 6= a ∈ L̃ such that [a, [a,Heart(L̃)]] = 0.

Proof: By the Poincare-Birkhoff-Witt Theorem [9, Cor. 17.3 B; 10, Cor. 1
on page 160], L is a subalgebra of R(−) for some associative algebra R over F . Let
R̃ be the algebra whose existence is given in (2.2), so that S is a subalgebra of R̃

isomorphic to R. Let M be the image of L through the isomorphism R ∼= S. We have
that M is a subalgebra of R̃(−) not hitting H := Heart(R̃). Clearly, H := Heart(R̃)
is an ideal of R̃(−), and so is [H, H]. Therefore L̃ := M ⊕ [H, H] is a subalgebra of
R̃(−) and (i) holds.
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Notice that CR̃([H, H]) = 0 (2.2)(v) implies CL̃([H, H]) = 0 and Z(H) = 0,
hence [H, H] is a simple Lie algebra by [7, Theorem 4]. Therefore (2.1) can be
applied to obtain Heart(L̃) = [H, H], which implies (iv). Since Z(R̃) = 0 (again as
a consequence of CR̃([H, H]) = 0 (2.2)(v)), R̃(−) is nondegenerate by (0.5), and its
ideal [H, H] is nondegenerate by [4, Lemma 1.1; 11, Lemma 4], which shows (iii).

Because of having a simple heart, L̃ is obviously prime. Moreover, L̃ is nondegen-
erate by (2.2)(vi), which proves (ii). Finally, (v) is a direct application of (2.2)(v)(vi)
too.

2.4 Remark. In case we are working over fields of characteristic zero, we can
use Zelmanov’s result [11, Cor. 1 on page 543], to show directly nondegeneracy of L̃

in (2.3) from the nondegeneracy of its heart: if K( ) denotes the Kostrikin radical (the
smallest ideal giving a nondegenerate quotient) 0 = K(Heart(L̃)) = K(L̃)∩Heart(L̃)
implies K(L̃) = 0, i.e., L̃ is nondegenerate.

3. Main Results

The aim of this section is obtaining an optimal version of (2.3), for Lie algebras
over more general rings of scalars. The next result sets up a limit on this generaliza-
tion.

3.1 Proposition. If L is a Lie algebra over a ring of scalars Φ, and there
exists a prime Lie algebra L̃ over Φ such that L is isomorphic to a subalgebra M of
L̃, then Φ̄ is an integral domain acting without torsion on L.

Proof: Let λ+AnnΦ(L), µ+AnnΦ(L) ∈ Φ̄. If (λ+AnnΦ(L))(µ+AnnΦ(L)) = 0,
then the ideals of L̃ generated by λM , and µM are orthogonal. By primeness of L̃,
either λM = 0 or µM = 0, i.e., either λL = 0 or µL = 0, i.e., λ + AnnΦ(L) = 0 or
µ + AnnΦ(L) = 0.

If λ + AnnΦ(L) ∈ Φ̄ and r ∈ L satisfy λr = 0, then λs = 0, for the image s of
r under the isomorphism L ∼= M . Now, the ideals of L̃ generated by s and λL̃ are
orthogonal. By primeness of L̃, either s = 0, i.e., r = 0, or λL̃ = 0, which implies
λM = 0, i.e., λL = 0, i.e., λ + AnnΦ(L) = 0.

We are going to see that the converse of the above result is true. In fact, it is
part of the announced optimal version of (2.3).

3.2 Theorem. Let L be a Lie algebra over a ring of scalars Φ such that Φ̄ is an
integral domain acting without torsion on L. Let us also assume that L (equivalently
Φ̄) does not have 2-torsion. There exists a Lie algebra L̃ over Φ such that:

(i) L is isomorphic to a subalgebra M of L̃,
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(ii) L̃ is strongly prime,

(iii) Heart(L̃) is simple and nondegenerate,

(iv) L̃ = M ⊕Heart(L̃), hence L̃/ Heart(L̃) ∼= L.

(v) CL̃(Heart(L̃)) = 0 and there is not any 0 6= a ∈ L̃ such that [a, [a,Heart(L̃)]] = 0.

Proof: First notice that we can replace Φ by Φ̄ and assume that Φ is an inte-
gral domain acting without torsion on L (Φ and L, both without 2-torsion): We just
need to work over Φ̄ and then read the result in terms of Φ-modules and Φ-algebras
(0.6)(ii). Isomorphisms, submodules, subalgebras, ideals, simplicity, primeness, non-
degeneracy, etc. over Φ̄ are the same over Φ, and L goes back to its initial Φ-module
structure.

Now let L1 := Φ−1Φ ⊗Φ L, which is a Lie algebra over the field of fractions
F := Φ−1Φ of Φ of characteristic not two. If we apply (2.3) to L1 as an F -algebra,
we obtain an F -algebra L̃1 satisfying (2.3)(i—v). Let H := Heart(L̃1). It is a simple
nondegenerate F -algebra which is, in particular a simple nondegenerate Φ-algebra
(simplicity and the absence of absolute zero divisors do not depend on the ring of
scalars).

Let M1 be the isomorphic image of L1 in L̃1. Since L is a Φ-subalgebra of
L1 due to the lack of torsion, its image M by the isomorphism L1

∼= M1 is also a
Φ-subalgebra of M1 (hence of L̃1) isomorphic to L.

Now we can define L̃ := M ⊕H (M ∩H ⊆ M1∩H = 0) which is a Φ-subalgebra
of L̃1 and hence satisfies (i) for L.

Since {a ∈ L̃ | [a, [a,H]] = 0} ⊆ {a ∈ L̃1 | [a, [a, H]] = 0}, and CL̃(H) ⊆ CL̃1
(H),

(2.3)(v) implies:

(1) CL̃(H) = 0 and there is not any 0 6= a ∈ L̃ such that [a, [a,H]] = 0.

Moreover, CL̃1
(H) = 0 ((2.3)(v)) allow us to apply (2.1) to obtain Heart(L̃) = H, so

that we have (iii) and (iv), and (1) is (v).

Because of having a simple heart, L̃ is prime, and its nondegeneracy follows from
(v)

3.3 Remark. Following the proof of (2.3) and its use to prove (3.2), an ad-
ditional fact can be stressed: By (1.4), both L̃ and Heart(L̃) in (3.2) are subsets of
EndF (V ) acting densely on V , for an infinite dimensional vector space V over the
field of fractions F of Φ̄.
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[4] E. Garćıa, “Inheritance of Primeness by Ideals in Lie Algebras”, Int. J.
Math., Game Theor. Algebra 13 (6) (2003), 481-884.
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